用户名: 密码: 验证码:
微环境调控的多酸催化剂在烯烃环氧化和氧化脱硫中的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃油中的硫化物在内燃机中转化为SOx,SOx不但毒害尾气净化器中的贵金属催化剂,而且导致空气污染、酸雾和酸雨。随着环境污染的日益严重,环境法规日益严格,为了减少环境污染,燃料油的深度脱硫引起了广泛关注。过去几年中,含硫量10-15ppm的超低硫柴油已经在欧洲,日本,美国等国家得到应用。2013年颁布的GB19147-2013《车用柴油(Ⅳ)》国家标准规定车用柴油硫含量不大于50ppm。而更为严格的国V车用柴油标准未来也有望发布,届时车用汽柴油硫含量将小于10ppm。传统的催化加氢脱硫(HDS)可以有效地除去燃料油中的硫化物、二硫化物等硫化物,但对于二苯并噻吩(DBT)及其衍生物等硫化物的去除效果差。为了达到深度脱硫,HDS常常需要较为苛刻的脱硫条件,在实际应用中运行费用较高。因此,非常必要发展一种在温和条件下深度脱硫的方法。结合萃取或吸附的氧化脱硫被认为是一种非常有前景的方法。过氧化氢是价格便宜、无污染、无腐蚀性,是一种理想的氧化剂。发展温和的条件下过氧化氢作为氧化剂的氧化脱硫工艺对清洁柴油的生产有重大意义。
     环氧化物是重要的化工中间体,可以用来合成药品、农药、树脂、塑料等多种产品。目前工业生产环氧化物的方法主要是氯醇法和共氧化法。氯醇法在生产过程中水资源消耗大,产生大量的含氯废水,处理难度大,设备腐蚀严重。共氧化法克服了氯醇法的缺点,但工艺流程长,原料品种多,设备造价高,建设投资大。过氧化氢直接氧化法是由过氧化氢氧化烯烃制环氧化物的新工艺,生产过程中只生成环氧化物和水,工艺流程简单,产品收率高,从源头上消除了污染。
     多酸是一大类过渡金属氧簇,是一种高效的氧化还原催化剂。根据多酸-表面活性剂复合物的特点,结合介孔硅胶和氧化石墨烯材料,设计合成了三种微环境调控的多酸催化剂:微反应控制相转移多酸催化剂,多酸溶致液晶催化剂,具有热敏特性的和两亲性的多酸-氧化石墨烯催化剂。通过氧化脱硫和烯烃环氧化反应,阐述了催化剂组成、结构和催化性能之间的关系。
     采用硅胶作为多酸催化剂的载体,制备了微反应控制相转移多酸催化剂。用瓶中造船法,先把多酸和表面活性剂的前体(N,N-二甲基十六烷基胺和PW12O403-)封装在硅胶内,用多酸和有机胺的聚集体封住硅胶管道的开口。然后用双氧水同时氧化N,N-二甲基十六烷基胺和PW12O403-,在封闭的硅胶管道内形成微反应控制相转移催化剂。在H2O2/DBT摩尔比=4:1时,反应温度70oC,反应时间2h,DBT氧化为DBTO2的转化率达到100%。催化剂对不同有机硫表现出不同的催化活性,催化活性DBT>BT>噻吩。催化剂的催化活性和稳定性都高,且容易回收和再利用。
     用水做溶剂,用双氧水同时氧化多酸和表面活性剂的前体(N,N-二甲基十六烷基胺和PW12O403-),一锅法制备过氧钨多酸溶致液晶催化剂[C16H33(CH3)2NOH]3[PO4{WO(O2)2}2]。通过偏光显微镜,确定了催化剂是一种溶致液晶。反应体系的极性可以控制多酸溶致液晶的溶解和析出,利用多酸溶致液晶的这个性质,为烯烃环氧化反应设计和实现了自分离微乳体系,解决了微乳的破乳问题,反应体系中底物和产物的极性控制了微乳的形成和破乳,方便了产物的分离。为柴油氧化脱硫设计和实现了极性相、多酸溶致液晶相、非极性相三相平衡的催化反应体系,便于产物、副产物、催化剂的分离。在H2O2/环辛烯摩尔比=1:1时,反应温度60oC,反应时间1h,环氧环辛烷产率>99%,选择性>99%;在H2O2/DBT摩尔比=2:1时,反应温度60oC,反应时间3h,DBT氧化为DBTO2的转化率>99%。
     用水做溶剂,用双氧水分步氧化多酸和表面活性剂的前体(N,N-二甲基十六烷基胺和PW12O403-),一锅法制备了氧化石墨烯负载过氧钨多酸催化剂。制备过程中,用双氧水剥离修饰后的氧化石墨烯,把催化剂制备成一面亲水一面疏水的两亲性固体粒子,同时催化剂具有热敏特性。多酸-氧化石墨烯催化剂可以包覆疏水的底物,转移至水相中形成微乳,从而催化水相中的氧化反应。在H2O2/环辛烯摩尔比=1:2时,反应温度50oC,反应时间12h,环氧环辛烷产率为94%,选择性为94%;在H2O2/BT摩尔比=4:1时,反应温度50oC,反应时间20h,BT氧化为砜的产率为96%,选择性为>99%。催化剂的热敏特性方便了催化剂的分离和重复使用。
Sulfur in the fuel is converted into SOxin internal-combustion engines.SOxnotonly poisons the noble metal catalyst in the exhaust gas purification, but also causesair pollution, acid rain and mist. Ultra low sulfur diesel with10-15ppm sulfur hasbeen implemented during the past several years in Europe, Japan and USA. Chinesenational standard GB19147-2013prescribes sulfur content must be not more than50ppm.The more stringent standard for diesel will be issued in the future, when thesulfur content of gasoline and diesel will be less than10ppm. Hydrodesulfurizationprocess can effectively remove sulfides and disulfides, but it is not efficient fordibenzothiophene and its derivatives. Hydrodesulfurization process requires severeprocessing conditions to remove the refractory sulfur compounds in fuel, which leadsto escalating the cost of hydrogen and the capital cost for hydrotreating sulfur removal.Therefore, it is necessary to develop methods for production of ultra-low sulfur dieselunder mild conditions. Oxidation desulfurization with extraction or adsorption is avery promising approach. Hydrogen peroxide is cheap, non-polluting andnon-corrosive, which is an ideal oxidant. The development of oxidativedesulfurization process under mild conditions with hydrogen peroxide as oxidant forproduction of clean diesel is very important.
     Epoxide is an important chemical intermediate, which can be used to synthesizedrugs, pesticides, resins, plastics and other products. The traditional industry factureof epoxide is chlorohydrination process and organic peroxide process.Chlorohydrination process produces large quantities of poisonous wastewater.Organic peroxide process overcomes the disadvantages of chlorohydrination process,but it requires a large investment. Hydrogen peroxide process is a new technology forepoxide production, which produces only epoxide and water and eliminates thepollution from the source.
     Polyoxometalate is a variety of transition metal oxide clusters, which is anefficient redox catalyst. Polyoxometalate-surfactant complexes are combined with themesoporous silica and graphene oxide to form three microenvironment-controlledpolyoxometalate catalysts: micro reaction-controlled phase-transfer catalyst,polyoxometalate lyotropic liquid crystal catalyst, and amphiphilic polyoxometalate-graphene oxide with thermosensitive property. The composition, structure andcatalytic performance of these catalysts are described. These catalysts are applied tooxidative desulfurization and olefin epoxidation.
     A micro reaction-controlled phase-transfer catalyst is prepared using silica gel assupport. Using the method of ship in a bottle, surfactant precursor andpolyoxometalate precursor (N,N-dimethyl hexadecyl amine and PW12O403-) areencapsulated in silica, while the ends of silica channels is sealed with micellar-likeaggregates. With the action of H2O2, PW12O403-is converted into {PO4[WO(O2)2]4}3-and N,N-dimethyl hexadecyl amine is converted into C16H33(CH3)2NOH. A microreaction-controlled phase-transfer system is made in the channels of silica, whichpreventes the catalytic active species from losing. Dibenzothiophene is converted intodibenzothiophene sulfone with100%yield under the optimal reaction conditions(H2O2/S molar ratio is4:1, atmospheric pressure,70oC,2h). The catalyst showes highcatalytic activity, stability and recyclability.
     [C16H33(CH3)2NOH]3[PO4{WO(O2)2}2] is synthesized by one-pot method inwater with hydrogen peroxide as oxidant (N,N-dimethyl hexadecyl amine andPW12O403-as precursors). It is a polyoxometalate lyotropic liquid crystal catalyst. Thelyotropic liquid crystal property is determined by polarizing optical micrograph. The dissolution and precipitation of the catalyst is controlled by the polar in the system. Totake advantage of this property, a self-separating microemulsion system for olefinepoxidation is designed and implemented, which solve the problem of demulsification.The polar of substrate and product in the reaction system controls the emulsificationand demulsification, which facilitates the separation of the product. A three phase(polar phase, nonpolar phase and liquid crystal phase) balanced catalytic system foroxidative desulfurization of diesel is designed and implemented, which facilitates theseparation of product, by-product and catalyst. Cyclooctene is converted intocyclooctene oxide with>99%yield and>99%selectivity under the optimal reactionconditions (H2O2/cyclooctene molar ratio is1:1,60oC,1h). Dibenzothiophene isconverted into dibenzothiophene sulfone with>99%yield under the optimal reactionconditions (H2O2/S molar ratio is2:1,60oC,3h).
