用户名: 密码: 验证码:
金属酞菁/La_(0.8)Ce_(0.2)NiO_3复合催化剂的制备及光催化氧化DBT研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光催化氧化脱硫作为一种新型氧化脱硫技术,因其能耗低、无污染受到人们广泛关注。在众多的光催化剂中,金属酞菁敏化半导体材料作为一种高效的深度脱硫催化剂成为研究热点。本文在参考国内外已有研究成果的基础上,采用改进的固相法和液相法分别合成了无取代和取代两个系列的金属酞菁。采用浸渍法将制备的金属酞菁负载于钙钛矿型复合氧化物上,形成酞菁负载光催化剂。利用制备的催化剂对模拟燃油中的二苯并噻吩进行光催化氧化实验,探讨酞菁结构和光催化活性之间的关系,摸索光催化氧化脱硫的反应机理,为酞菁敏化半导体催化剂的研究和应用提供有益的借鉴和启示。
     论文主要内容概括为以下几个方面:
     1.采用溶胶-凝胶法制备了复合金属氧化物LaNiO3及Ce掺杂复合氧化物La1-xCexNiO3(x=0.1,0.2,0.4,0.6,0.8)。并对所合成的复合金属氧化物进行了X-射线粉末衍射、扫描电镜和光电子能谱分析。以二苯并噻吩的正辛烷溶液为模拟柴油,自制的复合氧化物为催化剂,在模拟太阳光的照射下进行光催化氧化脱硫测试。研究不同焙烧温度对氧化物脱硫活性的影响,确定最佳焙烧温度,挑选出活性最佳的氧化物。通过与空白实验的对比筛选出催化活性较好的La0.8Ce0.2NiO3氧化物。
     2.采用微波-固相法分别制备了无取代金属酞菁MPc、MTAP和MPTpz (M=Mn(Ⅱ), Fe(Ⅱ), Co(Ⅱ), Ni(Ⅱ), Cu(Ⅱ)),采用液相法合成了取代金属酞菁MTNPc、MTAPc和MTcPc (M=Mn(Ⅱ),Fe(Ⅱ),Co(Ⅱ),Ni(Ⅱ),Cu(Ⅱ)),共合成金属酞菁30个。并对所得金属酞菁进行了元素分析,红外光谱和紫外光谱等表征。采用浸渍法制备了六个系列的金属酞菁/La0.8Ce0.2NiO3复合催化剂,采用XRD对其进行了表征,证明所合成金属酞菁均以无定形态存在。SEM测试结果表明:负载后氧化物的孔洞数明显降低。采用XPS技术进一步确定了复合催化剂的组成和各元素价态。通过对比纯氧化物和负载氧化物的谱图,可初步确定新的化学键(M-O键)的生成。
     3.通过对光催化氧化反应主要影响因素的研究,确定了光催化氧化反应的最佳条件为:催化剂用量为3g·L-1, H2O2的用量为H2O2:S=100:1。在最佳反应条件下,分别对自制的负载金属酞菁催化剂光催化氧化DBT活性进行了测试,其中CoTcPc/La0.8Ce0.2NiO3的脱硫率可以达到94.9%,模拟柴油中硫含量降至49ppm,达到国家Ⅳ标准值(50ppm)。同时对光催化反应的产物进行了鉴定,结果表明:主要氧化产物为CO2, SO42-, DBTO和DBTO2。
     4.在光催化反应的基础上,研究了中心金属离子和取代基对催化剂光催化活性的影响,结果表明:中心离子对催化剂活性的影响与金属离子的价电子构型有关,具有变价的金属离子(Fe2+,Co2+)具有较高的催化活性;取代基对催化剂催化活性的影响主要与取代基的性质有关,吸电子基团(羧基,硝基)取代有利于活性提高,给电子基团(氨基)使催化剂活性降低。对负载金属酞菁催化剂的动力学和反应机理进行了研究,结果显示,催化剂光催化氧化DBT的反应符合一级反应动力学方程,催化反应速率最快的CoTNPc/La0.8Ce0.2NiO3的半衰期为74min。催化反应可能同时按照三种不同的路径(Ⅰ型机理、Ⅱ型机理和半导体光催化机理)进行。
     5.以CoTcPc/La0.8Ce0.2NiO3为催化剂,考察了该催化剂对不同含硫化合物(噻吩,苯并噻吩)的脱除效果,结果表明:该催化剂对不同含硫化合物均具有较高的催化活性,催化活性顺序为二苯并噻吩>苯并噻吩>噻吩。以CoTcPc/La0.8Ce0.2NiO3为催化剂,对其稳定性进行了研究,结果表明:循环利用5次后,催化活性基本保持不变,循环使用10次后,催化活性有所降低,但仍保持一定的催化活性,说明该催化剂具有较好的稳定性。
Photocatalytic oxidation desulfurization, as a new type of oxidation desulfurization technology, has intrigued widely attention, because of its low energy consumption and pollution-free characteristics. In numerous photocatalysts, as a kind of efficient deep desulfurization catalyst, metal phthalocyanine sensitized semiconductor materials have become the research hot spot. In this article, on the basis of related research in domestic and overseas, two series of metal phthalocyanines were synthesized by the improved solid phase and liquid phase methods respectively, and then loaded them on the surface of perovskite composite oxides by impregnation method to prepare the new photocatalysts. Photocatalysts were used to oxidate dibenzothiophene in the model fuel. The relationship between the structure and catalytic activity was discussesed, and the reaction mechanism was also suggested, which provides beneficial references and enlightenment to the research of phthalocyanine sensitized semiconductor catalyst.
     The main comments were summarized as follows:
     1. Metal oxides LaNiO3and La1-xCexNiO3(x=0.1,0.2,0.1,0.2,0.8) were synthesized by sol-gel method, and charactered by the X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectrometer (XPS). Photocatalytic oxidation desulfurization tests were carried out under the irradiation of simulated sunlight, in which the solution of dibenzothiophene in octane was selected as the model diesel. The favorable burning temperature was selected by studying the influence of different calcination temperature on the oxide desulfurization activity. Compared with blank experiment, Lao.8Ceo.2Ni03was selected as the best catalyst supportor.
     2. Metal phthalocyanines MPc, MTAP, MPTpz, MTNPc, MTAPc and MTcPc (M=Mn(II), Fe(II), Co(II), Ni(II), Cu(II)) were synthesized by microwave-solid phase and liquid phase methods respectively, and charactered by Element analysis (EA), Infrared spectrum (IR) and Ultraviolet visible spectroscopy (UV-vis). Six series of metal phthalocyanine/La0.8Ce0.2NiO3catalysts were prepared by immersion method. XRD results show that they exist in amorphous form. According to the results of SEM, it can be concluded that the number of holes on composite metal oxides after loaded decreased significantly. Furthermore, the composition and elements valence of catalysts were determined by XPS technology. By comparing the spectra of the pure oxide and loaded oxide, it can be determined that new chemical bond were built.
