用户名: 密码: 验证码:
二甲醚水蒸气重整制氢双功能催化剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质子交换膜燃料电池(PEMFC)具有环境友好、工作温度低、比功率高、高可靠性等优点,因而成为便携式电源和燃料电池汽车的理想动力源。尽管目前PEMFC发展到了较高的技术水平,但是,氢源已成为其商业化应用的瓶颈之一。与其它的制氢燃料(如液化石油气、汽油、甲醇和乙醇等)相比,二甲醚(DME)具有气体的流动性、液体的存储密度、廉价易得、含氢量高(13wt.%)和无毒等优点,原则上DME现场水蒸气重整制氢能够较好地解决PEMFC汽车燃料供应的问题。更重要的是,与其它重整制氢方式相比,二甲醚水蒸气重整(SRD)制氢可以在较低的反应温度下(200-400℃)进行。因此,近几年来,SRD获得了较多的关注,但是,相关研究仍处于起步阶段。
     在综合分析SRD相关文献报道及前期初步研究结果的基础上,根据SRD两步连串反应的特点,本论文以H-ZSM-5等分子筛为固体酸,与商品化Cu/ZnO/Al2O3组成双功能催化剂,从两种催化活性组分之间的协同作用角度出发,分别考察了分子筛的结构和酸性、H-ZSM-5分子筛的酸性调控,对双功能催化剂SRD性能的影响;采用不同方法,制备了具有核壳结构特征的H-ZSM-5/Cu/ZnO/Al2O3双功能催化剂,考察了其催化SRD的动力学行为。对相关催化剂进行了XRD、物理/化学吸附、扫描电子显微镜等表征分析,从催化剂的结构、酸性、孔径分布、表面形貌及不同催化功能之间的协同作用等角度,将催化剂表征结果与其SRD反应性能之间进行了合理的关联分析,明确了上述因素影响双功能催化剂的SRD反应活性和产物选择性的作用机制,并探讨了双功能催化剂的失活行为。主要研究内容及结论如下:
     (1)以不同结构和酸性的H-ZSM-5(SiO2/Al2O3=25)、H-USY和H-beta (SiO2/Al2O3=20)为固体酸,分别与商品化的Cu/ZnO/Al2O3按等质量比物理混合,制备了双功能催化剂。在原料气DME/H2O/N2摩尔比为1/4/5,空速为4000mL·g-1·h-1及反应温度为290℃的条件下,系统地考察了固体酸的结构和酸性对双功能催化剂SRD反应性能的影响。结果表明,基于H-ZSM-5具有较高酸量、较强酸性和三维中孔结构等特点,相应的双功能催化剂表现出较好的SRD催化活性(DME转化率和H2收率分别为95%和80%)。尽管基于H-beta和H-USY分子筛的双功能催化剂对SRD反应也具有较高的催化活性,但由于其孔道尺寸较大,产物分布明显不同于H-ZSM-5上的结果,且首次发现生成了较多的六甲基苯(HMB)。以H-beta为固体酸,在改变反应原料组成等条件下,详细地研究了SRD反应条件下多甲基苯的生成规律。从DME和甲醇在酸催化作用下分别发生DME制烃(DTH)和甲醇制烃(MTH)副反应、分子筛的孔道尺寸等角度,对上述结果进行了较为合理的解释,认为SRD条件下的MTH等副反应极有可能是按照烃池(Hydrocarbon Pool)机理进行的,且HMB很可能就是烃池的活性物种。
     (2)针对基于H-ZSM-5的双功能催化剂生成较多C2-C4烃类的问题,提出了采用负载MgO的方法,对H-ZSM-5的酸量和酸强度分布进行调变。以Mg(NO3)2为前驱体,采用浸渍法,制备了0-8.16wt.%MgO改性的H-ZSM-5。将MgO改性的H-ZSM-5与商品化的Cu/ZnO/Al2O3等质量比物理混合,制备了一系列双功能催化剂。在原料气DME/H2O/N2摩尔比为1/4/5,空速为4000mL·g·h-1及反应温度为290℃的条件下,考察了双功能催化剂的SRD反应性能。结果表明,MgO负载量显著影响DME转化率、H2收率和含碳产物选择性。MgO负载量在1.412.92wt.%之间时,双功能催化剂的SRD性能最佳(DME转化率和H2收率分别高达95%和93%)。XRD、FT-IR和低温N2吸附表征结果表明,MgO高度分散在H-ZSM-5表面,且MgO的引入对H-ZSM-5分子筛的骨架和晶型结构影响并不明显。NH3-TPD表征结果表明,MgO的引入可以显著降低H-ZSM-5的强酸量,而对弱酸量影响不大。与离子交换法相比,采用浸渍法制备的MgO改性H-ZSM-5,在SRD反应中表现出较高的催化活性和稳定性。
     (3)为了考察MgO改性H-ZSM-5与Cu/ZnO/Al2O3组成双功能催化剂的SRD反应稳定性,以Mg(NO3)2为前驱体,采用浸渍法,进一步优化了MgO负载量,制备了1.55-2.47wt.%MgO改性的H-ZSM-5,并与商品化的Cu/ZnO/Al2O3粉末混合,制备了一系列双功能催化剂。考察了温度、空速和质量比等反应条件对双功能催化剂SRD反应性能的影响,在空速为1000ML·g-1·h-1、反应温度为290℃和MgO改性H-ZSM-5与Cu/ZnO/Al2O3质量比为3/2的条件下,H2收率最高。同时,MgO含量为2.17、wt.%的H-ZSM-5表现出最好的SRD反应活性和稳定性,反应50h后DME转化率和H2收率仍分别为93%和91%。反应前、后双功能催化剂的XPS、XRD和低温N2吸附结果表明催化剂表面积碳和Cu的烧结是导致催化剂失活的主要原因。
     (4)根据SRD两步连串反应的特点,采用两种方法,分别制备了空心、实心核壳双功能催化剂。方案一:采用多孔结构的聚丙烯酰胺-甲基丙烯酸(P(AM-co-MAA))微凝胶为载体,将商品化Cu/ZnO/Al2O3填充到P(AM-co-MAA)的孔道中,得到核催化剂;以酸性硅溶胶为粘结剂,将商品化H-ZSM-5粘覆于核催化剂表面,经焙烧去除P(AM-co-MAA)后,获得空心核壳双功能催化剂。方案二:以商品化的Cu/ZnO/Al2O3(40-60目)为核催化剂,采用原位水热合成法,制备了表面包覆H-ZSM-5膜的实心核壳双功能催化剂。催化剂的SEM形貌表征结果说明,两种方法均制备了界限分明、结构规整的核壳双功能催化剂。在反应温度为300℃,空速为2000mL·g-1·h-1的反应条件下,考察了两种核壳双功能催化剂的SRD反应性能。结果表明,与空心核壳双功能催化剂相比,H-ZSM-5膜质量为12%的实心核壳双功能催化剂,表现出较高的DME转化率和H2收率。产物分布结果表明,与物理混合法制备的双功能催化剂相比,核壳结构双功能催化剂的CO和CH4选择性显著降低(<1.3%),这是由于反应物DME和水分子到达核壳双功能催化剂颗粒时,首先在分子筛膜部分进行水解反应,水解反应产物一经生成后,很快到达核催化剂进行甲醇重整反应,SRD的两步反应高度协同一致,从而很好的抑制副反应产物CO和CH4的生成。
The proton exchange membrane fuel cell (PEMFC), which is characterized by environmental benignity, low operating temperature, high efficiency, and high reliability, has been recognized as a desirable power generation system for portable devices and electric vehicles. Currently, H2source is still one of the main obstacles for the commercialization of PEMFC vehicles although big process has been made for the duel cell. Among the aviable H2carriers for PEMFC, such as liquefied petroleum gas, gasoline, methanol and ethanol, dimethyl ether (DME) is believed to be a promising candidate due to its gas-like properties and liquid storage density, low cost, high hydrogen content (13wt.%), low or no toxicity, etc. More importantly, comparing with other H2carriers, hydrogen production via steam reforming of DME (SRD) can be performed efficiently at lower temperatures of200-400℃. Thus, in recent years, SRD has received much attention as an efficient method for the on-board production of hydrogen for PEMFC. However, the related investigation on SRD is just at the very beginning stage.
