用户名: 密码: 验证码:
二茂铁亚胺环钯化合物有序自组装纳米薄膜催化碳碳偶联反应机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
绿色、经济、可持续的化学过程是当今化学领域的主要挑战之一。非均相催化剂具有易于分离、高效回收等特点,俨然已经成为绿色化学研究的重要手段。但是,在非均相催化领域仍存在许多急需解决的问题,尤其是在非均相催化剂的作用机理研究方面一直都存有争议。目前,高速发展的合成技术和新颖的分析手段为科学家对机理的研究提供更为有利的条件,使得非均相催化机理的研究得以进一步发展。
     纳米薄膜材料由于具有易于分离、回收,便于重复使用,分析方法简单等特点,使其在非均相催化应用中极具吸引力。与此同时,把催化剂分子均匀地负载在重现性好、易于表征的界面上能够更深入的对非均相催化行为进行研究。因此,制备并利用合适的纳米催化薄膜材料,借助有效的表征和分析手段对界面催化过程进行系统的研究具有重要的理论意义和应用价值。
     本论文利用Langmuir-Blodgett膜、自组装膜和聚合物刷的方法制备了环钯化合物纳米薄膜,并以Suzuki-Miyaura反应为模板,借助有效的科研手段,对基于分子层面的非均相催化过程中的界面催化行为进行了系统的研究。具体研究内容及成果如下:
     1.制备了不同的表面压下的二茂铁亚胺环钯化合物1(图1)的单层膜和LB膜,并应用到非均相催化Suzuki-Miyaura反应体系。通过紫外可见光谱(UV)和原子力显微镜(AFM)分析表明不同表面压下所制备的LB膜呈现出不同的表面形貌。与在表面压为14,18,26,30mN/m制备的催化剂LB膜相比,在表面压为22mN/m时制备的LB膜表现出更高的催化效率。实验结果表明LB膜催化效率与催化剂分子排列取向有关,即LB膜内分子排列有序和取向规整更有利于催化反应的进行。Figure1The structure of cyclopalladated ferrocenylimine1.
     探讨了二茂铁亚胺环钯化合物1的LB膜在催化过程中的结构和化学变化。通过小角X射线衍射光谱(LXRD)和AFM图像变化分析推测催化过程。结果证明,催化开始阶段底物和碱与催化剂表面接触生成氧化加成中间产物是整个催化过程的主要步骤。结合X光电子能谱(XPS)对LB膜催化反应机理分析可知,反应物与LB膜内的Pd活性中心相结合并产生中间体。中间体随着反应的进行转化为产物从LB膜的表面逐渐释放以生成产物。(图2)Figure2Illustration of the catalytic reaction mechanism of the cross-coupling reaction of4-iodobenzoic acid with arylboronic acid catalyzed by catalyst1LB films.
     2.通过共价接枝的方法分别在硅片、玻璃和石英表面成功制备了高效、重复性好、稳定性高的二茂铁亚胺环钯化合物自组装膜(Si-CDI-Pd)(图3)。以Suzuki-Miyaura反应为模板,在一定温度的条件下,Si-CDI-Pd在水相中无需其他配体即可表现出较高催化活性、选择性和宽的底物适用性。此自组装催化薄膜在痕量钯浸出的情况下,至少可以循环8次,展现出良好的可重复性和稳定性。Figure3Preparation of cyclopalladated ferrocenylimine catalystic films (Si-CDI-Pd).
     利用循环伏安法(CV)、水接触角(WCA)、AFM和XPS对不同反应时间的催化过程进行分析,阐明了在Si-CDI-Pd表面发生的PdII到Pd0和Pd0到PdII的循环过程(图4),并提出Si-CDI-Pd催化Suzuki-Miyaura反应是一个表面Pd0起作用的非均相表面催化过程。整个反应是催化剂和底物协同生成目标产物的过程,且分子之间有序密集排列引起催化剂间的协同效应增强了整体催化效率。Figure4High-resolution XPS spectra of Pd3d, B1s and Br3d from the silicon wafer surfaces ofSi-CDI-Pd with different reaction time.
     3.通过原子转移自由基聚合的方法制备了N-羟甲基丙烯酰胺聚合物刷,并将芳香亚胺环钯化合物成功地接枝到聚合物刷表面制备出聚合物刷催化薄膜(Si-PHAM-Pd[I])(图5)。并通过表面形貌和结构的表征证明芳香亚胺环钯化合物是以共价键形式接枝到聚合物刷表面。Figure5Synthesis of the cyclopalldated arylimine PHAM-brushes (Si-PHAM-Pd[I]).
     Si-PHAM-Pd[I]能够有效催化Suzuki-Miyaura反应,表现出增强的催化活性、高的底物适用性、选择性和良好的稳定性。能够在基本没有催化剂浸出的情况下,经过5次循环仍能得到90%的偶联产物。随着循环实验的进行催化活性有所降低,可能是因为芳香亚胺环钯化合物中的十八烷基链在反应过程中缠绕在聚合物刷表面或和聚合物刷柔性链相互缠绕,降低了催化活性中心和底物的接触几率。(图6)Figure6Yields and TOF obtained with recycled catalyst of Si-PHAM-Pd[I].
     4.为了通过改变聚合物刷表面和界面的催化微环境,提高它的催化性能,作者通过在聚合物刷表面接枝不同结构的环钯催化剂,制备了二茂铁亚胺环钯化合物功能化的聚合物刷催化薄膜(Si-PHAM-Pd[II])(图7)。催化结果表明:与Si-PHAM-Pd[I]相比,Si-PHAM-Pd[II]能够更有效地催化Suzuki-Miyaura反应,且表现出良好的循环使用性和稳定性,几乎没有Pd的浸出的情况下至少可以循环催化8次。Figure7Preparation of cyclopalladated ferrocenylimines functionalized PHAM-brushes catalyticfilm (Si-PHAM-Pd[II]).
     通过WCA、CV、AFM和XPS对催化Suzuki-Miyaura反应过程的表面形貌和化学变化的分析得出其反应机理:整个催化循环为PdII到Pd0和Pd0的PdII的过程(图8),催化过程中零价钯和溴苯氧化加成反应生成中间产物,整个反应是催化剂和反应物协同在功能化的聚合物刷表面完成的。Figure8High-resolution XPS spectra of Pd3d, B1s and Br3d from the silicon wafer surfacesgrafted Si-PHAM-Pd[II].
