用户名: 密码: 验证码:
活性炭吸附VOCs及其构效关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:为了强化活性炭选择性吸附能力以及提高其吸附性能,必须对吸附质和吸附剂的物性差异以及相互作用机理有系统且全面的的认识,需系统地量化分析吸附质在活性炭上的吸附性能与微尺度结构和性质之间的内在关联。
     本研究从针对活性炭对挥发性有机污染物(VOCs)的吸附现象,以活性炭和VOCs微尺度结构与表面物理化学性质影响有机气体吸附性能这一认识为出发点,利用恒温吸附实验装置,对活性炭吸附VOCs进行实验测试,深入探讨VOCs在活性炭多孔介质内复杂的表面物理化学状态和相互作用机制。借助红外光谱分析、显微观测分析、比表面积及孔隙分析、元素分析、Boehm滴定分析等手段,对活性炭进行表征。利用理论方法分析吸附性能等参数,结合活性炭表征结果,探讨了活性炭吸附性能与吸附质和吸附剂物性的宏观微观构效关系,为新型活性炭制备以及吸附净化回收VOCs工业过程与配套装置优化设计提供技术支撑。
     研究包括五个部分:(1)VOCs物性对活性炭吸附性能影响的研究。研究表明:活性炭对VOCs的饱和吸附量跟VOCs的分子动力学直径、分子量、密度、沸点、饱和蒸汽压、极性存在着密切关系,跟VOCs前四种物性因素呈现正线性关系;跟后两种物性因素呈现负线性关系。(2)活性炭孔结构特性对吸附VOCs影响的研究。实验研究发现:活性炭内部结构越复杂,传质速率越慢,良好的孔结构梯度分布有助于加强活性炭内部吸附质的扩散。吸附质分子直径越小,在吸附剂中越容易扩散;利用不同孔径区间下的孔容与吸附量之间的相关系数关系可以较好地解释吸附质在活性炭内部的扩散过程。(3)复合氧化改性对活性炭物性及其吸附甲苯性能影响的研究。实验研究发现:强氧化剂预处理活性炭有助于热复合氧化改性中活性炭微孔孔容的增大;活性炭表面含氧基团由化学氧化改性和热复合氧化改性共同作用产生,热改性温度较低时,其主要由化学氧化改性生成,温度较高时,酸性基团则主要来源于氧气与活性炭表面的氧化反应;酸性基团的存在能够促进活性炭吸附甲苯;控制合理的热复合氧化改性条件,既可以增加活性炭表面酸性基团,又可扩充微孔孔容,从而综合提升了活性炭对甲苯的吸附能力。(4)有机酸改性对活性炭物性的影响,探讨了吸附时间、浓度和温度对活性炭吸附二甲苯的动态过程的影响,研究其在不同吸附条件下对二甲苯的气相吸附动力学及吸附平衡。实验发现:有机酸改性活性炭是一种成功的提高活性炭对二甲苯吸附容量的方法。改性后活性炭的孔结构参数均有不同程度的减小,经FTIR验证,改性后活性炭表面生成羟基、酮基、羧基、S=O等官能团。吸附温度降低,二甲苯进气浓度增大,则活性炭的吸附速率增大,平衡吸附量增大。Bangham动力学模型能很好地描述4种活性炭对二甲苯的吸附动力学过程,其拟合的相关系数R2均高于0.997。(5)VOCs吸附性能参数优化及宏观微观构效关系研究。利用正交分析与多元回归分析的方法,通过Design Expert7.0软件对活性炭改性及其吸附VOCs过程进行优化,研究了活性炭在不同改性条件下物性的变化,探讨了活性炭物性对于VOCs吸附性能的作用。通过构建数学模型,研究发现改性温度、改性氧气浓度、改性时间等三种参数均对活性炭的微孔孔容与表面氧含量产生了显著的影响,而对比表面积影响不大;在较高的氧气浓度和较高的改性温度以及较短的改性时间的条件下,可以改性制得具有较大比表面积、较大微孔孔容和较高表面氧含量的活性炭。
     研究对制备高比表面积、大微孔孔容和高表面氧含量的功能活性炭具有重要的指导意义。
Abstract:To improve the adsorption performance of activated carbons and make the adsorption more selective, it is necessary to comprehensively and systematically understand the mechanism of the physical differences between the activated carbons and adsorbates, and their interaction. What's more, it is of necessity to systematically and quantificationally investigate the inherent correlation between the adsorption performance of adsorbates by activated carbons and the micro structure-function relationship.