     3. The main factors of the activity on the photocatalytic oxidation reaction were studied, and the best conditions can be concluded as follows:the amount of catalyst is3g·L-1and the ratio of hydrogen peroxide and sulphur is100:1. Under the best reaction condation, the catalytic activity of three series of metal phthalocyanines was discussed, it was demonstrated that center metal ion and N atom all infllence the activity. Among them, CoTcPc/Lao.8Ceo.2Ni03catalyst has the best photocatalytic activity, the desulfurization rate of which can reach94.9%under simulated sunlight for5h. The sulfur content remained in model diesel is49ppm, which can meet the national IV standard of desel. Finally, the reaction products were predicted through different tests, which may include CO2, SO42-, DBTO and DBTO2.
     4. On the basis of photocatalytic reaction, the effect of center metal ions and the substituent on photocatalytic activity was studyed. The results show that the center ion effect on catalyst activity is associated with valence electron configuration of metal ion. The metal phthalocyanines with varied valence (Fe+, Co+), have higher catalytic activity. Substituent effect on the activity of catalyst is mainly related to the nature of the substituents, electron-withdrawing groups (carboxyl, nitro) make the activity improved, and electron-donating group (amino) makes the catalyst activity decreased. In addation, the dynamics and reaction mechanism of the six series of loaded metal phthalocyanine catalysts were studied. The results showed that the reactions follow pseudo-first-order reaction kinetics equation, and CoTNPc/La0.8Ce0.2NiO3is the best photocatalyst with the half-life of74min. The catalytic reaction may be carried out in accordance with the three different paths at the same time:the mechanism of type I and type II and the mechanism of semiconductor photocatalytic reaction.
     5. Taking CoTcPc/La0.8Ce0.2NiO3as catalyst, the desulfurization rate of different sulfur compounds was studied. The catalytic activity order is as follows:dibenzothiophene> benzothiophene> thiophene. In addition, the stability of catalyst was also discussed. The results show that photocatalyst does not changed after five times recycles, and after ten times recycles, the catalytic activity decreases, but still maintains a certain catalytic activity, it can be concluded that the catalyst has good stability.
引文
[1]柯晓明.经济企稳回升,油市波澜不惊[N].中国石化报,2013-02-27(005)
    [2]邵仲妮.世界车用柴油质量现状和发展趋势[J].炼油技术与工程,2008,38(3):1-3
    [3]李伟,权义.十问雾霾[N].东方早报,2013-01-14(A08).
    [4]魏静.治霾概念二度炒作正来袭[N].中国证券报,2013-02-25(A12)
    [5]郭璇,朴香兰,朱慎林.清洁柴油生产技术进展[J].化工环保,2004,24(2):99-102
    [6]Mykola S., Juliene R., Teresa J. B., et al. Investigation of the thermal regeneration efficiency of activated carbons used in the desulfurization of model diesel Fuel[J]. Industrial & Engineering Chemistry Research.2011,49(4):1216-1224
    [7]Lin L. G, Wang A. D., Dong M. M., et al. Sulfur removal from fuel using zeolites/pol-yimide mixed matrix membrane adsorbents[J]. Journal of Hazardous Materials.2012, 203-204:204-212
    [8]Montazerolghaem M., Rahimi A., Seyedeyn-Azad F., et al. Equilibrium and kinetic modeling of adsorptive sulfur removal from gasoline by synthesized Ce-Y zeo-lite[J]. Applied Surface Science.2010,257:603-609
    [9]Ali M. F., Al-Malki A., Ahmed S., et al. Chemical desulfurization of petroleum fractions for ultra-low sulfur fuels[J]. Fuel Process Technology.2009,90:536-544
    [10]刘卉,高金森,赵亮.吸附脱除噻吩类硫化物机理的研究进展[J].石油化工.2010,31(9):1059-1065
    [11]Brunet S., Mey D., Perot G, et al. On the hydrodesulphurization of FCC gasoline:A review [J]. Applied Catalyst A:General.2005,278:143-172
    [12]高利平,刘鹏,顾涛等.柴油馏分中含硫化合物组成与分布特征[J].染料化学学报,2009,37(2):183-188
    [13]Wang J., Xu F., Xie W. J., et al. The enhanced adsorption of dibenzothiophene onto cerium/nickel-exchanged zeolite Y[J]. Journal of Hazardous Materials.2009,163: 538-543
    [14]Wang Y., Yang F. H., Yang R. T., et al. Desulfurization of high-sulfur jet fuel by 6-complexation with copper and palladium halide sorbents[J]. Industrial & Engineering Chemistry Research.2006,45:7649-7655
    [15]Lin L. G, Zhang Y. Z., Zhang H. Y, et al. Adsorption and solvent desorption behavior of ion-exchanged modified Y zeolites for sulfur removal and for fuel cell applications [J]. Journal of Colloid Interface Science.2011,360:753-759
    [16]Oliveira M.L.M., Miranda A.A.L. Barbosa C.M.B.M., et al. Adsorption of thiophene and toluene on NaY zeolites exchanged with Ag (I), Ni (II) and Zn (II)[J]. Fuel.2009,88: 1885-1892
    [17]Nair S., Tatarchuk B. J., et al. Supported silver adsorbents for selective removal of sulfur species from hydrocarbon fuels[J]. Fuel.2010,89:3218-3225
    [18]Lin L. G, Zhang Y. Z., Kong Y, et al. Recent advances in sulfur removal from gasoline by pervaporation[J]. Fuel.2009,88:1799-1809
    [19]Lin L. G., Kong Y, Zhang Y. Z., et al. Sorption and transport behavior of gasoline components in polyethylene glycol membranes[J]. Journal of Membrances Science.2008, 325:438-445
    [20]Gonzalez-Garcia O., Cedeno-Caero L., et al. V-Mo based catalysts for ods of diesel fuel, part II. catalytic performance and stability after redox cycles[J]. Catalysis Today.2010, 150:237-243
    [21]Zhou X. R., Gai H. T., Wang J., et al. Oxidation of benzothiophenes using tert-amyl hydroperoxide[J]. Chinese Journal of Chemical Engineering.2009,17(2):189-194
