用户名: 密码: 验证码:
新型苯并咪唑衍生物的合成及金属离子调控的发光性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,具有较高发光效率和优良载流子传输性能的苯并咪唑类化合物因其在光电材料领域具有广阔的应用前景而倍受研究者的重视。本论文基于苯并咪唑基本骨架设计合成了一系列新型苯并咪唑衍生物,通过金属离子调控实现了具有不同发光机理的新型有机金属发光材料,并利用理论计算方法研究了结构和性质的关系。主要研究内容概括如下:
     1、合成了3种新型具有P^N螯合配位功能的苯并咪唑膦类配体(YPBI, Y=H,MO, PO),并通过核磁、质谱、元素分析对其进行了表征。在三苯基膦辅助配体存在下,苯并咪唑膦配体与卤化亚铜CuIX (X=Cl、Br、I)反应得到9种新型一价铜化合物,通过质谱和元素分析确认了它们的组成。对其中6个配合物的单晶结构分析结果表明:它们的中心离子均形成了变形四面体配位构型。光学性质研究发现该类铜配合物通过取代基以及卤素调控能够实现从绿光到红光(557nm-612nm)的发射。以碘为配阴离子的铜配合物的固体粉末发光量子效率均在29%以上,其中Cu(HPBI)(PPh3)I的光致发光量子效率高达37.53%,是一种潜在的节能环保型高效磷光材料。
     2、合成了具有大空间位阻的新型苯并咪唑膦氧类解聚配体(HL),利用ppy作为环金属配体,HL为解聚配体合成了(Pt-1)、(Ir-1)金属有机配合物,并通过核磁、质谱、元素分析和X-射线单晶衍射确证了它们的组成和结构。结果表明:Pt(II)分别与ppy和L通过N^C和O^N配位形成平面四方形结构,而Ir-1则应利用HL的N^C配位,形成了具有较弱反位效应的经式结构。铂和铱化合物均没有明显的分子间相互作用,均表现出较好的单分子磷光性质。Pt-1和Ir-1在溶液中的发光效率分别为31%和25%,固体粉末的发光效率分别为43.94%和6.23%。以Pt-1为发光材料制备了电致发光器件,其最大亮度为12020cd/m2,最大外量子效率、电流效率和功率效率分别为9.23%、25.86cd/A和25.81lm/W,结果表明Pt-1是一种性能优良的有机电致磷光材料。
     3、合成了6种新型双羟基苯并咪唑类化合物,通过核磁、质谱、元素分析确认了结构;光学性质研究发现双羟基苯并咪唑类配体具有较好的激发态质子转移发光现象,部分化合物表现出优良的蓝光发射(425-443nm),最高发光量子效率为53%。合成了6种相应的锌配合物,通过质谱、元素分析确认了结构,并对其中2个配合物进行了单晶结构分析。结果表明锌配合物为五配位的类四方锥结构,并且分子内存在较强的配体间氢键作用。光学性质研究发现大部分锌配合物表现为金属离子微扰配体发光(IL)。但是,由于ZnE1配合物具有较强的配体间氢键作用(氢键O(2)-H O(3),1.679),其表现为具有较大斯托克斯位移(155nm)的激发态质子转移发光。
     4、合成了以2-羟基苯乙酮类化合物为配体的6种新型九核铕簇合物,通过元素分析、红外和其中4个配合物的单晶结构分析对其组成和结构进行了确证。结果表明:该类簇合物的九个铕离子形成了具有公用顶点的二个四角锥结构。光学性质研究发现大部分簇合物激发波长位于可见光区(400nm-420nm),能够实现长波敏化的稀土铕离子的红色锐带发射。实验和DFT计算结果表明,取代基能够较好的对配体的能级进行调控,从而影响配体到中心铕离子的能量传递效率和该类簇合物的发光效率。
It is of great significance to develop photo-and electro-luminescent functionalmaterials. Recently, compounds based on benzimidazole derivatives have attractedconsiderable attention for their good light-emitting and charge transport properties.In this thesis, a series of new benzimidazole derivatives are designed and synthesized,which display different emission mechanism when they are coordinated to differentmetal ions. The phenomena are rationalized by supporting DFT computationalresults, which reveal the correlation between luminescent properties and electronicfeatures of the complexes. Our works are summarized as follows.
     1. Nine mononuclear Cu(I) complexes of general formula Cu(YPBI)(PPh3)X havebeen synthesized by the reaction between CuX (X=Cl, Br, I), PPh3and2-(2’-diphenylphosphinophenyl)-1-phenylbenzimidazole derives (YPBI: Y=H, MO,PO) in a molar ratio of1/1/1in CH2Cl2solution. X-Ray crystal structure analysisreveals that the central Cu(I) ion is in a distorted tetrahedral coordination environment.The nine complexes in solid state exhibit strong phosphorescence covering the visiblespectrum from green to red (557nm-612nm). The luminescence quantum yield (Φ) ofcomplexes Cu(YPBI)(PPh3)I are higher than25%at room temperature, especially forCu(HPBI)(PPh3)I (Φ=37.53%), indicating that these novel complexes are promisingphosphorescent materials.
     2. With the bulky benzoimidazole phosphine oxide (HL) as a new ancillary ligand,two new ppy-type phosphorescent complexes (Pt-1and Ir-1) have been synthesized.X-ray crystallographic studies reveal that the platinum(II) binds to L through aN^O-coordinating mode and forms a square-planar coordination geometry. However,the HL coordinates to iridium(III) with N^C-coordinating mode, resulting in theformation of meridinoal isomer with weak trans-effect. The crystal packings of Pt-1and Ir-1show that no apparent stacking interactions can be detected due to the stericeffect of the ancillary ligand. Both complexes exhibit characteristic phosphorescencein solution with highly quantum efficiencies (Pt-1:31%, Ir-1:25%) at roomtemperature, showing the first successful example of using benzoimidazole phosphine oxide as an ancillary ligand. Notably, Pt-1exhibits efficient green phosphorescencewith monomeric character in powder (Φ=43.94%). The OLED using Pt-1asphosphor exhibits a maximum brightness of12020cd m2at11V. Of particularsignificance, the device is able to achieve a maximum current efficiency (ηc) of25.86cd/A, external quantum efficiency (ηext) of9.23%and power efficiency (ηp) of25.81lm/W, which makes it a promising candidate as luminescent materials in OLEDs.
     3. Six novel2-(2’-hydroxyphenyl)-4-hydroxybenzimidazole derivatives have beensynthesized and characterized by elemental analysis, MS and NMR. The compoundsexhibit bright fluorescence, via excited-state intramolecular proton transfer (ESIPT),revealing their potential applications as sensors, probes and optical materials. SixZn(II) complexes based on this kind of ligands have been prepared. X-raycrystallographic study shows that Zn2+ion has a usual five-coordinate environmentand adopts a distorted square pyramidal geometry. It’s worthy noting that there arestrong intramolecular hydrogen-bonds in the complexes, especially for the ZnE1.The photophysical studies show that, when the ligands are coordinated to Zn(II),most of the complexes exhibit normal intra-ligand fluorescence. However, ZnE1exhibits emission based on excited-state intramolecular proton transfer (ESIPT).
