用户名: 密码: 验证码:
纳米材料在有机污染物的降解与快速分析检测中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源和环境是人类在21世纪所面临的两大问题,半导体光催化材料在解决环境污染和能源短缺方面有着巨大的应用前景。利用太阳能进行光催化一直是人们研究的热点,光催化技术由于其价格便宜,环境友好,稳定性高等优点,在环境污染控制领域具有广泛的应用前景。半导体光催化是近年来国内外最活跃的研究领域之一,尤其是随着纳米技术的飞速发展,光催化纳米材料通过吸收太阳光,可以直接分解环境污染物,无二次污染,所以深入研究纳米半导体光催化剂对于从根本上解决环境污染问题具有重大的意义。
     纳米TiO_2作为纳米材料的一员,具有优异的光催化活性和光电特性。自1972年Fujishima发现了在TiO_2电极上光分解水制氢的作用以来,人们对TiO_2的光催化特性进行了大量的研究,其在光电转换、污染物降解、自洁净、传感器以及潜在的癌症治疗等高新技术领域显示出广阔的应用前景。TiO_2纳米管阵列具有表面形貌均一、比表面积大、孔径长度可调、高度取向、以及独特的电学、光学特性,自2001年被首次阳极氧化法制备以来,引起极大的研究兴趣。已有研究表明TiO_2纳米管阵列材料在光催化及传感领域具有广泛的应用前景。然而由于二氧化钛的禁带宽度较大(锐钛型及金红石型二氧化钛的禁带宽度分别为3.2eV和3.0eV),只能吸收紫外光,而紫外光仅占太阳光的5%左右,相反可见光则占太阳光能量的约46%,对太阳能的利用率低。因此使二氧化钛对可见光产生响应从而提高二氧化钛半导体材料的太阳光利用效率是目前的研究热点。另外TiO2半导体材料导电率低,不能有效传递光生载流子,使得光生电子容易与光生空穴复合,降低了其光电转化效率。本论文针对以上问题开展研究,以有机污染物的去除及快速筛查为目标,以提高二氧化钛纳米管阵列的光/电催化活性为研究重点,通过对TiO_2纳米管阵列材料进行修饰和改良,以提高对太阳光的利用率和光电转化效率,及在有机污染物去除和生物传感领域的应用研究。具体研究内容如下:
     (1) CdTe/TiO2纳米管的制备表征和光催化的研究:采用脉冲电沉积技术,将与太阳光能带匹配的窄带半导体CdTe纳米颗粒修饰到TiO_2纳米管阵列中,由于CdTe的能带Eg-1.5eV,与太阳光能量最佳匹配,是合适的窄禁带半导体,能有效吸收可见光。应用该材料对有毒的有机污染物对硝基苯酚(PNP)在可见光照射下进行了光催化降解研究。以对硝基苯酚为目标物,探讨了CdTe/TiO2纳米管阵列电极的光催化氧化性能和影响PNP光催化降解效率的因素。结果表明影响PNP光催化降解效率的两个主要因素为目标物的初始浓度和溶液的pH值,其优化条件分别为:10mg/L,pH~3。在氙灯照射下2个小时内,35毫升10mg/LPNP的去除率几乎100%(第2章)。
     (2) CdTe/Au-TiO2光电免疫传感检测持久性有机污染物三(2,3--二溴丙基)异氰脲酸酯(TBC):采用简单的脉冲电沉积方法,将CdTe和Au纳米粒子同时共沉积到Ti02纳米管阵列上,构建了光电性能良好的CdTe/Au-TiO2光电传感电极。因为贵金属Au的工作函比Ti02半导体的工作函高,光生电子从Ti02迁移到邻近金属纳米颗粒上,导致在每个金属纳米颗粒与Ti02纳米管接触面区域形成肖特基势垒。肖特基势垒起到了有效的“电子陷阱”作用,避免了光生电子与空穴的复合,从而提高电极材料的光电催化活性。同时贵金属材料优良的导电性能有利于电子传导。以CdTe/Au-TiO2纳米管阵列为基底所构建的无标记光电化学免疫传感器,对持久性有机污染物三(2,3-二溴丙基)异氰脲酸酯(TBC)表现超灵敏,高选择性响应,对5.0×10-11~5.0×10-5M范围内的TBC浓度有线性响应,检测下限为50pM。并应用于湘江水样和浏阳河中水样TBC的定量检测(第3章)。
     (3)通过化学修饰方法使单分散的二氧化硅凝胶纳米粒子作为表面纳米印记结构的印记模板分子的支撑体,构建一种基于分子印迹聚合物的纳米粒子荧光光传感器。该传感器对持久性有机污染物全氟辛烷磺酸钠(PFOS)表现超灵敏,高选择性响应,对5.57~48.54ug L-1(10.36nM~90.2nM)浓度范围内的PFOS有线性响应,检测下限为5.57ug L-1(10.36nM,第4章)。
Energy and the environment are two major problems which the human must face in the21st century. Semiconductor photocatalytic materials has huge application prospect in solving environmental pollution and energy shortage. Light catalysis by using solar energy has been research hot spot. Photocatalytic technology has extensive application prospect in the field of environmental pollution control because of its cheapness, environmental friendliness and high stability, etc. Semiconductor photocatalysis is one of the most active area of research at home and abroad in recent years. Especially with the rapid development of nanotechnology, photocatalytic nanomaterials can decompose environmental pollutants directly by absorbing sunlight, and no secondary pollution. So further study of nano semiconductor photocatalyst is of great significance to solve fundamentally the problem of environmental pollution.
     TiO2has its excellent photocatalytic activity and photoelectric properties as a member of the nanometer materials. Since1972, Fujishima found hydrogen production from water by photodecomposition in the TiO2electrode, a lot of research on the TiO2photocatalytic properties has been conducted, and it shows a broad application prospect in the photoelectric conversion, pollutants degradation, self clean, sensors and potential high-tech fields such as cancer treatment.TiO2nanotube arrays was prepared by anodic oxidation for the first time since2001, it gives rise to a lot of research interest because of its uniform surface morphology、large specific surface area、adjustable aperture length、high orientation、and the unique electrical and optical properties. Existing research shows that TiO2nanotube arrays has wide application prospection in the field of photocatalysis and sensing. However, due to the large forbidden band width of titanium dioxide(anatase and rutile type titanium dioxide forbidden band width are3.2eV and3.0eV, respectively.), it can only absorb ultraviolet light which accounts for only about5%of the sunlight. In contrast, the visible light accounts for about46%of sunlight energy, hence, the utilization of solar energy is very low. So make TiO2respond to visible light, and thus improve the utilization efficiency of sunlight of TiO2semiconductor materials is a hot spot in the present study. Furthermore, the conductivity of TiO2semiconductor material is low, and can't transfer photo-generated carriers effectively which make it easier for the photo-generated electron and hole to recombine, and consequently reduce the photoelectric conversion efficiency.