     This is a study from the perspective of interdiscipline, which is based on the adsorption phenomenon of the volatile organic compounds (VOCs) by activated carbons from the micro/macro point of view, and the effect of the micro structures and surface physicochemical properties of VOCs and activated carbons on the adsorption properties of VOCs from the perspective of interdiscipline. The experimental study of the adsorption of was conducted by the isothermal adsorption experimental apparatus. The complicated surface physicochemical properties of VOCs inside the activated carbons and the interaction mechanism between the adsorbents and adsorbates were studied deeply. The activated carbon was characterized by infrared spectroscopy, microscopic observation, specific surface and pore size analysis, elemental analysis and Boehm titration. Theoretical methods were employed to analyze the adsorption performance data, which were then combined with the structure characteristics parameters. The relationship between the adsorption of VOCs by activated carbons and their micro structure properties was examined by combining computer software, mathematical methods and experimental studies, which further renders an effective guidance on the preparation of novel activated carbons and the optimization of the corresponding purifying equipment.
     This dissertation achievement contains five sections:(1) Studies on the effect of VOCs physical properties on the adsorption performance of activated carbons. It was found that the saturated adsorption of VOCs is closely related to VOCs molecular dynamics diameter, molecular weight, density, boiling point, vapour pressure, polarity, with positive linear relationship between the first four and negative linear relationship between the last two.(2) Studies on the effect of carbon's pore structure on the adsorption of VOCs. The results shown that the more complex the internal structure of activated carbons is, the lower the mass transfer rate of adsorbates is. The good gradient distribution of pore structure benefits the diffusion of adsorbates inside the activated carbons. The adsorbates with smaller molecular diameters are much easier to diffuse in the adsorbents. The diffusion process inside the activated carbons can be well explained by the correlation between the pore volume and adsorption capacity in different pore diameter ranges.(3) Studies on the effect of the composite oxidation modifications of activated carbons on their physical properties and the adsorption of toluene. The results exhibit that the micropore volume of the hot-composite oxidation modified carbons increases when the carbons are pretreated by strong oxidants. Both the chemical oxidation modification and hot-composite oxidation modification generate the surface oxygenic functional groups. When the temperature of heat modification is low, the surface oxygenic functional groups are mainly from the chemical oxidation modification. When the temperature of heat modification is high, they are mainly from the oxidation reaction between oxygen and the surface of carbons. The modified carbons possess acidic groups, which are in favor of the adsorption of toluene. Suitable hot-composite oxidation modification can not only increase the surface acidic groups on the activated carbons but also enhance the micropore volume, further improving the adsorption of toluene.(4) The granular activated carbons were modified using oxalic acid, formic acid and sulfamic acid respectively. The effects of adsorption time, concentration and temperature on the dynamic adsorption of xylene were then investigated. Test results show that the activated carbons modified using organic acid have high capacity in the adsorption of xylene. The pore structures of the modified carbons were decreased to some extent, which was proved by FTIR to be caused by the production of hydroxyl, ketonic group, carboxyl and S=O groups. With the increase in xylene inlet concentration and the decrease in adsorption temperature, the adsorption rate of the modified carbons increase, the same as equilibrium adsorption capacity. Bangham's kinetic model well describes the adsorption process of the four modified carbons with correlation coefficients R2above0.997.(5) The optimization of adsorption parameters of VOCs and construction of micro/macro coupled structure-function relationship. Based on orthogonal analysis and multiple regression analysis, activated carbon modification and adsorption process were optimized by Design Expert7.0. The physical properties changes of activated carbon were studied under different modification conditions. The effects of physical properties of activated carbon on adsorption performance were discussed. By developing mathematical model, it has been found that the effects of modification factors, such as temperature, oxygen density and time, on the specific surface areas of activated carbons are not significant, while their effects on the micropore volume and surface oxygen content are pronounced. The activated carbons with large specific surface area, large micropore volume and high surface oxygen content can be obtained under the modification conditions of high oxygen density, high temperature and short time period, which will provide an important guidance on the preparation of activated carbons.
     The study results of this paper are benefit to develop the new activated carbon materials with high surface area, huge micropore volume and high surface functional groups.
引文
[1]国家环境保护局.大气污染物综合排放标准详解[M].北京:中国环境科学出版社,1997:1-13.
    [2]解强,张香兰,李兰廷,等.活性炭孔结构调节:理论、方法与实践[J].新型炭材料2005,20(2):183-188.
    [3]李兵,张立强,蒋海涛.活性炭孔隙结构和表面化学性质对吸附氧化NO的影响[J].煤炭学报,2011,36(11):1906-1910.
    [4]Villacanas F, Pereira MFR, Orfao JJM., et al. Adsorption of simple aromatic compounds on activated carbons[J]. Journal of Colloid and Inter face Science,2006, 293(1):128-136.
    [5]汤进华,梁晓怿,龙东辉,等.活性炭孔结构和表面官能团对吸附甲醛性能影响[J].炭素技术,2007,26(3):21-25.
    [6]刘晓敏,邓先伦,朱光真.活性炭吸附VOCs的影响因素研究进展[J].生物质化学工程,2010,44(6):52-58.