     4. The reaction of2-hydroxybenzophenone derivatives with europium ions hasafforded a new family of luminescent nonanuclear Eu(III) clusters. Crystal structureanalysis of the clusters reveals that the metal core comprises two vertex-sharingsquare pyramidal units. Most of these complexes show emissions typical of Eu3+ionunder visible light excitation (400–420nm) at room temperature. Photophysicalcharacterization and DFT study reveal a correlation between luminescent efficienciesof Eu(III) complexes and the electronic features of the ligands, which in true can betuned by the nature of substituents in the4-position of the ligands. The ligands withfluorine substituent possess more suitable triplet energy levels, resulting in moreintensive luminescence.
引文
[1] Xu H, Wang Z, Li Y, et al. A quantum dot-based "off-on" fluorescent probe for biologicaldetection of zinc ions[J]. Analyst2013,138:2181-2191.
    [2] Xiang Y, Lu Y. DNA as sensors and imaging agents for metal ions[J]. Inorg. Chem.2013.
    [3] de Silva A P, Gunaratne H Q N, McCoy C P Molecular photoionic and logic gates withbright fluorescence and “off-on” digital action[J]. J. Am. Chem. Soc.1997,119:7891-7892.
    [4] de Silva P A, Gunaratne N H Q, McCoy C P. A molecular photoionic and gate based onfluorescent signalling[J]. Nature1993,364:42-44.
    [5] Liu G, Pu S, Wang R Photochromism of asymmetrical diarylethenes with a pyrrole unit:Effects of aromatic stabilization energies of aryl rings[J]. Org. Lett.2013,15:980-983.
    [6] Norsten T B, Branda N R. Photoregulation of fluorescence in a porphyrinic dithienylethenephotochrome[J]. J. Am. Chem. Soc.2001,123:1784-1785.
    [7] Holder E, Langeveld B M W, Schubert U S. New trends in the use of transitionmetal–ligand complexes for applications in electroluminescent devices[J]. Adv. Mater.2005,17:1109-1121.
    [8] Hens A, Mondal P, Rajak K K. Synthesis, structure and spectral properties of o,n,ncoordinating ligands and their neutral Zn(II) complexes: A combined experimental andtheoretical study[J]. Dalton Trans.2013,42:14905-14915.
    [9] Andruh M. Compartmental schiff-base ligands-a rich library of tectons in designingmagnetic and luminescent materials[J]. Chem. Commun.(Camb.)2011,47:3025-3042.
    [10] Kim T K, Lee J H, Moon D, et al. Luminescent li-based metal–organic framework tailoredfor the selective detection of explosive nitroaromatic compounds: Direct observation ofinteraction sites[J]. Inorg. Chem.2012,52:589-595.
    [11] Schmitz C, Schmidt H-W, Thelakkat M. Lithium quinolate complexes as emitter andinterface materials in organic light-emitting diodes[J]. Chem. Mater.2000,12:3012-3019.
    [12] Keizer T S, Sauer N N, McCleskey T M. Designer ligands for beryllium[J]. J. Am. Chem.Soc.2004,126:9484-9485.
    [13] Tong Y-P, Zheng S-L, Chen X-M, Syntheses, structures, photoluminescence, and theoreticalstudies of a class of beryllium(II) compounds of aromatic N,O-chelate ligands[J]. Inorg.Chem.2005,44:4270-4275.
    [14] Mitra A, DePue L J, Parkin S, et al. Five-coordinate aluminum bromides: Synthesis,structure, cation formation, and cleavage of phosphate ester bonds[J]. J. Am. Chem. Soc.2006,128:1147-1153.
    [15] Shi Y-W, Shi M-M, Huang J-C, et al. Fluorinated Alq3derivatives with tunable opticalproperties[J]. Chem. Commun.(Camb.)2006:1941-1943.
    [16] Oliveri I P, Failla S, Colombo A, et al. Synthesis, characterization, opticalabsorption/fluorescence spectroscopy, and second-order nonlinear optical properties ofaggregate molecular architectures of unsymmetrical schiff-base zinc(II) complexes[J].Dalton Trans.2014.
    [17] Di Bella S, Oliveri I P, Colombo A, et al. An unprecedented switching of the second-ordernonlinear optical response in aggregate bis(salicylaldiminato)zinc(II) schiff-basecomplexes[J]. Dalton Trans.2012,41:7013-7016.
    [18] Yersin H. Highly efficient oleds with phosphorescent materials[M]. Wiley-VCH VerlagGmbH&Co. KGaA:2008, p486.
    [19] El‐Sayed M A. Spin—orbit coupling and the radiationless processes in nitrogenheterocyclics[J]. J. Chem. Phys.1963,38:2834-2838.
    [20] Chang Y-C, Tang K-C, Pan H-A, et al. Harnessing fluorescence versus phosphorescencebranching ratio in (phenyl)n-bridged (n=0-5) bimetallic Au(I) complexes[J]. J. Phys. Chem.C2013,117:9623-9632.
    [21] Chi Y, Chou P-T. Contemporary progresses on neutral, highly emissive Os(II) and Ru(II)complexes[J]. Chem. Soc. Rev.2007,36:1421-1431.
    [22] Chou P-T, Chi Y. Phosphorescent dyes for organic light-emitting diodes[J]. Chem. Eur. J.2007,13:380-395.
    [23] Pope M, Kallmann H P, Magnante P Electroluminescence in organic crystals[J]. J. Chem.Phys.1963,38:2042-2043.
    [24] Tang C W, VanSlyke S A. Organic electroluminescent diodes[J]. Appl. Phys. Lett.1987,51:913-915.
    [25] Adachi C, Tokito S, Tsutsui T, et al. Electroluminescence in organic films with three-layerstructure[J]. Jpn. J. Appl. Phys1988,27: L269-L271.
    [26] Pérez-Bolívar C, Takizawa S-y, Nishimura G, et al. High-efficiencytris(8-hydroxyquinoline)aluminum (Alq3) complexes for organic white-light-emittingdiodes and solid-state lighting[J]. Chem. Eur. J.2011,17:9076-9082.
    [27] Liao S-H, Shiu J-R, Liu S-W, et al. Hydroxynaphthyridine-derived group Ⅲ metal chelates:Wide band gap and deep blue analogues of green Alq3(tris(8-hydroxyquinolate)aluminum)and their versatile applications for organic light-emitting diodes[J]. J. Am. Chem. Soc.2008,131:763-777.
    [28] Chen C H, Shi J. Metal chelates as emitting materials for organic electroluminescence[J].Coord. Chem. Rev.1998,171:161-174.
    [29] Baldo M A, O'Brien D F, You Y, et al. Highly efficient phosphorescent emission fromorganic electroluminescent devices[J]. Nature1998,395:151-154.
    [30] O’Brien D F, Baldo M A, Thompson M E, et al. Improved energy transfer inelectrophosphorescent devices[J]. Appl. Phys. Lett.1999,74:442-444.
    [31] Berger R J F, Stammler H-G, Neumann B, et al. Fac-Ir(ppy)3: Structures in the gas-phaseand of a new solid modification[J]. Eur. J. Inorg. Chem.2010,2010:1613-1617.
    [32] Breu J, St ssel P, Schrader S, et al. Crystal structure of fac-Ir(ppy)3and emission propertiesunder ambient conditions and at high pressure[J]. Chem. Mater.2005,17:1745-1752.
    [33] Yoo S-J, Yun H-J, Kang I, et al. A new electron transporting material for effectivehole-blocking and improved charge balance in highly efficient phosphorescent organic lightemitting diodes[J]. J. Mater. Chem. C2013,1:2217-2223.
