用户名: 密码: 验证码:
压力流场中聚合物熔体的流变特性及其表征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:聚合物材料的成型加工过程离不开物料的流动与变形。通过理论分析和实验研究,表征聚合物的流变特性,掌握聚合物熔体的流变行为及其规律,是合理选择成型工艺、优化加工设备、实现加工过程模拟的必要前提与基础。
     聚合物材料在成型加工过程中的流动形式主要是压力流和拖曳流。然而,聚合物熔体在压力流中的流变性能变化目前并没有获得足够重视,其动态黏弹性往往是在拖曳流测试分析中完成表征,忽略了在聚合物加工过程中起重要作用的压力流对聚合物材料流变性能的影响。另一方面,聚合物熔体稳态流变性能的压力依赖性研究受表征方法过于复杂的限制,没有成为聚合物加工性能分析的常规考察因素。为了研究聚合物熔体在成型加工过程的典型流动形式——压力流中的流变特性,本文开展了如下研究工作:
     通过理论研究与实验模拟,分析聚合物熔体在压力流场中的流变行为,总结聚合物熔体压力流的表观特性。研究表明,压力流场中聚合物熔体的流变行为是非稳态的,具有显著的时变性;同时,压力流场中聚合物熔体的压力差异显著,在空间上有梯度、在时间上有波动。因而,动态流变特性和压力依赖性是压力流场中聚合物熔体流变行为分析的两个重要内容。
     完善聚合物熔体在压力流状态下流变性能的表征方法及理论。创新地提出了压力流中聚合物熔体动态流变行为的表征方法,建立了相应动态流变性能的表征模型;同时,改进了压力流场中聚合物熔体稳态流变行为的测试方法,通过比较聚合物熔体在前后两个相同毛细管口模上的压力降差异,在传统毛细管流变仪的基础上实现了聚合物熔体剪切黏度的压力依赖性表征,并建立了压力影响系数的计算模型。
     为弥补现有聚合物熔体流变性能表征工具的不足,研制了一系列流变测试装置。1)为了提供可控的熔体压力流,基于经典毛细管流变仪的结构形式与设计原理,研制了一个压力流通用实验平台。2)基于毛细管流场的分区特性,提出了一种轴向截分式熔体剪切力测量方法,通过自主研制的熔体剪切力变送器,实现了压力流场中聚合物熔体剪切力的直接测量,解决了压力流中聚合物熔体动态流变性能表征的关键问题。3)构建了一种直线移动式环形狭缝流变测试装置,实现聚合物熔体在压力流状态下的动态流变测试,其振动频率为5~30Hz,振动幅度为0.05-12.5mm,压力流流量可达295ml/min。4)基于经典恒速型毛细管流变仪的设计原理,结合自制的毛细管出口增压模块,提出了一种双毛细管口模法测试聚合物熔体的剪切黏度压力依赖性,建立了压力可调式稳态流变测试装置。5)基于斜面自锁原理设计了一种斜面锁模结构,为注塑实验研究提供了小型模具,构建了柱塞式注塑装置。
     以聚丙烯(PP)和低密度聚乙烯(LDPE)为试验材料,研究了压力流中聚合物熔体的动态流变行为。借助自制的直线移动式环形狭缝流变测试装置,实验研究了平行叠加压力流对聚合物熔体动态流变性能的影响;通过商用旋转流变仪,分析了平行叠加拖曳流的影响。20Hz、0.1mm的振动条件下,相对于纯振动剪切流,叠加表观剪切速率为3s-1的压力流时PP的复数模量显著增大,损耗角从纯振动剪切流的460降低为22.7。;类似条件下,PP在平行叠加拖曳流时复数模量略有下降,但损耗角略增大。动态流变测试结果表明:在振动剪切流上平行叠加压力流使得聚合物熔体的黏弹性增大且弹性更强,而平行叠加拖曳流则效果相反,即不同的叠加流场形式对聚合物熔体动态流变行为的影响效果截然不同。并且,压力流中LDPE的动态流变表征实验显示,叠加压力流的剪切速率对LDPE动态黏弹性能的变化有一定影响,随着叠加压力流剪切速率的升高,LDPE熔体复数模量上升幅度、损耗角减小幅度增大。
     以低密度聚乙烯(LDPE)和聚苯乙烯(PS)为实验原料,分析了聚合物熔体剪切黏度的压力依赖性。在测试范围内,LDPE黏度的压力影响系数β约为11.7GPa-1,实验结果与文献中报道的已有数据基本吻合,证实了双毛细管口模法的可行性。PS的压力依赖性实验研究结果显示,相对于LDPE,PS的剪切黏度对压力更敏感。
     聚合物熔体在不同流动形式下其动态流变行为的显著差异的发现,为聚合物加工性能研究揭示了新的分析方向。同时,本论文提供的一系列表征方法及装置为深入研究加工流场中聚合物的流变性能创造了有利条件。图76幅,表16个,参考文献131篇
Abstract:.The flow and deformation of polymeric melt are necessary for polymer processing. Rheological experiments help us understand the flow behavior and grasp the characterization of polymeric melt. It is the foundation for the process selection, the optimization of processing devices and the computer simulation of process.