     Based on the literature of SRD and keep the consecutive two-step mechanism for SRD in mind, we investigated the bifunctional catalyst composed of zeolites and the Cu/ZnO/Al2O3. From the synergistic effect of two different active components of SRD, we studied the effect of acidity and topological structure of zeolites, and changed the acidic sites of H-ZSM-5zeolite on the performance of the SRD reaction. Meanwhile, used different methods to preparation H-ZSM-5/Cu/ZnO/Al2O3core-shell bifunctional catalysts, and researched the reaction kinetic for SRD. The activity and the selectivity of SRD for hydrogen production were qantitatively correlated with the structure, acidity, pores size distribution, surface topography and the synergistic effect between different catalytic functions of the bifunctional catalyst, which are characterized by XRD, physical/chemical adsorption, and scanning electron microscope (SEM), etc. The mechanistic relationship between the thus mentioned factors and SRD performance of the catalyst, especially the key factor on selectively controlling the SRD products distribution, was determined, and the cause of bifunctional catalysts deactivation was determined. The experiment and main conclusions are summarized as follows:
     (1) The bifunctional catalyst was prepared by physically mixing Cu/ZnO/Al2O3with H-ZSM-5(Si/Al2O3=25), H-USY, and H-beta (Si/Al2O3=20), respectively. We inversitaged the effect of the acidity and topological structure of zeolites in bifunctional catalyst for SRD under the conditions of DME/H2O/N2=1/4/5, GHSV=4000mL·g-4·h-1, T=290℃. Due to having suitable acidity and channel size, H-ZSM-5based bifunctional catalyst showed the highest SRD performance, i.e., stable DME conversion of over95%and H2yield of about80%. Unexpectedly, a large amount of hexamethyl benzene (HMB) was condensed at the outlet of the reactor when H-USY or H-beta based bifunctional catalysts were applied for SRD. To the best of our knowledge, this is the first report on the formation of HMB under SRD conditions. Based on the SRD mechanism, and the topological and acidic properties of zeolite, the formation of HMB was well explained as the side reactions of methanol to hydrocarbons (MTH) and DME to hydrocarbons (DTH) and the larger channel sizes of zeolites Y and beta than that of the HMB molecules. On the other hand, clear evidence is provided for the Hydrocarbon Pool mechanism of MTH reaction, and HMB is revealed to be the very possible species of Hydrocarbon Pool.
     (2) It is well known that the strong acidic sites on H-ZSM-5zeolites promote the generation of secondary productions like hydrocarbons. Significantly, MgO-modified H-ZSM-5can effectively to tailor the acidity of H-ZSM-5. To develop an efficient acidic catalyst for SRD, H-ZSM-5was modified with a series amount of MgO (0-8.16wt.%) via the incipient impregnation method by using Mg(NO3)2as a precursor. The MgO-modified H-ZSM-5physically mixed with a commercial Cu/ZnO/Al2O3was investigated as a bifunctional catalyst for SRD. The reaction was performed under the conditions of DME/H2O/N2=1/4/5, T=290℃, and GHSV=4000mL·g-1·h-1. SRD results indicate that the DME conversion, H2yield, and selectivity of the carbon-containing products were strongly dependent on the MgO loadings over H-ZSM-5, and the highest DME conversion and H2yield of about95%and93%were achieved over the bifunctional catalyst by using1.41-2.92wt.%MgO modified H-ZSM-5as a solid acid. MgO was highly dispersed over H-ZSM-5, and very limited impact on the structure and crystallinity of the zeolite was unambiguously revealed by the techniques of XRD, FT-IR, and N2adsorption at low temperatures. On the contrary, significant effects of MgO on the acidity of H-ZSM-5, especially the stronger acidic sites, were clearly manifested from the temperature-programmed desorption of ammonia (NH3-TPD). In comparison with ion exchange method, the bifunctional catalyst showed higher SRD performance and stability via the incipient impregnation method.