    [34] Baldo M A, Lamansky S, Burrows P E, et al. Very high-efficiency green organiclight-emitting devices based on electrophosphorescence[J]. Appl. Phys. Lett.1999,75:4-6.
    [35] Ikai M, Tokito S, Sakamoto Y, et al. Highly efficient phosphorescence from organiclight-emitting devices with an exciton-block layer[J]. Appl. Phys. Lett.2001,79:156-158.
    [36] Kido J, Nagai K, Okamoto Y, et al. Electroluminescence from polysilane film doped witheuropium complex[J]. Chem. Lett.1991,20:1267-1270.
    [37] Mao-Lin H, Zhen-Yan H, Ya-Qian C, et al. Crystal structure and fluorescence spectrum ofthe complex [Eu(III)(TTA)3(phen)][J]. Chin. J. Chem.1999,17:637-643.
    [38] Adachi C, Baldo M A, Forrest S R. Electroluminescence mechanisms in organic lightemitting devices employing a europium chelate doped in a wide energy gap bipolarconducting host[J]. J. Appl. Phys.2000,87:8049-8055.
    [39] Brinkmann M, Gadret G, Muccini M, et al. Correlation between molecular packing andoptical properties in different crystalline polymorphs and amorphous thin films ofmer-tris(8-hydroxyquinoline)aluminum(III)[J]. J. Am. Chem. Soc.2000,122:5147-5157.
    [40] So S K, Choi W K, Leung L M, et al. Interference effects in bilayer organic light-emittingdiodes[J]. Appl. Phys. Lett.1999,74:1939-1941.
    [41] Garbuzov D Z, Forrest S R, Tsekoun A G, et al. Organic films deposited on si p‐njunctions: Accurate measurements of fluorescence internal efficiency, and application toluminescent antireflection coatings[J]. J. Appl. Phys.1996,80:4644-4648.
    [42] Gu G, Garbuzov D Z, Burrows P E, et al. High-external-quantum-efficiency organiclight-emitting devices[J]. Opt. Lett.1997,22:396-398.
    [43] Becke A D. Density-functional thermochemistry. Ⅲ. The role of exact exchange[J]. J.Chem. Phys.1993,98:5648-5652.
    [44] Koch W, Holthausen M C. A chemist's guide to density functional theory[M]. Wiley-VCHVerlag GmbH:2001, pI-XIII.
    [45] Hohenberg P, Kohn W. Inhomogeneous electron gas[J]. Phys. Rev.1964,136: B864-B871.
    [46] Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects[J].Phys. Rev.1965,140: A1133-A1138.
    [47] Slater J C. A simplification of the hartree-fock method[J]. Phys. Rev.1951,81:385-390.
    [48] Slater J C. Quantum theory of molecules and solids vol.4: The self-consistent field formolecules and solids[M]. McGraw-Hill, New York:1974, p583.
    [49] Becke A D. Density-functional exchange-energy approximation with correct asymptoticbehavior[J]. Phys. Rev. A1988,38:3098-3100.
    [50] Perdew J P, Burke K, Wang Y. Generalized gradient approximation for theexchange-correlation hole of a many-electron system[J]. Phys. Rev. B1996,54:16533-16539.
    [51] Becke A D. A new mixing of hartree–fock and local density-functional theories[J]. J. Chem.Phys.1993,98:1372-1377.
    [52] Lee C, Yang W, Parr R G. Development of the colle-salvetti correlation-energy formula intoa functional of the electron density[J]. Phys. Rev. B1988,37:785-789.
    [53]Runge E, Gross E K U. Density-functional theory for time-dependent systems[J]. Phys. Rev.Lett.1984,52:997-1000.
    [54] Petersilka M, Gossmann U J, Gross E K U. Excitation energies from time-dependentdensity-functional theory[J]. Phys. Rev. Lett.1996,76:1212-1215.
    [55] Hay P J, Wadt W R. Ab initio effective core potentials for molecular calculations. Potentialsfor the transition metal atoms Sc to Hg[J]. J. Chem. Phys.1985,82:270-283.
    [56] Wadt W R, Hay P J. Ab initio effective core potentials for molecular calculations. Potentialsfor main group elements Na to Bi[J]. J. Chem. Phys.1985,82:284-298.
    [57] Hay P J, Wadt W R. Ab initio effective core potentials for molecular calculations. Potentialsfor k to au including the outermost core orbitals[J]. J. Chem. Phys.1985,82:299-310.
    [58] Konoshima H, Nagao S, Kiyota I, et al. Excited-state intramolecular proton transfer andcharge transfer in2-(2[prime or minute]-hydroxyphenyl)benzimidazole crystals studied bypolymorphs-selected electronic spectroscopy[J]. Phys. Chem. Chem. Phys.2012,14:16448-16457.
    [59] Tong Y-P, Zheng S-L, Chen X-M. Structures, photoluminescence and theoretical studies oftwo znIIcomplexes with substituted2-(2-hydroxyphenyl)benzimidazoles[J]. Eur. J. Inorg.Chem.2005,2005:3734-3741.
    [60] McCormick T, Jia W-L, Wang S. Phosphorescent Cu(I) complexes of2-(2‘-pyridylbenzimidazolyl)benzene: Impact of phosphine ancillary ligands on electronicand photophysical properties of the Cu(I) complexes[J]. Inorg. Chem.2006,45:147-155.
    [61] Gao Z, Lee C S, Bello I, et al. Bright-blue electroluminescence from a silyl-substitutedter-(phenylene–vinylene) derivative[J]. Appl. Phys. Lett.1999,74:865-867.
    [62] Kulkarni A P, Tonzola C J, Babel A, et al. Electron transport materials for organiclight-emitting diodes[J]. Chem. Mater.2004,16:4556-4573.
    [63] Chen C H, Shi J, Tang C W. Recent developments in molecular organic electroluminescentmaterials[J]. Macromol. Symp.1998,125:1-48.
    [64] Huang W-S, Lin J T, Chien C-H, et al. Highly phosphorescent bis-cyclometalated iridiumcomplexes containing benzoimidazole-based ligands[J]. Chem. Mater.2004,16:2480-2488.
    [65] Min J, Zhang Q, Sun W, et al. Neutral copper(I) phosphorescent complexes from their ioniccounterparts with2-(2[prime or minute]-quinolyl)benzimidazole and phosphine mixedligands[J]. Dalton Trans.2011,40:686-69
    [1] Osawa M, Kawata I, Ishii R, et al. Application of neutral d10coinage metal complexes withan anionic bidentate ligand in delayed fluorescence-type organic light-emitting diodes[J]. J.Mater. Chem. C2013,1:4375-4383.
    [2] Horváth O. Photochemistry of copper(I) complexes[J]. Coord. Chem. Rev.1994,135–136:303-324.
    [3] Araki H, Tsuge K, Sasaki Y, et al. Luminescence ranging from red to blue: A series ofcopper(I) halide complexes having rhombic {Cu2(μ-x)2}(x=Br and I) units withn-heteroaromatic ligands[J]. Inorg. Chem.2005,44:9667-9675.
    [4] Ford P C, Cariati E, Bourassa. J Photoluminescence properties of multinuclear Copper(I)compounds[J]. Chem. Rev.1999,99:3625-3648.