     Polyoxometalate-graphene oxide catalyst is synthesized by one-pot method inwater with hydrogen peroxide as oxidant (N,N-dimethyl hexadecyl amine andPW12O403-as precursors). Using hydrogen peroxide to peel off the modified grapheneoxide, the catalyst is prepared. It is a solid particle with one hydrophilic side and onehydrophobic side, while the catalyst has thermal property. The catalyst canencapsulate the hydrophobic substrate and transfer into the aqueous phase to emulsifythe catalytic system when heated. Therefore, the catalyst can catalyze the reaction inwater. Cyclooctene is converted into cyclooctene oxide in water with>94%yield and>94%selectivity under the optimal reaction conditions (H2O2/cyclooctene molar ratiois1:2,50oC,20h). Benzothiophene is converted into benzothiophene sulfone in waterwith>96%yield and>99%selectivity under the optimal reaction conditions (H2O2/Smolar ratio is4:1,50oC,20h). The thermal property of the catalyst facilitates theseparation and reuse of the catalyst.
引文
[1] Berzelius J. The preparation of phosphomolybdate ion [PMo12O40]3[J]. PoggAnn,1826,6(369-71.
    [2] Evans Jr H T. The crystal structures of ammonium and potassiummolybdotellurates [J]. J Am Chem Soc,1948,70(3):1291-2.
    [3] Dawson B. The structure of the9(18)-heteropoly anion in potassium9(18)-tungstophosphate, K6(P2W18O62)·14H2O [J]. Acta Crystallogr,1953,6(2):113-26.
    [4] Dexter D D, Silverton J. A new structural type for heteropoly anions. the crystalstructure of (NH4)2H6(CeMo12O42)·12H2O [J]. J Am Chem Soc,1968,90(13):3589-90.
    [5] Long D-L, Burkholder E, Cronin L. Polyoxometalate clusters, nanostructures andmaterials: from self assembly to designer materials and devices [J]. Chem Soc Rev,2007,36(1):105-21.
    [6] Long D-L, Tsunashima R, Cronin L. Polyoxometalates: building blocks forfunctional nanoscale systems [J]. Angew Chem Int Ed,2010,49(10):1736-58.
    [7] Dolbecq A, Dumas E, Mayer C R, et al. Hybrid organic inorganicpolyoxometalate compounds: from structural diversity to applications [J]. Chem Rev,2010,110(10):6009-48.
    [8] Wang Y, Weinstock I A. Polyoxometalate-decorated nanoparticles [J]. Chem SocRev,2012,41(22):7479-96.
    [9] Proust A, Matt B, Villanneau R, et al. Functionalization andpost-functionalization: a step towards polyoxometalate-based materials [J]. Chem SocRev,2012,41(22):7605-22.
    [10]Fraqueza G, Ohlin C A, Casey W H, et al. Sarcoplasmic reticulum calciumATPase interactions with decaniobate, decavanadate, vanadate, tungstate andmolybdate [J]. J Inorg Biochem,2012,107(1):82-9.
    [11] Putaj P, Lefebvre F. Polyoxometalates containing late transition and noble metalatoms [J]. Coord Chem Rev,2011,255(15–16):1642-85.
    [12]Song Y-F, Tsunashima R. Recent advances on polyoxometalate-based molecularand composite materials [J]. Chem Soc Rev,2012,41(22):7384-402.
    [13]Mizuno N, Yamaguchi K, Kamata K. Molecular design of polyoxometalate-basedcompounds for environmentally-friendly functional group transformations: frommolecular catalysts to heterogeneous catalysts [J]. Catal Surv Asia,2011,15(2):68-79.
    [14]Lv H, Geletii Y V, Zhao C, et al. Polyoxometalate water oxidation catalysts andthe production of green fuel [J]. Chem Soc Rev,2012,41(22):7572-89.
    [15]Zheng H, Sun Z, Chen X, et al. A micro reaction-controlled phase-transfercatalyst for oxidative desulfurization based on polyoxometalate modified silica [J].Appl Catal, A,2013,467(0):26-32.
    [16]Leng Y, Wang J, Zhu D, et al. Polyoxometalate-based amino-functionalized ionicsolid catalysts lead to highly efficient heterogeneous epoxidation of alkenes withH2O2[J]. Green Chem,2011,13(7):1636-9.
    [17]Leng Y, Wang J, Zhu D, et al. Heteropolyanion-based ionic hybrid solid: a greenbulk-type catalyst for hydroxylation of benzene with hydrogen peroxide [J]. ChemEng J,2011,173(2):620-6.
    [18]Xu L, Wang Y, Yang X, et al. Preparation of mesoporouspolyoxometalate-tantalum pentoxide composite catalyst and its application forbiodiesel production by esterification and transesterification [J]. Green Chem,2008,10(7):746-55.
    [19]Alotaibi M A, Kozhevnikova E F, Kozhevnikov I V. Efficienthydrodeoxygenation of biomass-derived ketones over bifunctionalPt-polyoxometalate catalyst [J]. Chem Commun,2012,48(57):7194-6.20] Boujday S, Blanchard J, Villanneau R, et al. Polyoxomolybdate-stabilized Ru0nanoparticles deposited on mesoporous silica as catalysts for aromatic hydrogenation[J]. ChemPhysChem,2007,8(18):2636-42.
    [21]Chen J, Wang S, Huang J, et al. Conversion of cellulose and cellobiose intosorbitol catalyzed by ruthenium supported on a polyoxometalate/metal–organicframework hybrid [J]. ChemSusChem,2013,6(8):1545-55.
    [22]Zheng H, Sun Z, Yi X, et al. A water-tolerant C16H3PW11CrO39catalyst for theefficient conversion of monosaccharides into5-hydroxymethylfurfural in a micellarsystem [J]. RSC Adv,2013,3(45):23051-6.
    [23]Chen F, Dong T, Chi Y, et al. Transition-metal-substituted Keggin-typegermanotungstates for catalytic conversion of carbon dioxide to cyclic carbonate [J].Catal Lett,2010,139(1-2):38-41.
    [24]Yasuda H, He L-N, Sakakura T, et al. Efficient synthesis of cyclic carbonate fromcarbon dioxide catalyzed by polyoxometalate: the remarkable effects of metalsubstitution [J]. J Catal,2005,233(1):119-22.
    [25]Juan-Alca iz J, Ramos-Fernandez E V, Lafont U, et al. Building MOF bottlesaround phosphotungstic acid ships: one-pot synthesis of bi-functionalpolyoxometalate-MIL-101catalysts [J]. J Catal,2010,269(1):229-41.
    [26]陈发旺,胡长文.多金属氧簇催化研究进展[J].化学进展,2011,23(1):19-41.
    [27]Hill C L. Progress and challenges in polyoxometalate-based catalysis andcatalytic materials chemistry [J]. J Mol Catal A: Chem,2007,262(1–2):2-6.
    [28]周邦荣.昭和电工醋酸生产新工艺[J].石油化工动态,1998,6(4):47-51.
    [29]Francisco M, Arce A, Soto A. Ionic liquids on desulfurization of fuel oils [J].Fluid Phase Equilib,2010,294(1–2):39-48.
    [30]R thlisberger A, Prins R. Intermediates in the hydrodesulfurization of4,6-dimethyl-dibenzothiophene over Pd/γ-Al2O3[J]. J Catal,2005,235(1):229-40.
    [31]Song C, Ma X. New design approaches to ultra-clean diesel fuels by deepdesulfurization and deep dearomatization [J]. Appl Catal, B,2003,41(1–2):207-38.
    [32]Song C. An overview of new approaches to deep desulfurization for ultra-cleangasoline, diesel fuel and jet fuel [J]. Catal Today,2003,86(1–4):211-63.
    [33]Pawelec B, Navarro R M, Campos-Martin J M, et al. Retracted article: towardsnear zero-sulfur liquid fuels: a perspective review [J]. Catal Sci Technol,2011,1(1):23-42.
    [34]Stanislaus A, Marafi A, Rana M S. Recent advances in the science andtechnology of ultra low sulfur diesel (ULSD) production [J]. Catal Today,2010,153(1–2):1-68.
    [35]郑凯元,曲凤娇,陈英杰,等.非加氢脱硫技术研究进展及其在原油预脱硫中的应用展望[J].化工进展,2013,32(12):2859-66.
    [36]周秀杰.柴油非加氢脱硫工艺进展[J].石化技术,2013,20(2):61-5.
    [37]Jiang Z, L H, Zhang Y, et al. Oxidative desulfurization of fuel oils [J]. Chin JCatal,2011,32(5):707-15.
    [38]Chandra Srivastava V. An evaluation of desulfurization technologies for sulfurremoval from liquid fuels [J]. RSC Adv,2012,2(3):759-83.
    [39]Ismagilov Z, Yashnik S, Kerzhentsev M, et al. Oxidative desulfurization ofhydrocarbon fuels [J]. CarRv,2011,53(3):199-255.
    [40]Campos-Martin J M, Capel-Sanchez M C, Perez-Presas P, et al. Oxidativeprocesses of desulfurization of liquid fuels [J]. J Chem Technol Biot,2010,85(7):879-90.
    [41]Shiraishi Y, Tachibana K, Hirai T, et al. Desulfurization and denitrogenationprocess for light oils based on chemical oxidation followed by liquid liquidextraction [J]. Ind Eng Chem Res,2002,41(17):4362-75.
