用户名: 密码: 验证码:
利用RAFT聚合方法合成药物载体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用高分子两亲性嵌段共聚物自组装形成的“核-壳”结构胶束,在药物/基因载体的研究领域得到了广泛地关注。相关实验表明,通过自组装行为形成的胶束稳定性通常不佳,容易受到外界环境的影响而导致体系的“崩溃”,以致失去对药物的有效输运及可控释放能力。为了增强此类载体的抗干扰能力,得到稳定、结构高度有序的高分子聚集体,研究工作者提出了交联胶束的概念,即通过化学键将胶束链接起来,以实现结构的固定和新功能的开发。
     本论文拟利用可逆断裂-链转移聚合技术(RAFT)得到对药物阿苯哒唑(ABZ)和肝素(HP)进行传递的聚合物药物载体。为了实现体内药物的高效传递,利用RAFT聚合技术合成一系列基于两亲性嵌段共聚物的聚合物胶束体系。对于ABZ的传输,设计两个药物载体体系。第一,聚(乙二醇)甲基醚甲基丙烯酸酯被选作亲水性单体在水溶液中形成外壳,对硝基苯酚丙烯酸酯链段作为疏水链段形成内核,通过化学反应的交联作用,形成一种全核交联的核交联胶束。第二,将RAFT聚合技术与开环技术相结合,得到以聚己内酯作为疏水性片断的嵌段间面交联胶束。药物包载实验结果证明,聚己内酯形成的自组装胶束对于ABZ有良好的药物包载性能。
     利用RAFT聚合方法合成含有(2-(甲基丙烯酰氧基)乙基)三甲基氯化铵的嵌段聚合物,其中(2-(甲基丙烯酰氧基)乙基)三甲基氯化铵片段呈正电性,可通过离子键直接与负电性肝素结合。细胞毒理实验证明,聚合物/肝素复合物无细胞毒性,随着聚合物中正电荷性的增强,细胞吸收能力也会随之提高。聚合物/肝素复合物能够有效抑制纤维素瘤的细胞增殖。
“Core-Shell” micelle as drug/gene delivery systems have gained more and moreattention in research area. With crosslinking method, it is easy to overcome theshortcoming of the self-assembled micelles and get stable cross-linked micelles. Theaim of this thesis is to investigate the applicability of polymeric nano-particlessynthesized via reversible addition fragmentation chain transfer (RAFT)polymerization that can be used for the drug delivery of albendazole (ABZ) andHeparin(HP).
     To achieve this aim, a wide range of polymeric micelle systems based onamphiphilic block copolymers has been synthesized and investigated. Thebiocompatible poly(ethylene glycol) methyl ether methacrylate was chosen to formthe hydrophilic block. Based on the crosslinking techniques, p-nitrophenyl acrylatewas chosen to build the hydropobic block and the functional part. Poly(-caprolactone) was chosen to build another hydrophobic block as it demonstrated toachieve the highest compatibility with the ABZ. To stabilize the structure of micelles,nexus-crosslinking were employed.
     To further study the efficiency of the drug delivery system, polymer/heparincomplexes have been made and showed enhanced cell uptake ability with theincreasing positive block part. The cytotoxicity assay showed the polymer/heparincomplexes presented little effect on cell viability. In-vitro studies revealed thepromising results of those polymer/heparin complex to be used as drugdelivey systemfor lymphoma treatment.
引文
[1] Egli S., Hoogevest P.V., Feasibility Study on the Intravenous Formulation of Albendazole,Phares Drug Delivery, Muttenz.2008,2,4.
    [2] Jordan M. A., Wilson L., Microtubules as a target for anticancer drugs, Nat. Rev. Cancer,2004,4:253-265.
    [3] Moad G., Rizzardo E., Thang S.H., Living Radical Polymerization by the RAFT Process,Aust. J. Chem.,2005,58:379-410.
    [4] Neuse E.W., Platinum coordination compounds in cancer research and chemotherapy,South Afr. J. Sci.,1999,95:509-516.
    [5] Scholz C., Iijima M., Nagasaki Y., et al., Polymeric micelles as drug delivery systems: areactive polymeric micelle carrying aldehyde groups, Polym. Advan. Technol.,1998,9:768-776.
    [6] Stolnik S., Illum L., Davis S.S., Long circulating microparticulate drug carriers, Adv.Drug Delivery Rev.,1995,16:195-214.
    [7] Seymour L.W., Duncan R., Strohalm J., Effect of molecular weight (Mw) ofN-(2-hydroxypropyl)methacrylamide copolymers on body distribution and rate of excretionafter subcutaneous, intraperitoneal, and intravenous administration to rats[J], J. Biomed.Mater. Res.,1987,21,1341-1358.
    [8] Matsumura Y., Maeda H., A New Concept for Macromolecular Therapeutics in CancerChemotherapy: Mechanism of Tumoritropic Accumulation of Proteins and the AntitumorAgent Smancs, Cancer Res.,1986,46:6387-6392.
    [9] Cowie J. M. G., Polymers: Chemistry and Physics of Modern Materials,2nd Edition. NewYork: Blackie Academic and Professional,1994,95-106.
    [10] Quirk R. P., Conprehensive polymer science. Oxford: Pergamon Press,1989.48-49.
    [11] Braunecker W.A., Matyjaszewski K., Controlled/living radical polymerization: Features,developments, and perspectives, Prog. Polym. Sci.,2007,32:93-146.
    [12] Rizzardo E., Solomon D., A new method for investigating the mechanism of initiation ofradical polymerization, Polym. Bull.,1979,1:529-534.
    [13] Chiefari J., Chong Y.K.(Bill), Ercole F., et al., Living Free-Radical Polymerization byReversible Addition Fragmentation Chain Transfer: The RAFT Process, Macromolecules,1998,31:5559-5562.
    [14] Margerison D., East G.C., An Introduction to Polymer Chemistry. London: PergamonPress,1967,55-62.
    [15] Rudin A., The Elements of Polymer Science and Engineering: An Introductory Text andReference for Engineers and Chemists (Second Edition),1998,80-92.
    [16] Cowie J.M.G., Valeria A., Polymers: Chemistry and Physics of Modern Materials, ThirdEdition. Scotland: CRC Press2007,100-123.
    [17] Odian G., Principles of Polymerization (Fourth Edition). New York: Wiley-Interscience,2004,22-25.