     The pressure-driven flow is the major type of melt transportation during polymer processing. As the classic rheometric tool, a capillary rheometer can't perform the dynamic test for the viscoelasticity characterization of polymeric melt, and provide none information about the pressure dependence of the shear viscosity. A rotational rheometer has the test mode of dynamic experiments, but their flow pattern is different from the flow pattern of the processing flow. In order to analysis the rheological properties of polymeric melt in processing, the following studies have been conducted.
     Improvement of the characterization methods and theories for rheological properties of polymeric melts in a pressure-driven flow has been made in the present paper. A new characterizing method of dynamic rheological behavior for melts in pressure-driven flows is proposed, and the mathematic model of dynamic rheological functions is built.
     Moreover, the test method for steady rheological properties of polymeric melts in pressure-driven flows is improved. This is achieved by adjusting the exit pressure of the capillary die within the capillary rheometer. The characterization for the pressure coefficient of the shear viscosity is realized on a basis of the traditional capillary rheometer. And the mathematic model of pressure coefficient is presented.
     A universal experimental platform for the pressure-driven flow was built up based on the principle of the classic capillary rheometer. The developing steps have been accomplished including the mechanical design, electric design, signal acquisition, and the software development for the measurement and control of experiments. It provides the basis for the multi test equipments introduced in the following of this paper.
     A slope structure of mold clamping was proposed based on the self-locking principle of slope, and a set of small mold for the injection molding experiments was developed. Based on the universal test platform for pressure-driven flow, the small mold with the slope clamping structure and the Kistler system for the mold pressure and temperature measurement, a piston type of injection molding equipment was built up. The data of the injection molding experiment show that the maximum melt pressure in the injection flow is up to70MPa. And the melt pressure decreases gradually to zero along the flow direction. Furthermore, the experiments of process simulation show the melt during the processing flow is usually under the unsteady state and the rheological behavior is often time dependent.
     Based on the partitioning feature of the capillary flow, an axially partitioned and rod shape transducer was developed for the shear force measurement of the polymeric melt. With the novel transducer the direct measurement of shear stress can be realized. The validating experiments show the transducer could solve the problem of the pressure correction by eliminating the influence of the entrance flow and exit flow on the shear force measurement of the middle segment. With the melt shear force transducer and the universal platform of the pressure-driven flow, an axially movable annular slit rheometer was built up. The annular slit rheometer could perform the dynamic test for the rheological properties of polymeric melt in the pressure-driven flow. Its experimental range is the vibration frequency of5to30Hz, the vibration amplitude of0.05to12.5mm and the volume rate of pressure-driven flow of zero to160ml/min. The validation experiment shows the test result of the steady rheological behavior on the annular slit rheometer is in accordance with that on the traditional capillary rheometer. And the annular slit rheometer could substitute a rotational rheometer to conduct dynamic experiments by its vibration shear mode. These validation experiments indicate the self developed rheometer is reliable.