    [22]Garcia-Gutierrez J., Fuentes G A., Hernandez-Teran M. E. Ultra-deep oxidative desulfurization of diesel fuel by the MO/Al2O3-H2O2 system:the effect of system parameters on catalytic activity[J]. Applied Catalysis A:General.2008,334:366-373
    [23]Cedeno-Caero L., Gomez-Bernal H., Fraustro-Cuevas A., et al. Oxidative desulfuriza-tion of synthetic diesel using supported catalysts part III. support effect on vanadium-based catalysts[J]. Catalysis Today.2008,133-135:244-254
    [24]Ali M. F., Al-Malki A., El-Ali B., et al. Deep desulphurization of gasoline and diesel fuels using non-hydrogen consuming techniques [J]. Fuel.2006,85:1354-1363
    [25]Rashtchi M., Mohebali G. H., Akbarnejad M. M., et al. Analysis of biodesulfurization of model oil system by the bacterium strain RIPI-22[J]. Biochemical Engeneer Journal. 2006,29:169-173
    [26]武玉飞,高晓明,付峰等BiVO4光催化剂的合成及其用于模拟汽油氧化脱硫的研究[J].化学反应工程与工艺.2011,27(1):92-96
    [27]Zhang J., Zhao D., Wang J. L. et al. Photocatalytic oxidation of dibenzothiophene using Ti02/bamboo charcoal[J]. Journal of Mater Science.2009,44:3112-3117
    [28]李发堂.催化裂化汽油光催化氧化脱硫研究[D].天津:天津大学,2007
    [29]Fujishima A., Honda K., et al. Electrochemical hotolysis of water at a semiconducto-relectrode[J]. Nature.1972,238:37-38
    [30]Huang D., Wang Y. J., Cui Y. C, et al. Direct dynthesis of mesoporous TiO2 and its catalytic performance in DBT oxidative desulfurization[J]. Microporous and Mesoporous Materials.2008,116(1-3):378-385
    [31]Liu H., Yu X. Q., Yang H. M., et al. The integrated photocatalytic removal of SO2 and NO using Cu doped titanium dioxide dupported by multi-walled carbon nanotubes[J]. Chemical Engineering Journal.2014,243:465-472
    [32]常振勇,崔连起.钙钛矿金属氧化物催化剂的研究与应用综述[J].精细石油化工.2002,(3):49-53
    [33]Sorescu M., Xu T. H., Johanna D., et al. Investigation of LaFeO3 perovskite growth mechanism through mechanical ball milling of lanthanum and iron oxides[J]. Journal of Mater Science.2011,46:6709-6717
    [34]郭秀盈,肖谧,杜文娟.复合钙钛矿型介质陶瓷材料的研究进展[J].电子元件与材料.2006,25(1):1-4
    [35]谢志翔,赵海雷,周雄等.固体氧化物燃料电池双钙钛矿型电极材料的研究进[J].硅酸盐学报.2010,38(6):1140-1144
    [36]石雷,白飞明.双钙钛矿型室温多铁性材料的研究进展[J].硅酸盐学报.2011,39(3):550-557
    [37]陈涛,徐政.稀土锰钙钛矿陶瓷磁制冷材料[J].江苏陶瓷.2002,35(3):7-9
    [38]王慧,范修栋,曾令可等.钙钦矿La0.8Sr0.2CoO3粉体的微波合成[J].材料导报.2007,21(11A):133-134
    [39]Ding J. L., Lii X. M.,Shu H. M., et al. Microwave-assisted synthesis of perovskite ReFeO3 (Re:La, Sm, Eu, Gd) photocatalyst[J]. Materials Science and Engineering B. 2010,171:31-34
    [40]Ahmed G., Nada F. A., Shimaa M. A., et al. Investigation of the catalytic activity of LaBO3 (B=Ni, Co, Fe or Mn) prepared by the microwave-assisted method for hydrogen evolution in acidic medium[J]. Electrochimica Acta.2011,56:5722-5730
    [41]翟永清,张张,霍国燕等.双钙钛矿Sr2FeMoO6的微波合成、表征及电磁性能[J].稀有金属材料与工程.2011,40(5):906-909
    [42]Sivakumar M., Gedanken A., Zhong W., et al. Sonochemical synthesis of nanocrystalline LaFeO3[J]. Journal of Materials Chemistry.2004,14:764-769
    [43]史延慧,冯守华,李吉学等.BiFeO3的中温水热合成和表征[J].高等学校化学学报.1999,20(3):359-360
    [44]付强,楚玉彪,常海波.水热方法合成钙钛矿型LaCrO3复合氧化物及光催化性质[J].吉林师范大学学报(自然科学版).2007,(3):21-23
    [45]Mao Y. B., Banerjee S., Wong S. S., et al. Large-Scale synthesis of single-crystalline perovskite nanostructures[J]. Journal of American Chemistry Society.2003,125: 15718-15719
    [46]赵省贵,陈长乐,金克新等.(La,Pr)2/3Sr1/3MnO3薄膜激光诱导电阻效应[J].功能材料.2006,9(37):1395-1397
    [47]张孝青,陈立立,朱明等.单钙钛矿薄膜La1-xSrxMnO3的微结构和热学性质的分析[J].化工时刊.2009,7(23):29-31
    [48]严资杰,袁孝,高国棉等.缺氧La0.6Ca0.4MnO3-D薄膜的光响应特性[J].光学学报.2007,27(10):1901-1904
    [49]汪世林,陈长乐,王跃龙等.La1-xCaxMnO3薄膜的光致电阻率变化特征[J].物理学报.2004,53(2):587-591
    [50]孙大智,熊英,杨晓萍.射频磁控溅射法LiNbO3薄膜的制备及其影响因素研究[J].天津理工大学学报.2008,24(4):39-41
    [51]崔梅生,李明来,张顺利等.钙钛矿催化材料La1-xCexCoO3+δ的制备、表征及甲烷燃烧催化性质[J].中国有色金属学报.2004,14(9):1580-1584
    [52]王海,朱永法,谭瑞琴.非晶态配合物法制备钙钛矿型纳米粉体催化剂及其CO催 化氧化性能[J].化学学报.2003,61:13-16
    [53]赵科,徐通模,吕清刚.钙钛矿型La1-xCexMnO3对CH4、CO、和H2的催化燃烧[J].工程热物理学报.2010,31(6):1049-1052
    [54]Chen H. X., Wei Z. X., Wang Y., et al. Preparation of SrTi0.1Fe0.9O3-& and its photocatalysis activity for degradation of methyl orange in water[J]. Materials Chemistry and Physics.2011,130:1387-1393
    [55]赵晓华,陈道平,娄向东等.钙钛矿型复合氧化物镍酸镧光催化性能研究[J].河南师范大学学报(自然科学版).2005,33(2):69-72
    [56]付霞,陈阳,余高奇等.超细钙钛矿型PrMnO3制备、表征及光催化[J].中国稀土学报.2011,25(1):49-54
    [57]Hessam Z. A., Abbasali K., Parvaneh E. A., et al. Effects of Pd on enhancement of oxidation activity of LaBO3 (B=Mn, Fe, Co and Ni) pervoskite catalysts for pollution abatement from natural gas fueled vehicles[J]. Applied Catalysis B:Environmental.2011, 102:62-70
    [58]Wang Y.,Yang X., Lu L., et al. Experimental study on preparation of LaMO3 (M=Fe, Co, Ni) nanocrystals and their catalytic activity[J]. Thermochimica Acta.2006,443:225-230
    [59]冯长根,张江山,王亚军.钙钛矿型复合氧化物用于汽车尾气催化净化的研究进[J].安全与环境学报.2004,4(4):54-59
    [60]俞守耕.钙钛矿型氧化物在净化汽车尾气催化剂中的应用[J].贵金属.2001,22(2):61-66
    [61]朴金花,孙克宁,廖世军.钙钛矿型SOFC阴极材料的研究进展[J].电源技术.2009,33(8):725-729
    [62]马飞,储伟,黄利宏等.Zn掺杂的LaCoO3钙钛矿用于乙醇水蒸气重整制氢反应[J].催化学报.2011,32(6):970-977
    [63]刘爽,丛昱,张涛.Zr掺杂对La(Ba)ZrxCo1-xO3-δ钙钛矿催化N20分解性能的影响[J].催化学报.2012,33(6):907-912
    [64]刘树模,尉继英,江锋等.钙钛矿La1-xKxCoO3纳米晶的制备与结构及其对炭烟的催化燃烧性能[J].过程工程学报.2007,7(6):1229-1235
    [65]Akcay H. T., Bayrak R., Karslio S., et al. Synthesis, characterization and spectroscopic studies of novel peripherally tetra-imidazole substituted phthalocyanine and its metal complexes, the computational and experimental studies of the novel phthalonitrile derivative[J]. Journal of Organometallic Chemistry.2012,713:1-10