     5.首次用原子转移自由基聚合的方法制备了丙烯酰基二茂铁环钯单体聚合物刷(Pd/PBs)(图9)。通过和上述催化体系比较,对催化剂微环境的变化对催化活性的影响进行初步探讨。实验结果表明:Pd/PBs的催化活性表现为高于均相,低于Si-CDI-Pd和Si-PHAM-Pd[II]的情况。推测可能是由于丙烯酰基二茂铁环钯单体(3a)的大位阻结构,使聚合物刷表面有序排列降低;3a树枝状的刚性结构使聚合物刷的伸展性降低,两点原因共同造成其较弱的催化活性。Figure9Preparation of the poly (Acroloyl cyclopalladated ferrocenylimines) brushes (Pd/PBs).
     紫外光谱和循环伏安法表明Pd/PBs的稳定性较差。这可能是由于3a内酯基在碱性条件催化的Suzuki-Miyaura反应中发生水解,从而使催化剂脱落。因此,作者拟通过使用柔性链或稳定的醚键取代酯基的催化剂作为聚合单体,从而达到提高聚合物刷的稳定性和催化活性的目的。
Green, economical, sustainable chemical process is one of the main challengesin today's chemistry. Heterogeneous catalyst is consistent with the requirements ofgreen chemistry because of waste reduction, atom economy and efficient recycling.However, there are still many challengs to be solved in the field of heterogeneouscatalysis. Especially for the mechanism of the catalyst system has been disputed.Rapid development of synthetic technology and novel analysis methods provide amore favorable condition for scientists, which makes the investigation of catalyticmechanism be in the ascendant.
     Nano-catalysis film, as a kind of heterogeneous catalyst, is considered to be oneof the most fascinating topics in green chemistry due to its easy separation, reuse andsimple characterization. Heterogeneous catalytic behavior can be strengthenedthrough immobilized catalyst molecules onto solid surfaces which were easy tocharacterize. Therefore, design and preparations of nano-catalysis film, along with thesystematic studies of interface catalytic behaviors with the help of effective, scientificmeans become a very important research topic.
     In this paper, nano-films of cyclopalladated complexes were prepared by usingLangmuir-Blodgett technology, self-assembled monolayers and polymer brushes.Taken Suzuki-Miyaura reaction as a template, systematic study of the interfacecatalytic behavior were carried in heterogeneous catalytic processes by effectiveresearch tools, which enable us to understand the mechanism of heterogeneouscatalysis based on the molecular level. The main contents are listed:
     1. The monolayer and LB films of cyclopalladated ferrocenylimine1(Figure1)were prepared at different surface pressure and applied for Suzuki–Miyaura reactionsin heterogeneous catalytic system. Morphology studies of monolayer prepared atdifferent surface pressure were investigated by atomic force microscope (AFM),which showed that the surface morphologies of the LB films at different surfacepressure were significantly different. LB films of cyclopalladated ferrocenylimine1prepared at surface pressure of22mN/m showed the highest catalytic efficiencies compared with that at14,18,26,30mN/m. These results demonstrated that thecatalytic efficiency was related to the molecular arrangement of the catalysts.Figure1The structure of cyclopalladated ferrocenylimine1.
     The structure changes of cyclopalladated ferrocenylimine1LB films bylow-angle X-ray diffraction (LAXD) as well as the film surface morphologicalchanges by AFM in catalytic process were also investigated. The results indicatedthat the substrate and base were contacting with the catalyst to cover the catalyst filmsurface at the beginning of catalytic process, which is the key step in whole process.The whole catalytic process included constantly contacting and covering the surfaceof the catalyst to generate Pd intermediates that could be transferred into the product,which were further identified by the X-ray photoelectron emission microscopy (XPS)analysis.Figure2Illustration of the catalytic reaction mechanism of the cross-coupling reaction of4-iodobenzoic acid with arylboronic acid catalyzed by catalyst1LB films.
     2. In order to investigate the heterogeneous catalysis mechanism, an efficient,reusable and stable catalyst nano-sheet film (Si-CDI-Pd) was developed, in whichcyclopalladated ferrocenylimines were grafted onto silicon, glass or quartz surfacesby covalent.(Figure3) The catalysts films were tested in Suzuki-Miyaura reactionand displayed high activity for the preparation of various biaryls at elevatedtemperatures in neat water without ligands. Good reusability and stability were presented as reused at least8times with little Pd leaching into the crude product.Figure3Preparation of cyclopalladated ferrocenylimine catalystic films (Si-CDI-Pd).
     The reasonable and feasible reaction mechanism based on the results of AFM,XPS characterizations and CV tests of different reaction time were deeply explored,in which a cycle of PdIIto Pd0and Pd0to PdIIon the surface was clearly detected andillustrated. Pd0on the surface of nano-sheet film as an active surface acted asheterogeneous catalyst to catalyze the coupling reaction.(Figure4) The wholereaction was cooperative process of the catalyst and substrate. The synergistic effectof catalysts enhanced the catalysts catalytic efficiency due to the order arrangementmolecules.Figure4High-resolution XPS spectra of Pd3d, B1s and Br3d from the silicon wafer surfaces ofSi-CDI-Pd with different reaction time.
     3. Cyclopalladated arylimine functionalized polymer brushes (Si-PHAM-Pd[I])were also obtained by reacting PHAM-brushes with N, N-Carbonyldiimidazole (CDI)and cyclopalladated arylimine.(Figure5) The surface morphology and chemistrystructure which were characterized by contact angle method, AFM and XPS showedthat cyclopalladated arylimines were modified onto solid surfaces by covalent bond. Figure5Synthesis of the cyclopalldated arylimine PHAM-brushes (Si-PHAM-Pd[I]).