    [42]Jin C, Li G, Wang X, et al. A titanium containing micro/mesoporous compositeand its catalytic performance in oxidative desulfurization [J]. Micropor Mesopor Mat,2008,111(1–3):236-42.
    [43]Jin C, Li G, Wang X, et al. Synthesis, Characterization and catalytic performanceof Ti-containing mesoporous molecular sieves assembled from titanosilicateprecursors [J]. Chem Mater,2007,19(7):1664-70.
    [44]孔令艳.钛硅分子筛催化氧化脱除噻吩类硫化物的研究[D];大连理工大学,2005.
    [45]Lü H, Ren W, Wang H, et al. Deep desulfurization of diesel by ionic liquidextraction coupled with catalytic oxidation using an anderson-type catalyst[(C4H9)4N]4NiMo6O24H6[J]. Appl Catal, A,2013,453(0):376-82.
    [46]Xu J, Zhao S, Chen W, et al. Highly efficient extraction and oxidativedesulfurization system using Na7H2LaW10O3632H2O in [bmim]BF4at roomtemperature [J]. Chem Eur J,2012,18(15):4775-81.
    [47]Kulkarni P S, Afonso C a M. Deep desulfurization of diesel fuel using ionicliquids: current status and future challenges [J]. Green Chem,2010,12(7):1139-49.
    [48]Mcnamara N D, Neumann G T, Masko E T, et al. Catalytic performance andstability of (V) MIL-47and (Ti) MIL-125in the oxidative desulfurization ofheterocyclic aromatic sulfur compounds [J]. J Catal,2013,305(0):217-26.
    [49]Hu X, Lu Y, Dai F, et al. Host–guest synthesis and encapsulation ofphosphotungstic acid in MIL-101via “bottle around ship”: An effective catalyst foroxidative desulfurization [J]. Micropor Mesopor Mat,2013,170(0):36-44.
    [50]Khenkin A M, Neumann R. Desulfurization of hydrocarbons by electron transferoxidative polymerization of heteroaromatic sulfides catalyzed by H5PV2Mo10O40polyoxometalate [J]. ChemSusChem,2011,4(3):346-8.
    [51]Chica A, Corma A, Dómine M E. Catalytic oxidative desulfurization (ODS) ofdiesel fuel on a continuous fixed-bed reactor [J]. J Catal,2006,242(2):299-308.
    [52]Lin F, Zhang Y, Wang L, et al. Highly efficient photocatalytic oxidation ofsulfur-containing organic compounds and dyes on TiO2with dual cocatalysts Pt andRuO2[J]. Appl Catal, B,2012,127(0):363-70.
    [53]Xu X, Moulijn J A, Ito E, et al. Deep desulfurization of fossil fuels by air in theabsence of a catalyst [J]. ChemSusChem,2008,1(10):817-9.
    [54]Ma X, Zhou A, Song C. A novel method for oxidative desulfurization of liquidhydrocarbon fuels based on catalytic oxidation using molecular oxygen coupled withselective adsorption [J]. Catal Today,2007,123(1–4):276-84.
    [55]Te M, Fairbridge C, Ring Z. Oxidation reactivities of dibenzothiophenes inpolyoxometalate/H2O2and formic acid/H2O2systems [J]. Appl Catal, A,2001,219(1–2):267-80.
    [56]Otsuki S, Nonaka T, Takashima N, et al. Oxidative desulfurization of light gas oiland vacuum gas oil by oxidation and solvent extraction [J]. Energ Fuel,2000,14(6):1232-9.
    [57]Campos-Martin J M, Blanco-Brieva G, Fierro J L G. Hydrogen peroxide synthesis:an outlook beyond the anthraquinone process [J]. Angew Chem Int Ed,2006,45(42):6962-84.
    [58]Rodriguez-Gattorno G, Galano A, Torres-García E. Surface acid–basic propertiesof WOx–ZrO2and catalytic efficiency in oxidative desulfurization [J]. Appl Catal, B,2009,92(1–2):1-8.
    [59]Gao J, Ma W, Yuan L, et al. Catalytic oxidative desulfurization mechanism inLewis–Br nsted complex acid [J]. Appl Catal, A,2013,467(0):187-95.
    [60]Yan X-M, Mei P, Xiong L, et al. Mesoporous titania-silica-polyoxometalatenanocomposite materials for catalytic oxidation desulfurization of fuel oil [J]. CatalSci Technol,2013,3(8):1985-92.
    [61]Lu H, Gao J, Jiang Z, et al. Oxidative desulfurization of dibenzothiophene withmolecular oxygen using emulsion catalysis [J]. Chem Commun,2007,2):150-2.
    [62]Lü H, Gao J, Jiang Z, et al. Ultra-deep desulfurization of diesel by selectiveoxidation with [C18H37N(CH3)3]4[H2NaPW10O36] catalyst assembled in emulsiondroplets [J]. J Catal,2006,239(2):369-75.
    [63]Gao G, Cheng S, An Y, et al. Oxidative desulfurization of aromatic sulfurcompounds over titanosilicates [J]. ChemCatChem,2010,2(4):459-66.
    [64]Wang Y, Li G, Wang X, et al. Oxidative desulphurization of4,6-dimethyldibenzothiophene with hydrogen peroxide over Ti-HMS [J]. Energ Fuel,2007,21(3):1415-9.
    [65]Xu D, Zhu W, Li H, et al. Oxidative desulfurization of fuels catalyzed by V2O5inionic liquids at room temperature [J]. Energ Fuel,2009,23(12):5929-33.
    [66]Silva G, Voth S, Szymanski P, et al. Oxidation of dibenzothiophene by hydrogenperoxide in the presence of bis(acetylacetonato)oxovanadium(IV)[J]. Fuel ProcessTechnol,2011,92(8):1656-61.
    [67]Cede o-Caero L, Gomez-Bernal H, Fraustro-Cuevas A, et al. Oxidativedesulfurization of synthetic diesel using supported catalysts: Part III. support effect onvanadium-based catalysts [J]. Catal Today,2008,133–135(0):244-54.
    [68]Zhu W, Ding Y, Li H, et al. Application of a self-emulsifiable task-specific ionicliquid in oxidative desulfurization of fuels [J]. RSC Adv,2013,3(12):3893-8.
    [69]Dhir S, Uppaluri R, Purkait M K. Oxidative desulfurization: kinetic modelling [J].J Hazard Mater,2009,161(2–3):1360-8.
    [70]Hasan Z, Jeon J, Jhung S H. Oxidative desulfurization of benzothiophene andthiophene with WOx/ZrO2catalysts: effect of calcination temperature of catalysts [J].J Hazard Mater,2012,205–206(0):216-21.
    [71]Zhu W, Li H, Gu Q, et al. Kinetics and mechanism for oxidative desulfurizationof fuels catalyzed by peroxo-molybdenum amino acid complexes in water-immiscibleionic liquids [J]. J Mol Catal A: Chem,2011,336(1–2):16-22.
    [72]García-Gutiérrez J L, Fuentes G A, Hernández-Terán M E, et al. Ultra-deepoxidative desulfurization of diesel fuel by the Mo/Al2O3-H2O2system: the effect ofsystem parameters on catalytic activity [J]. Appl Catal, A,2008,334(1–2):366-73.
    [73]García-Gutiérrez J L, Fuentes G A, Hernández-Terán M E, et al. Ultra-deepoxidative desulfurization of diesel fuel with H2O2catalyzed under mild conditions bypolymolybdates supported on Al2O3[J]. Appl Catal, A,2006,305(1):15-20.
    [74]De Filippis P, Scarsella M. Oxidative desulfurization: oxidation reactivity ofsulfur compounds in different organic matrixes [J]. Energ Fuel,2003,17(6):1452-5.
    [75]Ali M F, Al-Malki A, El-Ali B, et al. Deep desulphurization of gasoline and dieselfuels using non-hydrogen consuming techniques [J]. Fuel,2006,85(10–11):1354-63.
    [76]Al-Shahrani F, Xiao T, Llewellyn S A, et al. Desulfurization of diesel via theH2O2oxidation of aromatic sulfides to sulfones using a tungstate catalyst [J]. ApplCatal, B,2007,73(3–4):311-6.
    [77]Yu G, Lu S, Chen H, et al. Diesel fuel desulfurization with hydrogen peroxidepromoted by formic acid and catalyzed by activated carbon [J]. Carbon,2005,43(11):2285-94.
    [78]Chen L, Guo S, Zhao D. Oxidative desulfurization of simulated gasoline overmetal oxide-loaded molecular sieve [J]. Chin J Chem Eng,2007,15(4):520-3.
    [79]Shiraishi Y, Taki Y, Hirai T, et al. A novel desulfurization process for fuel oilsbased on the formation and subsequent precipitation of s-alkylsulfonium salts.1. lightoil feedstocks [J]. Ind Eng Chem Res,2001,40(4):1213-24.
    [80]Huang C, Chen B, Zhang J, et al. Desulfurization of gasoline by extraction withnew ionic liquids [J]. Energ Fuel,2004,18(6):1862-4.
    [81]Lu L, Cheng S, Gao J, et al. Deep oxidative desulfurization of fuels catalyzed byionic liquid in the presence of H2O2[J]. Energ Fuel,2006,21(1):383-4.