     (3) To develop an efficient and stability acidic catalyst for SRD, H-ZSM-5was modified with a series amount of MgO (1.55-2.17wt.%) via the incipient impregnation method by using Mg(NO3)2as a precursor. The MgO-modified H-ZSM-5physically mixed with a commercial Cu/ZnO/Al2O3was investigated as a bifunctional catalyst for SRD. The activity and stability reaction for SRD was performed under the conditions of DME/H2O/N2=1/4/5, T=290℃, GHSV=1000mL·g-1·h-1, and the weight ratio of MgO modified H-ZSM-5to Cu/ZnO/Al2O3was3/2. SRD results indicate that the stable DME conversion and H2yield were obtained above93%and91%after reaction for50h over the2.17wt.%MgO modified H-ZSM-5catalysts, respectively. Coke deposition and Cu sinter leaded to catalysts deactivation was unambiguously revealed by the techniques of XRD, FT-IR, and N2adsorption at low temperatures.
     (4) Based on two-step mechanism of SRD, two different methods were used to preparation of core-shell bifunctional catalysts. First one, the3D network structure poly (acrylamide-co-methacrylic acid)(P(AM-co-MAA)) microgel were prepared as a template, then filled the channel of P(AM-co-MAA) with commercial Cu/ZnO/Al2O3to be the core catalyst. Secondly, the H-ZSM-5was impregnated with silicate sols coating on core catalyst via the paste method to preparation core-shell bifunctional catalyst. Finally, the core-shell catalyst was calcined to remove the P(AM-co-MAA) templates, and then hollow core-shell bifunctional catalyst was obtained. Second one, the commercial Cu/ZnO/Al2O3was coated with H-ZSM-5, which was prepared by hydrothermal synthesis method, and the catalyst was named as solid core-shell bifunctional catalyst. The reaction was performed by using two different core-shell bifunctional catalysts under the conditions of T=300℃and GHSV=2000mL·g-1·h-1. The SRD results indicate that the solid core-shell bifunctional catalyst showed higher DME conversion and H2yield than hollow core-shell bifunctional catalyst. Moreover, the selectivity of the side reation products like CO and CH4were less than1.3%. When DME and H2O through the core-shell bifunctional catalyst, firstly, hydrolysis of DME actively takes place over zeolite, then the middle product MeOH was quickly transform to H2via SRM. The side reaction products like CO and CH4were inhibited, when the synergistic effect of two-step for SRD was increased.
引文
[1]孙道安,李春迎,张伟,吕剑.烃类水蒸汽重整制氢研究进展[J].工业催化,2011,19,21-26.
    [2]刘江华.氢能源——未来的绿色能源[J].新疆石油科技,2007,1,72-77.
    [3]孙欣.氢能源的发展现状及展望[J].技术与市场,2012,19,261.
    [4]孙道安,李迎春,张伟,吕剑.典型碳氢化合物水蒸气重整制氢研究进展[J].化工进展,2012,31,801-806.
    [5]周洁,郑颖平,谢吉虹.制氢技术研究进展及在燃料电池中的应用前景[J].化工时刊,2007,21,71-75.
    [6]葛春定,刘建清.国外氢能源经济研究简述[J].华东电力,2012,40,2142-2144.
    [7]问朋朋,黄明宇,倪红军,贾中实.燃料电池车发展概况及展望[J].电源技术综述,2012,36,596-610.
    [8]杜宇平,陈红雨,冯书丽,杨茂聪,蒋雄.质子交换膜燃料电池发展现状[J].电池工业,2002,7,266-271.
    [9]张燕,王正.质子交换膜燃料电池[J].可再生能源,2005,4,47-53.
    [10]王艳辉,王树东,吴迪镛PEMFC制氢技术现状[J].环境科学进展,1999,7,73-77.
    [11]王艳辉,吴迪镛,付桂芝,王树东.氢源技术在PEMFC中的应用现状及发展趋势[J].辽宁化工,2000,29,78-81.
    [12]高春梅,李清,李聚.燃料电池的燃料制取及储存技术的探讨[J].城市燃气,2004,352,19-23.
    [13]冯冬梅,王金福,王德峥.燃料电池中二甲醚重整制氢的研究进展[J].现代化工,2007,27,32-36.
    [14]C. Bernay, M. Marchand, M. Cassir. Prospects of different fuel cell technologies for vehicle applocations. J. Power Sources 2002,108,139-152.
    [15]张丽彬,陈晓宁,吴文健,高洪涛.质子交换膜燃料电池发展前景探讨[J].新能源产业,2011,4,15-19.
    [16]宋文生,李磊,王宇新.燃料电池汽车氢源[J].汽车工程,2003,25,415-417.
    [17]P.K. Cheekatamarla, C.M. Finnerty. Reforming catalysts for hydrogen generation in fuel cell applications. J. Power Sources 2006,160,490-499.
    [18]U. Eberle, M. Felderhoff, F. Schiith. Chemical and physical solutions for hydrogen storage. Angew. Chem. Int. Ed.2009,48,6608-6630.
    [19]L. Pan, S. Wang. Methanol steam reforming in a compact plate-fin reformer for fuel-cell systems. Int. J. Hydrogen Energy.2005,30,973-979.
    [20]任素贞,刁红敏,宋志玉.甲醇重整制氢在燃料电池中的应用[J].太阳能,2008,2,30-33.
    [21]吴涛涛,张会生.重整制氢技术及其研究进展[J].能源技术,2006,27,161-167.
    [22]马忠,蒋淇忠,马紫峰.车载二甲醚重整制氢技术的研究进展[J].化工进展,2011,30,292-308.