    [7]孙政.活性炭对有机气体的选择性吸附研究[D].长沙:中南大学,2011.
    [8]刘守新,陈曦,张显权.活性炭孔结构和表面化学性质对吸附硝基苯的影响[J]环境科学,2008,29(5):1192-1196.
    [9]吴琪琳,顾书英,张志海,等.试制一种表面富含大孔的新型粘胶基活性炭纤维[C].中国功能材料及其应用学术会议.2004:9.
    [10]李海龙.吸附法净化有机废气模拟与实验研究[D].长沙:湖南大学,2007.
    [11]周尊隆,吴文玲,李阳,等.3种多环芳烃在木炭上的吸附/解吸行为[J].农业环境科学学报,2008,27(2):813-819.
    [12]俞扬国.载铜活性炭络合吸附乙烯的研究[J].科技信息,2008, (25):65.
    [13]周烈兴.活性炭吸附处理苯和甲苯气体的性能及机理研究[D].昆明:昆明理工大学,2011.
    [14]王玉新,苏伟,周亚平.不同结构的活性炭对CO2、CH4、N2及02的吸附分离性能[J].化工进展,2009,28(2):206-209.
    [15]王玉新,刘聪敏,周亚平.竹炭中孔活性炭的制备及其吸附性能的研究[J].功能材料学报,2008,3(39):420-423.
    [16]刘伟.活性炭吸附VOCs与其孔结构构效关系研究[D].长沙:中南大学,2011.
    [17]Song Yan, Qiao Wen-ming, Seong Ho Yoon, et al. Toluene adsorption on various activated carbons with different pore structures[J]. New Carbon Material,2005, 20(4):294-297.
    [18]刘立恒,辜敏,鲜学福.孔结构和表面化学性质对活性炭吸附性能的影响[J] 环境工程学报,2012,6(4):1299-1304.
    [19]朱兆连.中孔球形活性炭的制备、表征和吸附性能研究[D].南京:南京大学,2007.
    [20]Liu Jun-li, Han Xue-wen, Shi Yin-rui. Study on Microstructure of Activated Carbon for Acetone Recovery[J]. Chemistry and Industry of Forest Products,2003, 23(1):55-58.
    [21]孙剑平,冯国会,班福忱.活性炭和分子筛对甲醛气体吸附性能的比较[J].沈阳建筑大学学报:自然科学版,2010,26(6):1182-1185.
    [22]单晓梅,杜铭华,朱书全,等.活性炭表面改性及吸附极性气体[J].煤炭转化,2003,26(1):32-36.
    [23]范延臻,王宝贞,王琳,等.改性活性炭对有机物的吸附性能[J].环境化学,2001,20(5):444-448.
    [24]石瑞.化学改性活性炭对有机气体的吸附研究[D].长沙:中南大学,2012.
    [25]祝建中,杨嘉,DENG Bao-lin.有序介孔炭合成、改性及其对汞离子的吸附性能[J].新型炭材料,2008,23(3):221-227.
    [26]顾庆伟.热改性活性炭吸附有机气体的性能研究[D].长沙:中南大学,2012.
    [27]高首山,邓景屹,刘文川.活性碳纤维的化学改性[J].鞍山钢铁学院学报,2000,23(6):406-409.
    [28]白树林,赵桂英.改性活性炭对水溶液中Cr (III)吸附的研[J].化学应用与研究,2001,13(6):21-25.
    [29]于小翠,周仕学.表面改性对活性炭吸附性能的影响[J].化工文摘,2009,(1):24-25.
    [30]李敬岩,南国枝.改性活性炭对石脑油中有机氯的吸附性能研究[J].石油炼制与化工,2009,40(6):61-64.
    [31]何小超,郑经堂,于维钊.活性炭臭氧化改性及其对噻吩的吸附热力学和动力学[J].石油学报,2008,24(4):426-432.
    [32]黄正宏,康飞宇,吴慧,等.湿氧化改性多孔炭对低浓度苯和丁酮蒸汽的吸附[J]清华大学学报:自然科学版,2000,40(10):111-115.
    [33]刘桂芳,马军,关春雨,等.改性活性炭对水溶液中双酚-A的吸附研究[J].环境科学,2008,29(2):349-354.
    [34]柯涛.活性炭的改性及其对VOCs吸附能力的研究[D].西安:西安建筑科技大学,2009.
    [35]刘植昌,吕春祥,凌立成.金属催化气法制备中孔活性炭[J].碳素技术,1999,S1:17-20.
    [36]李秉正,刘振宇,雷智平,等.简单芳香化合物的结构和性质对活性炭吸附行为的影响[J].燃料化学学报,2010,38(2):252-256.
    [37]冯芳宁.多组分VOCs在活性炭上的二元竞争[D].西安:西安建筑科技大学,2011.