    [82]Lissner E, De Souza W F, Ferrera B, et al. Oxidative desulfurization of fuels withtask-specific ionic liquids [J]. ChemSusChem,2009,2(10):962-4.
    [83]Li H, Zhu W, Wang Y, et al. Deep oxidative desulfurization of fuels in redox ionicliquids based on iron chloride [J]. Green Chem,2009,11(6):810-5.
    [84]Li F-T, Liu R-H, Jin-Hua W, et al. Desulfurization of dibenzothiophene bychemical oxidation and solvent extraction with Me3NCH2C6H5Cl·2ZnCl2ionic liquid[J]. Green Chem,2009,11(6):883-8.
    [85]Chen X, Song D, Asumana C, et al. Deep oxidative desulfurization of diesel fuelsby Lewis acidic ionic liquids based on1-n-butyl-3-methylimidazolium metal chloride[J]. J Mol Catal A: Chem,2012,359(0):8-13.
    [86]Nie Y, Dong Y, Bai L, et al. Fast oxidative desulfurization of fuel oil usingdialkylpyridinium tetrachloroferrates ionic liquids [J]. Fuel,2013,103(0):997-1002.
    [87]Li H, Jiang X, Zhu W, et al. Deep oxidative desulfurization of fuel oils catalyzedby decatungstates in the ionic liquid of [Bmim]PF6[J]. Ind Eng Chem Res,2009,48(19):9034-9.
    [88]Zhang J, Wang A, Li X, et al. Oxidative desulfurization of dibenzothiophene anddiesel over [Bmim]3PMo12O40[J]. J Catal,2011,279(2):269-75.
    [89]Zhu W, Li H, Jiang X, et al. Oxidative Desulfurization of fuels catalyzed byperoxotungsten and peroxomolybdenum complexes in ionic liquids [J]. Energ Fuel,2007,21(5):2514-6.
    [90]Sampanthar J T, Xiao H, Dou J, et al. A novel oxidative desulfurization process toremove refractory sulfur compounds from diesel fuel [J]. Appl Catal, B,2006,63(1–2):85-93.
    [91]Jiang C, Wang J, Wang S, et al. Oxidative desulfurization of dibenzothiophenewith dioxygen and reverse micellar peroxotitanium under mild conditions [J]. ApplCatal, B,2011,106(3–4):343-9.
    [92]Dooley K M, Liu D, Madrid A M, et al. Oxidative desulfurization of diesel withoxygen: reaction pathways on supported metal and metal oxide catalysts [J]. ApplCatal, A,2013,468(0):143-9.
    [93]Chica A, Gatti G, Moden B, et al. Selective catalytic oxidation of organosulfurcompounds with tert-butyl hydroperoxide [J]. Chem Eur J,2006,12(7):1960-7.
    [94]Yang L, Li J, Yuan X, et al. One step non-hydrodesulfurization of fuel oil:catalyzed oxidation adsorption desulfurization over HPWA-SBA-15[J]. J Mol CatalA: Chem,2007,262(1–2):114-8.
    [95]Song H, Li G, Wang X, et al. Characterization and catalytic performance ofAu/Ti-HMS for direct generation of H2O2and in situ-H2O2-ODS from H2and O2: anin situ-reduction synthesis and a recycle study of catalyst [J]. Micropor Mesopor Mat,2011,139(1–3):104-9.
    [96]Kamata K, Hirano T, Ishimoto R, et al. Sulfoxidation with hydrogen peroxidecatalyzed by [SeO4{WO(O2)2}2]2-[J]. Dalton Trans,2010,39(23):5509-18.
    [97]Collins F M, Lucy A R, Sharp C. Oxidative desulphurisation of oils via hydrogenperoxide and heteropolyanion catalysis [J]. J Mol Catal A: Chem,1997,117(1-3):397-403.
    [98]Te M, Fairbridge C, Ring Z. Oxidation reactivities of dibenzothiophenes inpolyoxometalate/H2O2and formic acid/H2O2systems [J]. Appl Catal, A,2001,219(1-2):267-80.
    [99]Yazu K, Yamamoto Y, Furuya T, et al. Oxidation of dibenzothiophenes in anorganic biphasic system and its application to oxidative desulfurization of light oil [J].Energ Fuel,2001,15(6):1535-6.
    [100] Zhu W, Huang W, Li H, et al. Polyoxometalate-based ionic liquids ascatalysts for deep desulfurization of fuels [J]. Fuel Process Technol,2011,92(10):1842-8.
    [101] Huang W, Zhu W, Li H, et al. Heteropolyanion-based ionic liquid for deepdesulfurization of fuels in ionic liquids [J]. Ind Eng Chem Res,2010,49(19):8998-9003.
    [102] Li C, Jiang Z, Gao J, et al. Ultra-deep desulfurization of diesel: oxidationwith a recoverable catalyst assembled in emulsion [J]. Chem Eur J,2004,10(9):2277-80.
    [103] Huang D, Wang Y J, Yang L M, et al. Chemical oxidation of dibenzothiophenewith a directly combined amphiphilic catalyst for deep desulfurization [J]. Ind EngChem Res,2006,45(6):1880-5.
    [104] Jiang X, Li H, Zhu W, et al. Deep desulfurization of fuels catalyzed bysurfactant-type decatungstates using H2O2as oxidant [J]. Fuel,2009,88(3):431-6.
    [105] Zhang Y, Lü H, Wang L, et al. The oxidation of benzothiophene using theKeggin-type lacunary polytungstophosphate as catalysts in emulsion [J]. J Mol CatalA: Chem,2010,332(1-2):59-64.
    [106] Yin P, Wang J, Xiao Z, et al. Polyoxometalate–organic hybrid molecules asamphiphilic emulsion catalysts for deep desulfurization [J]. Chem Eur J,2012,18(30):9174-8.
    [107] Jiang C, Wang J, Wang S, et al. Oxidative desulfurization ofdibenzothiophene with dioxygen and reverse micellar peroxotitanium under mildconditions [J]. Appl Catal, B,2011,106(3-4):343-9.
    [108] Nisar A, Lu Y, Zhuang J, et al. Polyoxometalate nanocone nanoreactors:magnetic manipulation and enhanced catalytic performance [J]. Angew Chem Int Ed,2011,50(14):3187-92.
    [109] Nisar A, Zhuang J, Wang X. Construction of amphiphilic polyoxometalatemesostructures as a highly efficient desulfurization catalyst [J]. Adv Mater,2011,23(9):1130-5.
    [110] Qi W, Wang Y, Li W, et al. Surfactant-encapsulated polyoxometalates asimmobilized supramolecular catalysts for highly efficient and selective oxidationreactions [J]. Chem Eur J,2010,16(3):1068-78.
    [111] Abdalla Z E A, Li B, Tufail A. Direct synthesis of mesoporous(C19H42N)4H3(PW11O39)/SiO2and its catalytic performance in oxidativedesulfurization [J]. Colloids Surf A,2009,341(1-3):86-92.
    [112] Yan X-M, Mei P, Lei J, et al. Synthesis and characterization of mesoporousphosphotungstic acid/TiO2nanocomposite as a novel oxidative desulfurizationcatalyst [J]. J Mol Catal A: Chem,2009,304(1–2):52-7.
    [113] Capel-Sanchez M C, Perez-Presas P, Campos-Martin J M, et al. Highlyefficient deep desulfurization of fuels by chemical oxidation [J]. Catal Today,2010,157(1-4):390-6.
    [114] Bigi F, Corradini A, Quarantelli C, et al. Silica-bound decatungstates asheterogeneous catalysts for H2O2activation in selective sulfide oxidation [J]. J Catal,2007,250(2):222-30.
    [115] Zhang H, Gao J, Meng H, et al. Removal of thiophenic sulfurs using anextractive oxidative desulfurization process with three new phosphotungstate catalysts[J]. Industrial&Engineering Chemistry Research,2012,51(19):6658-65.
    [116] Zhang B, Jiang Z, Li J, et al. Catalytic oxidation of thiophene and itsderivatives via dual activation for ultra-deep desulfurization of fuels [J]. J Catal,2012,287(0):5-12.
    [117] Ding Y, Zhu W, Li H, et al. Catalytic oxidative desulfurization with ahexatungstate/aqueous H2O2/ionic liquid emulsion system [J]. Green Chem,2011,13(5):1210-6.
    [118] Thuy Pham T P, Cho C-W, Yun Y-S. Environmental fate and toxicity of ionicliquids: a review [J]. Water Res,2010,44(2):352-72.
    [119] Wu Z, Ondruschka B. Ultrasound-assisted oxidative desulfurization of liquidfuels and its industrial application [J]. Ultrason Sonochem,2010,17(6):1027-32.
    [120] Thompson L H, Doraiswamy L K. Sonochemistry: science and engineering[J]. Ind Eng Chem Res,1999,38(4):1215-49.
    [121] Tu S P, Yen T F. The feasibility studies for radical-induced decompositionand demetalation of metalloporphyrins by ultrasonication [J]. Energ Fuel,2000,14(6):1168-75.
    [122] Bhasarkar J B, Chakma S, Moholkar V S. Mechanistic features of oxidativedesulfurization using sono-fenton–peracetic acid (ultrasound/Fe2+–CH3COOH–H2O2)system [J]. Ind Eng Chem Res,2013,52(26):9038-47.