     Si-PHAM-Pd[I] had good catalytic activity in heterogeneous compared tohomogeneous catalyst and exhibited much improved stability and recyclability overtimes in Suzuki-Miyaura reaction. In recycle experiments, high yield (~90%) of theproducts was retained after five runs. However, catalystic activities ofSi-PHAM-Pd[I] gradully decreased in six run. It was proposed that the accessibilityof substrates to the catalytic active center became weaker due to the winding andaggregation of octadecyl chain.(Figure6)Figure6Yields and TOF obtained with recycled catalyst of Si-PHAM-Pd[I].
     4. The microenvironment of the polymer brush surface and interface had beenchanged by graftting of the different structure of catalyst on the surface of polymerbrush film in order to improve the catalytic performation. Cyclopalladatedferrocenylimine functionalized polymer brushes film (Si-PHAM-Pd [II]) wasdeveloped onto silicon, glass and quartz surfaces by covalent bond. Si-PHAM-Pd [II]was tested in Suzuki-Miyaura reaction and displayed high activity for the preparationof various biaryls at elevated temperatures in neat water without ligands. Improvedreusability and stability are presented as that catalytic film can be reused at least8 times with little Pd leaching into the crude product.Figure7Preparation of cyclopalladated ferrocenylimines functionalized PHAM-brushes catalyticfilm (Si-PHAM-Pd[II]).
     The reasonable and feasible reaction mechanism of the heterogeneousSuzuki-Miyaura reaction was deeply explored by CV, AFM and XPS, in which thewhole reaction occurred on the surface of the functionalized polymer brush by thecoordination of catalyst and reactant. The bromobenzene oxidative addition withpalladium (0) had been proven in the catalytic process, and the catalytic cycle of PdIIto Pd0and Pd0to PdIIon the surface was clearly detected and illustrated. In thisapproach, Pd (0) on the surface of nano-films as an active species acted asheterogeneous catalyst to catalyze coupling reaction proceeds via a mechanism thatwas proposed for the surface-catalyzed process.Figure8High-resolution XPS spectra of Pd3d, B1s and Br3d from the silicon wafer surfacesgrafted Si-PHAM-Pd[II].
     5. Poly (Acroloyl cyclopalladated ferrocenylimines) brushes (Pd/PBs) wasprepared by atom transfer radical polymerization successfully, which was the firsttime of the synthesis of organometallic polymer brushes. By comparing with theprevious catalytic system, the changes of the catalytic microenvironment influence oncatalytic activity were discussed. Pd/PBs exhibits improved catalytic activity than the homogeneous catalyst in Suzuki-Miyaura reaction, but lower than that of Si-CDI-Pdand Si-PHAM-[II]. That might be due to the large steric hindrance of acroloylcyclopalladated ferrocenylimines in the polymer brushes, which exhibited lower orderarrangement of surface and reduced the flexibility of polymer brushes.Figure9Synthesis of the poly (Acroloyl cyclopalladated ferrocenylimines) brushes (Pd/PBs).
     Pd/PBs exhibited poor stability which was proved by ultraviolet spectroscopyand cyclic voltammetry. It was because of the existence of ester group in3a, whichhydrolyzed under the base solution in Suzuki-Miyaura reaction. Other catalystmonomer with flexible chain, stable ester group will be replaced for polymer, whichmay be improved for the stability and catalytic activity of the polymer brushes infuture.
引文
[1] Kakkar A K. Nano-organometallics: heterogenizing homogeneous catalysts via thin filmmethodology [J]. Chemical reviews,2002,102(10):3579-3588.
    [2] Miyaura N, Buchwald S L. Cross-coupling reactions: a practical guide [M]. Springer,2002.
    [3] Diederich F, Stang P J. Metal-catalyzed cross-coupling reactions [M]. John Wiley&Sons,2008.
    [4] Suzuki A. Cross-Coupling Reactions Of Organoboranes: An Easy Way To Construct C-CBonds (Nobel Lecture)[J]. Angewandte Chemie International Edition,2011,50(30):6722-6737; Negishi E. Magical power of transition metals: past, present, and future (Nobellecture)[J]. Angewandte Chemie International Edition,2011,50(30):6738-6764.
    [5] Xu K, Yang F, Zhang G, et al. Palladacycle-catalyzed phosphonation of aryl halides in neatwater[J]. Green Chemistry,2013,15(4):1055-1060; Wang L, Li J, Cui X, et al.Cyclopalladated ferrocenylimine as efficient catalyst for the syntheses of arylboronateesters[J]. Advanced Synthesis&Catalysis,2010,352(11-12):2002-2010;Li X, Yang F,Wu Y. Palladacycle-Catalyzed Decarboxylative Coupling of Alkynyl Carboxylic Acids withAryl Chlorides under Air[J]. The Journal of organic chemistry,2013,78(9):4543-4550.
    [6] Magano J, Dunetz J R. Large-scale applications of transition metal-catalyzed couplings for thesynthesis of pharmaceuticals [J]. Chemical reviews,2011,111(3):2177-2250.
    [7] Gladysz J A. Recoverable catalysts. Ultimate goals, criteria of evaluation, and the greenchemistry interface [J]. Pure and Applied Chemistry,2001,73(8):1319-1324.
    [8] Yin L, Liebscher J. Carbon-carbon coupling reactions catalyzed by heterogeneous palladiumcatalysts [J]. Chemical reviews,2007,107(1):133-173.
    [9] for Polyaniline: Boomi P, Prabu H G, Mathiyarasu J. Synthesis, characterization andantibacterial activity of polyaniline/Pt-Pd nanocomposite [J]. European journal of medicinalchemistry,2014,72:18-25; for Polymeric Imidazole: Yamada Y M A, Sarkar S M, UozumiY. Self-Assembled Poly (imidazole-palladium): Highly Active, Reusable Catalyst at Partsper Million to Parts per Billion Levels [J]. Journal of the American Chemical Society,2012,134(6):3190-3198; for Poly(vinylpyrrolidone): Li Y, Boone E, El-Sayed M A. Size effectsof PVP-Pd nanoparticles on the catalytic Suzuki reactions in aqueous solution[J]. Langmuir,2002,18(12):4921-4925.; for Chitosan: Hardy J J E, Hubert S, Macquarrie D J, et al.Chitosan-based heterogeneous catalysts for Suzuki and Heck reactions[J]. Green Chemistry,2004,6(1):53-56.