    [38]Mykola Seredych, Denisa Hulicova-Jurcakova, Gao Qing Lu, Teresa J. Bandosz. Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance. Carbon.2008,46: 1475-1488.
    [39]Lillo-Rodenas M.A, Cazorla-Amoros D, Linares-Solano A. Behaviour of activated carbons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations[J]. Carbon,2005,43(8):1758-1767.
    [40]Yu-Chun Chiang, Pen-Chi Chiang, Chin-Pao Huang. Effects of pore structure and temperature on VOC adsorption on activated carbon[J]. Carbon,2001,39(4):523-534.
    [41]N. Mohan, G.K. Kannan, S. Upendra. R. Subha, N.S. Kumar. Breakthrough of Toluene vapours in Granular Activated Carbon filled Packed Bed Reactor. Journal of Hazardous Materials,2009,168:777-781.
    [42]苏欣.污泥活性炭的制备及对甲苯吸附性能的研究[D].西安:西安建筑科技大学,2012.
    [43]Vladimir M. Gun'ko, Duong D. Do. Characterisation of pore structure of carbon adsorbents using regularisation procedure. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2001,193:71-83.
    [44]Takuji Yamamoto, Sho Kataoka, Takao Ohmori. Characterization of carbon cryogel microspheres as adsorbents for VOC. Journal of Hazardous Materials.2010,177: 331-335.
    [45]J.I. Paredes, A. Marti'nez-Alonso, P.-X. Hou, T. Kyotani, J.M.D. Tascon. Imaging the structure and porosity of active carbons by scanning tunneling microscopy. Carbon. 2006,44:2469-2478.
    [46]Dae Jung Kim, Hyung Ik Lee, Jae Eui Yie, Seung-Jai Kim, Ji Man Kim. Ordered mesoporous carbons:Implication of surface chemistry, pore structure and adsorption of methyl mercaptan. Carbon.2005,43:1868-1873.
    [47]Ru-Ling Tseng, Szu-Kung Tseng. Pore structure and adsorption performance of the KOH-activated carbons prepared from corncob. Journal of Colloid and Interface Science.2005,287:428-437.
    [48]C.O. Ania, J.B. Parra, J.J. Pis. Influence of oxygen-containing functional groups on active carbon adsorption of selected organic compounds. Fuel Processing Technology. 2002,79:265-271.
    [49]F. Blanco, X. Vilanova, V. Fierro, A. Celzard, P. Ivanov, E. Llobet, N. Canellas, J.L. Ramirez, X. Correig. Fabrication and characterisation of microporous activated carbon-based pre-concentrators for benzene vapours. Sensors and Actuators B.2008, 132:90-98.
    [50]Franz M,Hassan A, Effect of chemical surface heterogeneity on the adsorption mechanism of dissolved aromatics on activated carbon[J]. Carbon,2000,38(13): 1807-1819.
    [51]Mattson J A, Mark H B, Surface chemistry of active carbon:Specific adsorption of phenols [J]. Journal of Colloid and Interface Science,1969,31(1):116-130.
    [52]Lufrano F,Staiti P, Influence of the Surface-Chemistry of Modified Mesoporous Carbon on the Electrochemical Behavior of Solid-State Supercapacitors [J]. Energy Fuels,2010,24(6):3313-3320.
    [53]A Silvestre-Albero, J Silvestre-Albero, A Sepulveda-Escribano, et al. Ethanol removal using activated carbon:Effect of porous structure and surface chemistry [J]. Microporous and Mesoporous Materials,2009,120(1-2):62-68.
    [54]Vivekanand Gaur, Ritesh Asthana, Nishith Verma. Removal of SO2 by activated carbon fibers in the presence of 02 and H2O[J]. Carbon,2006,44(1):46-60.
    [55]Vinke P,Van verbree M,Voskap A F, et al. A Modification of the surface of gas-active carbon and a chemically activated carbon with HNO3[J]. Carbon,1994, 32(4):675-685.
    [56]HL Chiang, PC Chiang, YC Chiang, EE Chang. Diffusivity of Microporous Carbon for Benzene and Methyl.Ethyl Ketone Adsorption[J]. Chemosphere,1999,38(12): 2733-2746.
    [57]Haydar S, Ferro-Garea M. Rivera-Utrilla J, et al. Adsorbtion of pnitrophcnol on all activated carbon winl different oxidations[J]. Mieroporous Materials,2003,41(3): 387-395.
    [58]Francisco Rodriguez-reinoso. The role of carbon materials in heterogeneous catalysis[J]. Carbon,1998,36(3):159-175.
    [59]G.G. Stavropoulos, P. Samaras, G.P. Sakellaropoulos. Effect of activated carbons modification on porosity, surface structure and phenol adsorption. Journal of Hazardous Materials,2008,151:414-421.