    [123] Calcio Gaudino E, Carnaroglio D, Boffa L, et al. Efficient H2O2/CH3COOHoxidative desulfurization/denitrification of liquid fuels in sonochemical flow-reactors[J]. Ultrason Sonochem,2014,21(1):283-8.
    [124] Shiraishi Y, Hirai T, Komasawa I. Photochemical denitrogenation processesfor light oils effected by a combination of UV irradiation and liquid liquid extraction[J]. Ind Eng Chem Res,2000,39(8):2826-36.
    [125] Wang L, Shen B-X, Li S-Z. Model of fluidized catalytically cracked (FCC)gasoline photochemical desulfurization reactor [J]. Energ Fuel,2006,20(3):1287-93.
    [126] Lin F, Wang D, Jiang Z, et al. Photocatalytic oxidation of thiophene onBiVO4with dual co-catalysts Pt and RuO2under visible light irradiation usingmolecular oxygen as oxidant [J]. Energy Environ Sci,2012,5(4):6400-6.
    [127] Wang W, Wang S, Liu H, et al. Desulfurization of gasoline by a new methodof electrochemical catalytic oxidation [J]. Fuel,2007,86(17–18):2747-53.
    [128] Ma C, Dai B, Xu C, et al. Deep oxidative desulfurization of model fuel viadielectric barrier discharge plasma oxidation using MnO2catalysts and combinationof ionic liquid extraction [J]. Catal Today,2013,211(0):84-9.
    [129]李泽江.我国双氧水生产技术与市场分析[J].精细与专用化学品,2010,(11):1-5.
    [130] Collins F M, Lucy A R, Sharp C. Oxidative desulphurisation of oils viahydrogen peroxide and heteropolyanion catalysis [J]. J Mol Catal A: Chem,1997,117(1–3):397-403.
    [131] Fields E K, Meyerson S. Pyrolysis and mass spectrum of dibenzothiophene5,5-dioxide [J]. J Am Chem Soc,1966,88(12):2836-7.
    [132] Wallace T J, Heimlich B N. The decomposition of dibenzothiophene dioxideand related compounds in the presence of molten alkali [J]. Tetrahedron,1968,24(3):1311-22.
    [133] Lacount R B, Friedman S. Oxidation of dibenzothiophene and reaction ofdibenzothiophene5,5-dioxide with aqueous alkali [J]. The Journal of OrganicChemistry,1977,42(16):2751-4.
    [134] Varga T R, Ikeda Y, Tomiyasu H. Desulfuration of aromatic sulfones withfluorides in supercritical water [J]. Energ Fuel,2003,18(1):287-8.
    [135] Al-Shahrani F M, Xiao T, Shi H, et al. Hydrocarbon recovery from sulfonesformed by oxidative desulfurization process [P]U.S. Patent Application, US12/939,598.2010-11-4.
    [136] Anastas P T, Zimmerman J B. Peer Reviewed: design through the12principles of green engineering [J]. Environ Sci Technol,2003,37(5):94A-101A.
    [137] Anastas P T, Warner J C. Green chemistry: theory and practice [M]. OxfordUniversity Press,2000.
    [138] Anastas P, Eghbali N. Green chemistry: principles and practice [J]. Chem SocRev,2010,39(1):301-12.
    [139] Jones C W. Applications of hydrogen peroxide and derivatives [M]. RoyalSociety of Chemistry,1999.
    [140] Sheldon R A, Van Bekkum H. Fine chemicals through heterogeneouscatalysis [M]. John Wiley&Sons,2008.
    [141] Hua L, Qiao Y, Li H, et al. Epoxidation of olefins with hydrogen peroxidecatalyzed by a reusable lacunary-type phosphotungstate catalyst [J]. Sci China Chem,2011,54(5):769-73.
    [142] Zhang S, Zhao G, Gao S, et al. Secondary alcohols oxidation with hydrogenperoxide catalyzed by [n-C16H33N(CH3)3]3PW12O40: transform-and-retransformprocess between catalytic precursor and catalytic activity species [J]. J Mol Catal A:Chem,2008,289(1–2):22-7.
    [143] Gao J, Zhang Y, Jia G, et al. A direct imaging of amphiphilic catalystsassembled at the interface of emulsion droplets using fluorescence microscopy [J].Chem Commun,2008,0(3):332-4.
    [144] Wang Q, Zhang X, Wang L, et al. Epoxidation of hydroxyl-terminatedpolybutadiene with hydrogen peroxide under phase-transfer catalysis [J]. J Mol CatalA: Chem,2009,309(1–2):89-94.
    [145] Xue J, Wang A, Yin H, et al. Oxidation of cyclopentene catalyzed byphosphotungstic quaternary ammonium salt catalysts [J]. J Ind Eng Chem,2010,16(2):288-92.
    [146] Tayebee R. Epoxidation of some olefins with hydrogen peroxide catalyzedby heteropolyoxometalates [J]. Asian J Chem,2008,20(1):8-14.
    [147] Liu L, Chen C, Hu X, et al. A role of ionic liquid as an activator for efficientolefin epoxidation catalyzed by polyoxometalate [J]. New J Chem,2008,32(2):283-9.
    [148] Chen G, Zhou Y, Zhao P, et al. Mesostructured dihydroxy-functionalizedguanidinium-based polyoxometalate with enhanced heterogeneous catalytic activity inepoxidation [J]. ChemPlusChem,2013,78(6):561-9.
    [149] Zhang A, Zhang Y, Wang P, et al. Mesoporous SBA-15materials modifiedwith PW or W active species as catalysts for the epoxidation of olefins with H2O2[J].Res Chem Intermed,2011,37(8):975-84.
    [150] Jahier C, Plault L, Nlate S. Encapsulation of polyoxotungstate intodendrimers by ionic bonding and their use as oxidation catalyst [J]. Isr J Chem,2009,49(1):109-18.
    [151] Haimov A, Cohen H, Neumann R. Alkylatedpolyethyleneimine/polyoxometalate synzymes as catalysts for the oxidation ofhydrophobic substrates in water with hydrogen peroxide [J]. J Am Chem Soc,2004,126(38):11762-3.
    [152] Doherty S, Knight J G, Ellison J R, et al. An efficient recyclableperoxometalate-based polymer-immobilised ionic liquid phase (PIILP) catalyst forhydrogen peroxide-mediated oxidation [J]. Green Chem,2012,14(4):925-9.
    [153] Leng Y, Zhang W, Wang J, et al. A novel heteropolyanion-basedamino-containing cross-linked ionic copolymer catalyst for epoxidation of alkeneswith H2O2[J]. Appl Catal, A,2012,445–446(0):306-11.
    [154] Qiao Y, Li H, Hua L, et al. Peroxometalates immobilized on magneticallyrecoverable catalysts for epoxidation [J]. ChemPlusChem,2012,77(12):1128-38.
    [155] Kooti M, Afshari M. Phosphotungstic acid supported on magneticnanoparticles as an efficient reusable catalyst for epoxidation of alkenes [J]. MaterRes Bull,2012,47(11):3473-8.
    [156] Liu P, Wang C, Li C. Epoxidation of allylic alcohols on self-assembledpolyoxometalates hosted in layered double hydroxides with aqueous H2O2as oxidant[J]. J Catal,2009,262(1):159-68.
    [157] Uchida S, Kamata K, Ogasawara Y, et al. Structural and dynamical aspects ofalkylammonium salts of a silicodecatungstate as heterogeneous epoxidation catalysts[J]. Dalton Trans,2012,41(33):9979-83.
    [158] Qiao Y, Hou Z, Li H, et al. Polyoxometalate-based protic alkylimidazoliumsalts as reaction-induced phase-separation catalysts for olefin epoxidation [J]. GreenChem,2009,11(12):1955-60.
    [159] Hua L, Qiao Y, Yu Y, et al. A Ti-substituted polyoxometalate as aheterogeneous catalyst for olefin epoxidation with aqueous hydrogen peroxide [J].New J Chem,2011,35(9):1836-41.
    [160] Hajian R, Tangestaninejad S, Moghadam M, et al.[PZnMo2W9O39]5immobilized on ionic liquid-modified silica as a heterogeneous catalyst forepoxidation of olefins with hydrogen peroxide [J]. CR Chim,2012,15(11–12):975-9.
    [161] Kamata K, Yonehara K, Sumida Y, et al. Efficient epoxidation of olefins with≥99%selectivity and use of hydrogen peroxide [J]. Science,2003,300(5621):964-6.
    [162] Mansuy D, Bartoli J F, Battioni P, et al. Highly oxidation resistantinorganic-porphyrin analog polyoxometalate oxidation catalysts.2. catalysis of olefinepoxidation and aliphatic and aromatic hydroxylations starting fromα2-P2W17O61(Mn+·Br)(n-11)(Mn+=Mn3+,Fe3+,Co2+,Ni2+,Cu2+), including quantitativecomparisons to metalloporphyrin catalysts [J]. J Am Chem Soc,1991,113(19):7222-6.
    [163] Sato K, Aoki M, Ogawa M, et al. A practical method for epoxidation ofterminal olefins with30%hydrogen peroxide under halide-free conditions [J]. J OrgChem,1996,61(23):8310-1.
    [164] Maksimchuk N V, Timofeeva M N, Melgunov M S, et al. Heterogeneousselective oxidation catalysts based on coordination polymer MIL-101and transitionmetal-substituted polyoxometalates [J]. J Catal,2008,257(2):315-23.