     This thesis has carried out research aiming at the above problems, with the removal of organic pollutant andrapid screening for the target, and improving optical/electrical catalytic activity of the titanium dioxide nanotubes array as the research focus.The material of TiO2nanotube arrays were modified and improvedin order to improve the utilization ratio and the photoelectric conversion efficiency of sunlight, and application research in the field of organic pollutant removal and biological sensing. The concrete research content is as follows:
     (1) The preparation, characterization and the study about photocatalysis of the CdTe/TiO2nanotubes:By using pulse electrodeposit technology, the narrow band gap semiconductor CdTe nanoparticles have been modified into TiO2nanotube arrays. Because the band gap (Eg) of CdTe is about1.5eV which matchs well with sunlight energy, it can absorb effectively visible light. The photocatalytically oxidative decomposition of P-Nitrophenol (PNP) with the CdTe nanoparticles-modified TiO2nanotube arrays (CdTe/TiO2NTAs) as catalyst was investigated under visible light (400nm<λ<800nm)irradiation. The CdTe/TiO2NTAs show much higher degradation rate (0.0312min-1) than the unmodified TiO2NTAs (0.0071min-1). The enhanced photocatalytic activity is attributed to the extended absorption in the visible light resulting from the narrow-band-gap semiconductor CdTe and the effective separation of photogenerated carriers.
     The two main impact factors on PNP photocatalytic degradation efficiency are the initial concentration of the target and the pH value of the solution. The optimum conditions were as follows respectively:10mg/L and pH~3. Under xenon lamp irradiation within2hours,35ml of10mg/L PNP removal rate is almost100%(Chapter2).
     (2) CdTe/Au-TiO2NTAs was used for photoelectric immune sensing detection of persistent organic pollutants(pops):In this paper, Tris(2,3-dibromopropyl) isocyanurate (TBC) is for the first time as far as we know determined by ultrasensitive photoelectrochemical(PEC) immunoassay using an antibody-modified ternary hybrid CdTe/Au-TiO2nanotube arrays (NTAs) photoelectrode developed by pulse electrodeposition technique. The as-prepared hybrid shows enhanced photon absorption and photocurrent response, which subsequently increased photoelectrical conversion efficiency in the visible region. TBC-antibody (Ab) was developed in rabbits as a result of immunization with BSA-TBC conjugate and covalently cross- linked onto the CdTe/Au-TiO2NT As. Since the photocurrent is highly dependent on the TiO2surface properties, the specific interaction between TBC and the antibody results in a sensitive change in the photocurrent, which displayed a linear range of5.0×10-11-5.0×10-5M and a low detection limit of5.0×10-11M for TBC determination. This proposed strategy highlights the application of TiO2nanotube in visible-light-activated photoelectrochemical biosensing, which could largely reduce the destructive effect of UV light on biomolecules(Chapter3).
     (3) A perfluorooctane sulfonate (PFOS, C8F17SO3-) molecularly imprinted (MIP) fluorescence sensor was developed by anchoring the MIP polymer on the surface of SiO2NPs via a surface molecular imprinting process. Fluorescence dye and organic amine were covalently immobilized onto the surface of MIP-SiO2NPs to form a hybrid monolayer of dye fluorophores and amine ligands which acted as the receptor sites to bind PFOS(C8F17SO3-) species through the acid-base pairing and hydrogen-bond interaction under acid condition (pH~3.5). The specific binding of PFOS into the recognition cavities in the polymer matrixes results in the fluorescence quenching due to the electron transfer from the fluorescence dye to PFOS. This proposed method can selectively and sensitively detect down to5.57ug L-1of PFOS in water, and a linear relationship has been obtained covering the concentration range of5.57~48.54ug L-1(10.36nM~90.2nM)(Chapter4).
引文
[1]谢武明,胡勇有,刘焕彬,et a1.持久性有机污染物(POPs)的环境问题与研究进展.中国环境监测,2004,20(2):58-61
    [2]沈平.《斯德哥尔摩公约》与持久性有机污染物(POPs).化学教育,2005,26(6):6-10
    [3]任仁.《斯德哥尔摩公约》禁用的12种持久性有机污染物.大学化学,2003,18(3):37-41
    [4]李国刚,李红莉.持久性有机污染物在中国的环境监测现状.中国环境监测,2004,20(4):53-60
    [5]王佩华,赵大伟,聂春红,et a1.持久性有机污染物的污染现状与控制对策.应用化工,2010,39(11):1761-1765
    [6]Fujishima A, H K. Electrochemical photolysis of water at a semiconductor electrode. Nature,1972,238(5358):37-38
    [7]Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions. Bulletin of Environmental Contamination and Toxicology,1976,16(6):697-701
    [8]Bahnemann D. Photocatalytic water treatment:solar energy applications. Solar Energy,2004,77(5):445-459
    [9]Gratzel M. Solar energy harvesting. New York:Elsevier,1988, 394-440
    [10]Jaeger C D, Bard A J. Spin trapping and electron spin resonance detection of radical intermediates in the photodecomposition of water at titanium dioxide particulate systems. Journal of Physical Chemistry, 1979,83(24):3146-3152
    [11]Hong A P, Bahnemann D W, Hoffmann M R. Cobalt (II) tetrasulfophthalocyanine on titanium dioxide:a new efficient electron relay for the photocatalytic formation and depletion of hydrogen peroxide in aqueous suspensions. Journal of Physical Chemistry,1987, 91(8):2109-2117
    [12]Fujihira M, Satoh Y, Osa T. Heterogeneous photocatalytic oxidation of aromatic compounds on TiO2-Nature,1981,293:206-208
    [13]Xiao W, Kaixue W, Jiesheng C. The functional inorganic composites. Progress in Chemistry,2011,23(1):42-52
    [14]Fu L, Liu Z, Liu Y, et al. Beaded cobalt oxide nanoparticles along carbon nanotubes:towards more highly integrated electronic devices. Advanced Materials,2005,17(2):217-221