    [5] Manbeck G F, Brennessel W W, Evans C M, et al. Tetranuclear Copper(I) iodide complexesof chelating bis(1-benzyl-1h-1,2,3-triazole) ligands: structural characterization and solidstate photoluminescence[J]. Inorg. Chem.2010,49:2834-2843.
    [6] Zhang G, Li X, Jiang X, et al. Impact of substituents in the N∧N ligand on the emissionwavelength of Cu(I) complexes: Insight from experimental and theoretical approach[J]. J.Lumin.2010,130:976-980.
    [7] Krylova V A, Djurovich P I, Aronson J W, et al. Structural and photophysical studies ofphosphorescent three-coordinate copper(I) complexes supported by an n-heterocycliccarbene ligand[J]. Organometallics2012,31:7983-7993.
    [8] Kobayashi A, Komatsu K, Ohara H, et al. Photo-and vapor-controlled luminescence ofrhombic dicopper(I) complexes containing dimethyl sulfoxide[J]. Inorg. Chem.2013,52:13188-13198.
    [9] Zhang Q, Komino T, Huang S, et al. Triplet exciton confinement in green organiclight-emitting diodes containing luminescent charge-transfer Cu(I) complexes[J]. Adv.Funct. Mater.2012,22:2327-2336.
    [10] Andres-Tome I, Fyson J, Baiao Dias F, et al. Copper(I) complexes with bipyridyl andphosphine ligands: A systematic study[J]. Dalton Trans.2012,41:8669-8674.
    [11] Hashimoto M, Igawa S, Yashima M, et al. Highly efficient green organic light-emittingdiodes containing luminescent three-coordinate Copper(I) complexes[J]. J. Am. Chem. Soc.2011,137:10348-10351.
    [12] Crestani M G, Manbeck G F, Brennessel W W, et al. Synthesis and characterization ofneutral luminescent diphosphine pyrrole-and indole-aldimine Copper(I) complexes[J].Inorg. Chem.2011,50:7172-7188.
    [13] Wing-Wah Yam V, Chung-Chin Cheng E, Zhu N. The first luminescent tetranuclearcopper(I) mu(4)-phosphinidene complex[J]. Chem. Commun.2001:1028-1029.
    [14] Asano M S, Tomiduka K, Sekizawa K, et al. Temperature-dependent emission of copper(I)phenanthroline complexes with bulky substituents: estimation of an energy gap between thesinglet and triplet mlct states[J]. Chem. Lett.2010,39:376-378.
    [15] Lotito K J, Peters J C. Efficient luminescence from easily prepared three-coordinatecopper(I) arylamidophosphines[J]. Chem. Commun.2010,46:3690-3692.
    [16] Ruthkosky M, Kelly C A, Castellano F N, et al. Electron and energy transfer from CuIMLCT excited states[J]. Coord. Chem. Rev.1998,171:309-322.
    [17] Barrientos L, Araneda C, Loeb B, et al. Synthesis, spectroscopic and electrochemicalcharacterization of copper(I) complexes with functionalizedpyrazino[2,3-f]-1,10-phenanthroline[J]. Polyhedron2008,27:1287-1295.
    [18] Stacy E M, McMillin D R. Inorganic exciplexes revealed by temperature-dependentquenching studies[J]. Inorg. Chem.1990,29:393-396.
    [19] McMillin D R, McNett K M. Photoprocesses of copper complexes that bind to DNA[J].Chem. Rev.1998,98:1201-1220.
    [20] Miller M T, Gantzel P K, Karpishin T B. Effects of sterics and electronic delocalization onthe photophysical, structural, and electrochemical properties of2,9-disubstituted1,10-phenanthroline copper(I) complexes[J]. Inorg. Chem.1999,38:3414-3422.
    [21] Cunningham C T, Cunningham K L H, Michalec J F, et al. Cooperative substituent effectson the excited states of copper phenanthrolines[J]. Inorg. Chem.1999,38:4388-4392.
    [22] McCusker C E, Castellano F N. Design of a long-lifetime, earth-abundant, aqueouscompatible Cu(I) photosensitizer using cooperative steric effects[J]. Inorg. Chem.2013,52:8114-8120.
    [23] Scaltrito D V, Thompson D W, O'Callaghan J A, et al. MLCT excited states of cuprousbis-phenanthroline coordination compounds[J]. Coord. Chem. Rev.2000,208:243-266.
    [24] Lavie-Cambot A, Cantuel M, Leydet Y, et al. Improving the photophysical properties ofcopper(I) bis(phenanthroline) complexes[J]. Coord. Chem. Rev.2008,252:2572-2584.
    [25] Chen J-L, Cao X-F, Wang J-Y, et al. Synthesis, characterization, and photophysicalproperties of heteroleptic copper(I) complexes with functionalized3-(2′-pyridyl)-1,2,4-triazole chelating ligands[J]. Inorg. Chem.2013,52:9727-9740.
    [26]Liu X, Sun W, Zou L, et al. Neutral cuprous complexes as ratiometric oxygen gas sensors[J].Dalton Trans.2012,41:1312-1319.
    [27] Liu X, Nan H, Sun W, et al. Synthesis and characterisation of neutral mononuclear cuprouscomplexes based on dipyrrin derivatives and phosphine mixed-ligands[J]. Dalton Trans.2012,41:10199-10210.
    [28] Manbeck G F, Brennessel W W, Eisenberg R Photoluminescent copper(I) complexes withamido-triazolato ligands[J]. Inorg. Chem.2011,50:3431-3441.
    [29] Yang L, Feng J-K, Ren A-M, et al. Structures, electronic states and electroluminescentproperties of a series of cuIcomplexes[J]. Eur. J. Inorg. Chem.2005,2005:1867-1879.
    [30] Hsu C-W, Lin C-C, Chung M-W, et al. Systematic investigation of themetal-structure–photophysics relationship of emissive d10-complexes of group11elements:The prospect of application in organic light emitting devices[J]. J. Am. Chem. Soc.2011,133:12085-12099.
    [31] Zink D M, Baumann T, Friedrichs J, et al. Copper(I) complexes based on five-membered P∧N heterocycles: Structural diversity linked to exciting luminescence properties[J]. Inorg.Chem.2013,52:13509-13520.
    [32] Miller A J M, Dempsey J L, Peters J C. Long-lived and efficient emission frommononuclear amidophosphine complexes of copper[J]. Inorg. Chem.2007,46:7244-7246.
    [33] Li Y-J, Deng Z-Y, Xu X-F, et al. Methanol triggered ligand flip isomerization in a binuclearcopper(I) complex and the luminescence response[J]. Chem. Commun.2011,47:9179-9181.
    [34] Cid J-J, Mohanraj J, Mohankumar M, et al. A stable and strongly luminescent dinuclearCu(I) helical complex prepared from2-diphenylphosphino-6-methylpyridine[J]. Chem.Commun.2013,49:859-861.
    [35] Jia W L, McCormick T, Tao Y, et al. New phosphorescent polynuclear Cu(I) compoundsbased on linear and star-shaped2-(2‘-pyridyl)benzimidazolyl derivatives: Syntheses,structures, luminescence, and electroluminescence[J]. Inorg. Chem.2005,44:5706-5712.