    [18] Barner-Kowollik C., Davis T.P., Handbook of radical polymerization. USA: John Wileyand Sons, Inc:Hoboken,2002,5-12.
    [19] Pojman J.A., Willis J., Fortenberry D., et al., Factors affecting propagating fronts ofaddition polymerization: Velocity, front curvature, temperatue profile, conversion, andmolecular weight distribution, J. Polym. Sci. Pol. Chem.,1995,33:643-652.
    [20] Malcolm P.S., Polymer Chemistry: An Introduction. New York: Oxford University Press,1999,20-22.
    [21] Szablan Z., Living free radical and photo initiation studies of Acrylate, Methacrylate andItaconate polymerization systems:[博士学位论文],澳大利亚,新南威尔士大学,2008.
    [22] Matyjaszewski K., Controlled Radical Polymerization. Washington, D.C.: AmericanChemical Society,1998,3-5.
    [23]Matyjaszewski K., Overview: Fundamentals of Controlled/Living Radical Polymerization,in Controlled Radical Polymerization. ed: American Chemical Society,1998,685:2-30.
    [24] Szwarc M./`Living/' Polymers, Nature,1956,178,1168-1169,.
    [25] Quirk R. P., Lee B., Experimental Criteria for Living Polymerizations, Polym. Int.,1992,27:359-367.
    [26] Mueller A.H.E., Yan D., Litvinenko G., et al., Kinetic Analysis of "Living"Polymerization Processes Exhibiting Slow Equilibria.1. Degenerative Transfer (DirectActivity Exchange between Active and "Dormant" Species). Application to Group TransferPolymerization, Macromolecules,1995,28:4326-4333.
    [27] Zwolak G., Jayasinghe N.S., Lucien F.P., Catalytic chain transfer polymerisation ofCO2-expanded methyl methacrylate, J. Supercrit. Fluid.,2006,38:420-426.
    [28] Barner-Kowollik C., Davis T.P., Stenzel M.H., Probing mechanistic features ofconventional, catalytic and living free radical polymerizations using soft ionization massspectrometric techniques, Polymer,2004,45:7791-7805.
    [29] Heuts J.P.A., Roberts G.E., Biasutti J.D., Catalytic Chain Transfer Polymerization: anOverview, Aust. J. Chem.,2002,55:381-398.
    [30] Gridnev A.A., Ittel S.D., Catalytic Chain Transfer in Free-Radical Polymerizations,Chem. Rev.,2001,101:3611-3660.
    [31] Georges M.K., Veregin R.P.N., Kazmaier P.M., et al. Narrow molecular weight resins bya free-radical polymerization process, Macromolecules,1993,26:2987-2988.
    [32] Kato M., Kamigaito M., Sawamoto M., et al., Polymerization of Methyl Methacrylatewith the Carbon Tetrachloride/Dichlorotris-(triphenylphosphine)ruthenium(II)/Methylaluminum Bis(2,6-di-tert-butylphenoxide)Initiating System: Possibility of Living Radical Polymerization, Macromolecules,1995,28:1721-1723.
    [33] Wang J.S., Matyjaszewski K., Controlled/"living" radical polymerization. atom transferradical polymerization in the presence of transition-metal complexes, J. Am. Chem. Soc.,1995,117:5614-5615.
    [34] Patten T.E., Matyjaszewski K., Copper(I)-Catalyzed Atom Transfer RadicalPolymerization, Acc. Chem. Res.,1999,32:895-903.
    [35] Junkers T., Stenzel M.H., Davis T.P., Thioketone-Mediated Polymerization of ButylAcrylate: Controlling Free-Radical Polymerization via a Dormant Radical Species, Macromol.Rapid. Comm.,2007,28:746-753.
    [36] Toy A.A., Chaffey-Millar H., Davis T.P., Thioketone spin traps as mediating agents forfree radical polymerization processes, Chem. Commun.,2006,835-837.
    [37] Millar H.C., Izgorodina E.I., Kowollik C.B., et al. Radical Addition to Thioketones:Computer-Aided Design of Spin Traps for Controlling Free-Radical Polymerization, J.Chem.Theo. Comp.,2006,2:1632-1645.
    [38] Rempp P., Merrill E.W., Polymer synthesis. New York: Huthig&Wepf,1991,50-53.
    [39] Hawker C.J, Barclay, G.G., Orellana A., et al., Initiating Systems for Nitroxide-Mediated“Living” Free Radical Polymerizations: Synthesis and Evaluation, Macromolecules,1996,29:5245-5254.
    [40] Hawker C. J., Bosman A.W., Harth E., New polymer synthesis by nitroxide mediatedliving radical polymerizations, Chem. Rev.,2001,101,3661-3688.
    [41] Zink M.O., Kramer A., Nesvadba P., New Alkoxyamines from the Addition of FreeRadicals to Nitrones or Nitroso Compounds as Initiators for Living Free RadicalPolymerization1, Macromolecules,2000,33:8106-8108.
    [42] Benoit, D., Harth, E., Fox, P., et al., Accurate Structural Control and Block Formation inthe Living Polymerization of1,3-Dienes by Nitroxide-Mediated Procedures, Macromolecules,2000,33,363-370.
    [43] Benoit D., Grimaldi S., Robin S., et al., Kinetics and Mechanism of ControlledFree-Radical Polymerization of Styrene and n-Butyl Acrylate in the Presence of an Acyclic-Phosphonylated Nitroxide, J. Am. Chem. Soc.,2000,122:5929-5939.
    [44] Benoit D., Chaplinski V., Braslau R., et al., Development of a Universal Alkoxyaminefor “Living” Free Radical Polymerizations, J. Am. Chem. Soc.,1999,121:3904-3920.
    [45] Wang J.S., Matyjaszewski K.,"Living"/Controlled Radical Polymerization.Transition-Metal-Catalyzed Atom Transfer Radical Polymerization in the Presence of aConventional Radical Initiator, Macromolecules,1995,28:7572-7573.
    [46] Wang J.S., Matyjaszewski K., Controlled/"Living" Radical Polymerization. HalogenAtom Transfer Radical Polymerization Promoted by a Cu(I)/Cu(II) Redox Process,Macromolecules,1995,28:7901-7910.
    [47] Percec V., Barboiu B.,"Living" Radical Polymerization of Styrene Initiated byArenesulfonyl Chlorides and CuI(bpy)nCl, Macromolecules,1995,28:7970-7972.