    [23]A.E. Lutz, R.W. Bradshaw, L. Bromberg, A. Rabinovich. Thermodynamic analysis of hydrogen production by partial oxidation reforming. Int. J. Hydrogen Energy.2004,29,809-816.
    [24]张斌,李政,倪维斗.天然气自热重整器模拟及性能分析[J].天然气工业.2003,5,95-100.
    [25]李文兵,齐智平.甲烷制氢技术研究进展[J].天然气工业.2005,25,165-168.
    [26]贾秀荣.天然气催化制氢气的研究进展[J].河南化工.2010,27,17-21.
    [27]W. Yan, S.K. Hoekman. Production of CO2-free hydrogen from methane dissociation:a review. Environ. Prog. Sust. Energy.2014,33,213-219.
    [28]许珊,王晓来,赵睿.甲烷催化制氢气的研究进展[J].化学进展.2003,15,141-150.
    [29]H. Wu, V.L. Parola, G. Pantaleo, F. Puleo, A.M. Venezia, L.F. Liotta. Ni-based catalysts for low temperature methane steam reforming:recent results on Ni-Au and comparison with other Bi-metallic systems. Catal.2013,3,563-583.
    [30]谢继东,李文华,陈亚飞.煤制氢发展现状[J].煤质技术.2007,13,77-81.
    [31]杨勇,谢建军.煤与生物质制氢工艺评述[J].现代化工.2006,26,16-20.
    [32]陈冠益,李强,H. Spliethoff,王福全.生物质热解气化制取氢气[J].太阳能学报.2004,25,776-781.
    [33]乔春珍.含碳能源制氢的现状及发展[J].交通节能与环保.2010,2,40-43.
    [34]亓爱笃,王树东,付桂芝,吴迪镛.汽油自热重整制氢反应过程分析[J].2001,29,519-523.
    [35]王艳辉,吴迪镛.汽油氧化重整制氢反应镍催化剂的实验研究[J].低温与特 气.2000,18,18-21.
    [36]江茂修,左丽华.用于车用燃料电池的车载制氢技术[J1.汽车工艺与材料.2001,4,1-5.
    [37]朱文良,韩伟,张小亮,熊国兴,杨维慎.汽油与水和氧混合重整制氢气[J].催化学报.2005,26,480-484.
    [38]高立达,薛青松,路勇,何鸣元.抗硫中毒Pt/CeO2/Al2O3催化剂Ⅰ.汽油蒸汽重整制氢反应性能及催化剂表征[J].石油化工.2008,37,662-666.
    [39]Y.-H. Chin, R. Dagle, J. Hu, A.C. Dohnalkova, Y. Wang. Steam Reforming of Methanol over Highly Active Pd/ZnO Catalyst. Catal.Today,2002,77,79-88.
    [40]S.-I. Ito, Y. Suwa, S. Kondo, S. Kameoka, K. Tomishige, K. Kunimori. Steam Reforming of Methanol over Pt-Zn Alloy Catalyst Supported on Carbon Black. Catal. Commu,2003,4,499-503.
    [41]W. Shan, Z. Feng, Z. Li, J. Zhang, W. Shen, C. Li. Oxidative steam reforming of methanol on Ce0.9Cu0.1OY catalysts prepared by deposition-precipitation, coprecipitation, and complexation-combusion methods. J. Catal.2004,228, 206-217.
    [42]王桂芝.甲醇制氢技术及在燃料电池中的应用[J].化学工业.2008,26,17-33.
    [43]陶秀峰,黄鹤辉.醇类随车制氢技术[J].装备制造技术.2010,12,31-33.
    [44]贺德华,马兰,刘金尧.烃类/醇类重整制氢的研究进展[J].石油化工.2008,37,315-322.
    [45]J. Li, Q.-J. Zhang, X. Long, P. Qi, Z.-T. Liu, Z.-W. Liu. Hydrogen production for fuel cells via steam reforming of dimethyl ether over commercial Cu/ZnO/Al2O3 and zeolite. Chem. Eng. J.2012,187,299-305.
    [46]M. Yang, Y. Men, S. Li, G. Chen. Hydrogen production by steam reforming of dimethyl ether over ZnO-Al2O3 bifunctional catalyst. Int. J. Hydrogen Energy. 2012,37,8360-8369.
    [47]T.A. Semelsberger, R.L. Borup, H.L. Greene. Dimethyl ether (DME) as an alternative fuel. J. Power Sources.2006,156,497-511.
    [48]陶继刚.21世纪清洁能源——二甲醚简介[J].贵州化工.2005,30,8-9.
    [49]贾明生,凌长明.二甲醚的物化特性和国内应用前景分析[J].石油与天然气化工.2003,32,336-338.
    [50]赵俊华,钱叶剑.二甲醚:一种新型的车用清洁燃料[J].商用汽车.2001,9,40-41.
    [51]安军信.清洁燃料二甲醚的生产技术和发展前景[J].石化技术与应用.2001,19,389-392.
    [52]陈卫国,胡娟.二甲醚(DME)的开发与应用[J].城市燃气.2006,5,3-14.
    [53]倪维斗,靳晖,李政,郑洪弢.二甲醚(DME)经济解决中国能源与环境问题的重大关键[J].能源与环境.2003,1,9-14.
    [54]韩景城.二甲醚——作为石油替代品的竞争力分析[J].中外能源.2007,12,15-22.
    [55]黎汉生,任飞,王金福.浆态床一步法二甲醚产业化技术开发研究发展[J].化工进展.2004,23,921-924.
    [56]V.A. Sobyanin, S. Cavallaro, S. Freni. Dimethyl ether steam reforming to feed molten carbonate fuel cells (MCFCs). Energy Fuels.2000,14,1139-1142.
    [57]V.V. Galvita, G.L. Semin, V.D. Belyaev, T.M. Yurieva, V.A. Sobyanin. Production of hydrogen from dimethyl ether. Appl. Catal. A:Gen.2001,216,85-90.