    [60]Rios R R V A, Alves D E, et al. Tailoring activated carbon by surface chemical modification with O, S and N containing molecules[J]. Mater Res,2003,6(2): 129-135.
    [61]M. Spiridon, O.R. Hauta, M. S. Secula, S. Petrescu. Preparation and Characterization of Some Porous Composite Materials for Water Vapor Adsorption. REV. CHIM. (Bucharest).2012,63:711-714.
    [62]Sabine Kohl, Alfons Drochner, Herbert Vogel. Quantification of oxygen surface groups on carbon materials via diffuse reflectance FT-IR spectroscopy and temperature programmed desorption. Catalysis Today.2010,150:67-70.
    [63]R. Mahalakshmy, P. Indraneel, B. Viswanathan. Surface functionalities of nitric acid treated carbon-A density functional theory based vibrational analysis. Indian Journal of Chemistry.2009,49A:352-356.
    [64]Chaiyot Tangsathitkulchai, Yuvarat Ngernyen, Malee Tangsathitkulchai. Surface modification and adsorption of eucalyptus wood-based activated carbons: Effects of oxidation treatment, carbon porous structure and activation method. Korean J. Chem. Eng.,2009,26:1341-1352.
    [65]P. Chingombe, B. Saha, R.J. Wakeman. Surface modification and characterization of a coal-based activated carbon. Carbon.2005,43:3132-3143.
    [66]Xincheng Lu, Jianchun Jiang, Kang Sun, Xinping Xie, Yiming Hu. Surface modification, characterization and adsorptive properties of a coconut activated carbon. Applied Surface Science.2012,258:8247-8252.
    [67]S. Giraudet, P. Pre, H. Tezel et al. Estimation of adsorption energies using physical characteristics of activated carbons and VOCs'molecular properties[J]. Carbon,2006, 44(10):1873-1883.
    [68]Song-Woo Lee, Jae-Kee Cheon, Heung-Jai Park et al. Adsorption characteristics of binary vapors among acetone, MEK, benzene, and toluene[J]. Korean Journal of Chemical Engineering,2008,25(5):1154-1159.
    [69]Tsai Jiun-Horng, Chiang Hsiu-Mei, Huang Guan-Yinag et al. Adsorption characteristics of acetone, chloroform and acetonitrile on sludge-derived adsorbent, commercial granular activated carbon and activated carbon fibers[J]. Journal of Hazardous Materials,2008,154(1):1183-1191.
    [70]Chien-Te Hsieh, Jin-Ming Chen. Adsorption Energy Distribution Model for VOCs onto Activated Carbons[J]. Journal of Colloid and Interface Science,2002,255(2): 248-253.
    [71]郝吉明,马广大,王书肖.大气污染控制工程[M].高等教育出版社,北京:2010:278-279.
    [72]童志权.大气污染控制工程[M].北京:机械工业出版社,2006:207-209.
    [73]邱介山,郭树才.D-R方程与Langmuir方程间的实验关系[J].大连理工大学学报,1990,30(3):359-362.
    [74]张哲,张玉文,田津津,等.变压吸附系统吸附剂吸附容量的实验研究[J].低 温工程,2007,1:55-64.
    [75]侯方,佟明友,陈明.活性炭改性技术进展[J].广东化工,2010,37(9):66-69.
    [76]韩严和,全燮,薛大明,等.活性炭改性研究进展[J].环境污染治理技术与设备,2003,4(1):33-35.
    [77]江霞,蒋文举,金燕,等.改性活性炭在环境保护中的应用[J].环境科学与技术,2002,26(5):55-57.
    [78]江霞,蒋文举,朱晓帆,等.微波改性活性炭的吸附性能[J].环境污染治理技术与设备,2004,5(1):43-46.
    [79]杨金辉,王劲松,周书葵.活性炭改性方法的研究进展[J]湖南科技学院学报,2010,31(4):90-93.
    [80]王鹏,张海禄.表面化学改性吸附用活性炭的研究进展[J].炭素技术,2003,3: 23-26.
    [81]刘成,高乃云,黄廷林.活性炭的表面化学改性研究进展[J].净水技术,2005,24(4):50-52.
    [82]毛磊,童仕唐,王宇,等.对用于活性炭表面含氧官能团分析的Boehm滴定法的几点讨论[J].炭素技术,2011,30(2):17-19.
    [83]C.H. Ao, S.C. Lee. Indoor air purification by photocatalyst TiO2 immobilized on an activated carbon filter installed in an air cleaner[J]. Chemical Engineering Science, 2005,60(1):103-109.
    [84]M.A. Lillo-Rodenas, A.J. Fletcher, K.M. Thomas et al. Competitive adsorption of a benzene-toluene mixture on activated carbons at low concentration[J]. Carbon,2006, 44(8):1455-1463.