    [10] for Pd/SiO2: Kim A, Park J C, Kim M, et al. Suzuki Coupling Reaction Using Hybrid PdNanoparticles[J]. Journal of Nanoscience and Nanotechnology,2014,14(2):1872-1883; forPd/PMO: Karimi B, Elhamifar D, Clark J H, et al. Palladium containing periodic mesoporousorganosilica with imidazolium framework (Pd@PMO-IL): an efficient and recyclablecatalyst for the aerobic oxidation of alcohols [J]. Organic&biomolecular chemistry,2011,9(21):7420-7426.; for Pd/SBA-15: Zhi J, Song D, Li Z, et al. Palladium nanoparticles incarbon thin film-lined SBA-15nanoreactors: efficient heterogeneous catalysts forSuzuki–Miyaura cross coupling reaction in aqueous media[J]. Chemical Communications,2011,47(38):10707-10709; for Silica: Chen Z, Cui Z M, Niu F, et al. Pd nanoparticles insilica hollow spheres with mesoporous walls: a nanoreactor with extremely high activity [J].Chemical Communications,2010,46(35):6524-6526.
    [11] for Pd/C: Maegawa T, Kitamura Y, Sako S, et al. Heterogeneous Pd/C-Catalyzed Ligand‐Free, Room-Temperature Suzuki-Miyaura Coupling Reactions in Aqueous Media[J].Chemistry-A European Journal,2007,13(20):5937-5943; for Metal Oxides: Baruwati B,Guin D, Manorama S V. Pd on surface-modified NiFe2O4nanoparticles: a magneticallyrecoverable catalyst for Suzuki and Heck reactions [J]. Organic letters,2007,9(26):5377-5380.; for Sepiolite: Degirmenbasi N, Boz N, Kalyon D M. Biofuel production viatransesterification using sepiolite-supported alkaline catalysts[J]. Applied Catalysis B:Environmental,2014,150:147-156; for Hydroxyapatite: Mohamed R M, Baeissa E S.Preparation and characterisation of Pd-TiO2-hydroxyapatite nanoparticles forthe photocatalytic degradation of cyanide under visible light [J]. Applied Catalysis A:General,2013,464:218-224; for Hydrotalcite: Damodara D, Arundhathi R, Likhar P R.Copper Nanoparticles from Copper Aluminum Hydrotalcite: An Efficient Catalyst forAcceptor-and Oxidant-Free Dehydrogenation of Amines and Alcohols [J]. AdvancedSynthesis&Catalysis,2014,356(1):189-198; for Mesoporous Silica: Fang W, Yang J,Gong J, et al. Photo-and pH-Triggered Release of Anticancer Drugs from MesoporousSilica-Coated Pd@Ag Nanoparticles [J]. Advanced Functional Materials,2012,22(4):842-848.
    [12] Molnar A. Efficient, selective and recyclable palladium catalysts in carbon-carbon couplingreactions [J]. Chemical reviews,2011,111(3):2251-2320.
    [13] Moreno-Ma as M, Pleixats R. Formation of carbon-carbon bonds under catalysis bytransition-metal nanoparticles [J]. Accounts of chemical research,2003,36(8):638-643.
    [14] Astruc D, Lu F, Aranzaes J R. Nanoparticles as recyclable catalysts: the frontier betweenhomogeneous and heterogeneous catalysis [J]. Angewandte Chemie International Edition,2005,44(48):7852-7872.
    [15] D Astruc. Nanoparticles and catalysis [M]. Weinheim: Wiley-VCH,2008.
    [16] Yamada Y, Yuyama Y, Sato T, et al. A Palladium-Nanoparticle and Silicon-Nanowire-ArrayHybrid: A Platform for Catalytic Heterogeneous Reactions [J]. Angewandte Chemie,2014,126(1):131-135.
    [17] Wight A P, Davis M E. Design and preparation of organic-inorganic hybrid catalysts [J].Chemical reviews,2002,102(10):3589-3614.
    [18] Zamboulis A, Moitra N, Moreau J J E, et al. Hybrid materials: versatile matrices forsupporting homogeneous catalysts [J]. Journal of Materials Chemistry,2010,20(42):9322-9338.
    [19] Guinó M, Hii K K M. Applications of phosphine-functionalised polymers in organicsynthesis [J]. Chemical Society Reviews,2007,36(4):608-617.
    [20] Yang H, Han X, Li G, et al. N-Heterocyclic carbene palladium complex supported on ionicliquid-modified SBA-16: an efficient and highly recyclable catalyst for the Suzuki and Heckreactions [J]. Green Chemistry,2009,11(8):1184-1193.
    [21] Buchmeiser M R. Polymer-supported well-defined metathesis catalysts [J]. Chemical reviews,2008,109(2):303-321.
    [22] Fukaya N, Onozawa S, Ueda M, et al. Palladium phosphine complex catalysts immobilizedon silica via a tripodal linker unit for the Suzuki–Miyaura coupling reactions of arylchlorides [J]. Journal of Molecular Catalysis A: Chemical,2014,385:7–12.
    [23] Choi M, Lee D H, Na K, et al. High Catalytic Activity of Palladium (II)-ExchangedMesoporous Sodalite and NaA Zeolite for Bulky Aryl Coupling Reactions: Reusability underAerobic Conditions [J]. Angewandte Chemie International Edition,2009,48(20):3673-3676.
    [24] Pensa E, Cortés E, Corthey G, et al. The chemistry of the sulfur–gold interface: in search of aunified model [J]. Accounts of chemical research,2012,45(8):1183-1192.
    [25] Chng L L, Erathodiyil N, Ying J Y. Nanostructured Catalysts for Organic Transformations[J]. Accounts of chemical research,2013,46(8):1825-1837.
    [26] Schauermann S, Nilius N, Shaikhutdinov S, et al. Nanoparticles for heterogeneous catalysis:new mechanistic insights [J]. Accounts of chemical research,2012,46(8):1673-1681.
    [27] Chen X, Lenhert S, Hirtz M, et al. Langmuir–Blodgett patterning: a bottom–up way to buildmesostructures over large areas [J]. Accounts of chemical research,2007,40(6):393-401.