    [48]Matyjaszewski K., Overview: Fundamentals of Controlled/Living Radical Polymerization,in Controlled Radical Polymerization. ed: American Chemical Society,1998,685:258-260.
    [49] Fischer H., The persistent radical effect in controlled radical polymerizations, J. Polym.Sci. Pol. Chem.,1999,37:1885-1901.
    [50] Matyjaszewski K., Xia J., Atom Transfer Radical Polymerization, Chem. Rev.,2001,101:2921-2990.
    [51] Mackellar A.J., Buckton G., Newtona J.M., et al., The controlled crystallisation of amodel powder:1. The effects of altering the stirring rate and the supersaturation profile, andthe incorporation of a surfactant (poloxamer188), Int. J. Pharm.,1994,112:65-78.
    [52] Jakubowski W., Matyjaszewski K., Activator Generated by Electron Transfer for AtomTransfer Radical Polymerization, Macromolecules,2005,38,4139-4146
    [53] Oh J.K., Dong H.C., Zhang R., et al., Preparation of nanoparticles of double-hydrophilicPEO-PHEMA block copolymers by AGET ATRP in inverse miniemulsion, J. Polym. Sci. Pol.Chem.,2007,45,4764-4772.
    [54] Min K., Gao H., Matyjaszewski K., Preparation of Homopolymers and BlockCopolymers in Miniemulsion by ATRP Using Activators Generated by Electron Transfer(AGET), J. Am. Chem. Soc., vol.2005,127:3825-3830.
    [55] Matyjaszewski K., Jakubowski W., Min K., et al., Diminishing Catalyst Concentration inAtom Transfer Radical Polymerization with Reducing Agents, P. Natl. Acad. Sci. USA,2006,103:15309-15314.
    [56] Patten T. E., Matyjaszewski K., Atom Transfer Radical Polymerization and the Synthesisof Polymeric Materials, Adv. Mater.,1998,10:901-915.
    [57] Mayadunne R. T. A., Rizzardo E., Chiefari J., et al., Living Radical Polymerization withReversible Addition Fragmentation Chain Transfer (RAFT Polymerization) UsingDithiocarbamates as Chain Transfer Agents, Macromolecules,1999,32:6977-6980.
    [58] Chong Y.K., Le T.P. T.,Graeme M., et al., A More Versatile Route to Block Copolymersand Other Polymers of Complex Architecture by Living Radical Polymerization: The RAFTProcess, Macromolecules,1999,32:2071-2074.
    [59] Moad G., Chiefari J., Chong Y. K.(Bill)., et al., Living free radical polymerization withreversible addition-fragmentation chain transfer (the life of RAFT), Polym. Int.,2000,49:993-1001.
    [60] Chiefari J., Chong Y.K., Ercole F., et al., Living Free-Radical Polymerization byReversible Addition-Fragmentation Chain Treansfer: The RAFT Process, Macromolecules,1998,31:5559-5562.
    [61] Taton D., Wilczewska A.Z., Destarac M., Direct Synthesis of Double HydrophilicStatistical Di-and Triblock Copolymers Comprised of Acrylamide and Acrylic Acid Unitsvia the MADIX Process, Macromol. Rapid. Comm.,2001,22:1497-1503.
    [62] Arita T., Buback M., Vana P., Cumyl Dithiobenzoate Mediated RAFT Polymerization ofStyrene at High Temperatures, Macromolecules,2005,38:7935-7943.
    [36] Jiang W., Lu L., Cai Y., Highly Efficient and Well-Controlled Ambient TemperatureRAFT Polymerization under Solar Radiation, Macromol. Rapid. Comm.,2007,28:725-728.
    [64] Barner-Kowollik C., Thomas P. D., Heuts J. P. A., et al., RAFTing down under: Tales ofmissing radicals, fancy architectures, and mysterious holes, J. Polym. Sci. Pol. Chem.,2003,41:365-375.
    [65] Barner L., Barner-Kowollik C., Thomas P. D., et al., Reversible addition-fragmentationchain transfer polymerization initiated with [gamma]-radiation at ambient temperature: anoverview, Eur. Polym. J.,2003,39:449-459.
    [66] Barner L., Barner-Kowollik C., Thomas P. D., et al., Complex Molecular ArchitecturePolymers via RAFT, Aust. J. Chem.,2004,57:19-24.
    [67] Moad G., Mayadunne R.T.A., Rizzardo E., et al., Synthesis of novel architectures byradical polymerization with reversible addition fragmentation chain transfer (RAFTpolymerization), Macromol. Symp.,2003,192:1-12.
    [68] Barner-Kowollik C., Quinn J. F., Uyen Nguyen T. L., et al., Kinetic Investigations ofReversible Addition Fragmentation Chain Transfer Polymerizations: CumylPhenyldithioacetate Mediated Homopolymerizations of Styrene and Methyl Methacrylate,Macromolecules,2001,34:7849-7857.
    [69] Favier A., Charreyre M.T., Pichot C., A detailed kinetic study of the RAFTpolymerization of a bi-substituted acrylamide derivative: influence of experimentalparameters, Polymer,2004,45:8661-8674.
    [70] Stenzel M.H., RAFT polymerization: an avenue to functional polymeric micelles fordrug delivery, Chem. Commun,2008,30:3486-3503.
    [71] Stenzel M. H., Complex Architecture Design via the RAFT Process: Scope, Strengthsand Limitations: Wiley-VCH Verlag GmbH&Co. KGaA,2008.
    [72] Moad G., Rizzardo E., Thang S.H., Radical addition-fragmentation chemistry in polymersynthesis, Polymer,2008,49:1079-1131.
    [73] Llauro M.F., Loiseau J., Boisson F., et al., Unexpected end-groups of poly(acrylic acid)prepared by RAFT polymerization, J. Polym. Sci. Pol. Chem.,2004,42:5439-5462.
    [74] Chong (Bill) Y.K., Krstina J., Le T.P.T., et al., Thiocarbonylthio Compounds
    [SC(Ph)S R] in Free Radical Polymerization with Reversible Addition-Fragmentation ChainTransfer (RAFT Polymerization). Role of the Free-Radical Leaving Group (R),Macromolecules,2003,36:2256-2272.
    [75] Haag R., Kratz F., Polymer Therapeutics: Concepts and Applications, Angew. Chem. Int.Ed,2006,45:1198-1215.