    [85]Jeong Hoon Byeon, Jae Hong Park, Ki Young Yoon et al. Removal of volatile organic compounds by spark generated carbon aerosol particles[J]. Carbon,2006,44(10): 2006-2108.
    [86]Chien-Te Hsieh, Jin-Ming Chen. Adsorption Energy Distribution Model for VOCs onto Activated Carbons[J]. Journal of Colloid and Interface Science,2002, 255(2):248-253.
    [87]潘碧云,李彦旭,王军.活性炭吸附挥发性有机气体的影响因素[J].广东化工,2008,35(1):81-83.
    [88]陈秋燕,袁文辉,关建郁.影响活性炭吸附苯系物条件的研究[J].华南理工大学学报(自然科学版),2000,28(10):117-120.
    [89]陈卫群.红麻杆基活性炭的制备、表面织构及其性能研究[D].福州:福建农林大学,2012.
    [90]杨通在,罗顺忠,许云书.氮吸附法表征多孔材料的孔结构[J].碳素,2006, (1):17-22.
    [91]GONG Guo-zhuo, XIE Qiang, ZHENG Yan-feng et al. Regulation of pore size distribution in coal-based activated carbon[J]. New Carbon Materials,2009,24 (2):141-145.
    [92]Chi-Yuan Lu, Ming-Yen Wey. Simultaneous removal of VOC and NO by activated carbon impregnated with transition metal catalysts in combustion flue gas[J]. Fuel Processing Technology,2007,88(6):557-567.
    [93]F. Cosnier, A. Celzard, G. Furdin et al. Hydrophobisation of active carbon surface and effect on the adsorption of water[J]. Carbon,2005,43(12):2554-2563.
    [94]SHAN-Xiao-mei, ZHU Shu-quan, ZHANG Wen-hui. Effect of surface modification of activated carbon on its adsorption capacity for NH3[J]. Journal of China University of Mining & Technology,2008,18(2):0261-0265.
    [95]范明霞,张智.活性炭孔径分布和表面化学性质对吸附影响的研究进展[J].煤炭加工与综合利用,2011,(1):49-54.
    [96]Lei Li Patricia A. Quinlivan, Detlef R. U. Knappe. Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution [J]. Carbon,2002,40(12):2085-2100.
    [97]岑泽文,曾汉才,张鹏宇PAN-ACF表面物化特性及其吸附能[J].电力环境保护,2004,20,(3):57-59.
    [98]高华生,汪大辉,叶芸春.用修正的Polanyi-Dubinin方程描述有机蒸气-水蒸气在活性炭上的吸附平衡[J].化工学报,2001,52(4):357-362.
    [99]Seyed A. Dastgheib, Tanju Karanfil. The effect of the physical and chemical characteristics of activated carbons on the adsorption energy and affinity coefficient of Dubinin equation[J]. Journal of Colloid and Interface Science,2005, 292(3):312-321.
    [100]G.O. Wood. Affinity coefficients of the Polanyi/Dubinin adsorption isotherm equations A review with compilations and correlations[J]. Carbon,2001,39(3): 343-356.
    [101]Jufang Wu, Marianne E. Stromqvist, Ola Claesson et al. A systematic approach for modeling the affinity coefficient in the Dubinin-Radushkevich equation[J]. Carbon, 2002,40(14):2587-2596.
    [102]Spengler J D, Sexton K. Indoor air pollution:a public health perspective[J].Science 1983,221(4605):9-17.
    [103]Lilli Kirkeskov Jensen, Annelise Larsen, Lars M(?)lhave, et.al. Health Evaluation of Volatile Organic Compound (VOC) Emissions from Wood and Wood-Based Materials[J]. Archives of Environmental Health,2001,56(5):419-432.
    [104]黄艳芳,马正飞,姚虎卿.活性炭吸附CO2与其微孔体积的关系[J].燃料化学学报,2008,36(3):343-348.
    [105]金钦汉,戴树珊,黄卡玛.微波化学[M].北京:科学出版社,1999:5-18.
    [106]Rachid Ghezini,Mohamed Sassi,Abdelkader Bengueddach.Adsorption of carbon dioxide at high pressure over H-ZSM-5 type zeolite. Micropore volume determinations by using the Dubinin-Raduskevich equation and the "t-plot" method[J].Microporous and Mesoporous Materials,2008,113(1-3):370-377.
    [107]Byung-Joo Kim,Soo-Jin Park.Influence of surface treatments on micropore structure and hydrogen adsorption behavior of nanoporous carbons[J] Journal of Colloid and Interface Science,2007,311 (2):619-621.
    [108]刘伟,李立清,姚小龙,等.活性炭孔隙结构在其甲苯吸附中的作用[J].环境工程学报,2012,6(9):3210-3218.
    [109]包永洁,吴再兴,王树东,等.不同竹材制备活性炭的孔结构特性比较研究[J].竹子研究汇刊,2010,29(4):32-35.