    [15]Fu L, Liu Z, Liu Y, et al. Coating carbon nanotubes with rare earth oxide multiwalled nanotubes. Advanced Materials,2004,16(4):350-352
    [16]Liao L, Liu K, Wang W, et al. Multiwall boron carbonitride/carbon nanotube junction and its rectification behavior. Journal of the American Chemical Society,2007,129(31):9562-9563
    [17]Iimori H, Yamane S, Kitamura T, et al. High photovoltage generation at minority-carrier controlled n-Si/p-CuI heterojunction with morphologically soft CuI. The Journal of Physical Chemistry C,2008, 112(30):11586-11590
    [18]Garnett E C, Yang P. Silicon nanowire radial p-n junction solar cells. Journal of the American Chemical Society,2008,130(29):9224-9225
    [19]Peng K, Xu Y, Wu Y, et al. Aligned single-crystalline Si nanowire arrays for photovoltaic applications. Small,2005,1(11):1062-1067
    [20]Luther J M, Law M, Beard M C, et al. Schottky solar cells based on colloidal nanocrystal films. Nano Letters,2008,8(10):3488-3492
    [21]Patolsky F, Timko B P, Yu G, et al. Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science,2006,313(5790):1100-1104
    [22]Zong X, Yan H, Wu G, et al. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. Journal of the American Chemical Society,2008,130(23): 7176-7177
    [23]Wang D, Zou Z, Ye J. Photocatalytic water splitting with the Cr-doped Ba2In2O5/In2O3 composite oxide semiconductors. Chemistry of Materials,2005,17(12):3255-3261
    [24]Li Q, Chen L, Lu G. Visible-light-induced photocatalytic hydrogen generation on dye-sensitized multiwalled carbon nanotube/Pt catalyst. The Journal of Physical Chemistry C,2007,111(30):11494-11499
    [25]Koizumi S, Watanabe K, Hasegawa M, et al. Ultraviolet emission from a diamond pn junction. Science,2001,292(5523):1899-1901
    [26]Bernards D A, Flores-Torres S, Abruna H D, et al. Observation of electroluminescence and photovoltaic response in ionic junctions. Science,2006,313(5792):1416-1419
    [27]Liu R, Lee S B. MnO2/poly(3,4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage. Journal of the American Chemical Society,2008,130(10): 2942-2943
    [28]Batabyal S K, Vittal J J. Axial-junction nanowires of Ag2Te-AgAs a memory element. Chemistry of Materials,2008,20(18):5845-5850
    [29]Xue X, Xing L, Chen Y, et al. Synthesis and H2S sensing properties of CuO-SnO2 core/shell PN-junction nanorods. The Journal of Physical Chemistry C,2008,112(32):12157-12160
    [30]Kuang Q, Lao C-S, Li Z, et al. Enhancing the photon-and gas-sensing properties of a single SnO2 nanowire based nanodevice by nanoparticle surface functionalization. The Journal of Physical Chemistry C,2008,112(30):11539-11544
    [31]Zhang X, McGill S A, Xiong P. Origin of the humidity sensitivity of Al/AlOx/MHA/Au molecular tunnel junctions. Journal of the American Chemical Society,2007,129(46):14470-14474
    [32]Tzolov M B, Kuo T F, Straus D A, et al. Carbon nanotube-silicon heterojunction arrays and infrared photocurrent responses. The Journal of Physical Chemistry C,2007,111(1.5):5800-5804
    [33]Didier R. Photosensitization of TiO2 by MxOy and MxSy nanoparticles for heterogeneous photocatalysis applications. Catalysis Today,2007,122(1):20-26
    [34]崔玉民.负载贵金属的Ti02光催化剂的研究进展[J].贵金属,2007,28(3):62-65
    [35]吴欢文,张宁,钟金莲,et al. pn复合半导体光催化剂研究进展.化工进展,2007,26(12):1669-1674
    [36]Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2000,1:1-21
    [37]Shifu C, Wei Z, Wei L, et al. Preparation, characterization and activity evaluation of pn junction photocatalyst p-ZnO/n-TiO2. Applied Surface Science,2008,255(5):2478-2484
    [38]Zhu B, Li K, Zhou J, et al. The preparation of palladium-modified TiO2 nanofibers and their photocatalytic performance. Catalysis Communications,2008,9(14):2323-2326
    [39]Sa J, Arteaga G D, Daley R A, et al. Factors influencing hydride formation in a Pd/TiO2 catalyst. The Journal of Physical Chemistry B, 2006,110(34):17090-17095
    [40]Li Q, Xie R, Mintz E A, et al. Enhanced visible-light photocatalytic degradation of humic acid by palladium-modified nitrogen-doped titanium oxide. Journal of the American Ceramic Society,2007, 90(12):3863-3868
    [41]Chen P, Zhang X. Fabrication of Pt/TiO2 nanocomposites in alginate and their applications to the degradation of phenol and methylene blue in aqueous solutions. Clean-Soil, Air, Water,2008,36(5-6): 507-511
    [42]Ge L. Novel visible-light-driven Pt/BiVO4 photocatalyst for efficient degradation of methyl orange. Journal of Molecular Catalysis A: Chemical,2008,282(1):62-66
    [43]Chen Y, Crittenden J C, Hackney S, et al. Preparation of a novel TiO2-based pn junction nanotube photocatalyst. Environmental Science & Technology,2005,39(5):1201-1208
    [44]Sarkar J, John V T, He J, et al. Surfactant-templated synthesis and catalytic properties of patterned nanoporous titania supports loaded with platinum nanoparticles. Chemistry of Materials,2008,20(16): 5301-5306
    [45]Costi R, Saunders A E, Elmalem E, et al. Visible light-induced charge retention and photocatalysis with hybrid CdSe-Au nanodumbbells. Nano Letters,2008,8(2):637-641
    [46]Tian B, Zhang J, Tong T, et al. Preparation of Au/TiO2 catalysts from Au (Ⅰ)-hiosulfate complex and study of their photocatalytic activity for the degradation of methyl orange. Applied Catalysis B: Environmental,2008,79(4):394-401
    [47]Lee M S, Hong S-S, Mohseni M. Synthesis of photocatalytic nanosized TiO2-Ag particles with sol-gel method using reduction agent. Journal of Molecular Catalysis A:Chemical,2005,242(1): 135-140
    [48]Zhang Y, Mu J. One-pot synthesis, photoluminescence, and photocatalysis of Ag/ZnO composites. Journal of Colloid and Interface Science,2007,309(2):478-484
