用户名: 密码: 验证码:
纳米金属氧化物的制备及光催化和发光特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会不断发展,工业的不断进步,化工废物尤其是含苯环类、含氮类有机物、硫化物、多环类污染日益严重,已经逐渐渗透到工业、农业、民用等诸多领域,严重危害人类的健康。尤其在环保意识逐渐增强,构建可持续发展、生态文明建设的今天,利用太阳光清洁能源作为驱动力的光催化剂,能有效降解有机污染物,改善环境,将解决人类面临的能源和环境问题,因此,越来越受到人们广泛关注和青睐。
     TiO2材料成本低廉、无二次污染、具有极强氧化能力、优良的着色力、还原能力、耐化学腐蚀性以及稳定性、良好的介电性质和光催化降解有毒污染物等特性,吸引了众多科研工作者的关注,有巨大的潜力和广泛的应用前景。随着纳米技术的发展,纳米材料的表面效应、体积效应、量子尺寸效应、宏观体积效应等特殊性质的发现,TiO2纳米材料的应用领域还在不断扩大。但是,宽能隙TiO2半导体材料,光响应范围较窄,尤其不能有效利用可见光,同时其量子效率偏低,这都阻碍了TiO2进一步发展。因此,提高TiO2的量子效率和扩展其光响应范围,尤其在可见光下利用太阳清洁能源,成为亟待解决的瓶颈问题。本论文针对瓶颈问题,做了如下主要工作:
     1.首先通过控制电纺丝前驱物溶液的成分、电纺丝过程中的参数以及纺丝纤维热处理过程成功制备出具有纳米线和纳米管结构的TiO2。电纺丝法制备的TiO2纳米线表面光滑并有较大的长径比;TiO2纳米管分布均匀,管壁是由TiO2纳米颗粒组成,具有明显的多孔结构。分别在紫外光下研究了它们光催化分解有机染料罗丹明B (RhB)的效率。结果表明TiO2纳米线和多孔TiO2纳米管均表现出较好的光催化性能。实验结果显示多孔TiO2纳米管光催化性能要优于TiO2纳米线,这源于TiO2纳米管的多孔结构与锐钛矿相和金红石相形成异质结后内建电场对电子空穴对的分离作用。
     2.首先利用电纺丝法制备得纯的TiO2纳米线,其次利用不同的退火温度产生不同晶相的TiO2,再用浸渍法对制备的TiO纳米线掺入V2O5,在不影响TiO2晶相的温度下进行二次退火使之形成异质结,最后测试其光催化性。在可见光下,TiO2与V2O5形成的异质结材料对其光催化效率有很大提高;不同晶相的Ti02对TiO2/V2O5异质结光催化效率影响不大。
     3.通过研究核壳结构的V2O5@TiO2异质结的制备,并探索各种实验条件,如表面活性剂、前驱物的含量比例、pH值等对样品结构形貌的影响。研究在可见光下,具有不同成分形貌的V2O5@TiO2异质结与其光降解有机物RhR特性的影响,初探其机制并发现V:Ti摩尔比是1:5时为最佳比例,RhB在短时间内的分解速率是最高,其光催化性最好。
     稀土元素掺杂半导体材料具有独特的发光特性、半导体特性,以及其在生物标签、光学器件、照明以及显示方面的广泛应用,而引起研究人员的广泛关注。其中基质材料的宽带隙特点能有效提高稀土的固溶度和其光致发光效率。MoO3作为一种重要的n型透明导电氧化物,具有优异的可逆光色性和较高的光学对比度。它通常有α-MoO3,β-MoO3,h-MoO3三种晶体结构,其中α-MoO3为热稳定相,在气敏、场发射、锂离子电池、光致变色和电致变色器件中都有着良好的应用前景。α-MoO3的带隙较宽,可作为稀土元素的良好基质材料。因此,成为当前纳米材料研究的热点。目前已有大量关于稀土元素掺杂的宽带隙氮化物、氧化物的研究报道,但是,关于稀土元素掺杂MoO3的研究报道,目前仍较缺乏。为此,本论文设计了制备纳米级α-MoO3并进行Er掺杂,研究其发光性,期望MoO3商业应用到稀土基光电器件的良好基质材料中。我们做了如下工作:
     通过固相合成法成功的制备了正交相结构α-MoO3和Er掺杂浓度为1%、3%、5%纳米材料,研究了MoO3材料的表面形貌,结构和发光特性。未掺杂和Er掺杂浓度为1%、3%、5%的MoO3粉末样品晶粒尺寸分别为51、41、40、44nm。除了普通拉伸、形变、晶格振动三种模式形成的拉曼光谱峰之外,随着掺Er浓度的升高,掺杂后的MoO3,出现了新的Raman位移。室温下观测到了Er3+离子内4f跃迁导致的强烈绿色光致发光现象。根据光致发光激发谱(PLE)光谱,我们提出了一种缺陷参与的从MoO3到Er3+的能量跃迁机制。结果表明MoO3将有希望成为稀土基可见光电器件的基质材料。
With the continuous development of society and the advancement of industrialization, Chemical wastes, especially benzene, Nitrogenous organic compounds, sulphide and PAHs pollutions have become increasingly serious, and has gradually penetrated into industry, agriculture and other fields, endangering human health. In nowadays when people's environmental awareness raised, the sustainable development and ecology civilization construction are establishing, the use of solar energy as a driving force of photocatalyst can effectively degrade organic pollutants, improve the environment, and basically solve the energy and environmental problems facing human beings, attracting attentions and favors of more people.