    [110]张景峰,郭武学.场发射扫描电镜的开放测试与维护探索[J].中国高新技术企业,2013,15:29-30.
    [111]C. G. Sonwane, S. K. Bhatia. Adsorption in mesopores:A molecular-continuum model with application to MCM-41[J]. Chemical Engineering Science, 1998,53(17):3143-3156.
    [112]Michal Kruk, Mietek Jaroniec, Abdelhamid Sayari. Relations between Pore Structure Parameters and Their Implications for Characterization of MCM-41 Using Gas Adsorption and X-ray Diffraction[J]. Chem. Materials,1999,11(2):492-500.
    [113]K. Fytianos, E. Voudrias, E. Kokkalis, Sorption-desorption behavior of 2,4-dichloriphenol by marine sediments[J]. Chemosphere 2000,40 (6):3-6.
    [114]Qiuli Lu, George A. Sorial. Adsorption of phenolics on activated carbon-impact of pore size and molecular oxygen[J]. Chemosphere,2005,15(5):671-679.
    [115]顾锡人,朱步福,李外郎,等.表面化学[M].北京:科学出版社,2001.
    [116]Ozawa S, Kusurni S, Ogino Y J. Physical adsorption of gases at high pressures(IV): An improvement of the Dubinin-Astakhov adsorption equation[J]. Colloid & Interface Science,1976,56:83-91.
    [117]刘光启,马连相,项曙光.化学化工物性数据手册:有机卷(增订版)[M].北京:化学工业出版社,2013.
    [118]Wang D, Elisabeth M, Robert P et al. Aqueous phaseadsorption of toluene in a packed and fluidized bed of hydrophobic aerogels [J]. Chem Eng J,2011,168(3): 1201-1208.
    [119]宁平,蒋明,王学谦.低浓度氰化氢在浸渍活性炭上的吸附净化研究[J].高校化学工程学报,2010,24(6):1038-1045.
    [120]Kim B J, Soo J P. Influence of surface treatments on micropore structure and hydrogen adsorption behavior of nanoporous carbons[J]. J Colloid Interf Sci,2007, 311(2):619-621.
    [121]李兵,张立强,蒋海涛,等.活性炭孔隙结构和表面化学性质对吸附氧化NO的影响[J].煤炭学报,2011,36(11):1906-191 0.
    [122]Josefa J, Pedro M, Vicente S. Oxidation of activated carbon by dry and wet methods surface chemistry and textural modifications[J]. Fuel Process Technolo, 2010,(91):1768-1775.
    [123]刘转年,周安宁,王贵荣.改性超细煤粉对甲基橙的吸附行为研究[J].中国化学工程学报,2009,17(6):942-948.
    [124]Przemyslaw P, Krzysztof N. Adsorption of phenols from aqueous solutions: equilibria, calorimetry and kinetics of adsorption[J]. J Colloid Interf Sci,2011, 354(2):282-291.
    [125]ALVAREZ P M, GARCIA-ARAYA J F, BELTRAN F J, et al. Ozonation of activated carbons:effect on the ad-sorption of selected phenolic compounds from aqueous solutions [J]. J Colloid Interface Sci,2005,283:503-512.
    [126]Naiqing Z, Na W, Jiajun L et al. Surface properties of chemically modified actibated carbons for adsorption rate of Cr6+[J]. Chem Eng J,2005(115):133-138.
    [127]李兰英,肖英,尚书勇,等.炭黑氧化改性的方法[J].橡胶工业,2004,51(11):698-701.
    [128]李小斌,齐天贵,周秋生.低温焙烧法综合处理铬渣和皮革污泥的研究[J]中南大学学报:自然科学版,2010,41(6):2013-2018.
    [129]杨颖,李磊,孙振亚,等.活性炭表面官能团的氧化改性及其吸附机理的研究[J].科学技术与工程,2012,12(24):6132-6138.
    [130]Mangun C L, Benak K R, Economy J et al. Surface chemistry pore sizes and adsorption properties of activated carbon fibers and precuisors treated with ammonia[J]. Carbon,2001,39(12):1809-1820.
    [131]刘海弟,李伟曼,岳仁亮,等.多微孔活性炭的制备及对二甲苯的吸附研究[J].无机化学学报,2013,29(9):1787-1792.
    [132]高志明,杨向光,吴越.活性炭表面含氧基团的生成及对NO的还原作用[J]催化学报,1996,17(4):327-329.
    [133]Valente A, Palma C, Fonseca I M et al. Oxidation of pinane over phthalocyanine complexes supported on activated carbon:Effect of the support surface treatment[J]. Carbon,2003,41(14):2793-2803.
    [134]Biniak S, Diduszko R, Gac W et al. Reduction and oxidation of a Pd/activated carbon catalyst:evaluation of effects [J]. Reaction Kinetics, Mechanisms and Catalysis,2010,101(2):331-342.