    [58]T.A. Semelsberger, R.L. Gorup. Thermodynamic equilibrium calculations of dimethyl ether steam reforming and dimethyl ether hydrolysis. J. Power Sources. 2005,152,87-96.
    [59]X. Long, Q. Zhang, Z.-T. Liu, P. Qi, J. Lu, Z.-W. Liu. Magnesia modified H-ZSM-5 as an efficient acidic catalyst for steam reforming of dimethyl ether. Appl. Catal. B:Environ.2013,134-135,381-388.
    [60]J. Vicente, A.G. Gayubo, J. Erena, A.T. Aguayo, M. Olazar, J. Bilbao. Improving the DME steam reforming catalyst by alkaline treatment of the HZSM-5 zeolite. Appl. Catal. B:Environ.2013,130-131,73-83.
    [61]L. Zhang, M. Meng, S. Zhou, Z. Sun, J. Zhang, Y. Xie, T. Hu. Promotional effect of partial substitution of Zn by Ce in CuZnAlO catalysts used for hydrogen production via steam reforming of dimethyl ether. J. Power Sources.2013,232, 286-296.
    [62]P.V. Snytnikov, S.D. Badmaev, G.G. Volkova, D.I. Potemkin, M.M. Zyryanova, V.D. Belyaev, V.A. Sobyanin. Catalysts for hydrogen production in a multifuel processor by methanol, dimethyl ether and bioethanol steam reforming for fuel cell applications. Int. J. Hydrogen Energy.2012,37,16388-16396.
    [63]M. Yang, Y. Men, S. Li, G. Chen. Enhancement of catalytic activity over TiO2-modified Al2O3 and ZnO-Cr2O3 composite catalyst for hydrogen production via dimethyl ether steam reforming. Appl. Catal. A:Gen.2012,433-434,26-34.
    [64]S.-J. Park, D.-W. Lee, C.-Y. Yu, K.-Y. Lee, K.-H. Lee. Hydrogen production from a DME reforming-membrane reactor using stainless steel-supported Knudsen membranes with high permeability. J. Membr. Sci.2008,318,123-128.
    [65]S. Kudo, T. Maki, K. Miura, K. Mae. High porous carbon with Cu/ZnO nanoparticles made by the pyrolysis of carbon material as a catalyst for steam reforming of methanol and dimethyl ether. Carbon 2010,48,1186-1195.
    [66]K. Faungnawakij, Y. Tanaka, N. Shimoda, T. Fukunaga, S. Kawashima, R. Kikuchi, K. Eguchi. Influence of solid-acod catalysts on steam reforming and hydrolysis of dimethyl ether for hydrogen production. Appl. Catal. A:Gen.2006, 304,40-48.
    [67]Y. Tanaka, R. Kikuchi, T. Takeguchi, K. Eguchi. Steam reforming of dimethyl ether over composite catalysts of Y-Al2O3 and Cu-based spinel. Appl. Catal. B: Environ.2005,57,211-222.
    [68]D. Feng, Y. Wang, D. Wang, J. Wang. Steam reforming of dimethyl ether over CuO-ZnO-Al2O3-ZrO2+ZSM-5:A kinetic study. Chem. Eng. J.2009,146, 477-485.
    [69]T.A. Semelsberger, R.L. Borup. Thermodynamic equilibrium calculations of hydrogen production from the combined processes of dimethyl ether steam reforming and partial oxidation. J. Power Sources 2006,155,340-352.
    [70]K. Faungnawakij, R. Kikuchi, K. Eguchi. Thermodynamic analysis of carbon formation boundary and reforming performance for steam reforming of dimethyl ether. J. Power Sources 2007,164,73-79.
    [71]K. Faungnawakij, N. Viriya-empikul, W. Tanthapanichakoon. Evaluation of the thermodynamic equilibrium of the autothermal reforming of dimethyl ether. Int. J. Hydrogen Energy 2011,36,5865-5874.
    [72]K. Faungnawakij, K. Eguchi. Dimethyl ether-reforming catalysts for hydrogen production. Catal. Surv. Asia 2011,15,12-24.
    [73]N. Shimoda, K. Faungnawakij, R. Kikuchi, K. Eguchi. A study of various zeolites and CuFe2O4 spinel composite catalysts in steam reforming and hydrolysis of dimethyl ether. Int. J. Hydrogen Energy 2011,36,1433-1441.
    [74]K. Faungnawakij, N. Shimoda, N. Viriya-empikul, R. Kikuchi, K. Eguchi. Limiting mechanisms in catalytic steam reforming of dimethyl ether. Appl. Catal. B:Environ.2010,97,21-27.
    [75]S. Park, H. Kim, B. Choi. Effective parameters for DME steam reforming catalysts for the formation of H2 and CO. J. Ind. Eng. Chem.2010,16,734-740.
    [76]M. Nilsson, K. Jansson, P. Jozsa, L.J. Pettersson. Catalytic properties of Pd supported on ZnO/ZnAl2O4/Al2O3 mixtures in dimethyl ether autothermal reforming. Appl. Catal. B:Environ.2009,86,18-26.
    [77]F. Solymosi, R. Barthos, A. Kecskemeti. The decomposition and steam reforming of dimethyl ether on supported Mo2C catalysts. Appl. Catal. A:Gen.2008,350, 30-37.
    [78]K. Faungnawakij, R. Kikuchi, T. Matsui, T. Fukunaga, K. Eguchi. A comparative study of solid acids in hydrolysis and steam reforming of dimethyl ether. Appl. Catal. A:Gen.2007,333,114-121.
    [79]Z. Sun, M. Meng, L. Zhang, Y. Zha, X. Zhou, Z. Jiang, S. Zhang, Y. Huang. Highly efficient Zr-substituted catalysts CuZnAl1-xZrxO used for hydrogen production via dimethyl ether steam reforming. Int. J. Hydrogen Energy 2012,37, 18860-18869.