     The dynamic experiments with Propylene (PP) sample and low density polyethylene (LDPE) sample denote that the influence of the type of the superimposed flow on the dynamic properties of the rheological behavior is significant. With the parallel superimposed pressure-driven flow, the amplitude of the complex modulus of the melt in the vibration shear flow becomes bigger than in the pure vibration shear flow. Under the vibration with the frequency of20Hz and with the amplitude of0.1mm, the complex modulus of melt superimposed a pressure-driven flow of the apparent shear rate3s-1is nearly double that of melt without superimposed flow, at the same time the loss angle decreases from46°to22.7°as superimposing a pressure-driven flow on the vibration shear flow. On the other hand, the test data with the rotational rheometer show that the complex modulus decrease and the loss angle increase as superimposing a drag flow on the oscillation shear flow. The experimental results indicate that the superimposed flow of pressure-driven type has the opposite effect on the dynamic properties of melt rheological behavior with respect to the superimposed flow of drag type.
     Based on the principle of traditional capillary rheometer with constant flow rate, using the self developed booster module a dual capillary dies method for the pressure dependence of the shear viscosity is proposed, and the steady test equipment with adjustable exit pressure is built up. The experimental study was conducted on the developed equipment with the low density polyethylene (LDPE) sample for its pressure dependence of the shear viscosity. Within the test range the pressure coefficient β of LDPE is11.7GPa-1. This result has no significant difference from the data of the lectures, which indicates the novel method of dual capillary dies for pressure coefficient test is feasible. By the new test method, the experimental data of the Polystyrene (PS) resin show that the shear viscosity of PS is more sensitive to pressure with respect to LDPE.
     The discovery of the difference between the pressure-driven flow and the drag flow in influence on the dynamic rheological properties of the polymer melt provides the new idea for polymer processing performance study. Meanwhile, a series of characterization equipments proposed in this paper provides the effective tools for the rheometric research on the rheological properties of polymeric melts.
引文
[1]吴其晔,巫静安.高分子材料流变学[M].北京:高等教育出版社,2002.
    [2]金日光.高聚物流变学及其在加工中的应用[M].北京:化学工业出版社,1986.
    [3]R B Bird, R C Armstrong, O Hassager. Dynamics of polymeric liquids. Vol.1: Fluid mechanics[M]. New York:Wiley,1987.
    [4]K Weissenberg. A continuum theory of rheological phenomena[J]. Nature,1947, 159(4035):310-311.
    [5]A S Lodge. Elastic liquids[M]. New York:Academic Press,1964.
    [6]D F James. Open channel siphon with viscoelastic fluids[J]. Nature, 1966:754-756.
    [7]R S Brodkey, H C Hershey. Transport phenomena:a unified approach[M]. Singapore:McGraw-Hill Inc.,1988.
    [8]R B Bird, W E Stewart, E N Lightfoot. Transport Phenomena[M]. New York: Wiley,1960.
    [9]Z Tadmor, C G Gogos. Principles of polymer processing[M]. New Jersey:Wiley, 2006.
    [10]周达飞,唐颂超.高分子材料成型加工[M].北京:中国轻工业出版社,2000.
    [11]G Hagen.Uber die Bewegung des Wassers in engen zylindrischen Rohren. Poggendorf sche[J].Annals of Physics & Chemistry,1839,46:423-442.
    [12]J L Poiseuille. Experimental researches on the movement of liquids in tubes of very small diameter[J]. Compte Rendus,1840,11:961-967.
    [13]J L Poiseuille. Recherches experimentales sur le mouvement des liquides dans les tubes de tres-petits diametres (in French)[J]. Comptes Rendus, Academie des Sciences,1841,12:112-115.
    [14]M F A Couette. Etudes sur le frottement des liquides[D]. University of Oregon, 1890.
    [15]M M Couette. Annals of Chemistry Physics [J]. Series Ⅵ,1890,21:433-510.