    [28] T llner K, Popovitz-Biro R, Lahav M, et al. Impact of molecular order in Langmuir-Blodgettfilms on catalysis [J]. Science,1997,278(5346):2100-2102.
    [29] Abatti D, Zaniquelli M E D, Iamamoto Y, et al. Porphyrin LB film as a catalyst for alkeneepoxidation [J]. Thin Solid Films,1997,310(1):296-302.
    [30] Benítez I O, Bujoli B, Camus L J, et al. Monolayers as models for supported catalysts:Zirconium phosphonate films containing manganese (III) porphyrins [J]. Journal of theAmerican Chemical Society,2002,124(16):4363-4370.
    [31] Mu B, Li T, Li C, et al. Langmuir–Blodgett films of cyclopalladated ferrocenylimine:preparation, characterization, and application in Suzuki coupling reaction [J]. Tetrahedron,2009,65(12):2599-2604.
    [32] Zhao N, Wang F, Zhou M, et al. Preparation, characterization and catalytic activity ofamphiphilic cyclopalladated aryl imines and their Langmuir-Blodgett films [J]. ChineseJournal of Catalysis,2013,34(8):1583-1588.
    [33] Love J C, Estroff L A, Kriebel J K, et al. Self-assembled monolayers of thiolates on metals asa form of nanotechnology [J]. Chemical reviews,2005,105(4):1103-1170. Chemicalreviews,2005,105(4):1103-1170.
    [34] Elemans J A A W, Lei S, De Feyter S. Molecular and Supramolecular Networks on Surfaces:From Two-Dimensional Crystal Engineering to Reactivity [J]. Angewandte ChemieInternational Edition,2009,48(40):7298-7332.
    [35] Vos J G, Forster R J, Keyes T E. Interfacial supramolecular assemblies [M]. John Wiley&Sons,2003.
    [36] Schwartz D K. Mechanisms and kinetics of self-assembled monolayer formation [J]. AnnualReview of Physical Chemistry,2001,52(1):107-137.
    [37] Lud S Q, Steenackers M, Jordan R, et al. Chemical grafting of biphenyl self-assembledmonolayers on ultrananocrystalline diamond [J]. Journal of the American Chemical Society,2006,128(51):16884-16891.
    [38] Ulman A. Formation and structure of self-assembled monolayers [J]. Chemical reviews,1996,96(4):1533-1554.
    [39] Liu J, Cheng L, Song Y, et al. Simple preparation method of multilayer polymer filmscontaining Pd nanoparticles [J]. Langmuir,2001,17(22):6747-6750.
    [40] Gao S, Zheng Z, Lü J, et al. Progressive release of a palladium-pyridyl complex from alayer-by-layer multilayer and illustrative application to catalytic Suzuki coupling [J].Chemical Communications,2010,46(40):7584-7586.
    [41] Gao S, Huang Y, Cao M, et al. The fabrication of palladium–pyridyl complex multilayersand their application as a catalyst for the Heck reaction [J]. Journal of Materials Chemistry,2011,21(41):16467-16472.
    [42] Maria G L. A convenient molecular self-assembled route to thin films containing terminaldonor ligands and anchored organotransition-metal complexes for heterogenizedhomogeneous catalysis [J]. Journal of the Chemical Society, Chemical Communications,1995(15):1577-1578.
    [43] Petrucci M G L, Kakkar A K. Heterogenizing homogeneous catalysis using molecularself-assembled of long alkane chain phosphines bound to Rh (I) complexes [J]. Chemistry ofmaterials,1999,11(2):269-276.
    [44] Harper B A, Knight D A, George C, et al. Coordination Chemistry of the Water-SolubleLigand TPPTP and Formation of a [Mo (CO)5(m-TPPTP)] Monolayer on an AluminaSurface [J]. Inorganic chemistry,2003,42(2):516-524.
    [45] Hara K, Tayama S, Kano H, et al. Functionalization of silicon surfaces with catalyticallyactive Pd complexes and application to the aerobic oxidation of benzylic alcohols [J]. Chem.Commun.,2007(41):4280-4282.
    [46] Hara K, Akiyama R, Takakusagi S, et al. Self-Assembled Monolayers of CompactPhosphanes with Alkanethiolate Pendant Groups: Remarkable Reusability and SubstrateSelectivity in Rh Catalysis [J]. Angewandte Chemie International Edition,2008,47(30):5627-5630.
    [47] Fernandes A, Hensenne P, Mathy B, et al. Increased Catalytic Activity ofSurface-Immobilized Palladium Complexes in the Fluorogenic Deprotection of anAlloc-Derivatized Coumarin [J]. Chemistry-A European Journal,2012,18(3):788-792.
    [48] Zhao N, Li T, Zhai Z, et al. Cyclopalladated Arylimine Self-assembled Films for SuzukiReaction [J]. ChemCatChem,2013,5(6):1481-1489.
    [49] Belser T, St hr M, Pfaltz A. Immobilization of rhodium complexes at thiolate monolayers ongold surfaces: catalytic and structural studies [J]. Journal of the American Chemical Society,2005,127(24):8720-8731.
    [50] éll A H, Csjernyik G, Slagt V F, et al. Synthesis of Thioacetate-Functionalized Cobalt (II)Porphyrins and Their Immobilization on Gold Surface–Characterization by X-rayPhotoelectron Spectroscopy [J]. European journal of organic chemistry,2006,2006(5):1193-1199; Eriksson K L E, Chow W W Y, Puglia C, et al. Performance of a BiomimeticOxidation Catalyst Immobilized on Silicon Wafers: Comparison with Its Gold Congener [J].Langmuir,2010,26(21):16349-16354.
    [51] Marshall S T, O’Brien M, Oetter B, et al. Controlled selectivity for palladium catalysts usingself-assembled monolayers [J]. Nature materials,2010,9(10):853-858.
    [52] Marshall S T, Schwartz D K, Medlin J W. Adsorption of Oxygenates on Alkanethiol-Functionalized Pd (111) Surfaces: Mechanistic Insights into the Role of Self-AssembledMonolayers on Catalysis [J]. Langmuir,2011,27(11):6731-6737.