    [80]K. Faungnawakij, T. Fukunaga, R. Kikuchi, K. Eguchi. Deactivation and regeneration behaviors of copper spinel-alumina composite catalysts in steam reforming of dimethyl ether. J. Catal.2008,256,37-44.
    [81]X. Wang, X. Pan, R. Lin, S. Kou, W. Zou, J.-X. Ma. Steam reforming of dimethyl ether over Cu-Ni/y-Al2O3 bi-functional catalyst prepared by deposition-precipitation method. Int. J. Hydrogen Energy 2010,35,4060-4068.
    [82]K. Faungnawakij, N. Shimoda, T. Fukunaga, R. Kikuchi, K. Eguchi. Crystal structure and surface species of CuFe2O4 spinel catalysts in steam reforming of dimethyl ether. Appl. Catal. B:Environ.2009,92,341-350.
    [83]K. Faungnawakij, R. Kikuchi, T. Fukunaga, K. Eguchi. Stability enhancement in Ni-promoted Cu-Fe spinel catalysts for dimethyl ether steam reforming. J. Phys. Chem. C 2009,113,18455-18458.
    [84]K. Faungnawakij, N. Shimoda, T. Fukunaga, R. Kikuchi, K. Eguchi. Cu-based spinel catalysts CUB2O4 (B=Fe, Mn, Cr, Ga, Al, Feo.75Mno.25) for steam reforming of dimethyl ether. Appl. Catal. A:Gen.2008,341,139-145.
    [85]K. Faungnawakij, R. Kikuchi, N. Shimoda, T. Fukunaga, K. Eguchi. Effect of thermal treatment on activity and durability of CuFe2O4-Al2O3 composite catalysts for steam reforming of dimethyl ether. Angew. Chem. Int. Ed.2008,47, 9314-9317.
    [86]T.A. Semelsberger, K.C. Ott, R.L. Borup, H.L. Greene. Genreating hydrogen-rich fuel-cell feeds from dimethyl ether (DME) using Cu/Zn supported on various solid-acid substrates. Appl. Catal. A:Gen.2006,309,210-223.
    [87]A. Gazsi, I. Ugrai, F. Solymosi. Production of hydrogen from dimethyl ether on supported Au catalysts. Appl. Catal. A:Gen.2011,391,360-366.
    [88]G. Halasi, T. Bansagi, F. Solymosi. Production of hydrogen from dimethyl ether over supported rhodium catalysts. ChemCatChem 2009,1,311-317.
    [89]N. Shimoda, K. Faungnawakij, R. Kikuchi, T. Fukunaga, K. Eguchi. Catalytic performance enhancement by heat treatment of CuFe2O4 spinel and y-alumina composite catalysts for steam reforming of dimethyl ether. Appl. Catal. A:Gen. 2009,365,71-78.
    [90]X. Long, Q. Zhang, R. Guo, Z.-T. Liu, H. Wang, J. Lu, Z.-W. Liu. Insight into the unexpected formation of hexamethylbenzene during steam reforming of dimethyl ether over zeolite-based bifunctional catalysts. Catal. Today 2013,210,75-80.
    [91]J. Erena, J. Vicente, A.T. Aguayo, A.G. Gayubo, M. Olazar, J. Bilbao. Effect of combining metallic and acid functions in CZA/HZSM-5 desilicated zeolite catalysts on the DME steam reforming in a fluidized bed. Int. J. Hydrogen Energy 2013,38,10019-10028.
    [92]N. Shimoda, K. Faungnawakij, R. Kikuchi, K. Eguchi. Degradation and regeneration of copper-iron spinel and zeolite composite catalysts in steam reforming of dimethyl ether. Appl. Catal. A:Gen.2010,378,234-242.
    [93]T. Fukunaga, N. Ryumon, S. Shimazu. The influence of metals and acidic oxide species on the steam reforming of dimethyl ether (DME). Appl. Catal. A:Gen. 2008,348,193-200.
    [94]T.A. Semelsberger, K.C. Ott, R.L. Borup, H.L. Greene. Generating hydrogen-rich fuel-cell feeds from dimethyl ether (DME) using physical mixtures of a commercial Cu/Zn/Al2O3 catalyst and several solid-acid catalysts. Appl. Catal. B:Environ.2006,65,291-300.
    [95]T. Kawabata, H. Matsuoka, T. Shishido, D. Li, Y. Tian, T. Sano, K. Takehira. Steam reforming of dimethyl ether over ZSM-5 coupled with Cu/ZnO/Al2O3 catalyst prepared by homogeneous precipitation. Appl. Catal. A:Gen.2006,308, 82-90.
    [96]T. Matsumoto, T. Nishiguchi, H. Kanai, K. Utani, Y. Matsumura, S. Imamura. Steam reforming of dimethyl ether over H-mordenite-Cu/CeO2 catalysts. Appl. Catal. A:Gen.2004,276,267-273.
    [97]C. Ledesma, U.S. Ozkan, J. Llorca. Hydrogen production by steam reforming of dimethyl ether over Pd-based catalytoc monoliths. Appl. Catal. B:Environ.2011, 101,690-697.
    [98]S.D. Badmaev, G.G. Volkova, V.D. Belyaev, V.A. Sobyanin. Steam reforming of dimethyl ether to hydrogen-rich gas. React. Kinet. Catal. Lett.2007,90,205-211.
    [99]T. Nishiguchi, K. Oka, T. Matsumoto, H. Kanai, K. Utani, S. Imamura.Durability of WO3/ZrO2-CuO/CeO2 catalysts for steam reforming of dimethyl ether. Appl. Catal. A:Gen.2006,301,66-74.
    [100]K. Oka, T. Nishiguchi, H. Kanai, K. Utani, S. Imamura. Active state of tungsten oxides on WO3/ZrO2 catalyst for steam reforming of dimethyl ether combined with CuO/CeO2. Appl. Catal. A:Gen.2006,309,187-191.
    [101]K. Faungnawakij, K. Eguchi. Dimethyl ether-reforming cataysts for hydrogen production. Catal. Surv. Asia 2011,15,12-24.