    [165] Neumann R, Gara M. Highly active manganese-containing polyoxometalateas catalyst for epoxidation of alkenes with hydrogen peroxide [J]. J Am Chem Soc,1994,116(12):5509-10.
    [166] Vasylyev M V, Neumann R. New heterogeneous polyoxometalate basedmesoporous catalysts for hydrogen peroxide mediated oxidation reactions [J]. J AmChem Soc,2003,126(3):884-90.
    [167] B sing M, N h A, Loose I, et al. Highly efficient catalysts in directedoxygen-transfer processes: synthesis, structures of novel manganese-containingheteropolyanions, and applications in regioselective epoxidation of dienes withhydrogen peroxide [J]. J Am Chem Soc,1998,120(29):7252-9.
    [168] Zhao W, Ding Y. A kinetic and spectroscopic study on the polyoxometalatespecies in a reaction-controlled phase transfer catalytic epoxidation system [J]. ReacKinet Mech Cat,2013,109(2):509-24.
    [169] Kozhevnikov I V. Catalysis by heteropoly acids and multicomponentpolyoxometalates in liquid-phase reactions [J]. Chem Rev,1998,98(1):171-98.
    [170] Duncan D C, Chambers R C, Hecht E, et al. Mechanism and dynamics in theH3[PW12O40]-catalyzed selective epoxidation of terminal olefins by H2O2. formation,reactivity, and stability of {PO4[WO(O2)2]4}3-[J]. J Am Chem Soc,1995,117(2):681-91.
    [171] Casuscelli S G, Crivello M E, Perez C F, et al. Effect of reaction conditionson limonene epoxidation with H2O2catalyzed by supported Kegginheteropolycompounds [J]. Appl Catal, A,2004,274(1–2):115-22.
    [172] Ding Y, Gao Q, Li G, et al. Selective epoxidation of cyclohexene tocyclohexene oxide catalyzed by Keggin-type heteropoly compounds using anhydrousurea–hydrogen peroxide as oxidizing reagent and acetonitrile as the solvent [J]. J MolCatal A: Chem,2004,218(2):161-70.
    [173] Noyori R, Aoki M, Sato K. Green oxidation with aqueous hydrogen peroxide[J]. Chem Commun,2003,16):1977-86.
    [174] Fressancourt-Collinet M, Hong B, Leclercq L, et al. Acidicthree-liquid-phase microemulsion systems based on balanced catalytic surfactant forepoxidation and sulfide oxidation under mild conditions [J]. Adv Synth Catal,2013,355(2-3):409-20.
    [175] Nardello-Rataj V R, Caron L, Borde C D, et al. Oxidation inthree-liquid-phase microemulsion systems using “balanced catalytic surfactants”[J]. JAm Chem Soc,2008,130(45):14914-5.
    [176] Leclercq L, Company R, Mühlbauer A, et al. Versatile eco-friendly pickeringemulsions based on substrate/native cyclodextrin complexes: a winning approach forsolvent-free oxidations [J]. ChemSusChem,2013,6(8):1533-40.
    [177] Mouret A, Leclercq L, Muhlbauer A, et al. Eco-friendly solvents andamphiphilic catalytic polyoxometalate nanoparticles: a winning combination forolefin epoxidation [J]. Green Chem,2014,16(1):269-78.
    [178] Mizuno N, Yamaguchi K. Polyoxometalate catalysts: toward thedevelopment of green H2O2-based epoxidation systems [J]. Chem Rec,2006,6(1):12-22.
    [179] Lu H, Gao J, Jiang Z, et al. Oxidative desulfurization of dibenzothiophenewith molecular oxygen using emulsion catalysis [J]. Chem Commun,2007,0(2):150-2.
    [180] Shen M, Resasco D E. Emulsions stabilized by carbon nanotube silicananohybrids [J]. Langmuir,2009,25(18):10843-51.
    [181] Binks B P. Particles as surfactants—similarities and differences [J]. CurrOpin Colloid In,2002,7(1–2):21-41.
    [182] Yoon K Y, Li Z, Neilson B M, et al. Effect of adsorbed amphiphiliccopolymers on the interfacial activity of superparamagnetic nanoclusters and theemulsification of oil in water [J]. Macromolecules,2012,45(12):5157-66.
    [183] Binks B P, Whitby C P. Silica particle-stabilized emulsions of silicone oil andwater: aspects of emulsification [J]. Langmuir,2004,20(4):1130-7.
    [184] Leal-Calderon F, Schmitt V. Solid-stabilized emulsions [J]. Curr OpinColloid In,2008,13(4):217-27.
    [185] Crossley S, Faria J, Shen M, et al. Solid nanoparticles that catalyze biofuelupgrade reactions at the water/oil interface [J]. Science,2010,327(5961):68-72.
    [186] Ruiz M P, Faria J, Shen M, et al. Nanostructured carbon–metal oxide hybridsas amphiphilic emulsion catalysts [J]. ChemSusChem,2011,4(7):964-74.
    [187] Zapata P A, Faria J, Ruiz M P, et al. Hydrophobic zeolites for biofuelupgrading reactions at the liquid–liquid interface in water/oil emulsions [J]. J AmChem Soc,2012,134(20):8570-8.
    [188] Leclercq L, Mouret A, Proust A, et al. Pickering emulsion stabilized bycatalytic polyoxometalate nanoparticles: a new effective medium for oxidationreactions [J]. Chem Eur J,2012,18(45):14352-8.
    [189] Drexler S, Faria J, Ruiz M P, et al. Amphiphilic nanohybrid catalysts forreactions at the water/oil interface in subsurface reservoirs [J]. Energ Fuel,2012,26(4):2231-41.
    [190] Zapata P, Faria J, Pilar Ruiz M, et al. Condensation/hydrogenation ofbiomass-derived oxygenates in water/oil emulsions stabilized by nanohybrid catalysts[J]. Top Catal,2012,55(1-2):38-52.
    [191] Tan H, Zhang P, Wang L, et al. Multifunctional amphiphilic carbonaceousmicrocapsules catalyze water/oil biphasic reactions [J]. Chem Commun,2011,47(43):11903-5.
    [192] Faria J, Ruiz M P, Resasco D E. Phase-selective catalysis in emulsionsstabilized by janus silica-nanoparticles [J]. Adv Synth Catal,2010,352(14-15):2359-64.
    [193] Yang X, Wang X, Qiu J. Aerobic oxidation of alcohols over carbonnanotube-supported Ru catalysts assembled at the interfaces of emulsion droplets [J].Appl Catal, A,2010,382(1):131-7.
    [194] Srour H, Maux P L, Simonneaux G. Enantioselectivemanganese-porphyrin-catalyzed epoxidation and C–H hydroxylation with hydrogenperoxide in water/methanol solutions [J]. Inorg Chem,2012,51(10):5850-6.
    [195] Colladon M, Scarso A, Strukul G. Towards a greener epoxidation method: useof water-surfactant media and catalyst recycling in the platinum-catalyzed asymmetricepoxidation of terminal alkenes with hydrogen peroxide [J]. Adv Synth Catal,2007,349(6):797-801.
    [196] Malkov A V, Czemerys L, Malyshev D A. Vanadium-catalyzed asymmetricepoxidation of allylic alcohols in water [J]. J Org Chem,2009,74(9):3350-5.
    [197] Sakamoto T, Pac C. Selective epoxidation of olefins by hydrogen peroxide inwater using a polyoxometalate catalyst supported on chemically modifiedhydrophobic mesoporous silica gel [J]. Tetrahedron Lett,2000,41(51):10009-12.
    [198] Gao S, Xi Z. Chapter17-reaction-controlled phase-transfer catalysis forepoxidation of olefins [M]//OYAMA S T. Mechanisms in homogeneous andheterogeneous epoxidation catalysis. Amsterdam; Elsevier.2008:429-47.
    [199] Zuwei X, Ning Z, Yu S, et al. Reaction-controlled phase-transfer catalysis forpropylene epoxidation to propylene oxide [J]. Science,2001,292(5519):1139-41.
    [200] Yang X, Gao S, Xi Z. Reaction-controlled phase transfer catalysis for styreneepoxidation to styrene oxide with aqueous hydrogen peroxide [J]. Org Process ResDev,2005,9(3):294-6.
    [201] Gao J, Chen Y, Han B, et al. A spectroscopic study on the reaction-controlledphase transfer catalyst in the epoxidation of cyclohexene [J]. J Mol Catal A: Chem,2004,210(1–2):197-204.
    [202] Chen Y, Zhuang J, Liu X, et al. On the nature of reaction-controlled phasetransfer catalysts for epoxidation of olefin: a31P NMR investigation [J]. Catal Lett,2004,93(1):41-6.
    [203] Ding Y, Zhao W, Hua H, et al.[π-C5H5N(CH2)15CH3]3[PW4O32]/H2O2/ethylacetate/alkenes: a recyclable and environmentally benign alkenes epoxidationcatalytic system [J]. Green Chem,2008,10(9):910-3.
    [204] Zhu W, Wu P, Chao Y, et al. A novel reaction-controlled foam-typepolyoxometalate catalyst for deep oxidative desulfurization of fuels [J]. Ind EngChem Res,52(49):17399-406.
    [205] Yang Y, Zhang B, Wang Y, et al. A photo-driven polyoxometalate complexshuttle and its homogeneous catalysis and heterogeneous separation [J]. J Am ChemSoc,135(39):14500-3.