    [53] Noda H, Motokura K, Miyaji A, et al. Heterogeneous Synergistic Catalysis by a PalladiumComplex and an Amine on a Silica Surface for Acceleration of the Tsuji–Trost Reaction [J].Angewandte Chemie,2012,124(32):8141-8144.
    [54] Milner S T, Witten T A, Cates M E. Theory of the grafted polymer brush [J].Macromolecules,1988,21(8):2610-2619.
    [55] Barbey R, Lavanant L, Paripovic D, et al. Polymer brushes via surface-initiated controlledradical polymerization: synthesis, characterization, properties, and applications [J]. Chemicalreviews,2009,109(11):5437-5527.
    [56] Azzaroni O. Polymer brushes here, there, and everywhere: Recent advances in their practicalapplications and emerging opportunities in multiple research fields [J]. Journal of PolymerScience Part A: Polymer Chemistry,2012,50(16):3225-3258.
    [57] Kainz Q M, Reiser O. Polymer-and Dendrimer-Coated Magnetic Nanoparticles as VersatileSupports for Catalysts, Scavengers, and Reagents [J]. Acc. Chem. Res.,2014,47(2):667–677
    [58] Mei Y, Sharma G, Lu Y, et al. High catalytic activity of platinum nanoparticles immobilizedon spherical polyelectrolyte brushes [J]. Langmuir,2005,21(26):12229-12234.
    [59] Sharma G, Mei Y, Lu Y, et al. Spherical polyelectrolyte brushes as carriers for platinumnanoparticles in heterogeneous hydrogenation reactions [J]. Journal of Catalysis,2007,246(1):10-14.
    [60] M, Lu Y, Schrinner M, et al. Spherical polyelectrolyte brushes as carriers for catalyticallyactive metal nanoparticles[C]//Macromolecular symposia. WILEY-VCH Verlag,2007,254(1):42-45.
    [61] Mei Y, Lu Y, Polzer F, et al. Catalytic activity of palladium nanoparticles encapsulated inspherical polyelectrolyte brushes and core-shell microgels[J]. Chemistry of materials,2007,19(5):1062-1069.
    [62] Wunder S, Polzer F, Lu Y, et al. Kinetic analysis of catalytic reduction of4-nitrophenol bymetallic nanoparticles immobilized in spherical polyelectrolyte brushes [J]. The Journal ofPhysical Chemistry C,2010,114(19):8814-8820.
    [63] Wunder S, Lu Y, Albrecht M, et al. Catalytic activity of faceted gold nanoparticles studiedby a model reaction: evidence for substrate-induced surface restructuring [J]. ACS Catalysis,2011,1(8):908-916.
    [64] Koenig M, Simon F, Formanek P, et al. Catalytically Active Nanocomposites Based onPalladium and Platinum Nanoparticles in Poly (2-vinylpyridine) Brushes [J].Macromolecular Chemistry and Physics,2013,214(20):2301-2311.
    [65] Costantini F, Benetti E M, Tiggelaar R M, et al. A Brush-Gel/Meta-Nanoparticle HybridFilm as an Efficient Supported Catalyst in Glass Microreactors [J]. Chemistry-A EuropeanJournal,2010,16(41):12406-12411.
    [66] Laloyaux X, Mathy B, Nysten B, et al. Bidimensional response maps of adaptive thermo-andpH-responsive polymer brushes [J]. Macromolecules,2010,43(18):7744-7751.
    [67] Stoll R S, Hecht S. Immobilization of a Photoswitchable Piperidine Base [J]. Organic letters,2009,11(21):4790-4793.
    [68] Li D, Dunlap J R, Zhao B. Thermosensitive water-dispersible hairy particle-supported Pdnanoparticles for catalysis of hydrogenation in an aqueous/organic biphasic system [J].Langmuir,2008,24(11):5911-5918.
    [69] Jiang X, Wang B, Li C Y, et al. Thermosensitive polymer brush-supported4-N,N-dialkylaminopyridine on silica particles as catalyst for hydrolysis of an activated ester inaqueous buffers: Comparison of activity with linear polymer-supported version and effect ofLCST transition [J]. Journal of Polymer Science Part A: Polymer Chemistry,2009,47(11):2853-2870.
    [70] Chen J, Xiao P, Gu J, et al. A smart hybrid system of Au nanoparticle immobilizedPDMAEMA brushes for thermally adjustable catalysis [J]. Chem. Commun.,2014,50(10):1212-1214.
    [71] Gill C S, Venkatasubbaiah K, Phan N T S, et al. Enhanced Cooperativity through Design:Pendant Co(III)-Salen Polymer Brush Catalysts for the Hydrolytic Kinetic Resolution ofEpichlorohydrin (Salen=N, N′-Bis (salicylidene) ethylenediamine Dianion)[J]. Chemistry-AEuropean Journal,2008,14(24):7306-7313.
    [72] Gill C S, Long W, Jones C W. Magnetic nanoparticle polymer brush catalysts: alternativehybrid organic/inorganic structures to obtain high, local catalyst loadings for use in organictransformations [J]. Catalysis letters,2009,131(3-4):425-431.
    [73] Sch tz A, Long T R, Grass R N, et al. Immobilization on a nanomagnetic Co/C surface usingROM polymerization: generation of a hybrid material as support for a recyclable palladiumcatalyst [J]. Advanced functional materials,2010,20(24):4323-4328.
    [74] Zeltner M, Sch tz A, Hefti M L, et al. Magnetothermally responsive C/Co@PNIPAM-nanoparticles enable preparation of self-separating phase-switching palladiumcatalysts [J]. Journal of Materials Chemistry,2011,21(9):2991-2996.
    [75] Fernandes A E, Dirani A, d'Haese C, et al. Thicker is Better? Synthesis and Evaluation ofWell-Defined Polymer Brushes with Controllable Catalytic Loadings [J]. Chemistry-AEuropean Journal,2012,18(50):16226-16233.
    [76] Abdulhussain S, Breitzke H, Ratajczyk T, et al. Synthesis, Solid-State NMR Characterization,and Application for Hydrogenation Reactions of a Novel Wilkinson’s-Type ImmobilizedCatalyst [J]. Chemistry-A European Journal,2014,20(4):1159-1166.