    [16]P J Whitcomb, C W Macosko. Rheology of xanthan gum[J]. Journal of Rheology, 1978,22:493.
    [17]周光坰,严宗毅,许世雄,等.流体力学(上)[M].北京:高等教育出版社, 2000.
    [18]F T Trouton. On the coefficient of viscous traction and its relation to that of viscosity[J]. Proceedings of the Royal Society of London. Series A,1906, 77(519):426-440.
    [19]B Rabinowitsch. Uber die viskositat und elastizitat von solen[J]. Zeitschrift fur physikalische Chemie,1929,145:1-26.
    [20]E B Bagley. End corrections in the capillary flow of polyethylene[J]. Journal of Applied Physics,1957,28(5):624-627.
    [21]J L S Wales, J L Den Otter, H Janeschitz-Kriegl. Comparison between slit viscometry and cylindrical capillary viscometry[J]. Rheologica Acta,1965, 4(2):146-152.
    [22]C D Han. Measurement of the rheological properties of polymer melts with slit rheometer. II. Blend systems[J]. Journal of Applied Polymer Science,1971, 15(10):2579-2589.
    [23]A Fredrickson, R B Bird. Non-Newtonian flow in annuli[J]. Industrial & Engineering Chemistry,1958,50(3):347-352.
    [24]C D Han. Measurement of the Rheological Properties of Polymer Melts with Annular Rheometer[J]. Journal of Applied Polymer Science,1974,18(2):481-490.
    [25]S Okubo, Y Hori. Experimental Determination of Secondary Normal Stress Difference in Annular Flow of Polymer Melts[J]. Journal of Rheology,1980, 24:275.
    [26]E Mitsoulis, S G Hatzikiriakos. Annular Extrudate Swell of a Fluoropolymer Melt[J]. Intern. Polymer Processing XXVII,2012,5:535-546.
    [27]M Ansari, T Zisis, S G Hatzikiriakos, et al. Capillary flow of low-density polyethylene[J]. Polymer Engineering and Science,2012,52(3):649-662.
    [28]W S Guan, H X Huang. Superimposed effects in high-shear-rate capillary rheology of polystyrene melt[J]. Polymer Engineering and Science,2013, 53(7):1563-1570.
    [29]P Panaseti, K Housiadas, G C Georgiou. Newtonian Poiseuille flows with pressure-dependent wall slip[J]. Journal of Rheology,2013,57(1):315-332.
    [30]M R Mackley, R T J Marshall, J Smeulders. The multipass rheometer [J]. Journal of Rheology,1995,39(6):1293-1309.
    [31]Y Son. Development of a pressure-driven micro-rheometer[J]. Polymer Testing, 2008,27(2):243-247.
    [32]S Kimura, K Osaki, M Kurata. Stress relaxation of polybutadiene at large deformation. Measurements of stress and birefringence in shear and elongation[J]. Journal of Polymer Science:Polymer Physics Edition,1981,19(1):151-163.
    [33]S Shin, D Y Keum. Viscosity measurement of non-Newtonian fluid foods with a mass-detecting capillary viscometer[J]. Journal of Food Engineering,2003, 58:5-10.
    [34]A Jobling, J E Roberts. An investigation, with the Weissenberg rheogoniometer, of the stress distribution in flowing polyisobutylene solutions at various concentrations and molecular weights[J]. Journal of Polymer Science,1959, 36(130):433-441.
    [35]A Jobling, J E Roberts. Flow testing of viscoelastic materials. Design and calibration of the Roberts-Weissenberg Model R8 rheogoniometer [J]. Journal of Polymer Science,1959,36(130):421-431.
    [36]J Meissner. Modifications of the Weissenberg rheogoniometer for measurement of transient rheological properties of molten polyethylene under shear. Comparison with tensile data[J]. Journal of Applied Polymer Science,1972, 16(11):2877-2899.
    [37]M H Birnboim, Electrical phase meter and amplitude comparator. In Google Patents:1966.
    [38]K Walters. Rheometry, industrial applications [M]. Research Studies Press,1980.