    [76] K ope EkJ., Targetable Polymeric Anticancer Drugs, Ann. NY Acad. Sci.,1991,618:335-344.
    [77] Meyers R.A., Encyclopedia of Molecular Cell Biology and Molecular Medicine.Weinheim: Wiley-VCH,2005,30-50.
    [78] Zafar R.S., Thwara P. K., Yang M., et al., Integrated microsystems for controlled drugdelivery, Adv. Drug Delivery Rev.,2004,56:185-198.
    [79] Hardman J. G., Limbird L. E., Goodman and Gilman's the Pharmacological Basis ofTherapeutics, ninth ed. New York McGraw-Hill,1996.53-55.
    [80] Kost J., Langer R., Responsive polymeric delivery systems, Adv. Drug Delivery Rev.,2001,46:125-148.
    [81] Andersson L., Davies J., Duncan R., et al., Poly(ethylene glycol)-Poly(ester-carbonate)Block Copolymers Carrying PEG-Peptidyl-Doxorubicin Pendant Side Chains: Synthesis andEvaluation as Anticancer Conjugates, Biomacromolecules,2005,6:914-926.
    [82] Heredia K. L., Maynard H. D., Synthesis of protein-polymer conjugates, Org. Biomol.Chem.,2007,5:45-53.
    [83] Kochendoerfer G. G., Site-specific polymer modification of therapeutic proteins, Curr.Opin. Chem. Biol.,2005,9:555-560.
    [84] Lee P.W., Peng S.F., Su C.J., et al., The use of biodegradable polymeric nanoparticles incombination with a low-pressure gene gun for transdermal DNA delivery, Biomaterials,2008,29:742-751.
    [85] Nguyen D. N., Green J. J., Chan J. M., et al., Polymeric Materials for Gene Delivery andDNA Vaccination, Adv. Mater.,2009,21:847-867.
    [86] Sparks J, Scholz C., Evaluation of a Cationic Poly(-hydroxyalkanoate) as a PlasmidDNA Delivery System, Biomacromolecules,2009,10:1715-1719.
    [87] Heller J., Polymers for controlled parenteral delivery of peptides and proteins, Adv. DrugDelivery Rev.,1993,10:163-204.
    [88] Greish K., Fang J., Inutsuka T., et al., Macromolecular Therapeutics: Advantages andProspects with Special Emphasis on Solid Tumour Targeting, Clin. Pharmacokinet.,2003,42:1089-1105.
    [89] Harris J. M., Chess R. B., Effect of pegylation on pharmaceuticals, Nat. Rev. Drug.Discov.,2003,2:214-221.
    [90] Harris J. M., Martin N.E., Modi M., et al., Pegylation: A Novel Process for ModifyingPharmacokinetics, Clin. Pharmacokinet.,2001,40:539-551.
    [91] Gao S.Q., Sun Y., KopeckováP., et al. Antitumor Efficacy of Colon-Specific HPMACopolymer/9-Aminocamptothecin Conjugates in Mice Bearing Human-Colon CarcinomaXenografts, Macromol. Biosci.,2009,9:1135-1142.
    [92] Kopecek J., KopeckováP., HPMA copolymers: Origins, early developments, present,and future, Adv. Drug Delivery Rev.,2010,62:122-149.
    [93] Fenili F., Manfredi A., Ranucci E., et al. Poly(amido-amine)s Carrying Primary AminoGroups as Side Substituents, Macromol. Biosci.,2003,3:59-66.
    [94] Ferruti P., Manzoni S., Simon C.W., et al. Amphoteric Linear Poly(amido-amine)s asEndosomolytic Polymers: Correlation between Physicochemical and Biological Properties,Macromolecules,2000,33:7793-7800.
    [95]Brito L., Little S., Langer R., et al., Poly(-amino ester) and Cationic Phospholipid-BasedLipopolyplexes for Gene Delivery and Transfection in Human Aortic Endothelial and SmoothMuscle Cells, Biomacromolecules,2008,9:1179-1187.
    [96] Zugates G.T., Tedford N.C., Zumbuehl A., et al., Gene Delivery Properties ofEnd-Modified Poly(-amino ester)s, Bioconjugate Chem.,2007,18:1887-1896.
    [97] Du J.Z., Tang L.Y., Song W.J., et al., Evaluation of Polymeric Micelles from BrushPolymer with Poly(-caprolactone)-b-Poly(ethylene glycol) Side Chains as Drug Carrier,Biomacromolecules,2009,10:2169-2174.
    [98] Zhu J.L., Cheng H., Jin Y., et al., Novel polycationic micelles for drug delivery and genetransfer, J. Mater. Chem.,2008,18:4433-4441.
    [99] Zuccari G., Bergamante V., Carosio R., et al., Micellar complexes of all-trans retinoicacid with polyvinylalcohol-nicotinoyl esters as new parenteral formulations in neuroblastoma,Drug Deliv.,2009,16:189-195.
    [100] Lovrek M., Zorca B., Boneschansb B., et al., Macromolecular prodrugs. VIII. Synthesisof polymer-gemfibrozil conjugates, Int. J. Pharm.,2000,200:59-66.
    [101] Zovko M., Zorc B., Lovrek M., et al., Macromolecular prodrugs. IX. Synthesis ofpolymer-fenoprofen conjugates, Int. J. Pharm.,2001,228:129-138.
    [102] Liu S. Q., Tong Y.W., Yang Y.Y., Incorporation and in vitro release of doxorubicin inthermally sensitive micelles made frompoly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)-b-poly(d,l-lactide-co-glycolide)with varying compositions, Biomaterials,2005,26:5064-5074.
    [103] Yoo H. S., Lee K.H., Oh J.E., et al., In vitro and in vivo anti-tumor activities ofnanoparticles based on doxorubicin-PLGA conjugates, J. Control. Release,2000,68:419-431.
    [104] Malkoch M., Thibault R. J., Drockenmuller E., et al., Orthogonal Approaches to theSimultaneous and Cascade Functionalization of Macromolecules Using Click Chemistry, J.Am. Chem. Soc.,2005,127:14942-14949.
    [105] Quemener D., Davis T.P., Barner-Kowollik C., et al., RAFT and click chemistry: Aversatile approach to well-defined block copolymers, Chem. Commun.,2006,5051-5053.