    [49]Sobana N, Muruganadham M, Swaminathan M. Nano-Ag particles doped TiO2 for efficient photodegradation of direct azo dyes. Journal of Molecular Catalysis A:Chemical,2006,258(1):124-132
    [50]Cozzoli P D, Fanizza E, Comparelli R, et al. Role of metal nanoparticles in TiO2/Ag nanocomposite-based microheterogeneous photocatalysis. The Journal of Physical Chemistry B,2004,108(28): 9623-9630
    [51]Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science,2001,293(5228):269-271
    [52]Chien S-H, Liou Y-C, Kuo M-C. Preparation and characterization of nanosized Pt/Au particles on TiO2-nanotubes. Synthetic Metals,2005, 152(1):333-336
    [53]Idakiev V, Yuan Z-Y, Tabakova T, et al. Titanium oxide nanotubes as supports of nano-sized gold catalysts for low temperature water-gas shift reaction. Applied Catalysis A:General,2005,281(1):149-155
    [54]Zhang X, Udagawa K, Liu Z, et al. Photocatalytic and photoelectrochemical studies on N-doped TiO2 photocatalyst. Journal of Photochemistry and Photobiology A:Chemistry,2009, 202(1):39-47
    [55]Anpo M, Takeuchi M. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. Journal of catalysis,2003,216(1):505-516
    [56]Li X, Li F. Study of Au/Au3+-Ti02 photocatalysts toward visible photooxidation for water and wastewater treatment. Environmental Science & Technology,2001,35(11):2381-2387
    [57]Bavykin D V, Lapkin A A, Plucinski P K, et al. Deposition of Pt, Pd, Ru and Au on the surfaces of titanate nanotubes. Topics in Catalysis, 2006,39(3-4):151-160
    [58]Yang L, Cai Q, Yu Y. Size-controllable fabrication of noble metal nanonets using a TiO2 template. Inorganic Chemistry,2006,45(24): 9616-9618
    [59]Vogel R, Hoyer P, Weller H. Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors. The Journal of Physical Chemistry C,1994, 98(12):3183-3188
    [60]Li X, Li F, Yang C, et al. Photocatalytic activity of WOx-TiO2 under visible light irradiation. Journal of Photochemistry and Photobiology A:Chemistry,2001,141(2):209-217
    [61]Lee J H, Nam W, Kang M, et al. Design of two types of fluidized photo reactors and their photo-catalytic performances for degradation of methyl orange. Applied Catalysis A:General,2003,244(1):49-57
    [62]Varghese O K, Gong D, Paulose M, et al. Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure. Advanced Materials,2003,15(7-8):624-627
    [63]Mor G K, Carvalho M A, Varghese O K, et al. A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination. Journal of Materials Research,2004, 19(2):628-634
    [64]Varghese O K, Mor G K, Grimes C A, et al. A titania nanotube-array room-temperature sensor for selective detection of hydrogen at low concentrations. Journal of Nanoscience and Nanotechnology,2004, 4(7):733-737
    [65]Paulose M, Varghese O K, Mor G K, et al. Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes. Nanotechnology,2006,17(2):398
    [66]Yoriya S, Prakasam H E, Varghese O K, et al. Initial studies on the hydrogen gas sensing properties of highly-ordered high aspect ratio TiO2 nanotube-arrays 20 m to 222 m in length. Sensor Letters,2006, 4(3):334-339
    [67]Ji H, Lu H, Ma D, et al. Preparation and hydrogen gas sensitive characteristics of highly ordered titania nanotube arrays. Chinese Science Bulletin,2008,53(9):1352-1357
    [68]Varghese O K, Gong D, Paulose M, et al. Hydrogen sensing using titania nanotubes. Sensors and Actuators B:Chemical,2003,93(1): 338-344
    [69]Liu S, Chen A. Coadsorption of horseradish peroxidase with thionine on TiO2 nanotubes for biosensing. Langmuir,2005,21(18):8409- 8413
    [70]Xiao P, Garcia B B, Guo Q, et al. TiO2 nanotube arrays fabricated by anodization in different electrolytes for biosensing. Electrochemistry Communications,2007,9(9):2441-2447
    [71]Kafi A, Wu G, Chen A. A novel hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto Au-modified titanium dioxide nanotube arrays. Biosensors and Bioelectronics, 2008,24(4):566-571
    [72]Banerjee S, Mohapatra S K, Das P P, et al. Synthesis of coupled semiconductor by filling 1D TiO2 nanotubes with CdS. Chemistry of Materials,2008,20(21):6784-6791
    [73]Kongkanand A, Tvrdy K, Takechi K, et al. Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. Journal of the American Chemical Society,2008, 130(12):4007-4015
    [74]Kuang S, Yang L, Luo S, et al. Fabrication, characterization and photoelectrochemical properties of Fe2O3 modified TiO2 nanotube arrays. Applied Surface Science,2009,255(16):7385-7388
    [75]Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis. Chemical reviews,1995,95(1):69-96
    [76]Osterloh F E. Inorganic materials as catalysts for photochemical splitting of water. Chemistry of Materials,2007,20(1):35-54
    [77]Maldotti A, Molinari A, Amadelli R. Photocatalysis with organized systems for the oxofunctionalization of hydrocarbons by O2. Chemical Reviews,2002,102(10):3811-3836
    [78]Quan X, Yang S, Ruan X, et al. Preparation of titania nanotubes and their environmental applications as electrode. Environmental Science & Technology,2005,39(10):3770-3775
    [79]Varghese O K, Paulose M, Shankar K, et al. Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays. Journal of Nanoscience and Nanotechnology,2005,5(7):1158-1165
    [80]Mor G K, Shankar K, Paulose M, et al. Enhanced photocleavage of water using titania nanotube arrays. Nano Letters,2005,5(1):191-195
    [81]吕明,苏雪筠,饶平根.新型光解水制氢用半导体光催化材料的研究进展.材料导报,2005,19(5):1-3
    [82]Zhang Y, Fu W, Yang H, et al. Synthesis and characterization of TiO2 nanotubes for humidity sensing. Applied Surface Science,2008, 254(17):5545-5547
    [83]Lu H F, Li F, Liu G, et al. Amorphous TiO2 nanotube arrays for low-temperature oxygen sensors. Nanotechnology,2008,19(40):405504