    [66]赵彩霞.酞菁铁衍生物对二苯并噻吩催化氧化脱硫研究[D].大连:大连理工大学,2010
    [67]Zorlu Y., Dumoulin F. Durmus M., et al. Comparative studies of photophysical and photochemical properties of solketal substituted platinum(Ⅱ) and zinc(Ⅱ) phthalocyanine sets[J]. Tetrahedron.2010,66:3248-3258
    [68]王永健.金属酞菁催化剂的制备及光催化性质[D].齐齐哈尔:齐齐哈尔大学,2009
    [69]Nombona N., Nyokong T., et al. The synthesis, cyclic voltammetry and spectro electrochemical studies of Co(II) phthalocyanines tetra-substituted at the a and b positions with phenylthio groups[J]. Dyes and Pigments.2009,80:130-135
    [70]Chidawanyika W., Nyokong T., et al. Spectroscopic and photophysicochemical behaviour of novel cadmium phthalocyanine derivatives tetra-substituted at the alpha and beta positions[J]. Journal of Photochemistry and Photobiology A:Chemistry.2009,202: 99-106
    [71]Hulya Y., Duygu A., Mahmut D., et al. Peripheral and non-peripheral tetrasubstiruted aluminium, gallium and indium phthalocyanines:synthesis, photophysics and photochemistry[J]. Journal of Photochemistry and Photobiology A:Chemistry.2009,206: 18-26
    [72]Isaac A. A., Tebello N. Syntheses and investigation of the effects of position and nature of substituent on the spectral, electrochemical and spectroelectrochemical properties of new cobalt phthalocyanine complexes[J]. Polyhedron.2010,29:1257-1270
    [73]Mahmut D., Vefa A. Water-soluble cationic gallium(III) and indium(III) phthalocyanines for photodynamic therapy [J]. Journal of Inorganic Biochemistry.2010,104:297-309
    [74]Lin M. J., Wang J. D. Effect of non-peripheral alkyloxy substituents on the structure and spectroscopic properties of metal-free phthalocyanines[J]. Journal of Molecular Structure. 2007,837:284-289
    [75]Aliye A. E., Mustafa B. Synthesis and characterization of novel a-or b-tetra [6,7-dihexyloxy-3-(4-oxyphenyl)coumarin]-substituted metal-free and metallo phthalocyanines[J]. Polyhedron.2009,28:3129-3137
    [76]Kim K. N., Choib C. S., Kay K.Y. et al. A novel phthalocyanine with two axial fullerene substituents[J]. Tetrahedron Letter.2005,46:6791-6795
    [77]Martin-Gomis L., Ohkubo K., et al. Synthesis and Photophysical studies of a new nonaggregated C60-Silicon phthalocyanine-C60 triad[J]. Organic Letter.2007,9: 3441.3444
    [78]Martin-Gomis L., Ohkubo K., et al. Adiabatic photoinduced electron transfer and back electron transfer in a series of axially substituted silicon phthalocyanine triads[J]. Journal of Physic Chemistry C.2008,112:17694-17701
    [79]Iijima S. Helical microtubules of graphitic carbon[J]. Nature.1991,354:56-58
    [80]Sgobba V, Guldi D. M., et al. Carbon nanotubes-electronic/electrochemical properties and application for nanoelectronics and photonics[J]. Chemical Society Reviews.2009, 38(1):165-184
    [81]Ago H., Petritsch K., Shaffer M. S. P. et al. Composites of carbon nanotubes and conjugated polymers for photovoltaic devices[J]. Advanced Materials.1999,11(15): 1281-1285
    [82]Taofeek B. O., Tebello N., et al. Phototransformation of 4-nitrophenol using Pd phthalocyanines supported on single walled carbon nanotubes [J]. Journal of Molecular Catalysis A:Chemical.2011,337:68-76
    [83]Racheal O. O., Tebello N., et al. Effect of bovine serum albumin and single walled carbon nanotube on the photophysical properties of zinc octacarboxy phthalocyanine[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy.2014,121: 81-87
    [84]He D. D., Peng Y. R., Yang H. Q., et al. Single-wall carbon nanotubes covalently linked with zinc(II)phthalocyanine bearing poly (aryl benzyl ether) dendriticsubstituents: synthesis, characterization and photoinduced electrontransfer[J]. Dyes and Pigments. 2013,99:395-401
    [85]杨科芳,徐浩,郭存锐等.分子筛负载催化剂的烯烃配位聚合反应[J].高分子通报.2007,2:28-34
    [86]Zanjanchi M. A., Ebrahimian A., Arvand M., et al. Sulphonated cobalt phthalocyanine MCM-41:an active photocatalyst for degradation of 2,4-dichlorophenol[J]. Journal of Hazardous Materials.2010,175:992-1000
    [87]Mercedes A., Esther C., Hermenegildo G., et al. Iron phthalocyanine supported on silica or encapsulated inside zeolite Y as solid photocatalysts for the degradation of phenols and sulfur heterocycles[J]. Applied Catalysis B:Environmental.2005,57:37-42
    [88]樊亚芳,王春雷,马丁等.室温下钯-金属酞菁/分子筛复合催化剂催化甲烷选择氧化制甲醇[J].催化学报.2010,31(3):302-306
    [89]陈文兴,陈世良,吕慎水等.负载型酞菁催化剂的制备及其光催化氧化苯酚[J].中国化学.2007,37(4):369-373
    [90]Zugle R., Nyokong T., et al. Zinc(II) 2,9,16,23-tetrakis[4-(N-methylpyridyloxy)] Phth-alocyanine anchored on an electrospun polysulfone polymer fiber:application for photosensitized conversion of methyl orange[J]. Journal of Molecular Catalysis A: Chemical.2013,366:247-53
    [91]Chen, W. X., Lu, W. Y., Yao, Y. Y., et al. Highly efficient decomposition of organic dyes by aqueous-fiber phase transfer and in situ catalytic oxidation, using fiber-supported cobalt phthalocyanine[J]. Environment Science Technology.2007,41: 6240-6245
    [92]Lu, W. Y., Chen, W. X., Li, N., et al. Oxidative removal of 4-nitrophenol using activated carbon fiber and hydrogen peroxide to enhance reactivity of metallophthalocyanine[J]. Applied Catalysis B-Environment.2009,87:146-151
    [93]Novoselov K. S., Geim S. V. Morozov S. V., et al. Electric field effect in atomically thin carbon films[J]. Science.2004,306:666-669
    [94]Rao C. N. R., Sood A. K., Subrahmanyam K. S., et al. The new two-dimensional nanomaterial[J]. Angewandte Chemie International Edition.2009,48:7752-7757