    [102]C. Ledesma, J. Llorca. Dimethyl ether steam reforming over Cu-Zn-Pd/CeO2-ZrO2 catalytic monoliths:The role of Cu species on Catalyst stability. J. Phys. Chem. C 2011,115,11624-11632.
    [103]C. Ledesma, J. Llorca. Hydrogen production by steam reforming of dimethyl ether over Cu-Zn/CeO2-ZrO2 catalytic monoliths. Chem. Eng. J.2009,154, 281-286.
    [104]X. Zhou, M. Meng, Z. Sun, Q. Li, Z. Jiang. Prominent enhancement of Mn or Co addition on the performance of Cu-Ce-O catalyst used for H2 production via dimethyl ether steam reforming. Chem. Eng. J.2011,174,400-407.
    [105]N. Shimoda, H. Muroyama, T. Matsui, K. Faugnawakij, R. Kikuchi, K. Eguchi. Dimethyl ether steam reforming under daily start-up and shut-down (DSS)-like operation over CuFe2O4 spinel and alumina composite catalysts. Appl. Catal. A: Gen.2011,409-410,91-98.
    [106]K. Faungnawakij, Y. Tanaka, N. Shimoda, T. Fukunaga, R. Kikuchi, K. Eguchi. Hydrogen production from dimethyl ether steam reforming over composite catalysts of copper ferrite spinel and alumina. Appl. Catal. B:Environ.2007,74, 144-151.
    [107]K. Faungnawakij, R. Kikuchi, T. Fukunang, K. Eguchi. Catalytic hydrogen production from dimethyl ether over CuFe2O4 spinel-based composites: hydrogen reduction and metal dopent effects. Catal. Today 2008,138,157-161.
    [108]A.M. Camiloti, S.L. Jahn, N.D. Velasco, L.F. Moura, D. Cardoso. Acidity of Beta zeolite determined by TPD of ammonia and ethylbenzene disproportionation. Appl. Catal. A:Gen.1999,182,107-113.
    [109]Y. Miyamoto, N. Katada, M. Niwa. Acidity of β zeolite with different Si/Al2 ratio as measured by temperature programmed desorption of ammonia. Microporous Mesoporous Mater.2000,40,271-281.
    [110]B. Sulikowski, A. Popielarz. Conversion of methanol on ultrastable faujasitic catalysts selective formation of hexamethylbenzene. Appl. Catal.1988,42, 195-203.
    [111]M. Stocker. Methanol-to-hydrocarbons:catalytic materials and their behavior. Microporous Mesoporous Mater.1999,29,3-48.
    [112]J.F. Haw, W. Song, D.M. Marcus, J.B. Nicholas. The mechanism of methanol to hydrocarbon catalysis. Ace. Chem. Res.2003,36,317-326.
    [113]B. Arstad, S. Kolboe. Methanol-to-hydrocarbons reaction over SAPO-34. Molecules confined in the catalyst cavities at short time on stream. Catal. Letters 2001,71,209-212.
    [114]Q. Zhu, J.N. Kondo, T. Tatsumi, S.Inagaki, R. Ohnuma, Y. Kubota, Y. Shimodaira, H. Kobayashi, K. Domen. A comparative study of methanol to olefin over GHA and MTF zeolites. J. Phys. Chem. C 2007,111,5409-5415.
    [115]H. Schulz. "Coking" of zeolites during methanol conversion:Basic reaction of the MTO-, MTP-and MTG processes. Catal. Today 2010,154,183-194.
    [116]Y.-G. Li, H. Jun. Kinetics study of the isomerization of xylene on ZSM-5 zeolites: the effect of the modification with MgO and CaO. Appl. Catal. A:Gen.1996, 142,123-137.
    [117]X. Guo, J. Shen, L. Sun, C. Song, X. Wang. Effects of SiO2/Al2O3, MgO modification and hydrothermal treatment on the catalytic activity of HZSM-5 zeolites in the methylation of 4-methylbiphenyl with methanol. Appl. Catal. A: Gen.2004,261,183-189.
    [118]Z. Zhao, W. Qiao, X. Wang, G. Wang, Z. Li, L. Cheng. Effect of alkaline earth metals on catalytic performance of HY zeolite for alkylation of a-methylnaphthalene with long-chain olefins. Microporous Mesoporous Mater. 2006,94,105-112.
    [119]B. Mitra, D. Kunzru. Disproportionation of toluene on monoliths washcoated with metal oxide modified ZSM5. Catal. Lett.2011,141,1569-1579.
    [120]B. Xue, Y. Li, L. Deng. Selective synthesis of p-xylene by alkylation of toluene with dimethyl carbonate over MgO-modified MCM-22. Catal. Commun.2009, 10,1609-1614.
    [121]H. Li, M. Li, Y. Chu, H. Nie. Influence of different modified β zeolite on skeletal isomerization of n-hexene in the presence of hydrogen. Microporous Mesoporous Mater.2009,117,635-639.
    [122]D. Mao, W. Yang, J. Xia, B. Zhang, Q. Song, Q. Chen. Highly effective hybrid catalyst for the direct synthesis of dimethyl ether from syngas with magnesium oxide-modified HZSM-5 as a dehydration component. J. Catal.2005,230, 140-149.
    [123]B. Li, S. Li, N. Li, H. Chen, W. Zhang, X. Bao, B. Lin. Structure and acidity of Mo/ZSM-5 synthesized by solid state reaction for methane dehydrogenation and aromatization. Microporous Mesoporous Mater.2006,88,244-253.
    [124]H. Wang, H. Guan, L. Duan, Y. Xie. Dispersion of MgO on Pt/Y-Al2O3 and the threshold effect in NOx storage. Catal. Commun.2006,7,802-806.
    [125]P. Kovacheva, A. Predoeva, K. Arishtirova, S. Vassilev. Oxidative methylation of toluene with methane using X zeolite catalyst modified with alkali earth oxides. Appl. Catal. A:Gen.2002,223,121-128.