    [84]Yang L, Chen B, Luo S, et al. Sensitive detection of polycyclic aromatic hydrocarbons using CdTe quantum dot-modified TiO2 nanotube array through fluorescence resonance energy transfer. Environmental Science & Technology,2010,44(20):7884-7889
    [85]Kang Q, Yang L, Chen Y, et al. Photoelectrochemical detection of pentachlorophenol with a Multiple Hybrid CdSexTe1-x/TiO2 Nanotube Structure-Based Label-Free Immunosensor. Analytical Chemistry, 2010,82(23):9749-9754
    [86]Gao X-F, Li H-B, Sun W-T, et al. CdTe quantum dots-sensitized TiO2 nanotube array photoelectrodes. The Journal of Physical Chemistry C, 2009,113(18):7531-7535
    [87]Mor G K, Prakasam H E, Varghese O K, et al. Vertically oriented Ti-Fe-O nanotube array films:toward a useful material architecture for solar spectrum water photoelectrolysis. Nano Letters,2007,7(8): 2356-2364
    [88]Grimes C A. Synthesis and application of highly ordered arrays of TiO2 nanotubes. Journal of Materials Chemistry,2007,17(15):1451-1457
    [89]Yin S, Zhang Q W, Saito F, et al. Preparation of visible light-activated titania photocatalyst by mechanochemical method. Chemistry Letters, 2003,32(4):358-359
    [90]Lin S C, Lee Y L, Chang C H, et al. Quantum-dot-sensitized solar cells:Assembly of CdS-quantum-dots coupling techniques of self-assembled monolayer and chemical bath deposition. Applied Physics Letters,2007,90(14):143517
    [91]Sun W T, Yu Y, Pan H Y, et al. CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. Journal of the American Chemical Society,2008,130(4):1124-1125
    [92]Plass R, Pelet S, Krueger J, et al. Quantum dot sensitization of organic-inorganic hybrid solar cells. Journal of Physical Chemistry B, 2002,106(31):7578-7580
    [93]Peter L M, Wijayantha K G U, Riley D J, et al. Band-edge tuning in self-assembled layers of Bi2S3 nanoparticles used to photosensitize nanocrystalline TiO2. Journal of Physical Chemistry B,2003,107(33): 8378-8381
    [94]Shen Q, Sato T, Hashimoto M, et al. Photoacoustic and photoelectrochemical characterization of CdSe-sensitized TiO2 electrodes composed of nanotubes and nanowires. Thin Solid Films, 2006,499(1):299-305
    [95]Robel I, Subramanian V, Kuno M, et al. Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. Journal of the American Chemical Society, 2006,128(7):2385-2393
    [96]Zaban A, Micic O I, Gregg B A, et al. Photosensitization of nanoporous TiO2 electrodes with InP quantum dots. Langmuir,1998, 14(12):3153-3156
    [97]Singh R R, Painuly D, Pandey R. Synthesis and characterization of electrochemically deposited nanocrystalline CdTe thin films. Materials Chemistry and Physics,2009,116(1):261-268
    [98]Luo B, Deng Y, Wang Y, et al. Heterogeneous flammulina velutipes-like CdTe/TiO2 nanorod array:A promising composite nanostructure for solar cell application. Journal of Alloys and Compounds,2012, 517:192-197
    [99]Castro S L, Bailey S G, Raffaelle R P, et al. Nanocrystalline chalcopyrite materials (CuInS2 and CuInSe2) via low-temperature pyrolysis of molecular single-source precursors. Chemistry of Materials,2003,15(16):3142-3147
    [100]Yi S, Zhuang W Q, Wu B, et al. Biodegradation of p-Nitrophenol by aerobic granules in a sequencing batch reactor. Environmental Science & Technology,2006,40(7):2396-2401
    [101]Labana S, Pandey G, Paul D, et al. Pot and field studies on bioremediation of p-nitrophenol contaminated soil using arthrobacter protophormiae RKJ100. Environmental Science & Technology,2005, 39(9):3330-3337
    [102]Daneshvar N, Behnajady M A, Zorriyeh Asghar Y. Photooxidative degradation of 4-nitrophenol (4-NP) in UV/H2O2 process:Influence of operational parameters and reaction mechanism. Journal of Hazardous Materials,2007,139(2):275-279
    [103]Zhao B, Mele G, Pio I, et al. Degradation of 4-nitrophenol (4-NP) using Fe-TiO2 as a heterogeneous photo-Fenton catalyst. Journal of Hazardous Materials,2010,176(1-3):569-574
    [104]Shintre S N, Thakur P R. Photo-catalyzed degradation of p-nitrophenol employing TiO2 and UV radiations. Journal of Environmental Science & Engineering,2008,50(4):299
    [105]Sun W, Li J, Yao G, et al. Efficient photo-degradation of 4-nitrophenol by using new CuPp-TiO2 photocatalyst under visible light irradiation. Catalysis Communications,2011,16(1):90-93
    [106]Shojaie A F, Loghmani M H. La3+ and Zr4+ co-doped anatase nano TiO2 by sol-microwave method. Chemical Engineering Journal,2010, 157(1):263-269
    [107]Wang C, Li J, Mele G, et al. Efficient degradation of 4-nitrophenol by using functionalized porphyrin-TiO2 photocatalysts under visible irradiation. Applied Catalysis B:Environmental,2007,76(3-4):218-226
    [108]Yang L, Luo S, Li Y, et al. High efficient photocatalytic degradation of p-nitrophenol on a unique Cu2O/TiO2 p-n heterojunction network catalyst. Environmental Science & Technology,2010,44(19):7641-7646
    [109]Peng X, Zhang J, Wang X, et al. Synthesis of highly ordered CdSe nanowire arrays embedded in anodic alumina membrane by electrodeposition in ammonia alkaline solution. Chemical Physics Letters,2001,343(5-6):470-474
    [110]Ohsaka T, Izumi F, Fujiki Y. Raman spectrum of anatase, TiO2. Journal of Raman Spectroscopy,1978,7(6):321-324
    [111]Chan S, Wachs I, Murrell L, et al. In situ laser raman spectroscopy of supported metal oxides. The Journal of Physical Chemistry C, 1984,88(24):5831-5835
    [112]Gao X F, Li H B, Sun W T, et al. CdTe quantum dots-sensitized TiO2 nanotube array photoelectrodes. Journal of Physical Chemistry C, 2009,113(18):7531-7535
    [113]Butler M. Photoelectrolysis and physical property of the semiconductor. Journal of Applied Physics,1977,48(5):1924