    [95]Zhang Y. B., Tan Y. W., Stormer H. L., et al. Experimental observation of the quantum hall effect and berry'sphase in graphene[J]. Nature.2007,438:201-209
    [96]Li X. L., Wang X. R., Zhang L., et al. Chemically derived, ultrasmooth grapheme nanoribbon semiconductors[J]. Science.2008,319:1229-1237
    [97]Guo S. J., Dong S. J. Graphene nanosheet:synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications [J]. Chemical Society Reviews.2011,40: 2644-2659
    [98]Huang K. J., Niu D. J., Sun J. Y., et al. Novel electrochemical sensor based on functionalized graphene for simultaneous determination of adenine and guanine in DNA[J]. Colloids and Surfaces B.2011,82:543-553
    [99]Yoo E., Kim J., Hosono E., et al. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries[J]. Nanoletters.2008,8:2277-2286
    [100]Zhang L. P., Xia Z. H. Mechanisms of oxygen reduction reaction on nitrogendoped graphene for fuel cells[J]. Journal of Physical Chemistry C.2011,115:11170-11178
    [111]Liu M., Yin X. B. Ulin-Avila E., et al. Graphene-based broadband optical modulator[J], Nature.2011,474:64-76
    [112]Pyun J. Graphene oxide as catalyst:application of carbon materials beyond nanotechnology [J]. Angewandte Chemie International Edition.2011,50:46-52
    [113]Wu Q., Xu Y. X., Yao Z. Y., et al. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films[J]. ACS Nano.2010,4:1963-1971
    [114]Cui L. L., Pu T., Liu Y., et al. Layer-by-layer construction of graphene/cobalt phthalocyanine composite film on activated GCE for application as a nitrite sensor [J]. Electrochimica Acta.2013,88:559-564
    [115]Zhong J. P., Fana Y. J., Wang H., et al. Highly active Pt nanoparticles on nickel phthalocyanine functionalized graphene nanosheets for methanol electrooxidation[J]. Electrochimica Acta.2013,113:653-660
    [116]Yoo E., Zhou H. Fe phthalocyanine supported by graphene nanosheet as catalyst in lieair battery with the hybrid electrolyte [J]. Journal of Power Sources.2013,244:429-434
    [117]Yazdanpour N., Sharifnia S. Photocatalytic conversion of greenhousegases (CO2 and CH4) using copper phthalocyanine modified TiO2[J]. Solar Energy Materials & Solar Cells.2013,118:1-8
    [118]Ebrahimian A., Zanjanchi M. A., Noei H., et al. TiO2 nanoparticles containing sulphonated cobalt phthalocyanine:preparation, characterization and photocatalytic performance [J]. Journal of Environmental Chemical Engineering.2014,2:484-494
    [119]Wu S. H., Wu J. L., Jia S. Y., et al. Cobalt(II) phthalocyanine-sensitized hollow Fe3O4@ SiO2@TiO2 hierarchical nanostructures:fabrication and enhanced photocatalytic properties[J]. Applied Surface Science.2013,287:389-396
    [120]Tau P., Nyokong T. Comparative photocatalytic efficiency of oxotitanium(IV) phthalocyanines for the oxidation of 1-hexene[J]. Journal of Molecular Catalysis A: Chemical.2007,273:149-155
    [121]吕春燕,吕彤,苏秋红等.负载型磺酸铁酞菁对染料废水的光催化降解[J].纺织学报.2009,30(5):100-103
    [122]李晓佩,陈锋,张金龙.酞菁改性的介孔TiO2的制备及其可见光光催化活性[J].催化学报.2007,28(3):230-233
    [123]丁兰兰,栾立强,施佳伟等.酞菁在光动力治疗中的应用[J].无机化学学报.2013,29(8):1591-1598
    [124]Leng X., Choi C. F., Luo H. B., et al. Host-guest interactions of 4-carboxyphenoxy phthalocyanines and cyclodextrins in aqueous media[J]. Organic Letter.2007,9: 2497-2500
    [125]Cakici H., Esenpinar A. A., Bulut M., et al. Synthesis and characterization of novel phthalocyanines bearing quaternizable coumarin[J]. Polyhedron.2008,27:3625-3630
    [126]Yang Y. C, Ward J. R., Seiders R. P., et al. Dimerization of cobalt(II) tetrasulfonated phthalocyanine in water and aqueous alcoholic solutions[J].Inorganic Chemistry.1985, 24:1765-1769
    [127]Maillard P., Gaspard S., Guerquin J. L., et al. Poly(ketene) (PKT)[J]. Journal of the American Chemical Society.1989,111:9124-9125
    [128]Sharman W. M., Kudrevich S. V., Lie J. E., et al. Novel water soluble phthalocyanines substituted with phosphonate moieties on the benzo rings [J]. Tetrahedron Letter.1996, 37:5831-5834
    [129]Tuncel S., Dumoulin F., Gailer J., et al. A set of hight water-soluble tetraethylenegllycol substituted Zn phthalocyanines:synthesis, photochemical and photophysical properties, interaction with plasma proteins and in vitro pototoxicity[J]. Dalton Trans.2011,40: 4067-4079
    [130]Marinoa J., Viorb M. C. G., Furmentoa V. A., et al. Lysosomal and mitochondrial permeabilization mediates zinc (Ⅱ) cationic phthalocyanine phototoxicity[J].The International Journal of Biochemistry & Cell Biology.2013,45:2553-2562
    [131]Wang T. H., Wang A., Zhou L., et al. Synthesis of a novel water-soluble zinc phthalocyanine and its CT DNA-damaging studies[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy.2013,115:445-451
    [132]Nascimento F. B. D., Manieri T.M., Cerchiaro G., et al. Synthesis of unsymmetrical phthalocyanine derivatives and their interaction with mammary MCF7 cells[J]. Dyes and Pigments.2013,99:316-322
    [133]Zheng B. Y., Zhang H. P., Ke M. R., et al. Synthesis and antifungal photodynamic activities of a series of novel zinc(Ⅱ) phthalocyanines substituted with piperazinyl moieties[J]. Dyes and Pigments.2013,99:185-191
    [134]Gaunaa G. A., Marinob J, Garcia V. M. C., et al. Synthesis and comparative photodynamic properties of two isosteric alkyl substituted zinc(Ⅱ) phthalocyanines [J]. European Journal of Medicinal Chemistry.2011,46:5532-5539
    [135]Bonnett R. Chemical aspects of photodynamic therapy[D]. Phillips (Ed.), Gordon and Breach Science, Canada,2000.