    [106] Zhang L., Eisenberg A., Multiple morphologies of "crew-cut" aggregates ofpolystyrene-b-poly(acrylic acid) block copolymers, Science,1995,268:1728-1803.
    [107] Wang X.S., Guerin G., Wang H., et al., Cylindrical Block Copolymer Micelles andCo-Micelles of Controlled Length and Architecture, Science,2007,317:644-647.
    [108] Bohdana M. D., Won Y.Y., Ege D. S., et al., Polymersomes: Tough vesicles made fromDiblock Copolymers, Science,1999,284:1143-1147.
    [109] Lowe A. B., Torres M., Wang R., A doubly responsive AB diblock copolymer: RAFTsynthesis and aqueous solution properties of poly(N-isopropylacrylamide-block-4-vinylbenzoic acid), J. Polym. Sci. Pol. Chem.,2007,45:5864-5871.
    [110] Luo L., Ranger M., Lessard D. G., et al., Novel Amphiphilic Diblock Copolymer ofLow Molecular Weight Poly(N-vinylpyrrolidone)-block-poly(d,l-lactide): Synthesis,Characterization, and Micellization, Macromolecules,2004,37:4008-4013.
    [111] Liu J., Liu H.Y., Boyer C., et al., Approach to peptide decorated micelles via RAFTpolymerization, J. Polym. Sci. Pol. Chem.,2009,47:899-912.
    [112] Lau B. K., Wang Q.Q., Sun W., et al., Micellization to gelation of a triblock copolymerin water: Thermoreversibility and scaling, J. Polym. Sci. Pol. Phys.,2004,42:2014-2025.
    [113] Taboada P., Barbosa S., Mosquera V., et al., Thermodynamic Properties of a DiblockCopolymer of Poly(oxyethylene) and Poly(oxypropylene) in Aqueous Solution, Langmuir,2004,20:8903-8908.
    [114] Wang D., Liu Y., Hong C.Y., et al., Synthesis and characterization of comb-shapedpoly(amido amine)-g-PEO via Michael addition polymerization, Polymer,2006,47:3799-3806.
    [115] Alexandridis P., Holzwarth J.F., Hatton T.A., Micellization of Poly(ethyleneoxide)-Poly(propylene oxide)-Poly(ethylene oxide) Triblock Copolymers in AqueousSolutions: Thermodynamics of Copolymer Association, Macromolecules,1994,27:2414-2425.
    [116] Wanka G., Hoffmann H., Ulbricht W., Phase Diagrams and Aggregation Behavior ofPoly(oxyethylene)-Poly(oxypropylene)-Poly(oxyethylene) Triblock Copolymers in AqueousSolutions, Macromolecules,1994,27:4145-4159.
    [117] Stenzel M. H., ChemInform Abstract: RAFT Polymerization: An Avenue to FunctionalPolymeric Micelles for Drug Delivery, ChemInform.,2008,39:3486-3503.
    [118] O'Reilly R. K., Hawker C.J. and Wooley K. L., Cross-linked block copolymer micelles:functional nanostructures of great potential and versatility, Chem. Soc. Rev.,2006,35:1068-1083.
    [119] Iijima M., Nagasaki Y., Okada T.,et al., Core-Polymerized Reactive Micelles fromHeterotelechelic Amphiphilic Block Copolymers, Macromolecules,1999,32:1140-1146.
    [120] Won Y.Y., Davis H.T., Bates F.S., et al., Giant Wormlike Rubber Micelles, Science,1999,283:960-963.
    [121] Zhang L., Bernard J., Davis T. P., et al., Acid-Degradable Core-Crosslinked MicellesPrepared From Thermosensitive Glycopolymers Synthesized Via RAFT Polymerization.Macromol Rapid Commun,2008,29,123-129.
    [122] Li Y., Brad L., Armes S.P., et al., Synthesis of Reversible Shell Cross-Linked Micellesfor Controlled Release of Bioactive Agents, Macromolecules,2006,39:2726-2728.
    [123] Jeong B., Gutowska A., Lessons from nature: stimuli-responsive polymers and theirbiomedical applications, Trends in Biotechnology,2002,20:305-311.
    [124] Madsen J., Armes S.P.,(Meth)acrylic stimulus-responsive block copolymer hydrogels,Soft Matter,2012,8:56-62.
    [125] Castelletto V., Hamley I.W., Ma Y., et al., Microstructure and Physical Properties of apH-Responsive Gel Based on a Novel Biocompatible ABA-Type Triblock Copolymer,Langmuir,2004,20:4306-4309.
    [126] Guvendiren M., Messersmith P.B. and Shull K.R., Self-Assembly and Adhesion ofDOPA-Modified Methacrylic Triblock Hydrogels, Biomacromolecules,2007,9:122-128.
    [127] Kaneko Y., Nakamura S., Sakai K., et al., Rapid Deswelling Response ofPoly(N-isopropylacrylamide) Hydrogels by the Formation of Water Release Channels UsingPoly(ethylene oxide) Graft Chains, Macromolecules,1998,31:6099-6105.
    [128] Tsarevsky N.V., Matyjaszewski K., Combining Atom Transfer Radical Polymerizationand Disulfide/Thiol Redox Chemistry: A Route to Well-Defined (Bio)degradable PolymericMaterials, Macromolecules,2005,38:3087-3092.
    [129] Li Y., Armes S. P., Synthesis and Chemical Degradation of Branched Vinyl PolymersPrepared via ATRP: Use of a Cleavable Disulfide-Based Branching Agent, Macromolecules,2005,38:8155-8162.
    [130] Kabanov A.V., Batrakova E.V., Alakho V.Y., Pluronic block copolymers as novelpolymer therapeutics for drug and gene delivery, J. Control. Release,2002,82:189-212.
    [131]Riess G., Micellization of block copolymers, Prog. Polym. Sci.,2003,28:1107-1170.
    [132] Omelczuk M. O., McGinity J. W., The Influence of Polymer Glass TransitionTemperature and Molecular Weight on Drug Release from Tablets Containing Poly(DL-lacticAcid), Pharmaceut. Res.,1992,9:26-32.
    [133] Taylor L. S., Zografi G., Spectroscopic Characterization of Interactions Between PVPand Indomethacin in Amorphous Molecular Dispersions, Pharmaceut. Res.,1997,14:1691-1698.