    [36] McCormick T, Jia W-L, Wang S. Phosphorescent Cu(I) complexes of2-(2‘-pyridylbenzimidazolyl)benzene: Impact of phosphine ancillary ligands on electronicand photophysical properties of the Cu(I) complexes[J]. Inorg. Chem.2006,45:147-155.
    [37] Chen J-L, Cao X-F, Gu W, et al. Phosphorescent copper(I) complexes bearing2-(2-benzimidazolyl)-6-methylpyridine and phosphine mixed ligands[J]. Inorg. Chem.Commun.2011,14:1894-1897.
    [38] Min J, Zhang Q, Sun W, et al. Neutral copper(I) phosphorescent complexes from their ioniccounterparts with2-(2[prime or minute]-quinolyl)benzimidazole and phosphine mixedligands[J]. Dalton Trans.2011,40:686-693.
    [39] Yang D, Fokas D, Li J, et al. A versatile method for the synthesis of benzimidazoles fromo-nitroanilines and aldehydes in one step via a reductive cyclization[J]. Synthesis2005,2005:47-56.
    [40]朱洪,黄文忠,浦家齐邻硝基苯胺还原关环一步法合成苯并咪唑类化合物[J].上海大学学报(自然科学版)2007:77-81.
    [41] Sheldrick, G. M. SHELXL-97, Program for the fefinement of crystal structures; Universityof G ttingen: G ttingen, Germany,1997.
    [42]Runge E, Gross E K U. Density-functional theory for time-dependent systems[J]. Phys. Rev.Lett.1984,52:997-1000.
    [43] Lee C, Yang W, Parr R G. Development of the colle-salvetti correlation-energy formula intoa functional of the electron density[J]. Phys. Rev. B1988,37:785-789.
    [44]Becke A D. Density-functional thermochemistry. III. The role of exact exchange[J]. J. Chem.Phys.1993,98:5648-5652.
    [45] Frisch M J, Trucks G W, Schlegel H B, et al.; GAUSSIAN09, Revision C.01ed. Gaussian,Inc., Wallingford, CT.,2011.
    [46] Chung K H, So C M, Wong S M, et al. An efficient palladium-benzimidazolyl phosphinecomplex for the suzuki-miyaura coupling of aryl mesylates: Facile ligand synthesis andmetal complex characterization[J]. Chem. Commun.2012,48:1967-1969.
    [47] Sudo A, Saigo K. A widely applicable chiral auxiliary,cis-2-amino-3,3-dimethyl-1-indanol: Conversion to a novel phosphorus-containingoxazoline and its application as a highly efficient ligand for the palladium-catalyzedenantioselective allylic amination reaction[J]. J. Org. Chem.1997,62:5508-5513.
    [48] Knight L K, Freixa Z, van Leeuwen P W N M, et al. Supramolecular trans-coordinatingphosphine ligands[J]. Organometallics2006,25:954-960.
    [49] Miller P W, Nieuwenhuyzen M, Charmant J P H, et al. The cyclic “silver-diphos” motif
    [ag2(μ-diphosphine)2]2+as a synthon for building up larger structures[J]. Inorg. Chem.2008,47:8367-8379.
    [50] Vinogradova K A, Plyusnin V F, Kupryakov A S, et al. Halide impact on emission ofmononuclear copper(I) complexes with pyrazolylpyrimidine and triphenylphosphine[J].Dalton Trans.2014,43:2953-2960.
    [51] Zink D M, Volz D, Baumann T, et al. Heteroleptic, dinuclear copper(I) complexes forapplication in organic light-emitting diodes[J]. Chem. Mater.2013,25:4471-4486.
    [1] Baldo M A, O'Brien D F, You Y, et al. Highly efficient phosphorescent emission fromorganic electroluminescent devices[J]. Nature1998,395:151-154.
    [2] Xiao L, Chen Z, Qu B, et al. Recent progresses on materials for electrophosphorescentorganic light-emitting devices[J]. Adv. Mater.2011,23:926-952.
    [3] Chi Y, Chou P-T. Transition-metal phosphors with cyclometalating ligands: Fundamentalsand applications[J]. Chem. Soc. Rev.2010,39:638-655.
    [4] Chou P-T, Chi Y. Phosphorescent dyes for organic light-emitting diodes[J]. Chem. Eur. J.2007,13:380-395.
    [5] Adachi C, Baldo M A, Forrest S R, et al. High-efficiency organic electrophosphorescentdevices with tris(2-phenylpyridine)iridium doped into electron-transporting materials[J].Appl. Phys. Lett.2000,77:904-906.
    [6] Baldo M A, Lamansky S, Burrows P E, et al. Very high-efficiency green organiclight-emitting devices based on electrophosphorescence[J]. Appl. Phys. Lett.1999,75:4-6.
    [7] Zhang Y Q, Zhong G Y, Cao X A. Concentration quenching of electroluminescence in neatIr(ppy)3organic light-emitting diodes[J]. J. Appl. Phys.2010,108:083107-083105.
    [8] Xu Q-L, Wang C-C, Li T-Y, et al. Syntheses, photoluminescence, and electroluminescenceof a series of iridium complexes with trifluoromethyl-substituted2-phenylpyridine as themain ligands and tetraphenylimidodiphosphinate as the ancillary ligand[J]. Inorg. Chem.2013,52:4916-4925.
    [9] Kim S-O, Thangaraju K, Jung S, et al. Highly efficient phosphorescent organic lightemitting diodes based on iridium(III) complex with bulky substituent spacers[J]. J. Nanosci.Nanotechnol.2012,12:4375-4378.
    [10] Shi C, Sun H, Jiang Q, et al. Carborane tuning of photophysical properties ofphosphorescent iridium(III) complexes[J]. Chem. Commun.2013,49:4746-4748.
    [11] Zhao X-H, Xie G-H, Liu Z-D, et al. A3-dimensional spiro-functionalized platinum(II)complex to suppress intermolecular π-π and pt…pt supramolecular interactions for ahigh-performance electrophosphorescent device[J]. Chem. Commun.2012,48:3854-3856.
    [12] Du B-S, Lin C-H, Chi Y, et al. Diphenyl(1-naphthyl)phosphine ancillary for assembling ofred and orange-emitting Ir(III) based phosphors; strategic synthesis, photophysics, andorganic light-emitting diode fabrication[J]. Inorg. Chem.2010,49:8713-8723.
    [13] Zhu Y-C, Zhou L, Li H-Y, et al. Highly efficient green and blue-green phosphorescent oledsbased on iridium complexes with the tetraphenylimidodiphosphinate ligand[J]. Adv. Mater.2011,23:4041-4046.
    [14] Tam A Y-Y, Tsang D P-K, Chan M-Y, et al. A luminescent cyclometalated platinum(II)complex and its green organic light emitting device with high device performance[J]. Chem.Commun.2011,47:3383-3385.
    [15] Huang W-S, Lin J T, Chien C-H, et al. Highly phosphorescent bis-cyclometalated iridiumcomplexes containing benzoimidazole-based ligands[J]. Chem. Mater.2004,16:2480-2488.
    [16] Shan G-G, Li H-B, Sun H-Z, et al. Enhancing the luminescence properties and stability ofcationic iridium(III) complexes based on phenylbenzoimidazole ligand: A combinedexperimental and theoretical study[J]. Dalton Trans.2013,42:11056-11065.