    [206] Leng Y, Wang J, Zhu D, et al. Heteropolyanion-based ionic liquids:reaction-induced self-separation catalysts for esterification [J]. Angew Chem Int Ed,2009,48(1):168-71.
    [207] Ding Y, Zhao W. The oxidation of pyridine and alcohol using theKeggin-type lacunary polytungstophosphate as a temperature-controlled phasetransfer catalyst [J]. J Mol Catal A-Chem,2011,337(1-2):45-51.
    [208] Rafiee E, Eavani S. Organic-inorganic polyoxometalate based salts asthermoregulated phase-separable catalysts for selective oxidation of thioethers andthiophenes and deep desulfurization of model fuels [J]. J Mol Catal A: Chem,380(0):18-27.
    [209] Liu D, Gui J, Lu F, et al. New simple synthesis route for decatungstatehybrids: novel thermo-regulated phase transfer catalysts for selective oxidation ofalcohols [J]. Catal Lett,142(11):1330-5.
    [210] Chen X, Souvanhthong B, Wang H, et al. Polyoxometalate-based ionic liquidas thermoregulated and environmentally friendly catalyst for starch oxidation [J].Appl Catal, B,2013,138–139(0):161-6.
    [211]许春建,吕东来,李宏伟,等.吸附蒸馏提纯叔丁醇及异丙醇[J].化学工业与工程,2004,21(1):1-4.
    [212]胡泽祥,李春生,周立坤,等.柴油润滑性问题的由来和研究现状[J].石油学报(石油加工),2005,21(1):18-25.
    [213]孙剑,王海燕,代秀川,等.柴油十六烷值改进剂的研究进展[J].化学与生物工程,2007,24(3):1-4.
    [214] Oyama S T, Gott T, Zhao H, et al. Transition metal phosphidehydroprocessing catalysts: A review [J]. Catal Today,2009,143(1–2):94-107.
    [215] Wang L, Zhang Y, Zhang Y, et al. Hydrodesulfurization of4,6-DMDBT on amulti-metallic sulfide catalyst with layered structure [J]. Appl Catal, A,2011,394(1–2):18-24.
    [216] Zhang G, Yu F, Wang R. Research advances in oxidative desulfurizationtechnologies for the production of low sulfer fuel oils[J]. Petrol Coal,2009,51(3):196-207.
    [217] Kong L, Li G, Wang X. Mild oxidation of thiophene over TS-1/H2O2[J].Catal Today,2004,93–95(0):341-5.
    [218] Komintarachat C, Trakarnpruk W. Oxidative desulfurization usingpolyoxometalates [J]. Ind Eng Chem Res,2006,45(6):1853-6.
    [219] Lo W-H, Yang H-Y, Wei G-T. One-pot desulfurization of light oils bychemical oxidation and solvent extraction with room temperature ionic liquids [J].Green Chem,2003,5(5):639-42.
    [220] Jianhua G, Yuming Z, Yong Y, et al. Catalytic oxidative desulfurization ofgasoline using vanadium (V)-substituted polyoxometalate/H2O2/ionic liquid emulsionSystem [J].中国炼油与石油化工(英文版,2012,14(1):
    [221] Inumaru K, Ishihara T, Kamiya Y, et al. Water-tolerant, highly active solidacid catalysts composed of the Keggin-type polyoxometalate H3PW12O40immobilizedin hydrophobic nanospaces of organomodified mesoporous silica [J]. Angew ChemInt Ed,2007,46(40):7625-8.
    [222] Poli E, De Sousa R, Jerome F, et al. Catalytic epoxidation of styrene andmethyl oleate over peroxophosphotungstate entrapped in mesoporous SBA-15[J].Catal Sci Technol,2012,2(5):910-4.
    [223] Zhang R, Yang C. A novel polyoxometalate-functionalized mesoporoushybrid silica: synthesis and characterization [J]. J Mater Chem,2008,18(23):2691-703.
    [224] Bordoloi A, Lefebvre E, Halligudi S B. Selective oxidation of anthraceneusing inorganic-organic hybrid materials based on molybdovanadophosphoric acids[J]. J Catal,2007,247(2):166-75.
    [225] Maksimchuk N V, Meigunov M S, Chesalov Y A, et al. Aerobic oxidations ofalpha-pinene over cobalt-substituted polyoxometalate supported on amino-modifiedmesoporous silicates [J]. J Catal,2007,246(2):241-8.
    [226] Raj N K K, Deshpande S S, Ingle R H, et al. Heterogenizedmolybdovanadophosphoric acid on amine-functionalized SBA-15for selectiveoxidation of alkenes [J]. Catal Lett,2004,98(4):217-23.
    [227] Li B S, Ma W, Liu J J, et al. Preparation of MCM-41incorporated withlacunary Keggin polyoxometalate and its catalytic performance in esterification [J]. JColloid Interface Sci,2011,362(1):42-9.
    [228] Rana S, Mallick S, Parida K M. Selective oxidation of benzaldehyde bymolecular oxygen over molybdovanadophosphoric acid supported MCM-41[J]. JPorous Mater,2012,19(4):397-404.
    [229] Hajian R, Tangestaninejad S, Moghadam M, et al. Olefin epoxidation withtert-BuOOH catalyzed by vanadium polyoxometalate immobilized on ionicliquid-modified MCM-41[J]. J Coord Chem,2011,64(23):4134-44.
    [230] Takashima T, Yamaguchi A, Hashimoto K, et al. Multielectron-transferreactions at single Cu(ii) centers embedded in polyoxotungstates driven byphoto-induced metal-to-metal charge transfer from anchored Ce(iii) to frameworkW(vi)[J]. Chem Commun,2012,48(24):2964-6.
    [231] Bordoloi A, Lefebvre F, Halligudi S B. Selective oxidation of anthraceneusing inorganic–organic hybrid materials based on molybdovanadophosphoric acids[J]. J Catal,2007,247(2):166-75.
    [232] Zhu K, Hu J, She X, et al. Characterization of dispersed heteropoly acid onmesoporous zeolite using solid-state31P NMR spin lattice relaxation [J]. J Am ChemSoc,2009,131(28):9715-21.
    [233] Al-Oweini R, Aghyarian S, El-Rassy H. Immobilized polyoxometalates ontomesoporous organically-modified silica aerogels as selective heterogeneous catalystsof anthracene oxidation [J]. J Sol-Gel Sci Technol,2012,61(3):541-50.
    [234] Sousa J L C, Santos I, Simoes M M Q, et al. Iron(III)-substitutedpolyoxotungstates immobilized on silica nanoparticles: novel oxidative heterogeneouscatalysts [J]. Catal Commun,2011,12(6):459-63.
    [235] Fazaeli R, Aliyan H. A Heterogeneous catalyst for efficient and greensynthesis of2-arylbenzothiazoles and2-arylbenzimidazoles [J]. Appl Catal, A,2009,353(1):74-9.
    [236] Maksimchuk N V, Kholdeeva O A, Kovalenko K A, et al. MIL-101supportedpolyoxometalates: synthesis, characterization, and catalytic applications in selectiveliquid-phase oxidation [J]. Isr J Chem,2011,51(2):281-9.
    [237] Kholdeeva O A, Maksimchuk N V, Maksimov G M. Polyoxometalate-basedheterogeneous catalysts for liquid phase selective oxidations: comparison of differentstrategies [J]. Catal Today,2010,157(1–4):107-13.
    [238] Notestein J M, Katz A. Enhancing heterogeneous catalysis throughcooperative hybrid organic–inorganic interfaces [J]. Chem Eur J,2006,12(15):3954-65.
    [239] Tundo P, Venturello P. Synthesis, catalytic activity, and behavior ofphase-transfer catalysts supported on silica gel. strong influence of substrateadsorption on the polar polymeric matrix on the efficiency of the immobilizedphosphonium salts [J]. J Am Chem Soc,1979,101(22):6606-13.
    [240] Aubry C, Chottard G, Platzer N, et al. Reinvestigation of epoxidation usingtungsten-based precursors and hydrogen peroxide in a biphase medium [J]. InorgChem,1991,30(23):4409-15.
    [241] Lane B S, Burgess K. Metal-catalyzed epoxidations of alkenes with hydrogenperoxide [J]. Chem Rev,2003,103(7):2457-74.
    [242] Sheldon R A, Wallau M, Arends I W C E, et al. Heterogeneous catalysts forliquid-phase oxidations: philosophers' stones or trojan horses?[J]. Acc Chem Res,1998,31(8):485-93.
    [243] Burke A J. Chiral oxoperoxomolybdenum(VI) complexes for enantioselectiveolefin epoxidation: some mechanistic and stereochemical reflections [J]. Coord ChemRev,2008,252(1–2):170-5.
    [244] Mizuno N, Yamaguchi K, Kamata K. Epoxidation of olefins with hydrogenperoxide catalyzed by polyoxometalates [J]. Coord Chem Rev,2005,249(17–18):1944-56.
    [245] Licini G, Conte V, Coletti A, et al. Recent advances in vanadium catalyzedoxygen transfer reactions [J]. Coord Chem Rev,2011,255(19–20):2345-57.
    [246] Chatterjee D. Asymmetric epoxidation of unsaturated hydrocarbons catalyzedby ruthenium complexes [J]. Coord Chem Rev,2008,252(1–2):176-98.
    [247] Mcgarrigle E M, Gilheany D G. Chromium and manganese salen promotedepoxidation of alkenes [J]. Chem Rev,2005,105(5):1563-602.