    [134] Matsumoto T., Zografi G., Physical Properties of Solid Molecular Dispersions ofIndomethacin with Poly(vinylpyrrolidone) and Poly(vinylpyrrolidone-co-vinyl-acetate) inRelation to Indomethacin Crystallization, Pharmaceut. Res.,1999,16:1722-1728.
    [135] Paudel A., Van Humbeeck J., Van den Mooter G., Theoretical and ExperimentalInvestigation on the Solid Solubility and Miscibility of Naproxen in Poly(vinylpyrrolidone),Mol. Pharm.,2010,7:1133-1148.
    [136] Sinha S., Babootaa S., Alia M., et al., Solid Dispersion: An Alternative Technique forBioavailability Enhancement of Poorly Soluble Drugs, J. Disper. Sci. Technol.,2009,30:1458-1473.
    [137] Marsac P. J., Rumondor A.C., Nivens D.E., et al., Effect of temperature and moistureon the miscibility of amorphous dispersions of felodipine and poly(vinyl pyrrolidone), J.Pharm. Sci.,2010,99:169-185.
    [138] Van den Mooter G., Wuyts M., Blaton N., et al., Physical stabilisation of amorphousketoconazole in solid dispersions with polyvinylpyrrolidone K25, Eur. J. Pharm. Sci,2001,12:261-269.
    [139] Jayachandra B.R., Brostow W., Kalogeras I.M., et al., Glass transitions in binary drug+polymer systems, Mater. Lett.,2009,63:2666-2668.
    [140] Siegwart D. J., Wu W., Mandalaywala M., et al., Solvent induced morphologies ofpoly(methyl methacrylate-b-ethylene oxide-b-methyl methacrylate) triblock copolymerssynthesized by atom transfer radical polymerization, Polymer,2007,48:7279-7290.
    [141] Yue Y.M., Xu K., Liu X.G., et al., Preparation and characterization ofinterpenetration polymer network films based on poly(vinyl alcohol) and poly(acrylic acid)for drug delivery, J. Appl. Polym. Sci.,2008,108:3836-3842.
    [142] Allena C., Maysingerb D., Eisenberga A., Nano-engineering block copolymeraggregates for drug delivery, Colloid. Surface. B.,1999,16:3-27.
    [143] Ratner B. D., Hoffman A., Schoen F., et al., Biomaterials Science: An Introduction toMaterials in Medicine. New York: Academic Press,1996,20-22.
    [144] Teng Y., Morrsion M.E., Munk P., et al., Release Kinetics Studies of AromaticMolecules into Water from Block Polymer Micelles, Macromolecules,1998,31:3578-3587.
    [145] Ramírez T., Benítez-Bribiesca L., Ostrosky-Wegman P., et al., In Vitro Effects ofAlbendazole and Its Metabolites on the Cell Proliferation Kinetics and MicronucleiFrequency of Stimulated Human Lymphocytes, Arch. Med. Res.,2001,32:119-122.
    [146] Campbell W.C., Benzimidazoles: Veterinary uses, Parasitol. Today,1990,6:130-133.
    [147] Cook G.C., Use of benzimidazole chemotherapy in human helminthiases: Indicationsand efficacy, Parasitol. Today,1990,6:133-136.
    [148] Lacey E., The role of the cytoskeletal protein, tubulin, in the mode of action andmechanism of drug resistance to benzimidazoles, Int. J. Parasitol.,1988,18:885-936.
    [149] Torrado S., Lópezb M.L., Torradoc G., et al., A novel formulation of albendazolesolution: oral bioavailability and efficacy evaluation, Int. J. Pharm.,1997,156:181-187.
    [150] Silverstein M.D., Heit J.A., Mohr D.N., et al., Trends in the incidence of deep veinthrombosis and pulmonary embolism: a25-year population-based study, Arch Intern Med,1998,158(6):585-593.
    [151] Heit J.A., Silverstein M.D., Mohr D.N., et al., Risk factors for deep vein thrombosisand pulmonary embolism: a population-based case-control study, Arch Intern Med,2000,160(6):809-815.
    [152] Levitan N., Dowlati A., Remick S.C., et al., Rates of initial and recurrentthromboembolic disease among patients with malignancy versus those without malignancy,Risk analysis using Medicare claims data. Medicine,1999,78(5):285-291.
    [153] Miller G.J., Bauer K.A., Howarth D.J., et al., Increased incidence of neoplasia of thedigestive tract in men with persistent activation of the coagulant pathway, J Thromb Haemost,2004,2(12):2107-2114.
    [154] Peuscher F.W., Thrombosis and bleeding in cancer patients, Neth J Med,1981,24(1):23-35.
    [155] Prandoni P., Lensing A.W., Buller H.R., et al., Comparison of subcutaneouslow-molecularweight molecularweight heparin with intravenous standard heparin in proximaldeep-vein thrombosis. Lancet,1992,339(8791):441-445.
    [156] Lee A.Y., Levine M.N., Baker R.I., et al., Randomized comparison oflow-molecular-weight heparin versus oral anticoagulant therapy for the prevention ofrecurrent venous thromboembolism in patients with cancer (CLOT) investigators.Low-molecular-weight heparin versus a coumarin for the prevention of recurrent venousthromboembolism in patients with cancer, N Engl J Med,2003,349(2):146-153.
    [157] Meyer G., Marjanovic Z., Valcke J., et al., Comparison of low-molecular-weightheparin and warfarin for the secondary prevention of venous thromboembolism in patientswith cancer: a randomized controlled study, Arch Intern Med,2002,162(15):1729-1735.
    [158] Zacharski L.R., Henderson W.G., Rickles F.R., et al., Effect of warfarin anticoagulationanticoagulation on survival in carcinoma of the lung, colon, head and neck, and prostate.Final report of VA Cooperative Study#75, Cancer,1984,53(10):2046-2052.
    [159] Kakkar A.K., Levine M.N., Kadziola Z., et al., Low molecular weight heparin, therapywith dalteparin, and survival in advanced cancer: the fragmin advanced malignancy outcomestudy (FAMOUS), J Clin Oncol,2004,22(10):1944-1948.
    [160] Klerk C.P., Smorenburg S.M., Otten H.M., et al., The effect of low molecular weightheparin on survival in patients with advanced malignancy, J Clin Oncol,2005,23(10):2130-2135.
    [161] Prandoni P., Falanga A., Piccioli A., Cancer and venous thromboembolism, LancetOncol,6(6):401-410.