    [39]F W Schremp, J D Ferry, W W Evans. Mechanical Properties of Substances of High Molecular Weight. IX. Non-Newtonian Flow and Stress Relaxation in Concentrated Polyisobutylene and Polystyrene Solutions[J]. Journal of Applied Physics,1951,22(6):711-717.
    [40]M Ansari, Y W Inn, A M Sukhadia, et al. Wall slip of HDPEs:Molecular weight and molecular weight distribution effects[J]. Journal of Rheology,2013, 57(3):927-948.
    [41]W Yu, Y Du, C Zhou. A geometric average interpretation on the nonlinear oscillatory shear[J]. Journal of Rheology,2013,57(4):1147-1175.
    [42]Y Li, M Hu, G B McKenna, et al. Flow field visualization of entangled polybutadiene solutions under nonlinear viscoelastic flow conditions [J]. Journal of Rheology,2013,57(5):1411-1428.
    [43]C S Dutcher, S J Muller. Effects of moderate elasticity on the stability of co- and counter-rotating Taylor-Couette flows [J]. Journal of Rheology,2013, 57(3):791-812.
    [44]C Macosko, J M Starita. New rheometer is put to the test[J].SPE j,1971, 27:38-42.
    [45]W P Cox, E H Merz. Correlation of dynamic and steady flow viscosities[J]. Journal of Polymer Science,1958,28(118):619-622.
    [46]D O Miles. Sinusoidal shear generator for study of viscoelasticity[J]. Journal of Applied Physics,1962,33(4):1422-1428.
    [47]N Phan-Thien. Small strain oscillatory squeeze film flow of simple fluids[J]. J Austral Math Soc Series B,1980,22:6.
    [48]A K Deysarkar. Flow of Paste in a Vibrated Tube[J]. Journal of Rheology,1981, 25(1):41-54.
    [49]V Sobolik, O Wein, P Mitschka. Periodic flows of pseudoplastic fluids in pipes [J]. Rheologica Acta,1982,21(4-5):521-523.
    [50]F Koran, J M Dealy. A high pressure sliding plate rheometer for polymer melts [J]. Journal of Rheology,1999,43(5):1279-1290.
    [51]J M Dealy. A shear stress transducer for molten polymers[J]. Rheologica Acta, 1982,21:475-477.
    [52]N S Deshpande, M Barigou. Vibrational flow of non-Newtonian fluids[J]. Chemical engineering science,2001,56(12):3845-3853.
    [53]P J Carreau, I F MacDonald, R B Bird. A nonlinear viscoelastic model for polymer solutions and melts-Ⅱ[J]. Chemical Engineering Science,8//,1968, 23(8):901-911.
    [54]J M Simmons. Dynamic modulus of polyisobutylene solutions in superposed steady shear flow[J]. Rheologica Acta,1968,7(2):184-188.
    [55]I F Macdonald. Parallel Superposition of Simple Shearing and Small Amplitude Oscillatory Motions[J]. Journal of Rheology,1973,17(3):537-555.
    [56]G C Berry, C P Wong. A rotational rheometer with a drag-cup torque transducer [J]. Journal of Polymer Science:Polymer Physics Edition,1975, 13(9):1761-1781.
    [57]J Zeegers, D van den Ende, C Blom, et al. A sensitive dynamic viscometer for measuring the complex shear modulus in a steady shear flow using the method of orthogonal superposition[J]. Rheologica acta,1995,34(6):606-621.
    [58]M S Cho, Y J Choi, H J Choi, et al. Viscoelasticity of an electrorheological fluid using a vertical oscillation rheometer[J]. Journal of Molecular Liquids,1998, 75(1):13-24.
    [59]J W Kim, M S Cho, H J Choi, et al. Electrorheological fluid characterization via a vertical oscillation rheometer[J]. Polymer testing,2001,20(8):913-918.
    [60]P W Bridgman The effect of pressure on the viscosity of forty-three pure liquids [C], Proceedings of the American Academy of Arts and Sciences,1926, 57-99.