    [248] Xia Q H, Ge H Q, Ye C P, et al. Advances in homogeneous andheterogeneous catalytic asymmetric epoxidation [J]. Chem Rev,2005,105(5):1603-62.
    [249] Rose E, Andrioletti B, Zrig S, et al. Enantioselective epoxidation of olefinswith chiral metalloporphyrin catalysts [J]. Chem Soc Rev,2005,34(7):573-83.
    [250] Du D-Y, Yan L-K, Su Z-M, et al. Chiral polyoxometalate-based materials:from design syntheses to functional applications [J]. Coord Chem Rev,2013,257(3–4):702-17.
    [251]李军,高爽,奚祖威.反应控制相转移催化研究的进展[J].催化学报,2010,31(8):
    [252] Rao G K, Kumar A, Singh M P, et al. Influence of pendent alkyl chains onHeck and Sonogashira C-C coupling catalyzed with palladium(II) complexes ofselenated Schiff bases having liquid crystalline properties [J]. J Organomet Chem,753(0):42-7.
    [253] Li W, Bu W, Li H, et al. A surfactant-encapsulated polyoxometalate complextowards a thermotropic liquid crystal [J]. Chem Commun,2005,30):3785-7.
    [254] Yin S, Sun H, Yan Y, et al. Hydrogen-bonding-induced supramolecular liquidcrystals and luminescent properties of europium-substituted polyoxometalate hybrids[J]. J Phys Chem B,2009,113(8):2355-64.
    [255] Lin X, Li W, Zhang J, et al. Thermotropic liquid crystals of a non-mesogenicgroup bearing surfactant-encapsulated polyoxometalate complexes [J]. Langmuir,2010,26(16):13201-9.
    [256] Jiang W, Liu L, Hao J. Polyoxometalate-lyotropic liquid crystal hybridmaterial formed in room-temperature ionic liquids [J]. J Nanosci Nanotechnol,2011,11(3):2168-74.
    [257] Yin S, Sun H, Yan Y, et al. Self-assembly and supramolecular liquid crystalsbased on organic cation encapsulated polyoxometalate hybrid reverse micelles andpyridine derivatives [J]. J Colloid Interface Sci,2011,361(2):548-55.
    [258] Jiang Y, Liu S, Zhang J, et al. Phase modulation of thermotropic liquidcrystals of tetra-n-alkylammonium polyoxometalate ionic complexes [J]. Dalton Trans,2013,42(21):7643-50.
    [259] Venturello C, D'aloisio R. Quaternary ammoniumtetrakis(diperoxotungsto)phosphates(3-) as a new class of catalysts for efficient alkeneepoxidation with hydrogen peroxide [J]. J Org Chem,1988,53(7):1553-7.
    [260] Yang X-L, Dai W-L, Gao R, et al. Characterization and catalytic behavior ofhighly active tungsten-doped SBA-15catalyst in the synthesis of glutaraldehyde usingan anhydrous approach [J]. J Catal,2007,249(2):278-88.
    [261] Barr T L. An ESCA study of the termination of the passivation of elementalmetals [J]. J Phys Chem,1978,82(16):1801-10.
    [262] Yoshida T. An X-ray photoelectron spectroscopic study of dioxime metalcomplexes [J]. Bull Chem Soc Jpn,1978,51(11):3257-60.
    [263] Lindberg B J, Hedman J. Molecular spectroscopy by means of ESCA.6.group shifts for N, P and as compounds [J]. Chem Scr,1975,7(4):155-66.
    [264] Salles L, Aubry C, Thouvenot R, et al.31P and183W NMR spectroscopicevidence for novel peroxo species in the "H3[PW12O40]·yH2O/H2O2" system. synthesisand X-ray structure of tetrabutylammonium (μ-Hydrogenphosphato)bis(μ-peroxo)bis(oxoperoxotungstate)(2-): a catalyst of olefin epoxidationin a biphase medium [J]. Inorg Chem,1994,33(5):871-8.
    [265] Gresley N M, Griffith W P, Laemmel A C, et al. Studies on polyoxo andpolyperoxo-metalates part5: peroxide-catalysed oxidations withheteropolyperoxo-tungstates and-molybdates [J]. J Mol Catal A: Chem,1997,117(1997):185-98.
    [266] Weber R S. Effect of local structure on the UV-visible absorption edges ofmolybdenum oxide clusters and supported molybdenum oxides [J]. J Catal,1995,151(2):470-4.
    [267] Qiao Y, Hou Z, Li H, et al. Polyoxometalate-based protic alkylimidazoliumsalts as reaction-induced phase-separation catalysts for olefin epoxidation [J]. GreenChem,2009,11(12):
    [268] Neumann R, Khenkin A M. Peroxometalate catalyzed oxidations withhydrogen peroxide in biphasic reaction media: reactions in inverse emulsions [J]. TheJournal of Organic Chemistry,1994,59(25):7577-9.
    [269] Lambert A, Plucinski P, Kozhevnikov I V. Polyoxometalate-catalysedepoxidation of1-octene with hydrogen peroxide in microemulsions coupled withultrafiltration [J]. Chem Commun,2003,0(6):714-5.
    [270] Rezaeifard A, Jafarpour M, Naeimi A, et al. Aqueous heterogeneousoxygenation of hydrocarbons and sulfides catalyzed by recoverable magnetitenanoparticles coated with copper(ii) phthalocyanine [J]. Green Chem,2012,14(12):3386-94.
    [271] Sakamoto T, Pac C J. Selective epoxidation of olefins by hydrogen peroxidein water using a polyoxometalate catalyst supported on chemically modifiedhydrophobic mesoporous silica gel [J]. Tetrahedron Lett,2000,41(51):10009-12.
    [272] Zhu Y, Murali S, Cai W, et al. Graphene and graphene oxide: synthesis,properties, and applications [J]. Adv Mater,2010,22(35):3906-24.
    [273] Dreyer D R, Jia H-P, Bielawski C W. Graphene oxide: a convenientcarbocatalyst for facilitating oxidation and hydration reactions [J]. Angew Chem IntEd,2010,49(38):6813-6.
    [274] Dhakshinamoorthy A, Alvaro M, Concepcion P, et al. Graphene oxide as anacid catalyst for the room temperature ring opening of epoxides [J]. Chem Commun,2012,48(44):5443-5.
    [275] Mirza-Aghayan M, Kashef-Azar E, Boukherroub R. Graphite oxide: anefficient reagent for oxidation of alcohols under sonication [J]. Tetrahedron Lett,2012,53(37):4962-5.
    [276] Long Y, Zhang C, Wang X, et al. Oxidation of SO2to SO3catalyzed bygraphene oxide foams [J]. J Mater Chem,2011,21(36):13934-41.
    [277] Dreyer D R, Jia H-P, Todd A D, et al. Graphite oxide: a selective and highlyefficient oxidant of thiols and sulfides [J]. Org Biomol Chem,2011,9(21):7292-5.
    [278] Chen J, Liu S, Feng W, et al. Fabrication phosphomolybdic acid-reducedgraphene oxide nanocomposite by UV photo-reduction and its electrochemicalproperties [J]. PCCP,2013,15(15):5664-9.
    [279] Li S, Liu R, Ngo Biboum R, et al. First examples of hybrids based ongraphene and a ring-shaped macrocyclic polyoxometalate: synthesis, characterization,and properties [J]. Eur J Inorg Chem,2013,2013(10-11):1882-9.
    [280] Rodriguez-Albelo L M, Rousseau G, Mialane P, et al. ε-Keggin-basedcoordination networks: Synthesis, structure and application toward green synthesis ofpolyoxometalate@graphene hybrids [J]. Dalton Trans,2012,41(33):9989-99.
    [281] Kim Y, Shanmugam S. Polyoxometalate–reduced graphene pxide hybridcatalyst: synthesis, structure, and electrochemical properties [J]. ACS Appl MatInterfaces,2013,5(22):12197-204.
    [282] Marcano D C, Kosynkin D V, Berlin J M, et al. Improved synthesis ofgraphene oxide [J]. ACS Nano,2010,4(8):4806-14.
    [283] Szabó T, Tombácz E, Illés E, et al. Enhanced acidity and pH-dependentsurface charge characterization of successively oxidized graphite oxides [J]. Carbon,2006,44(3):537-45.
    [284] Radkov E, Beer R H. High yield synthesis of mixed-metal Kegginpolyoxoanions in non-aqueous solvents: Preparation of (n-Bu4N)4[PMW11O40](M=V,Nb, Ta)[J]. Polyhedron,1995,14(15–16):2139-43.
    [285] Abdalla Z E A, Li B, Tufail A. Direct synthesis of mesoporous(C19H42N)4H3(PW11O39)/SiO2and its catalytic performance in oxidativedesulfurization [J]. Colloids Surf, A,2009,341(1–3):86-92.
    [286] Salles L, Piquemal J-Y, Thouvenot R, et al. Catalytic epoxidation byheteropolyoxoperoxo complexes: from novel precursors or catalysts to a mechanisticapproach [J]. J Mol Catal A: Chem,1997,117(1–3):375-87.
    [287] Gresley N M, Griffith W P, Laemmel A C, et al. Studies on polyoxo andpolyperoxo-metalates part5: Peroxide-catalysed oxidations withheteropolyperoxo-tungstates and-molybdates [J]. J Mol Catal A: Chem,1997,117(1–3):185-98.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700