    [162] Zaharski L.R., Donati M.B., Registry of clinical trials of antithromboticdrugsincancer.TheScientific and Standardization Committee of the International Society onThrombosis and Haemostasis. Subcommittee on Hemostasis and Malignancy, ThrombHaemost,1989,61(3):526-528.
    [163] Falanga A., The effect of anticoagulant drugs on cancer, J Thromb Haemost,2004,2(8):1263-1265.
    [164] Rak J., Weitz J.I., Heparin and angiogenesis: size matters! Arterioscler Thromb, VascBiol Nov12003,23(11):1954-1955.
    [165] Comper W. D., Heparin and Related Polysaccharides, Gordan and Breach,1981,7
    [166] Gallagher J. T., Turnbull J. E., Lyon M., Heparan sulphate proteoglycans: molecularorganisation of membrane--associated species and an approach to polysaccharide sequenceanalysis. Adv. Exp. Med. Biol.1992,313:49-57.
    [167] Griffin C. C., Linhardt R. J., VanGorp C. L., et al., Isolation and Characterization ofHeparan Sulfate from Crude Porcine Intestinal Mucosa Peptidoglycan Heparin, CarbohydrateResearch,1995,276:183-197.
    [168] Bernfield M., Gtte M., Park P. W., et al., Heparin-Protein Interactions. Annu. Rev.Biochem.1999,68,729-777.
    [169] Nishimura T., Nakatake Y., Konishi M., et al., Identification of a novel FGF, FGF-21,preferentially expressed in the liver. Biophys.Acta,2000,1492,203-206.
    [170] Ornitz D. M., FGFs, heparin sulfate and FGFRs: complex interactions essential fordevelopment. Bioessays,22,108-112.
    [171] Thompson L.D., Pantoliano M.W.B.A., Springer, Energetic characterization of thebasic fibroblast growth factor-heparin interaction: identification of the heparin bindingdomain. Biochemistry,1994,33,3831-3840
    [172] Mach H., Volkin D. B., Burke C. J., et al., Nature of the interaction of heparin withacidic fibroblast growth factor. Biochemistry,1993,32(20):5480-5489.
    [173] Mori S., Barth H. G., Size Exclusion Chromatography. Berlin: Springer,1999,3-5.
    [174] Rosan A. M., Organic Structures from Spectra,3rd Edition (Field, L. D.; Sternhell, S.;Kalman, J. R.), J. Chem. Educ.,2002,79:1323-1237.
    [175] Douglas A., Skoog James J. L., Principles of instrumental analysis (4th Edition):Saunders College,1992,12-25.
    [176] Watson D.G., Pharmaceutical analysis. A textbook for Pharmacy Students andPharmaceutical Chemists: Churchill Livingstone,1999,3-17.
    [177] Berne B. J., Pecore R., Dynamic light scattering:with applications to chemistry, biologyand physics. New York: Wiley-Interscience,1976,8-12.
    [178] DwanI'sa J.P.L., Rouxhet L., Préat V., Prediction of drug solubility in amphiphilicdi-block copolymer micelles: the role of polymer-drug compatibility. Pharmazie,2007,62:499-504.
    [179] Nagasaki Y., Yasugi K., Yamamoto Y., et al., Sugar-Installed Block CopolymerMicelles: Their Preparation and Specific Interaction with Lectin Molecules.Biomacromolecules,2001,2:1067-1070.
    [180] Hwang J., Li R.C., Maynard H. D., Well-Defined Polymers with Side Chains forBio-functionalization, J. Controlled Release,2007,122:279-286
    [181] Walsh D. J., Crosby P., Metal specific hydroxyoxime ion-exchange resins, Polymer.,1983,24:423-427.
    [182] Hu Y.C., Pan C.Y., Bioaffinitive and nanosized polymeric micelles based on a reactiveblock copolymer, Macromol. Rapid Commun.,2005,26:968-971.
    [183] Su C.P., Morawtez H., Reactivity of polymer substituents. Aminolysis of p-Nitrophenylester residues attached to various polymer backbones, J. Polymer Science,1977,15:185-196.
    [184] Su C.P., Morawtez H., Reactivity of polymer substituents. Aminolysis ofp-nitrophenyl acrylate copolymers with acrylamide or N,N-Dimethylacrylamide in aqueoussolution, J. Polymer Science: Polymer Chemistry Edition,1978,16:1059-1066.
    [185] Kim Y., Pourgholami M. H., Morris D. L., et al., Triggering the fast release of drugsfrom crosslinked micelles in an acidic environment, J. Mater. Chem.,2011,21:12777-12783
    [186] Kim Y., Pourgholami M.H., Morris D. L., et al., An optimized RGD decorated micellardrug delivery system for albendazole for the treatment of ovarian cancer: from polymersynthesis to cellular uptake, Macromolecular Bioscience,2011,11:219-257.
    [187] Xing L., Mattice W.L., Strong Sol ubilization of Small Molecules byTriblock-Copolymer Micelles in Selective Solvents, Macromolecules,1997,30:1711-1717.
    [188] Hurter P. N., Scheutjens J. M. H. M., Hatton T. A., Molecular Modeling of MicelleFormation and Solubilization in Block Copolymer Micelles.2. Lattice Theory for Monomerswith Internal Degrees of Freedom, Macromolecules,1993,26:5030-5037.
    [189] Barner-Kowollik C., Davis T.P., Handbook of radical polymerization. USA: JohnWiley and Sons, Inc:Hoboken,2002,4-17.
    [190] Pojman J. A., Willis J., Fortenberry D., et al., Factors affecting propagating fronts ofaddition polymerization: Velocity, front curvature, temperatue profile, conversion, andmolecular weight distribution, J. Polym. Sci. Pol. Chem.,1995,33:643-652.
    [191] Malcolm P. S., Polymer Chemistry: An Introduction. New York: Oxford UniversityPress,1999,55-60.
    [192] Matyjaszewski K., Overview: Fundamentals of Controlled/Living RadicalPolymerization in Controlled Radical Polymerization, American Chemical Society,1998,685:2-30.
    [193] O’Reilly R.K., Hawker C.J., Wooley K.L., Core-linked block copolymermicelles:functional nanostructures of great potential and versatility,Chem. Soc. Rev.,2006,35,1068-1083
    [194] O’Keefe B. J., Hillmyer M. A., Tolman W. B., Ring-opening polymerization of cyclicmonomers by biocompatible metal complexes. Production ofpoly(lactide),polycarbonates,and their copolymers, J. Chem. Soc., Dalton Trans.2001,15,2215.