    [114]Cong Y, Zhang J, Chen F, et al. Preparation, photocatalytic activity, and mechanism of nano-TiO2 co-doped with nitrogen and iron (III). Journal of Physical Chemistry C,2007,111(28):10618-10623
    [115]Chen X, Mao S S. Titanium dioxide nanomaterials:□ synthesis, properties, modifications, and applications. Chemical Reviews,2007, 107(7):2891-2959
    [116]Liu G, Zhao Y, Sun C, et al. Synergistic effects of B/N doping on the visible-light photocatalytic activity of mesoporous TiO2. Angewandte Chemie International Edition,2008,47(24):4516-4520
    [117]Liu G, Li F, Chen Z, et al. The role of NH3 atmosphere in preparing nitrogen-doped TiO2 by mechanochemical reaction. Journal of Solid State Chemistry,2006,179(1):331-335
    [118]Yao Y, Li G, Ciston S, et al. Photoreactive TiO2/carbon nanotube composites:synthesis and reactivity. Environmental Science & Technology,2008,42(13):4952-4957
    [119]Kang Q, Lu Q Z, Liu S H, et al. A ternary hybrid CdS/Pt-TiO2 nanotube structure for photoelectrocatalytic bactericidal effects on escherichia coli. Biomaterials,2010,31(12):3317-3326
    [120]Zhang H, Quan X, Chen S, et al. "Mulberry-like" CdSe nanoclusters anchored on TiO2 nanotube arrays:a novel architecture with remarkable photoelectrochemical performance. Chemistry of Materials,2009,21(14):3090-3095
    [121]Baker D R, Kamat P V. Photosensitization of TiO2 nanostructures with CdS quantum dots:particulate versus tubular support architectures. Advanced Functional Materials,2009,19(5):805-811
    [122]Vinodgopal K, Hotchandani S, Kamat P V. Electrochemically assisted photocatalysis:titania particulate film electrodes for photocatalytic degradation of 4-chlorophenol. The Journal of Physical Chemistry, 1993,97:9040-9044
    [123]Kuang S, Yang L, Luo S, et al. Fabrication, characterization and photoelectrochemical properties of Fe2O3 modified TiO2 nanotube arrays. Applied Surface Science,2009,255(16):7385-7388
    [124]Serpone N, Maruthamuthu P, Pichat P, et al. Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol,2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors. Journal of Photochemistry and Photobiology A: Chemistry,1995,85(3):247-255
    [125]Linsebigler A L, Lu G, Yates J T. Photocatalysis on TiO2 Surfaces: principles, mechanisms, and selected results. Chemical Reviews, 1995,95(3):735-758
    [126]Soni S S, Henderson M J, Bardeau J F, et al. Visible-light photocatalysis in titania-based mesoporous thin films. Advanced Materials,2008,20(8):1493-1498
    [127]Hou Y, Li X, Zhao Q, et al. Electrochemically assisted photocatalytic degradation of 4-chlorophenol by ZnFe2O4-modified TiO2 nanotube array electrode under visible light irradiation. Environmental Science & Technology,2010,44(13):5098-5103
    [128]Zhou B, Zhao X, Liu H, et al. Visible-light sensitive cobalt-doped BiVO4 (Co-BiVO4) photocatalytic composites for the degradation of methylene blue dye in dilute aqueous solutions. Applied Catalysis B: Environmental,2010,99(1-2):214-221
    [129]Chen D, Ray A K. Photodegradation kinetics of 4-nitrophenol in TiO2 suspension. Water Research,1998,32(11):3223-3234
    [130]Chen D, Ray A K. Removal of toxic metal ions from wastewater by semiconductor photocatalysis. Chemical Engineering Science,2001, 56(4):1561-1570
    [131]Miyao M. Involvement of active oxygen species in degradation of the Dl protein under strong illumination in isolated subcomplexes of photosystem II. Biochemistry,1994,33(32):9722-9730
    [132]Adams G E, Hart E J. Radiolysis and Photolysis of Aqueous Formic Acid. Carbon Monoxide Formation. J. Am. Chem. Soc.,1962,84(21): 3994-3999
    [133]Rengaraj S, Li X Z. Enhanced photocatalytic reduction reaction over Bi3+-Ti02 nanoparticles in presence of formic acid as a hole scavenger. Chemosphere,2007,66(5):930-938
    [134]Sun Y, Pignatello J J. Evidence for a surface dual hole-radical mechanism in the titanium dioxide photocatalytic oxidation of 2,4-D. Environmental Science & Technology,1995,29(8):2065-2072
    [135]Ruan T, Wang Y, Wang C, et al. Identification and evaluation of a novel heterocyclic brominated flame retardant tris (2,3-dibromopropyl) isocyanurate in environmental matrices near a manufacturing plant in southern China. Environmental Science & Technology,2009,43(9):3080-3086
    [136]Zhang X, Li J, Chen M, et al. Toxicity of the brominated flame retardant tris-(2,3-dibromopropyl) isocyanurate in zebrafish (danio rerio). Chinese Science Bulletin,2011,56(15):1548-1555
    [137]Yuru L J Y J Y. Microencapsulated TBC and its application [J]. China Plastics Industry,1999,27(1):43-44
    [138]Stapleton H M, Allen J G, Kelly S M, et al. Alternate and new brominated flame retardants detected in U.S. House Dust. Environmental Science & Technology,2008,42(18):6910-6916
    [139]Birnbaum L S, Staskal D F. Brominated flame retardants:cause for concern? Environmental Health Perspectives,2004,112(1):9-17
    [140]Legler J, Brouwer A. Are brominated flame retardants endocrine disruptors? Environment International,2003,29(6):879-885
    [141]Costa L G, Giordano G. Developmental neurotoxicity of polybrominated diphenyl ether (PBDE) flame retardants. Neurotoxicology,2007,28(6):1047-1067
    [142]Muir D C G, Howard P H. Are there other persistent organic pollutants? A challenge for environmental chemists. Environmental Science & Technology,2006,40(23):7157-7166
    [143]Zhao P, Cao G, Zhou L, et al. Nitrate enhanced electrochemiluminescence determination of tris (2,3-dibromopropyl) isocyanurate with a gold nanoparticles-modified gold electrode. Analyst,2011,136(9):1952-1956