    [136]Oleinick N. L., Antunez A. R., Clay M. E., et al. Highly efficient rug delivery with gold naoparticle vectors for in vivo photodynamic therapy of cancer[J]. Photochemical Photobioligy.1993,57:242-246
    [137]Detty M. R., Gibson S. L., Wagner S. J., et al. Latentiation and advanced drug transport forms[J]. Medicine Chemistry.2004,47:3897-3901
    [138]Josefsen L. B., Boyle R. W. Met.-Based Drugs.2008,24, Article ID:276109.
    [139]罗金龙,戴祖诚,赵鹤云等.基于酞菁铜材料的有机太阳能电池研究与展望[J].云南大学学报.2010,32(S1):259-262
    [140]Terao Y., Sasabe H., Adaehi C., et al. Correlation of hole mobility, exeiton diffusion length, and solar cell characteristics in phthaloeyanine/fullerene organic solar cells[J]. Applied Physies Letters.2007,90(10):3515-3518
    [141]Chan M. Y., Lai S.L.,Fung M. K., et al. Doping-indueed efficiency enhancement in organic photovoltaic devices[J]. Applied Physics Letters.2007,90(2):1-3
    [142]Jiang X. X., Dai J. G., Wang H. B., et al. Organic photovoltaic cells using hexadeea fluorophthalocyaninatoeopper(F16CuPc) as electron acceptor material [J].Chemical Physies Letters.2007,446(4-6):329-332
    [143]Singh V. K., Salvatori P., Amat A., et al. Near-infrared absorbing unsymmetrical Zn(Ⅱ) phthalocyanine for dye-sensitized solar cells[J]. Inorganica Chimica Acta.2013,407: 289-296
    [144]Yu L. J, Lin L., Zhang X. H., et al. Highly asymmetric phthalocyanine-sensitized solar cells:the effect of coadsorbent and adsorption temperature of phthalocyanine[J]. Electrochimica Acta.2013,111:344-350
    [145]Sarker A. K., Kang M. G.,Hong J. D., et al. A near-infrared dye for dye sensitized solar cell:catecholate-functionalized zinc phthalocyanine [J]. Dyes and Pigments.2012, 92:1160-1165
    [146]Takeda A., Okua T., Suzukia A., et al. Fabrication and characterization of fullerene based solar cells containing phthalocyanine and naphthalocyanine dimmers[J]. Synthetic Metals.2013,177:48-51
    [147]Dao Q. D., Hori T., Fukumura K., et al. Effects of processing additives on nanoscale phase separation, crystallization and photovoltaic performance of solar cells based on mesogenic phthalocyanine[J]. Organic Electronics.2013,14:2628-2634
    [148]张燕,赵田红.过氧化物用于油品氧化脱硫最新研究进展[J].当代化工.2013,42(8):1115-1119
    [149]万国赋,段爱军,赵震等.柴油超深度脱硫技术进展[J].黑龙江大学自然科学学报.2006,23(5):659-667
    [1]Niu J., Yao B., Chen Y., et al. Enhanced photocatalytic activity of nitrogen doped TiO2 photocatalysts sensitized by metallo Co, Ni-porphyrins[J]. Applied Surface Science.2013, 271:39-44
    [2]刘斌.二氧化钛光催化材料的掺杂改性及其对气体污染物净化性能的研[D].兰州:兰州大学,2010
    [3]杨秋景.掺杂纳米Ti02对庚烷的光催化氧化作用研究[D].长春:吉林大学,2005
    [4]Liu H., Zhang H., Yang H., et al. Photocatalytic removal of nitric oxide by multi-walled carbon nanotubes-supported TiO2[J]. Chinese Journal of Catalysis.2014,35:66-77
    [5]孙志华.镧掺杂的二氧化钛纳米粒子的制备表征及光催化性能研究[D].哈尔滨:黑龙江大学,2005
    [6]孙悦,李伯林,任铁强等.溶胶凝胶水热法制备Ti02及其光催化性能[J].应用化工.2014,43(1):97-99
    [7]Khettaba M., Omeirib S., Sellama D., et al. Characterization of LaNiO3 prepared by sol-gel:application to hydrogen evolution under visible light[J]. Materials Chemistry and Physics.2012,132:625-630
    [8]付霞,陈阳,余高奇等.超细钙钛矿型PrMnO3制备,表征及光催化[J].中国稀土学报.2011,29(1):49-54
    [9]Li Y., Wu J., Huang Y., et al. Photocatalytic water splitting on new layered perovskite A2.33Sr0.67Nb5O14.335 (A= K, H)[J]. International Journal of Hydrogen Energy.2009, 34(19):7927-7933
    [10]Fu S., Niu H., Tao Z., et al. Low temperature synthesis and photocatalytic property of perovskite-type LaCo03 hollow spheres[J]. Journal of Alloys and Compounds.2013,576: 5-12
    [11]Hu R., Li C., Wang X., et al. Synthesis of perovskite KMgF3 with microemulsion for photocatalytic removal of various pollutants under visible light[J]. Catalysis Communications.2013,40:71-75
    [12]Su Y., Pan K., Chang M., et al. Modifying perovskite-type oxide catalyst LaNiO3 with Ce for carbon dioxide reforming of methane[J]. International Journal of Hydrogen Energy. 2014,39(10):4917-4925
    [13]Wagner C. D., Riggs W. M., Davis L. E., et al. Handbook of X-ray photoelectron spectros-copy[M]. USA.:Perkin-Elmer Corporation. Physical Electronics Division.1979: 133-135
    [14]Wang P., Yao L., Wang M., et al. XPS and voltammetric studies on La1-xSrxCoO3-δ perovskite oxide electrodes[J]. Journal of Alloys and Compounds.2000,311:53-56
    [15]Zhan H., Li F., Gao P. et al. Methanol synthesis from CO2 hydrogenation over La-M-Cu-Zn-0 (M= Y, Ce, Mg, Zr) catalysts derived from perovskite-type precursors [J]. Journal of Power Sources.2014,251:113-121
    [16]Moradi G. R., Rahmanzadeh M., Khosravian F., et al. The effects of partial substitution of Ni by Zn in LaNiO3 perovskite catalyst for methane dry reforming[J]. Journal of CO2 Utilization.2014,6:7-11[17]Fuh H. R., Liu Y. P., Xiao Z. R. et al., New type of ferromagnetic insulator:double perovskite La2NiMO6 (M=Mn, Tc, Re, Ti, Zr, and Hf) [J]. Journal of Magnetism and Magnetic Materials.2014,357:7-12
    [18]Li Y. D., Wang C. C., Cheng R. L., et al. Vacancy-driven magnetism in nonmagnetic double perovskite Sr2AlNbO6:a first-principles study[J]. Journal of Alloys and Compounds.2014,598:1-5