    [17] Yoo S-J, Yun H-J, Kang I, et al. A new electron transporting material for effectivehole-blocking and improved charge balance in highly efficient phosphorescent organic lightemitting diodes[J]. J. Mater. Chem. C2013,1:2217-2223.
    [18] Tamayo A B, Alleyne B D, Djurovich P I, et al. Synthesis and characterization of facial andmeridional tris-cyclometalated iridium(III) complexes[J]. J. Am. Chem. Soc.2003,125:7377-7387.
    [19] You Y, Park S Y. Inter-ligand energy transfer and related emission change in thecyclometalated heteroleptic iridium complex: Facile and efficient color tuning over thewhole visible range by the ancillary ligand structure[J]. J. Am. Chem. Soc.2005,127:12438-12439.
    [20] Yang X, Sun N, Dang J, et al. Versatile phosphorescent color tuning of highly efficientborylated iridium(III) cyclometalates by manipulating the electron-accepting capacity of thedimesitylboron group[J]. J. Mater. Chem. C2013,1:3317-3326.
    [21] Sheldrick, G. M. SHELXL-97, Program for the fefinement of crystal structures; Universityof G ttingen: G ttingen, Germany,1997.
    [22] Runge E, Gross E K U Density-functional theory for time-dependent systems[J]. Phys. Rev.Lett.1984,52:997-1000.
    [23] Lee C, Yang W, Parr R G Development of the colle-salvetti correlation-energy formula intoa functional of the electron density[J]. Phys. Rev. B1988,37:785-789.
    [24]Becke A D. Density-functional thermochemistry. Ⅲ. The role of exact exchange[J]. J. Chem.Phys.1993,98:5648-5652.
    [25] Frisch M J, Trucks G W, Schlegel H B, et al.; GAUSSIAN09, Revision C.01ed. Gaussian,Inc., Wallingford, CT.,2011.
    [26] Brooks J, Babayan Y, Lamansky S, et al. Synthesis and characterization of phosphorescentcyclometalated platinum complexes[J]. Inorg. Chem.2002,41:3055-3066.
    [27] Garces F O, King K A, Watts R J Synthesis, structure, electrochemistry, and photophysics ofmethyl-substituted phenylpyridine ortho-metalated iridium(III) complexes[J]. Inorg. Chem.1988,27:3464-3471.
    [28] Ko S-B, Lu J-S, Kang Y, et al. Impact of a picolinate ancillary ligand on phosphorescenceand fluoride sensing properties of bmes2-functionalized platinum(II) compounds[J].Organometallics2013,32:599-608.
    [29] Yen S K, Young D J, Huynh H V, et al. Unexpected coordination difference ingeometric-isomerism between n,s-and n,n-heterocyclic carbenes in cyclometallatedplatinum(II)[J]. Chem. Commun.2009:6831-6833.
    [30] Yang W, Fu H, Song Q, et al. Amidate iridium(III) bis(2-pyridyl)phenyl complexes:Application examples of amidate ancillary ligands in iridium(III)-cyclometalatedcomplexes[J]. Organometallics2010,30:77-83.
    [31] Huo S, Deaton J C, Rajeswaran M, et al. Highly efficient, selective, and general method forthe preparation of meridional homo-and heteroleptic tris-cyclometalated iridiumcomplexes[J]. Inorg. Chem.2006,45:3155-3157.
    [32] Lamansky S, Djurovich P, Murphy D, et al. Synthesis and characterization ofphosphorescent cyclometalated iridium complexes[J]. Inorg. Chem.2001,40:1704-1711.
    [33] Breu J, St ssel P, Schrader S, et al. Crystal structure of fac-Ir(ppy)3and emission propertiesunder ambient conditions and at high pressure[J]. Chem. Mater.2005,17:1745-1752.
    [34] Turner E, Bakken N, Li J. Cyclometalated platinum complexes with luminescent quantumyields approaching100%[J]. Inorg. Chem.2013,52:7344-7351.
    [35] Zheng Y, Batsanov A S, Edkins R M, et al. Thermally induced defluorination during a merto fac transformation of a blue-green phosphorescent cyclometalated iridium(III)complex[J]. Inorg. Chem.2011,51:290-297.
    [1] Padalkar V, Tathe A, Gupta V, et al. Synthesis and photo-physical characteristics of esiptinspired2-substituted benzimidazole, benzoxazole and benzothiazole fluorescentderivatives[J]. J. Fluoresc.2012,22:311-322.
    [2] Rios M A, Rios M C. Ab initio study of ground and excited state proton transfer in2-(2'-hydroxyphenyl)benzoxazole[J]. J. Phys. Chem.1995,99:12456-12460.
    [3] Ríos M A, Ríos M C. Ab initio study of the hydrogen bond and proton transfer in2-(2’-hydroxyphenyl)benzothiazole and2-(2’-hydroxyphenyl)bezimidazole[J]. J. Phys.Chem. A1998,102:1560-1567.
    [4] Costela A, Garc a-Moreno I, Mallavia R, et al. Proton-transfer lasers based on solidcopolymers of modified2-(2′-hydroxyphenyl)benzimidazoles with methacrylatemonomers[J]. Opt. Commun.1998,152:89-95.
    [5] Sakai K-i, Tsuzuki T, Itoh Y, et al. Using proton-transfer laser dyes for organic laserdiodes[J]. Appl. Phys. Lett.2005,86:081103.
    [6] Wu F, Ma L, Zhang S, et al. Two-photon-induced intramolecular excited-state protontransfer process and nonlinear optical properties of hbi in ethanol solution[J]. Chem. Phys.Lett.2012,519–520:141-144.
    [7] Wu F, Ma L, Zhang S, et al. The nonlinear optical properties of hbi in different solvents[J].Mater. Lett.2014,116:231-234.
    [8] Costela A, Mu oz J M, Douhal A, et al. Experimental test of a four-level kinetic model forexcited-state intramolecular proton transfer dye lasers[J]. Applied Physics B1989,49:545-552.
    [9] Costela A, Amat F, Catalán J, et al. Phenylbenzimidazole proton-transfer laser dyes:Spectral and operational properties[J]. Opt. Commun.1987,64:457-460.
    [10] Acu a A U, Amat F, Catalán J, et al. Pulsed liquid lasers from proton transfer in the excitedstate[J]. Chem. Phys. Lett.1986,132:567-569.
    [11] Roh S-G, Kim Y-H, Seo K D, et al. Synthesis, photophysical, and electroluminescent deviceproperties of Zn(II)-chelated complexes based on functionalized benzothiazolederivatives[J]. Adv. Funct. Mater.2009,19:1663-1671.
    [12] Chu Q, Medvetz D A, Panzner M J, et al. A fluorescent bis(benzoxazole) ligand: Towardbinuclear Zn(II)-Zn(II) assembly[J]. Dalton Trans.2010,39:5254-5259.
    [13] Katkova M A, Balashova T V, Ilichev V A, et al. Synthesis, structures, andelectroluminescent properties of scandium n,o-chelated complexes toward near-whiteorganic light-emitting diodes[J]. Inorg. Chem.2010,49:5094-5100.
    [14] Tian Y, Chen C-Y, Yang C-C, et al.2-(2′-hydroxyphenyl)benzoxazole-containingtwo-photon-absorbing chromophores as sensors for zinc and hydroxide ions[J]. Chem.Mater.2008,20:1977-1987.