    [144]Wang G L, Yu P P, Xu J J, et al. A label-free photoelectrochemical immunosensor based on water-soluble CdS quantum dots. Journal of Physical Chemistry C,2009,113(25):11142-11148
    [145]Wang G L, Xu J J, Chen H Y, et al. Label-free photoelectrochemical immunoassay for a-fetoprotein detection based on TiO2/CdS hybrid. Biosensors and Bioelectronics,2009,25(4):791-796
    [146]Haddour N, Chauvin J, Gondran C, et al. Photoelectrochemical immunosensor for label-free detection and quantification of anti-cholera toxin antibody. Journal of the American Chemical Society, 2006,128(30):9693-9698
    [147]Hagfeldt A, Gratzel M. Molecular photovoltaics. Accounts of Chemical Research,2000,33(5):269-277
    [148]Gao X-F, Li H-B, Sun W-T, et al. CdTe quantum dots-sensitized TiO2 nanotube array photoelectrodes. Journal of Physical Chemistry C, 2009,113(18):7531-7535
    [149]Feng H, T T Tran, Chen L, et al. Visible light-induced efficiently oxidative decomposition of p-nitrophenol by CdTe/TiO2 nanotube arrays. Chemical Engineering Journal,2013,215-216:591-599
    [150]Zamborini F P, Leopold M C, Hicks J F, et al. Electron hopping conductivity and vapor sensing properties of flexible network polymer films of metal nanoparticles. Journal of the American Chemical Society,2002,124(30):8958-8964
    [151]Jia J, Wang B, Wu A, et al. A method to construct a third-generation horseradish peroxidase biosensor:self-assembling gold nanoparticles to three-dimensional sol-gel network. Analytical Chemistry,2002, 74(9):2217-2223
    [152]Xiao Y, Patolsky F, Katz E, et al. " Plugging into enzymes": nanowiring of redox enzymes by a gold nanoparticle. Science,2003, 299(5614):1877-1881
    [153]Dequaire M, Degrand C, Limoges B. An electrochemical metalloimmunoassay based on a colloidal gold label. Analytical Chemistry,2000,72(22):5521-5528
    [154]Kraeutler B, Bard A J. Heterogeneous photocatalytic preparation of supported catalysts. Photodeposition of platinum on titanium dioxide powder and other substrates. Journal of the American Chemical Society,1978,100(13):4317-4318
    [155]Chandrasekharan N, Kamat P V. Improving the photoelectrochemical performance of nanostructured TiO2 films by adsorption of gold nanoparticles. The Journal of Physical Chemistry B,2000,104(46): 10851-10857
    [156]Jakob M, Levanon H, Kamat P V. Charge distribution between UV-irradiated TiO2 and gold nanoparticles:determination of shift in the Fermi level. Nano Letters,2003,3(3):353-358
    [157]Chen H, Chen S, Quan X, et al. Fabrication of TiO2-Pt coaxial nanotube array schottky structures for enhanced photocatalytic degradation of phenol in aqueous solution. The Journal of Physical Chemistry C,2008,112(25):9285-9290
    [158]Shan Z, Wu J, Xu F, et al. Highly effective silver/semiconductor photocatalytic composites prepared by a silver mirror reaction. The Journal of Physical Chemistry C,2008,112(39):15423-15428
    [159]Shi L, Zhou L, Dai G, et al. Synthesis of haptens and selective enzyme-linked immunosorbent assay of octachlorostyrene. Talanta, 2013,115:386-393
    [160]Estevez M C, Kreuzer M, Sanchez-Baeza F, et al. Analysis of nonylphenol:□ Advances and improvements in the immunochemical determination using antibodies raised against the technical mixture and hydrophilic immunoreagents. Environmental Science & Technology,2006,40(2):559-568
    [161]Kang Q, Yang L, Chen Y, et al. Photoelectrochemical detection of pentachlorophenol with a multiple hybrid CdSexTe1-x/TiO2 nanotube structure-based label-free immunosensor. Analytical Chemistry,2010, 82(23):9749-9754
    [162]Liu H, Li X, Leng Y, et al. An alternative approach to ascertain the rate-determining steps of TiO2 photoelectrocatalytic reaction by electrochemical impedance spectroscopy. The Journal of Physical Chemistry B,2003,107(34):8988-8996
    [163]Kongkanand A, Tvrdy K, Takechi K, et al. Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. Journal of the American Chemical Society,2008, 130(12):4007-4015
    [164]Hou Y, Li X Y, Zhao Q D, et al. Electrochemical method for synthesis of a ZnFe2O4/TiO2 composite nanotube array modified electrode with enhanced photoelectrochemical activity. Advanced Functional Materials,2010,20(13):2165-2174
    [165]Franzl T, Muller J, lar T A, et al. CdSe:Te nanocrystals:band-edge versus Te-related emission. The Journal of Physical Chemistry C, 2007,111(7):2974-2979
    [166]Dai W, Wang X, Liu P, et al. Effects of electron transfer between TiO2 films and conducting substrates on the photocatalytic oxidation of organic pollutants. The Journal of Physical Chemistry B,2006, 110(27):13470-13476
    [167]Kerman K, Nagatani N, Chikae M, et al. Label-free electrochemical immunoassay for the detection of human chorionic gonadotropin hormone. Analytical Chemistry,2006,78(15):5612-5616
    [168]Liju Y, Yanbin L, Erf Gisela F. Intenrdigitated array mierodec trodebased electrochemical impedance immunosensor for detection of Escherichia coli 0157:H7. Analytical Chemistry,2004,76(4): 1107-1113
    [169]Wang G-L, Xu J-J, Chen H-Y, et al. Label-free photoelectrochemical immunoassay for α-fetoprotein detection based on TiO2/CdS hybrid. Biosensors and Bioelectronics,2009,25(4):791-796
    [170]Calafat A M, Needham L L, Kuklenyik Z, et al. Perfluorinated chemicals in selected residents of the American continent. Chemosphere,2006,63(3):490-496
    [171]Karrman A, van Bavel B, Jarnberg U, et al. Perfluorinated chemicals in relation to other persistent organic pollutants in human blood. Chemosphere,2006,64(9):1582-1591
    [172]Olsen G W, Burris J M, Mandel J H, et al. Serum perfluorooctane sulfonate and hepatic and lipid clinical chemistry tests in fluorochemical production employees. Journal of Occupational and Environmental Medicine,1999,41(9):799-806