    [61]V Semjonow. Uber ein rotationsviskosimeter zur messung der druckabhangigkeit der viskositat hochpolymerer schmelzen[J]. Rheologica Acta,1962,2(2):138-143.
    [62]F N Cogswell, J C McGowan. The effects of pressure and temperature upon the viscosities of liquids with special reference to polymeric liquids [J]. British Polymer Journal,1972,4(3):183-198.
    [63]C W Macosko, R G Larson. Rheology:principles, measurements, and applications[M]. New Jersey:Wiley,1994.
    [64]J Dealy, H E Park. Effects of pressure and gases on viscosity of molten plastics[J]. Society of Plastics Engineers (SPE),2010,1-3.
    [65]P H Goldblatt, R S Porter. A Comparison of Equations for the Effect of Pressure on the Viscosity of Amorphous Polymers[J]. Journal of Applied Polymer Science, 1976,20:1199-1208.
    [66]E G Foltz, K K Wang, J F Stvenson. An experiment to measure the pressure dependence of the zero-shear-rate viscosity [J]. Journal of Non-Newtonian Fluid Mechanics,3//,1978,3(4):347-358.
    [67]K A Kumar, M D Graham. Effect of pressure-dependent slip on flow curve multiplicity [J]. Rheol. Acta,1998,37(3):11.
    [68]R Cardinaels, P Puyvelde, P Moldenaers. Evaluation and comparison of routes to obtain pressure coefficients from high-pressure capillary rheometry data[J]. Rheologica Acta,2007/03/01,2007,46(4):495-505.
    [69]H M Laun. Polymer melt rheology with a slit die[J]. Rheologica Acta,1983, 22(2):171-185.
    [70]H M Laun. Pressure dependent viscosity and dissipative heating in capillary rheometry of polymer melts[J]. Rheologica Acta,2003,42(4):295-308.
    [71]H M Laun. Capillary rheometry for polymer melts revisited[J]. Rheologica Acta, 2004,43(5):509-528.
    [72]P D Driscoll, D C Bogue. Pressure Effects in Polymer Melt Rheology [J]. Journal of Applied Polymer Science,1990,39(8):14.
    [73]S E Kadijk, B Van Den Brule. On the Pressure Dependency of the Viscosity of Molten Polymers[J], Polymer Engineering & Science,1994,34(20):1535-1546.
    [74]G Hay, M E Mackay. Pressure and temperature effects in slit rheometry[J]. Journal of Rheology,1999,43(5):1099-1116.
    [75]T Sedlacek, M Zatloukal, P Filip, et al. On the effect of pressure on the shear and elongational viscosities of polymer melts[J]. Polymer Engineering and Science, 2004,44(7):1328-1337.
    [76]E S Carreras, N El Kissi, J M Piau, et al. Pressure effects on viscosity and flow stability of polyethylene melts during extrusion[J]. Rheologica Acta,2005, 45(3):209-222.
    [77]B Hausnerova, T Sedlacek, R Slezak, et al. Pressure-dependent viscosity of powder injection moulding compounds[J]. Rheologica Acta,2005,45(3):290-296.
    [78]J Aho, S Syrjala. Measurement of the pressure dependence of viscosity of polymer melts using a back pressure-regulated capillary rheometer[J]. Journal of Applied Polymer Science,2010,117(2):1076-1084.
    [79]彭响方.博士学位论文[D].广州:华南理工大学,1998.
    [80]刘跃军.振动力场下聚合物熔体粘弹行为的研究[D].广州:华南理工大学,2002.
    [81]J Qu, G He, H He, et al. Effect of the vibration shear flow field in capillary dynamic rheometer on the crystallization behavior of polypropylene [J]. European Polymer Journal,2004,40(8):1849-1855.
    [82]刘跃军,瞿金平.聚合物动态流变的新型测量技术与表征理论[J].高分子材料科学与工程,2004,20(2):5-8.
    [83]张先念,张恒华,邵光杰,等.半固态金属流变仪的研制[J].特种铸造及有色合金,2005,25(8):507-509.