    [15] Nah M-K, Rho S-G, Kim H K, et al. Sensitized near-ir luminescence of In(III) complexeswith benzothiazole derivatives[J]. J. Phys. Chem. A2007,111:11437-11443.
    [16] Kwon J E, Lee S, You Y, et al. Fluorescent zinc sensor with minimized proton-inducedinterferences: Photophysical mechanism for fluorescence turn-on response and detection ofendogenous free zinc ions[J]. Inorg. Chem.2012,51:8760-8774.
    [17] Henary M M, Wu Y, Fahrni C J. Zinc(II)-selective ratiometric fluorescent sensors based oninhibition of excited-state intramolecular proton transfer[J]. Chem. Eur. J.2004,10:3015-3025.
    [18] Taki M, Wolford J L, O'Halloran T V. Emission ratiometric imaging of intracellular zinc:Design of a benzoxazole fluorescent sensor and its application in two-photon microscopy[J].J. Am. Chem. Soc.2003,126:712-713.
    [19]Xu Y, Liu Q, Dou B, et al. Zn2+binding-enabled excited state intramolecular proton transfer:A step toward new near-infrared fluorescent probes for imaging applications[J]. AdvHealthc Mater.2012,1:485-492.
    [20] Xu H, Xu Z-F, Yue Z-Y, et al. A novel deep blue-emitting znii complex based oncarbazole-modified2-(2-hydroxyphenyl)benzimidazole: Synthesis, brightelectroluminescence, and substitution effect on photoluminescent, thermal, andelectrochemical properties[J]. J. Phys. Chem. C2008,112:15517-15525.
    [21] Zhang M-T, Irebo T, Johansson O, et al. Proton-coupled electron transfer from tyrosine: Astrong rate dependence on intramolecular proton transfer distance[J]. J. Am. Chem. Soc.2011,133:13224-13227.
    [22] Wang J, Chu Q, Liu X, et al. Large fluorescence response by alcohol from abis(benzoxazole)–zinc(II) complex: The role of excited state intramolecular protontransfer[J]. The Journal of Physical Chemistry B2013,117:4127-4133.
    [23] Brenlla A, Veiga M, Pérez Lustres J L, et al. Photoinduced proton and charge transfer in2-(2′-hydroxyphenyl)imidazo[4,5-b]pyridine[J]. J. Phys. Chem. B2012,117:884-896.
    [24] Melhuish W H. Quantum efficiencies of fluorescence of organic substances: Effect ofsolvent and concentration of the fluorescent solute1[J]. J. Phys. Chem.1961,65:229-235.
    [25]朱洪,黄文忠,浦家齐邻硝基苯胺还原关环一步法合成苯并咪唑类化合物[J].上海大学学报(自然科学版)2007:77-81.
    [26] Yang D, Fokas D, Li J, et al. A versatile method for the synthesis of benzimidazoles fromo-nitroanilines and aldehydes in one step via a reductive cyclization[J]. Synthesis2005,2005:47-56.
    [27] Benelhadj K, Massue J, Retailleau P, et al.2-(2′-hydroxyphenyl)benzimidazole and9,10-phenanthroimidazole chelates and borate complexes: Solution-and solid-stateemitters[J]. Org. Lett.2013,15:2918-2921.
    [28] Sheldrick, G. M. SHELXL-97, Program for the fefinement of crystal structures; Universityof G ttingen: G ttingen, Germany,1997.
    [29]Runge E, Gross E K U. Density-functional theory for time-dependent systems[J]. Phys. Rev.Lett.1984,52:997-1000.
    [30] Lee C, Yang W, Parr R G. Development of the colle-salvetti correlation-energy formula intoa functional of the electron density[J]. Phys. Rev. B1988,37:785-789.
    [31]Becke A D. Density-functional thermochemistry. III. The role of exact exchange[J]. J. Chem.Phys.1993,98:5648-5652.
    [32] Frisch M J, Trucks G W, Schlegel H B, et al.; GAUSSIAN09, Revision C.01ed. Gaussian,Inc., Wallingford, CT.,2011.
    [33] Konoshima H, Nagao S, Kiyota I, et al. Excited-state intramolecular proton transfer andcharge transfer in2-(2[prime or minute]-hydroxyphenyl)benzimidazole crystals studied bypolymorphs-selected electronic spectroscopy[J]. Phys. Chem. Chem. Phys.2012,14:16448-16457.
    [34] Chipem F A S, Krishnamoorthy G. Comparative theoretical study of rotamerism and excitedstate intramolecular proton transfer of2-(2′-hydroxyphenyl)benzimidazole,2-(2′-hydroxyphenyl)imidazo[4,5-b]pyridine,2-(2′-hydroxyphenyl)imidazo[4,5-c] pyridineand8-(2′-hydroxyphenyl)purine[J]. J. Phys. Chem. A2009,113:12063-12070.
    [35] Kwon J E, Park S Y. Advanced organic optoelectronic materials: Harnessing excited-stateintramolecular proton transfer (esipt) process[J]. Adv. Mater.2011,23:3615-3642.
    [36] Roberts E L, Dey J, Warner I M. Excited-state intramolecular proton transfer of2-(2‘-hydroxyphenyl)benzimidazole in cyclodextrins and binary solvent mixtures[J]. J. Phys.Chem. A1997,101:5296-5301.
    [37] Pal M K, Kushwah N, Manna D, et al. Diorgano-gallium and-indium complexes derivedfrom benzoazole ligands: Synthesis, characterization, photoluminescence, andcomputational studies[J]. Organometallics2012,32:104-111.
    [38] Henary M M, Fahrni C J. Excited state intramolecular proton transfer and metal ioncomplexation of2-(2‘-hydroxyphenyl)benzazoles in aqueous solution[J]. J. Phys. Chem. A2002,106:5210-5220.
    [1] Eliseeva S V, Bunzli J-C G. Rare earths: Jewels for functional materials of the future[J].New J. Chem.2011,35:1165-1176.
    [2] Katkova M A, Bochkarev M N. New trends in design of electroluminescent rare earthmetallo-complexes for oleds[J]. Dalton Trans.2010,39:6599-6612.
    [3] Eliseeva S V, Bunzli J-C G. Lanthanide luminescence for functional materials andbio-sciences[J]. Chem. Soc. Rev.2010,39:189-227.
    [4] Luzon J, Sessoli R. Lanthanides in molecular magnetism: So fascinating, so challenging[J].Dalton Trans.2012,41:13556-13567.
    [5] Woodruff D N, Winpenny R E P, Layfield R A. Lanthanide single-molecule magnets[J].Chem. Rev.2013,113:5110-5148.
    [6] Tang J, Hewitt I, Madhu N T, et al. Dysprosium triangles showing single-molecule magnetbehavior of thermally excited spin states[J]. Angew. Chem. Int. Ed.2006,45:1729-1733.
    [7] Manseki K, Yanagida S. Effective and efficient photoluminescence of salicylate-ligatingterbium(III) clusters stabilized by multiple phenyl-phenyl interactions[J]. Chem. Commun.(Camb.)2007:1242-1244.
    [8] Hauser C P, Thielemann D T, Adlung M, et al. Luminescent polymeric dispersions and filmsbased on oligonuclear lanthanide clusters[J]. Macromol. Chem. Phys.2011,212:286-296.
    [9] Andrews P C, Brown D H, Fraser B H, et al. Multifunctional hybrid materials based ontransparent poly(methyl methacrylate) reinforced by lanthanoid hydroxo clusters[J]. DaltonTrans.2010,39:11227-11234.