    [1]Cong F., Ning B., Ji Y., et al. The facile synthesis and characterization of tetraimido-substituted zinc phthalocyanines[J]. Dyes and Pigments.2008,77(3):686-690
    [2]Lukasz L., Arkadiusz G, Maria N., et al. Synthesis and spectroscopic properties of 5-tert-butyl-3-(trifluoromethyl)phthalonitrile:a novel precursor for the synthesis of phthalocyanines[J]. Tetrahedron Letters.2013,54(33):4388-4391
    [3]Peng Y., Lin Z., Huang J., et al. Synthesis, separation and characterization of amphiphilic 2,10-disulfonato-18,26-di-phthalimidomethyl phthalocyanine zinc dipotassium salt by template reaction[J]. Dyes and Pigments.2005,6(2):145-151
    [4]Pinar S., Fatih D., Bekir S., et al. Synthesis and electrochemical, electrochromic and electrical properties of novel s-triazine bridged trinuclear Zn(Ⅱ), Cu(Ⅱ) and Lu(Ⅲ) and a tris double-decker Lu(III) phthalocyanines[J]. Synthetic Metals.2011,161(13-14): 1245-1254
    [5]马学美,花建丽,武文俊等.新型可溶性铜酞菁染料敏化剂的合成[J].化学通报.2007,2:143-146
    [6]殷焕顺,邓建成,向能军等.金属酞菁羧酸衍生物的固相法合成[J].染料与染色.2006,43(3):17-19
    [7]Musa O., Mutlu C. Solvent-free synthesis of novel phthalocyanines containing triazole derivatives under microwave irradiation[J]. Polyhedron.2013,51:82-89
    [8]Wang Z., Mao W., Chen H., et al. Copper(II) phthalocyanine tetrasulfonate sensitized nanocrystalline titania photocatalyst:synthesis in situ and photocatalysis under visible light[J]. Catalysis Communications.2006,7(8):518-522
    [9]Wang Z., Chen H., Tang P., et al. Hydrothermal in situ preparation of the copper phthalocyanine tetrasulfonate modified titanium dioxide photocatalyst[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2006,289 (1-3):207-211
    [10]朱建国,朱晓红,焦锐等.金属酞菁钴的合成及其表征[J].西南民族大学学报(自然 科学版).2006,32(2):238-240
    [11]张改.酞菁配合物-TiO2/SnO2复合材料的制备及脱硫性能研究[D].西安:西北大学,2012
    [12]夏道成,马春雨,程传辉等.新型四取代酞菁及金属酞菁的合成与表征[J].山西大学学报(自然科学版).2007,30(4):493-497
    [13]许越.催化剂设计与制备工艺[M].北京:化学工业出版社,2004:25-30,154-157
    [14]曹红红.β-2CaOSiO2的形成及其结构的XRD分析[J].华北工学院学报.1996,17(4):352-356
    [15]Wagner C. D., Riggs W. M., Davis L. E., et al. Handbook of X-ray photoelectron spectroscopy[M]. USA.:Perkin-Elmer Corporation. Physical Electronics Division.1979: 133-135
    [16]Wang P., Yao L., Wang M., et al. XPS and voltammetric studies on La1-xSrxCoO3-δ perovskite oxide electrodes [J]. Journal of Alloys and Compounds.2000,311:53-56
    [1]Armagan A., Ahmet G, Makbule B. K., et al. A new hexadeca substituted non-aggregating zinc phthalocyanine[J]. Dyes and Pigments.2014,100:177-183
    [2]Keiichi S., Naoki F., Hisashi S., et al. Cyclic voltammetry of non-peripheral thioaryl substituted phthalocyanines[J]. Dyes and Pigments.2013,96(2):430-434
    [3]Ibrahim O., Adem T., Ahmet G, et al. Synthesis and aggregation behavior of zinc phthalocyanines substituted with bulky naphthoxy and phenylazonaphthoxy groups:an experimental and theoretical study[J]. Synthetic Metals.2014,189:100-110
    [4]Wang A., Ma Y, Zhou L., et al. Comparison of two strategies for conferring water solubility to a zinc phthalocyanine substituted with 1,2-diethylamino[J]. Dyes and Pigments.2013,99(2):348-356
    [5]Lv F., He X., Wu L., et al. Lactose substituted zinc phthalocyanine:a near infrared fluorescence imaging probe for liver cancer targeting[J]. Bioorganic & Medicinal Chemistry Letters.2013,23(6):1878-1882
    [6]Yang L., Chen Z., Zhang S., et al. The tunable third-order optical nonlinearities of a diarylethene-zinc phthalocyanine hybrid[J]. Dyes and Pigments.2014,102:251-256
    [7]Koodlur S. L., Annemie A. Synthesis and characterization of tetra-substituted palladium phthalocyanine complexes[J]. Dyes and Pigments.2013,96(1):269-277
    [8]沈永嘉.酞菁的合成与应用[M].北京:化学工业出版社.2001:125-127
    [9]Salih Z. Y., Senem C., Murat T., et al. Non-ionic peripherally substituted soluble phthalocyanines:synthesis characterization and investigation of their solution properties[J]. Journal of Molecular Liquids.2014,195:22-29
    [10]Meltem G, Mahmut D., Devrim A., et al. Amino-functionalized water-soluble zinc phth-alocyanines:Synthesis, photophysical, photochemical and protein binding properties [J]. Journal of Photochemistry and Photobiology A:Chemistry.2013,266:37-46
    [11]Xu Z., Zhao J., Li H. et al. Influence of the electronic configuration of the central metal ions on catalytic activity of metal phthalocyanines to Li/SOCl2 battery[J]. Journal of Power Sources.2009,194:1081-1084
    [12]陈蕊,吴敏,蒋银花等.四羧基金属酞菁染料光敏剂的合成及性质研究[J].化工新型材料.2008,36(2):33-35
    [1]鲍猛.新型酞菁光敏剂的合成及表征[D].济南:济南大学,2007
    [2]Oluwasesan A., Tebello N. Conjugation of mono-substituted phthalocyanine derivatives to CdSe@ZnS quantum dots and their applications as fluorescent-based sensors[J]. Synthetic Metals.2014,188:35-45
    [3]Yum J. H., Jang S. R., Robin H. B., et al. Effect of coadsorbent on the photovoltaic performance of zinc pthalocyanine-sensitized solar cells[J]. Langmuir.2008,24: 5636-5640
    [4]Gabriela A. G, Julieta M., Maraa C. G. V., et al. Synthesis and comparative photodynamic properties of two isosteric alkyl substituted zinc(II) phthalocyanines[J]. European Journal of Medicinal Chemistry.2011,46:5532-5539
    [5]熊志刚.金属酞菁负载化及其可见光敏化降解氯苯酚[D].杭州:浙江大学,2011