    [84]杨健茂,许元泽,胡云涛.在介观尺度研究多相复杂流体—四辊流变仪及其应用[J].高分子通报,2007,4:14-22.
    [85]彭响方,赖俊维,林逸全.毛细管动态流变仪中聚合物熔体的流动可视化实验研究[J].塑料工程应用,2008,36(9):38-40.
    [86]杨晓璞,赵学义,金赞,等.高浓度粘稠物料加压旋转流变仪的研制与标定[J].机械工程学报,2005,41(4):59-62.
    [87]董伟,秦东兴,伍瑾斐.基于血液流变学理论的血液流变仪的设计[J].微计算机信息,2006,22(9):170-172.
    [88]徐建辉,郑红峰.高压智能旋转流变仪机械结构设计方案研究[J].机械研究 与应用,2007,20(3):62-63.
    [89]郭关柱,范毓润,杨华勇.可调压可视化微间隙Couette流变仪的研究及应用[J].机械工程学报,2007,43(7):81-86.
    [90]李迎,陈亭.用于聚合物流变性测量的智能转矩流变仪的研制[J].聚氯乙烯,2004,3:40-42.
    [91]刘东亮,周立明,方少明,等.国产XLY_Ⅱ型流变仪改造[J].橡塑技术与装备,2006,32(9):46-48.
    [92]《当代石油化工》编辑部.2009年世界各地区合成树脂生产能力与产量[J].当代石油化工,2010,18(11):1.
    [93]许江菱.2011_2012年世界塑料工业进展[J].塑料工业,2013,41(3):1-29.
    [94]周持兴.聚合物流变实验与应用[M].上海:上海交通大学出版社,2003.
    [95]H A Barnes. A handbook of elementary rheology[M].2000.
    [96]O C Zienkiewicz, R L Taylor. The finite element method[M]. McGraw-hill London,1977.
    [97]黄宇刚,刘跃军,李笃信.基于虚拟仪器技术的毛细管式流变测试装置开发[J].塑料科技,2012,40(05):89-92.
    [98]刘跃军,黄宇刚,曾广胜,等.一种聚合物复合材料流变特性的测试方法及装置[P].ZL200810143934.5,2010-09-08.
    [99]刘跃军,黄宇刚,曾广胜,等.一种聚合物复合材料流变特性的测试设备[P].ZL200820210912.1,2009-09-30.
    [100]刘跃军,黄宇刚.一种压力传感器安装装置[P].ZL200820210913.6,2009-09-3 0.
    [101]刘跃军,黄宇刚.一种横向拆装的圆柱定位结构[P].ZL200820210911.7,2010-03-24.
    [102]黄宇刚,刘跃军,李祥刚.一种基于计算机的流变测试控制方法及系统[P].ZL201010172506.2,2011-10-19.
    [103]Y Liu, T Jiang, G Zeng, et al. Rheological Properties of Neat and Calcium Carbonate Particles Filled Polypropylene Blends under Axial Vibration Force Field[J]. International Polymer Processing,2011,26(1):56-62.
    [104]黄宇刚,刘跃军,赵素华.斜面锁模的模具[P].ZL201220245754.X,2012-05-29.
    [105]T Inoue, A Matsumoto, K Nakamura. Dynamic Viscoelasticity and Birefringence of Poly (ionic liquids) in the Vicinity of Glass Transition Zone[J]. Macromolecules,2013,46(15):6104-6109.
    [106]S Haanappel, R Akkerman. Shear characterisation of uni-directional fibre reinforced thermoplastic melts by means of torsion[J]. Composites Part A: Applied Science and Manufacturing,2013,
    [107]P Dahal, Y C Kim. Preparation and Characterization of Modified Polypropylene by using electron beam irradiation[J]. Journal of Industrial and Engineering Chemistry,2013,
    [108]何光建,瞿金平,何和智.动态毛细管流变仪中正弦脉动挤出流场对聚丙烯结晶结构的影响[J].中国塑料,2004,18(8):60-64.