    [77] Zhao B, Jiang X, Li D, et al. Hairy particle-supported4-N’N-dialkylaminopyridine: Anefficient and recyclable nucleophilic organocatalyst [J]. Journal of Polymer Science Part A:Polymer Chemistry,2008,46(10):3438-3446.
    [78] O'Lenick T G, Jiang X, Zhao B. Catalytic activity of a thermosensitive hydrophilic diblockcopolymer-supported4-N’N-dialkylaminopyridine in hydrolysis of p-nitrophenyl acetate inaqueous buffers [J]. Polymer,2009,50(18):4363-4371.
    [79] Martin A, Morales G, Martinez F, et al. Acid hybrid catalysts from poly (styrenesulfonic acid)grafted onto ultra-large-pore SBA-15silica using atom transfer radical polymerization [J].Journal of Materials Chemistry,2010,20(37):8026-8035.
    [80] Long W, Jones C W. Hybrid sulfonic acid catalysts based on silica-supported poly (styrenesulfonic acid) brush materials and their application in ester hydrolysis [J]. ACS Catalysis,2011,1(7):674-681.
    [81] Kudina O, Zakharchenko A, Trotsenko O, et al. Cover Picture: Highly Efficient PhaseBoundary Biocatalysis with Enzymogel Nanoparticles (Angew. Chem. Int. Ed.2/2014)[J].Angewandte Chemie International Edition,2014,53(2):331-331.
    [82] Liu B, Zhang D, Wang J, et al. Multilayer Magnetic Composite Particles with FunctionalPolymer Brushes as Stabilizers for Gold Nanocolloids and Their Recyclable Catalysis [J].The Journal of Physical Chemistry C,2013,117(12):6363-6372.
    [83] Rafti M, Brunsen A, Fuertes M C, et al. Heterogeneous Catalytic Activity of PlatinumNanoparticles Hosted in Mesoporous Silica Thin Films Modified with PolyelectrolyteBrushes [J]. ACS applied materials&interfaces,2013,5(18):8833-8840.
    [84] Liu J, Ma S, Wei Q, et al. Parallel array of nanochannels grafted with polymer-brushes-stabilized Au nanoparticles for flow-through catalysis [J]. Nanoscale,2013,5(23):11894-11901.
    [85] Cao C, Zhuang X, Su Y, et al.2D polyacrylonitrile brush derived nitrogen-doped carbonnanosheets for high-performance electrocatalysts in oxygen reduction reaction [J]. Polym.Chem.,2014,5:2057-2064.
    [86] Miyaura N, Suzuki A. Stereoselective synthesis of arylated (E)-alkenes by the reaction ofalk-1-enylboranes with aryl halides in the presence of palladium catalyst [J]. Journal of theChemical Society, Chemical Communications,1979(19):866-867.
    [87] Widegren J A, Finke R G. A review of the problem of distinguishing true homogeneouscatalysis from soluble or other metal-particle heterogeneous catalysis under reducingconditions [J]. Journal of Molecular Catalysis A: Chemical,2003,198(1):317-341.
    [88] Lipshutz B H, Tasler S, Chrisman W, et al. On the nature of the'heterogeneous' catalyst:Nickel-on-charcoal [J]. The Journal of organic chemistry,2003,68(4):1177-1189.
    [89] Stohs S J, Bagchi D. Oxidative mechanisms in the toxicity of metal ions[J]. Free RadicalBiology and Medicine,1995,18(2):321-336.
    [90] Phan N T S, Van Der Sluys M, Jones C W. On the nature of the active species in palladiumcatalyzed Mizoroki–Heck and Suzuki–Miyaura couplings–homogeneous or heterogeneouscatalysis, a critical review [J]. Advanced Synthesis&Catalysis,2006,348(6):609-679.
    [91] De Luca L, Porcheddu A. Microwave-Assisted Synthesis of Polysubstituted Benzimidazolesby Heterogeneous Pd-Catalyzed Oxidative C–H Activation of Tertiary Amines [J]. EuropeanJournal of Organic Chemistry,2011,2011(29):5791-5795.
    [92] Lee A F, Ellis P J, Fairlamb I J S, et al. Surface catalysed Suzuki–Miyaura cross-coupling byPd nanoparticles: an operando XAS study [J]. Dalton Transactions,2010,39(43):10473-10482.
    [93] Narayanan R, El-Sayed M A. Effect of catalysis on the stability of metallic nanoparticles:Suzuki reaction catalyzed by PVP-palladium nanoparticles [J]. Journal of the AmericanChemical Society,2003,125(27):8340-8347.
    [94] Niu Z, Peng Q, Zhuang Z, et al. Evidence of an Oxidative-Addition-Promoted Pd-LeachingMechanism in the Suzuki Reaction by Using a Pd-Nanostructure Design [J]. Chemistry-AEuropean Journal,2012,18(32):9813-9817.
    [95] Soomro S S, Ansari F L, Chatziapostolou K, et al. Palladium leaching dependent on reactionparameters in Suzuki–Miyaura coupling reactions catalyzed by palladium supported onalumina under mild reaction conditions [J]. Journal of Catalysis,2010,273(2):138-146.
    [96] Balanta A, Godard C, Claver C. Pd nanoparticles for C–C coupling reactions [J]. ChemicalSociety Reviews,2011,40(10):4973-4985.
    [97] Chen J S, Vasiliev A N, Panarello A P, et al. Pd-leaching and Pd-removal in Pd/C-catalyzedSuzuki couplings [J]. Applied Catalysis A: General,2007,325(1):76-86.
    [98] MacQuarrie S, Horton J H, Barnes J, et al. Visual Observation of Redistribution andDissolution of Palladium during the Suzuki–Miyaura Reaction [J]. Angewandte ChemieInternational Edition,2008,47(17):3279-3282.
    [99] García-Melchor M, Braga AA, Lledós A, Ujaque G, Maseras F. Computational perspectiveon Pd-catalyzed C-C cross-coupling reaction mechanisms.[J] Acc Chem Res.2013,46(11):2626-34.