    [135]Li, N. Zhu, J. Zha, Q. F. Quantitative and Qualitative Analyses of Oxygen-containing Surface Functional Groups on Activated Carbon. Chem J Chinese U,2012,33,548-554.
    [136]Mccallum C L, Bandosz T J, McGrother S C et al. A molecular model for adsorption of water on activated carbon:comparison of simulation and experiment[J]. Langmuir, 1999,15(2):533-544.
    [137]余国贤,陈辉,陆善祥.活性炭的表面处理对二苯并噻吩催化氧化脱除的影响[J].燃料化学学报,2005,33(5):566-570.
    [138]Philippe A, Fabrizioc C, Ferrucio T. The technology of catalytic oxidation[M]. Paris, Edition technip,2001.
    [139]Radkevich V Z, Senko T L, Wilson, K et al. The influence of surface functionalization of activated carbon on palladium dispersion and catalytic activity in hydrogen oxidation[J]. Appl. Catal. A-Gen,2008,355(2):241-251.
    [140]方平,岑超平,唐志雄.污泥含炭吸附剂对甲苯的吸附性能研究[J].高校化学工程学报,2010,24(5):887-892.
    [141]Jaramilloa J, Gomez-Serranob V, Alvarez P M. Enhanced adsorption of metal ions onto functionalized granular activated carbons prepared from cherry stones[J]. J Hazard Mater,2009,161(2-3):670-676.
    [142]Wibowo N, Setyadhi L, Wibowo D et al. Adsorption of benzene and toluene from aqueous solutions onto activated carbon and its acid and heat treated forms: Influence of surface chemistry on adsorption[J]. J Hazard Mater,2007, 146(1-2):237-242.
    [143]Chiang Yu-Chun, Chiang Pen-Chi, Huang Chin-Pao. Effects of pore structure and temperature on VOC adsorption on activated carbon[J]. Carbon,2001,39(4): 523-534
    [144]Ramos M E, Bonelli P R, Cukierman A L, Ribeiro Carrott M M L, Carrott P J M. Adsorption of volatile organic compounds onto activated carbon cloths derived from a novel regenerated cellulosic precursor [J]. Journal of Hazardous Materials,2010, 177(1-3):175-182
    [145]李玉雪,张永春.改性活性炭脱除二氧化碳中的微量苯[J].化工学报,2009(6): 1494-1499
    [146]Veksha Andrei, Sasaoka Eiji, Uddin Md Azhar. The influence of porosity and surface oxygen groups of peat-based activated carbons on benzene adsorption from dry and humid air[J]. Carbon,2009,47(10):2371-2378
    [147]Huang Chen-Chia, Li Hong-Song, Chen Chi en-Hung. Effect of surface acidic oxides of activated carbon on adsorption of ammonia[J]. Journal of Hazardous Materials, 2008,159(2-3):523-527
    [148]刘晓敏,邓先伦,王国栋,等.活性炭对正丁烷的吸附动力学研究[J].功能材料,2012,43(4):476-479
    [149]Hameed B H, Ahmad A A, Aziz N. Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash[J]. Chemical Engineering Journal,2007, 133(1-3):195-203
    [150]Ho Y S, Mckay G. Pseudo-second-order model for sorption process[J]. Process Biochemistry,1999,34(5):451-465
    [151]Chien S H, Clayton W R. Application of Elovich equation to the kinetics of phosphate release and sorption in soil[J]. Soil Sci. Soc. Am. J.1980,44:265-268
    [152]Kavitha D, Namasivayam C. Experimental and kinetic studies on methylene blue adsorption by coir pith carbon[J]. Bioresource Technology,2007,98(1):14-21
    [153]Gereli G, Seki Y, Kuglu I M, Yurdakoc K. Equilibrium and kinetics for the sorption of promethazine hydrochloride onto K10 montmorillonite[J]. Journal of Colloid and Interface Science,2006,299(1):155-162
    [154]Vimonses V, Lei Shaomin, Jin B, Chow C W K, Saint C. Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials[J]. Chemical Engineering Journal,2009,148(2-3):354-364
    [155]Sarkar M, Majumdar P. Application of response surface methodology for optimization of heavy metal biosorption using surfactant modified chitosan bead[J]. Chemical Engineering Journal,2011,175:376-387
    [156]任浩华,关杰,王芳杰,等.采用Design-Expert软件优化高频气力分选机风量配合设计[J].环境污染与防治,2013,7:27-30.
    [157]王淑霞,李爱梅,张俊杰,等.响应面分析法优化龙眼核中多酚物质提取工艺[J].食品科学,2011,32(10):35-39.
    [158]杨刚.假设检验中的P值研究[J].河南工程学院学报(自然科学版),2012,24(2):65-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700