    [10] Andrews P C, Gee W J, Junk P C, et al. Synthesis and structural characterization of cationic5-hydroxy-1,3-diketonate stabilized dinuclear complexes and tetranuclear lanthanoidclusters[J]. Inorg. Chem.2010,49:5016-5024.
    [11] Yan P-F, Lin P-H, Habib F, et al. Planar tetranuclear Dy(III) single-molecule magnet and itsSm(III), Gd(III), and Tb(III) analogues encapsulated by salen-type and β-diketonateligands[J]. Inorg. Chem.2011,50:7059-7065.
    [12] Andrews P C, Gee W J, Junk P C, et al. Variation of structural motifs in lanthanoid hydroxoclusters by ligand modification[J]. New J. Chem.2013.
    [13] Gee W J, MacLellan J G, Forsyth C M, et al. Caging peroxide: Anion-templated synthesisand characterization of a rare-earth cluster[J]. Inorg. Chem.2012,51:8661-8663.
    [14] Bozoklu G, Gateau C, Imbert D, et al. Metal-controlled diastereoselective self-assembly andcircularly polarized luminescence of a chiral heptanuclear europium wheel[J]. J. Am. Chem.Soc.2012,134:8372-8375.
    [15] Xu X, Zhao L, Xu G-F, et al. A diabolo-shaped dy9cluster: Synthesis, crystal structure andmagnetic properties[J]. Dalton Trans.2011,40:6440-6444.
    [16] Wu Y, Morton S, Kong X, et al. Hydrolytic synthesis and structural characterization oflanthanide-acetylacetonato/hydroxo cluster complexes-a systematic study[J]. Dalton Trans.2011,40:1041-1046.
    [17] Binnemans K. Lanthanide-based luminescent hybrid materials[J]. Chem. Rev.2009,109:4283-4374.
    [18] Sheldrick, G. M. SHELXL-97, Program for the fefinement of crystal structures; Universityof G ttingen: G ttingen, Germany,1997.
    [19]Runge E, Gross E K U. Density-functional theory for time-dependent systems[J]. Phys. Rev.Lett.1984,52:997-1000.
    [20] Lee C, Yang W, Parr R G. Development of the colle-salvetti correlation-energy formula intoa functional of the electron density[J]. Phys. Rev. B1988,37:785-789.
    [21] Becke A D. Density-functional thermochemistry.III. The role of exact exchange[J]. J. Chem.Phys.1993,98:5648-5652.
    [22] Frisch M J, Trucks G W, Schlegel H B, et al.; GAUSSIAN09, Revision C.01ed. Gaussian,Inc., Wallingford, CT.,2011.
    [23] Xu G, Wang Z-M, He Z, et al. Synthesis and structural characterization of nonanuclearlanthanide complexes[J]. Inorg. Chem.2002,41:6802-6807.
    [24] Addamo M, Bombieri G, Foresti E, et al. Assembling process of charged nonanuclearcationic lanthanide(Ⅲ) clusters assisted by dichromium decacarbonyl hydride[J]. Inorg.Chem.2004,43:1603-1605.
    [25] Kadjane P, Charbonnière L, Camerel F, et al. Improving visible light sensitization ofluminescent europium complexes[J]. J. Fluoresc.2008,18:119-129.
    [26] He P, Wang H H, Yan H G, et al. A strong red-emitting carbazole based europium(Ⅲ)complex excited by blue light[J]. Dalton Trans.2010,39:8919-8924.
    [27] Puntus L N, Lyssenko K A, Pekareva I S, et al. Intermolecular interactions as actors inenergy-transfer processes in lanthanide complexes with2,2′-bipyridine[J]. J. Phys. Chem. B2009,113:9265-9277.
    [28] dos Santos E R, Freire R O, da Costa N B, et al. Theoretical and experimental spectroscopicapproach of fluorinated In3+β-diketonate complexes[J]. J. Phys. Chem. A2010,114:7928-7936.
    [29] Blasse G, Bril A. On the Eu3+fluorescence in mixed metal oxides. V. The Eu3+fluorescencein the rocksalt lattice[J]. J. Chem. Phys.1966,45:3327-3332.
    [30] Xiao M, Selvin P R. Quantum yields of luminescent lanthanide chelates and far-red dyesmeasured by resonance energy transfer[J]. J. Am. Chem. Soc.2001,123:7067-7073.
    [31] He P, Wang H, Liu S, et al. Effect of different alkyl groups at the n-position on theluminescence of carbazole-based β-diketonate europium(III) complexes[J]. J. Phys. Chem.A2009,113:12885-12890.
    [32] Biju S, Reddy M L P, Cowley A H, et al.3-phenyl-4-acyl-5-isoxazolonate complex of Tb3+doped into poly-β-hydroxybutyrate matrix as a promising light-conversion moleculardevice[J]. J. Mater. Chem.2009,19:5179-5187.
    [33] Steemers F J, Verboom W, Reinhoudt D N, et al. New sensitizer-modified calix[4]arenesenabling near-uv excitation of complexed luminescent lanthanide ions[J]. J. Am. Chem. Soc.1995,117:9408-9414.
    [34] Raj D B A, Francis B, Reddy M L P, et al. Highly luminescent poly(methylmethacrylate)-incorporated europium complex supported by a carbazole-based fluorinatedβ-diketonate ligand and a4,5-bis(diphenylphosphino)-9,9-dimethylxanthene oxideco-ligand[J]. Inorg. Chem.2010,49:9055-9063.
    [35] Divya V, Reddy M L P. Visible-light excited red emitting luminescent nanocompositesderived from Eu3+-phenathrene-based fluorinated β-diketonate complexes and multi-walledcarbon nanotubes[J]. J. Mater. Chem. C2013,1:160-170.
    [36] Shi M, Li F, Yi T, et al. Tuning the triplet energy levels of pyrazolone ligands to match the5d0level of europium(III)[J]. Inorg. Chem.2005,44:8929-8936.
    [37] Jiang W, Lou B, Wang J, et al. The influence of triplet energy levels of bridging ligands onenergy transfer processes in Ir(III)/Eu(III) dyads[J]. Dalton Trans.2011,40:11410-11418.
    [38] Latva M, Takalo H, Mukkala V-M, et al. Correlation between the lowest triplet state energylevel of the ligand and lanthanide(III) luminescence quantum yield[J]. J. Lumin.1997,75:149-169.
    [39] Oxley D S, Walters R W, Copenhafer J E, et al. Mono-and terfluorene oligomers asversatile sensitizers for the luminescent Eu3+cation[J]. Inorg. Chem.2009,48:6332-6334.
    [40] Pasatoiu T D, Madalan A M, Kumke M U, et al. Temperature switch of lmct role: Fromquenching to sensitization of europium emission in a Zn(II) Eu(III) binuclear complex[J].Inorg. Chem.2010,49:2310-2315.
    [41] Crosby G A, Whan R E, Freeman J J. Spectroscopic studies of rare earth chelates[J]. TheJournal of Physical Chemistry1962,66:2493-2499.
    [42] Freund C, Porzio W, Giovanella U, et al. Thiophene based europium β-diketonatecomplexes: Effect of the ligand structure on the emission quantum yield[J]. Inorg. Chem.2011,50:5417-5429.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700