    [126]Y.-C. Xie, Y.-Q. Tang. "Spontaneous monolayer dispersion of oxides and salts onto surfaces of supports:Applications to heterogeneous catalysis," in:D.D. Eley, H. Pines, P.B. Weisz (Eds), Advances in Catalysis, Academic Press, Inc. New York,1990, pp.1-43.
    [127]F. Lonyi, J. Valyon. On the interpretation of the NH3-TPD patterns of H-ZSM-5 and H-mordenite. Microporous Mesoporous Mater.2001,47,293-301.
    [128]S.G. Zhang, S. Higashimoto, H. Yamashita, M. Anpo. Characterization of vanadium oxide/ZSM-5 zeolite catalysts prepared by the solid-state reaction and their photocatalytic reactivity:in situ photoluminescence, XAFS, ESR, Ft-IR, and UV-vis investigations. J. Phys. Chem. B 1998,102,5590-5594.
    [129]D. Dumitriu, R. Barjega, L. Frunza, D. Macovei, T. Hu, Y. Xie, V.I. Parvulescu, S. Kaliaguine. BiOx clusters occluded in a ZSM-5 matrix:preparation, characterization, and catalytic behavior in liquid-phase oxidation of hydrocarbons. J. Catal.2003,219,337-351.
    [130]H. Ardelean, I. Frateur, S. Zanna, A. Atrens, P. Marcus, Corrosion protection of AZ91 magnesium alloy by anodizing in niobium and zirconium-containing electrolytes. Corros. Sci.2009,51,3030-3038.
    [131]X. Li, S. Liu, X. Zhu, Y. Wang, S. Xie, W. Xin, L. Zhang, L. Xu, Effect of zinc and magnesium addition to ZSM-5 on the catalytic performances in 1-hexene aromatization reaction. Catal. Lett.2011,141,1498-1505.
    [132]D.K. Aswal, K.P. Muthe, S. Tawde, S. Chodhury, N. Bagkar, A. Singh, S.K. Gupta, J.V. Yakhmi. XPS and AFM investigations of annealing induced surface modifications of MgO single crystals. J. Crystal Growth 2002,236,661-666.
    [133]T.L. Barr. The nature of the relative bonding chemistry in zeolites:An XPS study. Zeolites 1990,10,760-765.
    [134]M. Liu, P. Schmutz, S. Zanna, A. Seyeux, H. Ardelean, G. Song, A. Atrens, P. Marcus. Eletrochemical reactivity, surface composition and corrosion mechanisms of the complex metallic alloy Al3Mg2. Corros. Sci.2010,52, 562-578.
    [135]M. Liu, S. Zanna, H. Ardelean, I. Frateur, P. Schmutz, G. Song, A. Atrens, P. Marcus. A first quantitative XPS study of the surface films formed, by exposure to water, on Mg and on the Mg-Al intermetallics:Al3Mg2 and Mg17Al12. Corros. Sci.2009,51,1115-1127.
    [136]Y.-G. Li, W.-H. Xie, S. Yong. The acidity and catalytic behavior of Mg-ZSM-5 prepared via a solid-state reaction. Appl. Catal. A:Gen.1997,150,231-242.
    [137]M. Iwasaki, K. Yamazaki, K. Banno, H. Shinjoh. Characterization of Fe/ZSM-5 CeNOx catalysts prepared by different methods:relationships between active Fe sites and NH3-SCR performance. J. Catal.2008,260,205-216.
    [138]R. Rudham, A.W. Winstanley. Effects of dry-air calcination on the physico-chemical and catalytic properties of HZSM-5 zeolite. J. Chem. Soc. Faraday. Trans.1994,90,3191-3199.
    [139]Y. Zhang, Y. Zhou, M. Tang, X. Liu, Y Duan. Effect of La calcination temperature on catalytic performance of PtSnNaLa/ZSM-5 catalyst for propane dehydrogenation. Chem. Eng. J.2012,181-182,530-537.
    [140]N. Tangchupong, W. Khaodee, B. Jongsomjit, N. Laosiripojana, P. Praserthdam, S. Assabumrungrat. Effect of calcination temperature on characteristics of sulfated zirconia and its application as catalyst for isosynthesis. Fuel Process. Technol.2010,91,121-126.
    [141]Q. Zhang, K. Qiu, B. Li, T. Jiang, X. Zhang, L. Ma, T. Wang. Isoparaffin production by aqueous phase processing of sorbitol over the Ni/HZSM-5 catalysts:Effect of the calcination temperature of the catalyst. Fuel 2011,90, 3468-3472.
    [142]Y. Han, C. Lu, D. Xu, Y. Zhang, Y. Hu, H. Huang. Molybdenum oxide modified HZSM-5 catalyst:surface acidity and catalytic performance for the dehydration of aqueous ethanol. Appl. Catal. A:Gen.2011,396,8-13.
    [143]W. Song, C. Zuo, Q. Deng. Synthesis and characterization of worm-shaped tubular lanthanum aluminum composite mesoporous materials. Chin. J. Chem. Eng.2011,19,70-75.
    [144]T. Shido, K. Asakura, Y. Iwasawa. Reactant-promoted reaction mechanism for catalytic water-gas shift reaction on MgO. J. Catal.1990,122,55-67.
    [145]X.-L. Wu, T. Wen, H.-L. Guo, S. Yang, X. Wang, A.-W. Xu. Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors. ACS Nano, 2013,7,3589-3597.
    [146]Z.-H. Hu, S.-Y. Liu, Z.-B. Yue, L.-F. Yan, M.-T. Yang, H.-Q. Yu. Microscale analysis of in vitro anaerobic degradation of lignocellulosic wastes by rumen microorganisms. Environ. Sci. Technol.2008,42,276-281.
    [147]N.P. Blanchard, R.A. Hatton, S.R.P. Silva. Tuning the work function of surface oxidized multi-wall carbon nanotube via cation exchange. Chem. Phys. Lett. 2007,434,92-95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700