    [109]刘跃军,瞿金平,曹贤武,等.聚合物振动挤出过程中熔体应力与应变关系的研究[J].塑料工业,2004,32(3):46-48.
    [110]刘跃军,瞿金平,徐百平,等.振动力场作用下聚合物熔体粘弹行为的研究[J].高分子材料科学与工程,2004,20(1):18-21.
    [111]J D Ferry. Viscoelastic Properties of Polymers [M]. Third edition ed.; New York: Wiley,1980.
    [112]K Osaki, M Tamura, M Kurata, et al. Complex modulus of concentrated polymer solutions in steady shearl[J]. The Journal of Physical Chemistry,1965, 69(12):4183-4191.
    [113]J Vermant, L Walker, P Moldenaers, et al. Orthogonal versus parallel superposition measurements [J]. J. Non-Newtonian Fluid Mech.,1998, 79:173-189.
    [114]C M Wong, A I Isayev. Orthogonal superposition of small and large amplitude oscillations upon steady shear flow of polymer fluids[J]. Rheologica acta,1989, 28(2):176-189.
    [115]R Tanner, G Williams. On the orthogonal superposition of simple shearing and small-strain oscillatory motions[J]. Rheol Acta,1971,10:528-538.
    [116]H Markovitz. A property of Bessel functions and its application to the theory of two rheometers[J]. Journal of Applied Physics,1952,23(10):1070-1077.
    [117]R F Berg. Fluids near a critical point obey a generalized Cox-Merz rule[J]. Journal of Rheology,2004,48:1365.
    [118]H H Winter. Three views of viscoelasticity for Cox-Merz materials[J]. Rheologica acta,2009,48(3):241-243.
    [119]S Venkatraman, M Okano. A comparison of torsional and capillary rheometry for polymer melts:The Cox-Merz rule revisited[J]. Polymer Engineering & Science,1990,30(5):308-313.
    [120]D Doraiswamy, A Mujumdar, I Tsao, et al. The Cox-Merz rule extended:a rheological model for concentrated suspensions and other materials with a yield stress[J]. Journal of rheology,1991,35:647.
    [121]G Marrucci. Dynamics of entanglements:A nonlinear model consistent with the Cox-Merz rule[J]. Journal of non-newtonian fluid mechanics,1996, 62(2):279-289.
    [122]W Gleissle, B Hochstein. Validity of the Cox-Merz rule for concentrated suspensions [J].Journal of rheology,2003,47:897.
    [123]C D Han. A Practical Method for Determining the Viscoelastic Properties of Polymer Melts at High Shear Rates[J]. HWAHAK KONGHAK,1974, 12(5):277-284.
    [124]黄宇刚,刘跃军,李祥刚,等.毛细管中流体剪切应力的测量方法及装置[P].ZL201110135440.4,2013-03-27.
    [125]黄宇刚.一种流体剪切力测量装置[P].ZL201120496233.7,2012-08-29.
    [126]黄宇刚.直线振动式环形缝隙挤压流变特性测试装置[P].ZL201120490781.9,2012-07-18.
    [127]T Schweizer, W Schmidheiny. A cone-partitioned plate rheometer cell with three partitions (CPP3) to determine shear stress and both normal stress differences for small quantities of polymeric fluids[J]. Journal of Rheology,2013, 57(3):841-856.
    [128]F Snijkers, D Vlassopoulos. Cone-partitioned-plate geometry for the ARES rheometer with temperature control [J]. Journal of Rheology,2011, 55(6):1167-1186.
    [129]A Goubert, J Vermant, P Moldenaers, et al. Comparison of measurement techniques for evaluating the pressure dependence of the viscosity [J]. Appl Rheol, 2001,11:26-37.
    [130]A Jung. The Hydrostatic Pressure Effect on Polymer Melt Viscosity [J]. Morden Plastics,1957,35(3):10.
    [131]M Couch, D Binding. High pressure capillary rheometry of polymeric fluids[J]. Polymer,2000,41(16):6323-6334.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700