    [6]Daniel J., Blahoslav M., Pavel B., et al. Photodynamic effects of 31 different phthalo-cyanines on a human keratinocyte cell line[J]. Chemosphere.2013,93:870-874
    [7]Chen Z., Zhou S. Y., Chen J. C., et al. An effective zinc phthalocyanine derivative for photodynamic antimicrobial chemotherapy [J]. Journal of Luminescence.2014,22: 132-135
    [8]Ochoa A. L., Tomas C. T., Mariana B. S., et al. Synthesis and photodynamic properties of adamantylethoxy Zn(II) phthalocyanine derivatives in different media and in human red blood cells[J]. European Journal of Medicinal Chemistry.2012,50:280-287
    [9]Francesca G., Yann S., Donata D., et al. Synthesis of tetrasubstituted Zn(Ⅱ)-phtha locyanines carrying four carboranyl-units as potential BNCT and PDT agents[J]. Tetrahedron Letters.2005,46:2979-2982
    [10]Tamarisk K. H., Heidi A., Marianne J. C. P., et al. Investigating the efficiency of novel metallo phthalocyanine PDT-induced cell death in MCF-7 breast cancer cells[J]. Photodiagnosis and Photodynamic Therapy.2012,9:215-224
    [11]Sun A., Zhang G., Xu Y., et al. Photobleaching of metal phthalocyanine sulfonates under UV andvisible light irradiation over TiO2 semiconductor [J]. Materials Letters.2005,59: 4016-4019
    [12]Xu Z., Li H., Li K., et al. Carbon nanotube-templated copper phthalocyanine derivative assemblies via solid-phase synthesis:effects of hydrogen bond on the structure of the assemblies[J]. Crystal Growth & Design.2009,9(9):4136-4141
    [13]奚强,刘常坤,赵春芳等.酞菁钴催化氧化脱硫的机理研究[J].石油学报.1998, 14(2):97-98
    [14]杨树,卿陈彬,杜锡光等.双核酞菁钻磺酸盐催化脱硫机理研究[J].催化学报.1993,14(2):150-154
    [15]Chen X. B. Synthesis and investigation of novel Nano materials for improved photocatalysis [D]. American:Case Western Reserve University,2005
    [16]Huang Z. L., Deng H., Pan H. Q., et al. Fabric load TiO2:preparation of the photocatalyst and its reactive red light catalytic kinetics[J]. Industrial Water Treatment.2010,10:36-39
    [17]Taehikawa T., Fujitsuka M., Majima T., et al. Mechanistic insight into the TiO2: photocatalytic reactions:design of new photocatalystst[J]. Journal of the American Chemical Society.2007,14:5259-5273
    [18]Cherian S., Wamser C. Adsorption and photoactivity of tetra(4-carboxyPhenyl) porphyrin(TCPP)on nano particulate TiO2[J]. Journal of Physical Chemistry B.2000,104: 3624-3629.
    [19]Kong L. Y., Li G, Wang X. S., et al. TS-1-over hydrogen peroxide catalytic system in the selective oxidation of organic sulfides[J]. Journal of Catalysis.2004,25(10):775-778.
    [20]Khettaba M., Omeirib S., Sellama D. et al. Characterization of LaNiO3 prepared by sol-gel:application to hydrogen evolution under visible light[J]. Materials Chemistry and Physics.2012,132:625-630
    [21]Prudence T., Tebello N. Comparative photocatalytic efficiency of oxotitanium(Ⅳ) phthalocyanines for the oxidation of 1-hexene[J]. Journal of Molecular Catalysis A: Chemical.2007,273:149-155
    [22]Iliev V. Phthatoeyanine-modified titania-catalyst for photooxidation of phenolsby prradiation with visible light[J]. Journal of Photochemistry and Photobiology A: Chemistry.2002,151:195-199
    [1]Zhang C., Pan X., Wang F., et al. Extraction-oxidation desulfurization by pyridinium based task-specific ionic liquids[J]. Fuel.2012,102:580-584
    [2]Ezzat R., Sara E. Organic-inorganic polyoxometalate based salts as thermo-regulated phase-separable catalysts for selective oxidation of thioethers and thiophenes and deep desulfurization of model fuels[J]. Journal of Molecular Catalysis A:Chemical.2013,380: 18-27
    [3]Ahmad I., Ahmad W., Ishaq M., et al. Desulfurization of liquid fuels using air-assisted performic acid oxidation and emulsion catalyst[J]. Chinese Journal of Catalysis.2013, 34(10):1839-1847
    [4]Song H., Gao J., Chen X., et al. Catalytic oxidation-extractive desulfurization for model oil using inorganic oxysalts as oxidant and Lewis acid-organic acid mixture as catalyst and extractant[J]. Applied Catalysis A:General.2013,456:67-74
    [5]杨金荣,侯影飞,孔瑛等.柴油臭氧氧化脱硫研究.石油大学学报(自然科学版).2002,26:84-86
    [6]Otsuki S., Nonaka T., Takashima N., et al. Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraetion[J]. Energy Fuel.2000,14:1232-1239
    [7]Zannikos F., Stoumas S. Desulfurization of petroloum fraetions by oxidation and solvent extraetion[J]. Fuel Process.Technology.1995,42:35-45
    [8]Yazu K., Yamamoto Y., Furuya T., et al. Oxidation of dibenzothiophenes in an organi[J]. Energy Fuel.2001,15:1535-1536
    [9]Palomeque J., Aacens J.M., Figueras F., et al. Oxidation of dibenzothiophene by hydrogen peroxide catalyzed by solid bases[J]. Journal of Catalysis.2002,211:103-108
    [10]Xu Z., Li H., Cao G., et al. Electrochemical performance of carbon nanotube-supported cobaltphthalocyanine and its nitrogen-rich derivatives for oxygen reduction[J]. Journal of Molecular Catalysis A:Chemical.2011,335:89-96
    [11]Zhou X., Li J., Wang X., et al. Oxidative desulfurization of dibenzothiophene based on molecular oxygen and iron phthalocyanine[J]. Fuel Processing Technology.2009,90(2): 317-323
    [12]颜学敏.杂多酸/介孔氧化硅纳米复合材料制备,改性及其催化氧化脱硫性能[D].武汉:武汉理工大学,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700