    [195] Duda A., Penczek S., Kowalski A., et al., Polymerizations of,-Caprolactone andL,L-Dilactide Initiated with Stannous Octoate and Stannous Butoxide-a Comparison.Macromol.Symp.2000,153,41-47.
    [196] Kricheldorf H.R., Tin-initiated polymerizations of lactones: mechanistic andpreparative aspects. Macromol. Symp.2000,153,55-60.
    [197] Xing L., Mattice W. L., Strong Solubilization of Small Molecules byTriblock-Copolymer Micelles in Selective Solvents, Macromolecules,1997,30:1711-1717.
    [198] Kjellen L., Lindahl U., Proteoglycans: structures and interactions, Annu Rev Biochem,1991,60:443-475.
    [199] Linhardt R.J., Claude S., Hudson Award address in carbohydrate chemistry. Heparin:structure and activity. J Med Chem,2003,46:2551-2564.
    [200] Rabenstein D.L., Heparin and heparan sulfate: structure and function. Nat Prod Rep,2002,19:312-331.
    [201] Salmivirta M., Lidholt K., Lindahl U., Heparan sulfate: a piece of information. Faseb J,1996,10:1270-1279.
    [202] Capila I., Linhardt R.J., Heparin-protein interactions. Angew Chem Int Ed Engl,2002,41:390-412.
    [203] Comper W.D., Polymer Monographs, Heparin (and Related Polysaccharides):Structural and Functional Properties,1981,7:280-287.
    [204] Passirani C., Barratt G., Devissaguet J.P., et al., Long-circulating nanoparticles bearingheparin or dextran covalently bound to poly(methyl methacrylate). Pharm Res,1998,15:1046-1050.
    [205] Passirani C., Barratt G., Devissaguet J.P., et al., Development of a new class ofnanoparticles which avoid phagocytosis by inhibiting complement activation. NATO AdvStud Inst Ser A Life Sci,1998,300:241-251.
    [206] Jiao Y., Ubrich N., Marchand-Arvier M., et al., In vitro and in vivo evaluation of oralheparin-loaded polymeric nanoparticles in rabbits.Circulation,2002,105:230-235.
    [207] Lamprecht A., Koenig P., Ubrich N., et al., Low molecular weight heparinnanoparticles: mucoadhesion and behaviour in Caco-2cells, Nanotechnology,2006,17:3673-3680.
    [208] Rai B., Grondahl L., Trau M., Combining chemistry and biology to create colloidallystable bionanohydroxyapatite particles: toward load-bearing bone applications, Langmuir,2008,24:7744-7749.
    [209] Chauvierre C., Labarre D., Couvreur P., et al., Novel polysaccharide-decoratedpoly(isobutyl cyanoacrylate) nanoparticles, Pharm Res,2003,20:1786-1793.
    [210] Chauvierre C., Marden M.C., Vauthier C., et al., Heparin coatedpoly(alkylcyanoacrylate) nanoparticles coupled to hemoglobin: a new oxygen carrier,Biomaterials,2004,25:3081-3086.
    [211] Chauvierre C., Vauthier C., Labarre D., et al., A new generation of polymernanoparticles for drug delivery, Cell Mol Biol,2004,50:233-239.
    [212] Guo Y., Yan H., Preparation and characterization of heparin-stabilized goldnanoparticles, J Carbohydr Chem,2008,27:309-319.
    [213] Huang H., Yang X., Synthesis of polysaccharidestabilized gold and silver nanoparticles:a green method, Carbohydr Res,2004,339:2627-2631.
    [214] Kemp M.M., Kumar A., Mousa S., et al., Synthesis of gold and silver nanoparticlesstabilized with glycosaminoglycans having distinctive biological activities.Biomacromolecules,2009,10:589-595.
    [215] Khurshid H., Kim S.H., Bonder M.J., et al., Development of heparin-coated magneticnanoparticles for targeted drug delivery applications. J Appl Phys,2009,4(4):439-449.
    [216] Park K., Kim K., Kwon I.C., et al., Preparation and characterization of self-assemblednanoparticles of heparin-deoxycholic acid conjugates. Langmuir,2004,20:11726-11731.
    [217] Park K., Lee G.Y., Kim Y.S., et al., Heparin-deoxycholic acid chemical conjugate as ananticancer drug carrier and its antitumor activity. J Control Release,2006,114:300-306.
    [218] Na K., Kim S., Park K., et al., Heparin/poly(l-lysine) nanoparticle-coatedpolymericmicrospheres for stem-cell therapy. J Am Chem Soc,2007,129:5788-5789.
    [219] Park J.S., Park K., Woo D.G., et al., PLGA microsphere construct coated withTGF-beta3loaded nanoparticles for neocartilage formation. Biomacromolecules,2008,9:2162-2169.
    [220] Park J.S., Park K., Woo D.G., et al., Lactide-glycolide copolymer microsphereconstruct coated with TGF-beta3loaded nanoparticles for neocartilage formation.Biomacromolecules,2008,9:2162-2169.
    [221] Lin Y.H., Chang C.H., Wu Y.S., et al., Development of pH-responsive chitosan/heparinnanoparticles for stomach-specific anti-Helicobacter pylori therapy. Biomaterials,2009,30:3332-3342.
    [222] Liu Z., Jiao Y., Liu F., et al., Heparin/chitosan nanoparticle carriers prepared bypolyelectrolyte complexation. Biomed Mater Res A,2007,83A:806-812.
    [223] Bae K.H., Mok H., Park T.G., Synthesis, characterization,and intracellular delivery ofreducible heparin nanogels for apoptotic cell death. Biomaterials,2008,29:3376-3383.
    [224] Liu T.Y., Huang L.Y., Hu S.H., Core-shell magnetic nanoparticles of heparin conjugateas recycling anticoagulants. Biomed Nanotechnlogy,2007,3:353-359.
    [225] Choi S.H., Lee J.H., Choi S.M., et al., Thermally reversible pluronic/heparinnanocapsules exhibiting1000-fold volume transition. Langmuir,2006,22:1758-1762.
    [226] Yu S., Chow G.M., Carboxyl group (-CO2H) functionalized ferrimagnetic iron oxidenanoparticles for potential bioapplications. J Mater Chem,2004,14:2781-2786.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700