    [173]Kannan K, Corsolini S, Falandysz J, et al. Perfluorooctanesulfonate and related fluorinated hydrocarbons in marine mammals, fishes, and birds from coasts of the Baltic and the Mediterranean Seas. Environmental Science & Technology,2002,36(15):3210-3216
    [174]Taniyasu S, Kannan K, Horii Y, et al. A survey of perfluorooctane sulfonate and related perfluorinated organic compounds in water, fish, birds, and humans from Japan. Environmental Science& Technology,2003,37(12):2634-2639
    [175]Schroder H F. Determination of fluorinated surfactants and their metabolites in sewage sludge samples by liquid chromatography with mass spectrometry and tandem mass spectrometry after pressurised liquid extraction and separation on fluorine-modified reversed-phase sorbents. Journal of Chromatography A,2003,1020(1):131-151
    [176]Saito N, Harada K, Inoue K, et al. Perfluorooctanoate and perfluorooctane sulfonate concentrations in surface water in Japan. Journal of Occupational Health,2004,46(1):49-59
    [177]Cao D, Hu M, Han C, et al. Proton sponge-functionalized silica as high performance adsorbents for solid-phase extraction of trace perfluoroalkyl sulfonates in the environmental water samples and their direct analysis by MALDI-TOF-MS. Analyst,2012,137(9): 2218-2225
    [178]Larsen B S, Kaiser M A, Botelho M, et al. Comparison of pressurized solvent and reflux extraction methods for the determination of perfluorooctanoic acid in polytetrafluoroethylene polymers using LC-MS-MS. Analyst,2005,130(1):59-62
    [179]Wulff G, Sarhan A. Use of polymers with enzyme-analogous structures for the resolution of racemates. Angewandte Chemie International Edition,1972,11(4):341-342
    [180]Andersson L, Sellergren B, Mosbach K. Imprinting of amino acid derivatives in macroporous polymers. Tetrahedron Letters,1984, 25(45):5211
    [181]Alexander C, Andersson H S, Andersson L I, et al. Molecular imprinting science and technology:a survey of the literature for the years up to and including 2003. Journal of Molecular Recognition, 2006,19(2):106-180
    [182]Shi H, Tsai W B, Garrison M D, et al. Template-imprinted nanostructered surfaces for protein recognition. Nature,1999, 398(6728):593-596
    [183]Hayden O, Dickert F L. Selective microorganism detection with cell surface imprinted polymers. Advanced Materials,2001,13(19): 1480-1483
    [184]Hayden O, Lieberzeit P A, Blaas D, et al. Artificial antibodies for bioanalyte detection-sensing viruses and proteins. Advanced Functional Materials,2006,16(10):1269-1278
    [185]Yilmaz E, Haupt K, Mosbach K. The use of immobilized templates-A new approach in molecular imprinting. Angewandte Chemie International Edition,2000,39(12):2115-2118
    [186]Bossi A, Piletsky S A, Piletska E V, et al. Surface-grafted molecularly imprinted polymers for protein recognition. Analytical Chemistry,2001,73(12):5281-5286
    [187]Yang H H, Zhang S Q, Tan F, et al. Surface molecularly imprinted nanowires for biorecognition. Journal of the American Chemical Society,2005,127(5):1378-1379
    [188]Li Y, Yang H H, You Q H, et al. Protein recognition via surface molecularly imprinted polymer nanowires. Analytical Chemistry, 2006,78(1):317-320
    [189]Fang G-Z, Tan J, Yan X-P. An ion-imprinted functionalized silica gel sorbent prepared by a surface imprinting technique combined with a sol-gel process for selective solid-phase extraction of cadmium (II). Analytical Chemistry,2005,77(6):1734-1739
    [190]Stober W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science,1968,26(1):62-69
    [191]Gao D, Wang Z, Liu B, et al. Resonance energy transfer-amplifying fluorescence quenching at the surface of silica nanoparticles toward ultrasensitive detection of TNT. Analytical Chemistry,2008,80(22): 8545-8553
    [192]Gao D, Zhang Z, Wu M, et al. A surface functional monomer-directing strategy for highly dense imprinting of TNT at surface of silica nanoparticles. Journal of the American Chemical Society,2007, 129(25):7859-7866
    [193]Li Y, Cui Z, Li D, et al. Colorimetric determination of pyrethroids based on core-shell Ag@SiO2 nanoparticles. Sensors and Actuators B: Chemical,2011,155(2):878-883
    [194]Titirici M-M, Sellergren B. Thin molecularly imprinted polymer films via reversible addition-fragmentation chain transfer polymerization. Chemistry of Materials,2006,18(7):1773-1779
    [195]Titirici M M, Hall A J, Sellergren B. Hierarchically imprinted stationary phases:? mesoporous polymer beads containing surface- confined binding sites for adenine. Chemistry of Materials,2001, 14(1):21-23
    [196]Li H-l, Perkas N, Li Q-l, et al. Improved silanization modification of a silica surface and its application to the preparation of a silica-supported polyoxometalate catalyst. Langmuir,2003,19(24):10409-10413
    [197]Wang H-F, He Y, Ji T-R, et al. Surface molecular imprinting on Mn-doped ZnS quantum dots for room-temperature phosphorescence optosensing of pentachlorophenol in water. Analytical Chemistry, 2009,81(4):1615-1621
    [198]Tsai Y-T, Yu-Chen Lin A, Weng Y-H, et al. Treatment of perfluorinated chemicals by electro-microfiltration. Environmental Science & Technology,2010,44(20):7914-7920
    [199]Hoogeveen N G, Stuart M A C, Fleer G J. Polyelectrolyte adsorption on oxides:I. Kinetics and adsorbed amounts. Journal of Colloid and Interface Science,1996,182(1):133-145
    [200]Tu R, Liu B, Wang Z, et al. Amine-capped ZnS-Mn2+ nanocrystals for fluorescence detection of trace TNT explosive. Analytical Chemistry,2008,80(9):3458-3465

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700