    [100] Ananikov V P, Beletskaya I P. Toward the ideal catalyst: From atomic centers to a“Cocktail” of catalysts [J]. Organometallics,2012,31(5):1595-1604.
    [101] Pérez-Lorenzo M. Palladium nanoparticles as efficient catalysts for Suzuki cross-couplingreactions [J]. The Journal of Physical Chemistry Letters,2012,3(2):167-174.
    [102Davis J J, Coleman K S, Busuttil K L, et al. Spatially resolved Suzuki coupling reactioninitiated and controlled using a catalytic AFM probe [J]. Journal of the American ChemicalSociety,2005,127(38):13082-13083.
    [103] Davis J J, Bagshaw C B, Busuttil K L, et al. Spatially controlled Suzuki and Heck catalyticmolecular coupling [J]. Journal of the American Chemical Society,2006,128(43):14135-14141.
    [104] Ellis P J, Fairlamb I J S, Hackett S F J, et al. Evidence for the Surface-CatalyzedSuzuki–Miyaura Reaction over Palladium Nanoparticles: An Operando XAS Study [J].Angewandte Chemie,2010,122(10):1864-1868.
    [105] Shao L, Zhang B, Zhang W, et al. The role of palladium dynamics in the surface catalysis ofcoupling reactions [J]. Angewandte Chemie International Edition,2013,52(7):2114-2117.
    [106] Wu Y J, Yang F, Zhang J L, et al. Cyclopalladated ferrocenylimines as efficient catalysts forhomogeneous catalysis: A brief introduction to our preliminary achievements [J]. ChineseScience Bulletin,2010,55(25):2784-2793.
    [107] Mu B, Li T, Xu W, et al. Synthesis, characterization, and applications in Heck and Suzukicoupling reactions of amphiphilic cyclopalladated ferrocenylimines [J]. Tetrahedron,2007,63(46):11475-11488;
    [108] Mu B, Li T, Li J, et al. The highly efficient Suzuki–Miyaura cross-coupling reaction usingcyclopalladated N-alkylferrocenylimine as a catalyst in aqueous medium at roomtemperature under ambient atmosphere [J]. Journal of Organometallic Chemistry,2008,693(7):1243-1251.
    [109] Fu Z, Li T, Mu B, et al. Cyclopalladated ferrocenylimine self-assembled films for Suzukicoupling reaction[J]. Journal of Molecular Catalysis A: Chemical,2012,363:200-207.
    [110] Sharp J S, Farmer D J, Kelly J. Contact angle dependence of the resonant frequency ofsessile water droplets[J]. Langmuir,2011,27(15):9367-9371.
    [111] Wagner C D, Naumkin A V, Kraut-Vass A, et al. Jr. NIST X-Ray Photelectron DatabaseNIST Standard Reference Database20, Version3.5Last updated: August27,2007,(Created: June06,2000) http://srdata.nist.gov/xps/.
    [112] Sakakibara K, Kamitakahara H, Takano T, et al. Redox-active cellulose Langmuir-Blodgettfilms containing beta-carotene as a molecular wire.[J]. Biomacromolecules.2007,8(5):1657-64.
    [113] Keller M, Collière V, Reiser O, et al. Pyrene-Tagged Dendritic Catalysts NoncovalentlyGrafted onto Magnetic Co/C Nanoparticles: An Efficient and Recyclable System for DrugSynthesis[J]. Angewandte Chemie International Edition,2013,52(13):3626-3629.
    [114] Sato H, Anzai J. Preparation of layer-by-layer thin films composed of DNA andferrocene-bearing poly (amine) s and their redox properties[J]. Biomacromolecules,2006,7(6):2072-2076.
    [115] Aoki A, Miyashita T. Electrochemical characterization of redox polymerLangmuir-Blodgett films containing ferrocene derivatives[J]. Macromolecules,1996,29(13):4662-4667.
    [116] Coperet C, Chabanas M, Petroff Saint-Arroman R, et al. Homogeneous and heterogeneouscatalysis: bridging the gap through surface organometallic chemistry[J]. AngewandteChemie International Edition,2003,42(2):156-181.
    [117] Fu Q, Yang F, Bao X. Interface-confined oxide nanostructures for catalytic oxidationreactions[J]. Accounts of chemical research,2013,46(8):1692-1701.
    [118] Chidsey C E D, Bertozzi C R, Putvinski T M, et al. Coadsorption of ferrocene-terminatedand unsubstituted alkanethiols on gold: electroactive self-assembled monolayers[J]. Journalof the American Chemical Society,1990,112(11):4301-4306.
    [119] K hler K, Kleist W, Pr ckl S S. Genesis of coordinatively unsaturated palladium complexesdissolved from solid precursors during Heck coupling reactions and their role ascatalytically active species[J]. Inorganic chemistry,2007,46(6):1876-1883.
    [120] Cairns G R, Cross R J, Stirling D. Characterisation of catalysts and their precursorsprepared from supported palladium phosphine complexes[J]. Journal of Molecular CatalysisA: Chemical,2001,172(1):207-218.
    [121] Hendrickson D N, Hollander J M, Jolly W L. Core-electron binding energies for compoundsof boron, carbon, and chromium[J]. Inorganic Chemistry,1970,9(3):612-615.
    [122] Loh F C, Tan K L, Kang E T. XPS studies of charge transfer interactions in some poly (N-vinylcarbazole)/acceptor complexes[J]. European polymer journal,1991,27(10):1055-1063.
    [123] Krishnan S, Klein A, El-Aasser M S, et al. Influence of Chain Transfer Agent on theCross-Linking of Poly (n-butyl methacrylate-co-N-methylol acrylamide) Latex Particlesand Films[J]. Macromolecules,2003,36(10):3511-3518.
    [124] Wan F, Pei X, Yu B, et al. Grafting polymer brushes on biomimetic structural surfaces foranti-algae fouling and foul release[J]. ACS applied materials&interfaces,2012,4(9):4557-4565.
    [125] Herbst F, Schro ter K, Gunkel I, et al. Aggregation and chain dynamics in supramolecularpolymers by dynamic rheology: cluster formation and self-aggregation[J]. Macromolecules,2010,43(23):10006-10016.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700