     TiO2material, with low cost, no secondary pollution, strong oxidation ability, coloring ability, reducing power, resistance to chemical corrosion, high stability, good dielectric properties and photocatalytic degradation of toxic pollutants, attracts attention of many research workers and possesses great and wide potential of application. With the development of nanotechnology, and discoveries of surface effect, volume effect, quantum size effect, macroscopic volume effect of nanometer materials, the application of titanium TiO2nano material continues to expand. However, the fact that wide band gap semiconductor materials of TiO2of light response of narrow range can not effectively utilize visible light hinders further development of TiO2. Therefore, to improve the quantum efficiency of TiO2, extend light response range and apply the use of clean energy in visible light have become a bottleneck problem. In this paper, the main work for solving the bottleneck problems is included as follows:
     1. By controlling the electrospinning precursor solution composition, electrostatic spinning parameters and spinning fiber heat treatment process, we have successfully made the TiO2possessing the nanowires and nanotubes structure. The surface of nanowire TiO2is smooth and has a large ratio of length to diameter. The pipe wall of TiO2nanotubes, with even distribution of TiO2nanotubes, is composed of TiO2nanoparticles, and possesses obvious porous structure. We have studied the efficiency of the photocatalytic decomposition of organic dye RhB under UV light. Results show that both TiO2nanowires and nanotubes exhibit, nice photocatalytic performance, in which the photocatalytic property of porous TiO2nano tube is a bit better than that of TiO2nanowires. That is because a build-in electric field has formed within the porous structure of TiO2nanotubes and anatase, rutile phase heterojunction.
     2. Relatively pure nanostruclure material of TiO2are prepared by electrospinning at first, and TiO2with different crystal are produced by different annealing tcmpcraturcs, and finally, TiO2nanowires are prepared by impregnation of V2O5, So that TiO2forms a heterojunction without affecting the TiO2crystalline phase under the condition of two times of annealing. Subsequently, the photocatalytic properties have been investigated. Conclusions under visible light are as follows:(1) The formation of V2O5and TiO2heterojunction has greatly improved the photocatalytic efficiency.(2) Different crystals of TiO2phase have little effect on TiO2and V2O5photocatalytic efficiency.
     3. The preparation of nuclear shell structure of V2O5@TiO2heterojunction have been studied, and explored the various experimental conditions such as, surface active agent, precursor ratio and effect of pH value on the structure and morphology of samples. Study on the effect of V2O5@TiO2heterojunction and its degradation characteristics of organic matter of different compositions of morphology have been conducted, and we have found that a molar ratio of1:5between vanadium and titanium is the best proportion for the maximum decomposition rate of (RhB) in a short period of time.
     Rare-earth-doped wide band gap semiconductors have attracted a great deal of attention recently due to its unique luminescence features of RE ions and properties of semiconductors as well as applications in biolabels, opticaldevices, lighting, and displays. The large band gap of the host material allows larger RE solid solubility and higher luminescence efficiency.
     MoO3is an important n type transparent conductive oxide, with excellent reversible photochromism and high optical contrast. There are three basic polymorphous of MoO3, i.e., orthorhombic MoO3(a-MoO3), monoclinic MoO3(P-MOO3), andhexagonal MoO3(h-MoO3), in which a-MoO3is the thermo dynamically stable phase. α-MoO3has been demonstrated to have promising applications in catalysis, gas sensing, field emission, lithium-ion batteries, photochromic devices, and electrochromic devices. Therefore,α-MoO3with a wide band gap can be an attractive host for RE elements. But its high resistivity and hinder the development of. This paper tries to dope Er in MoO3, and to study its luminescence and improve its conductivity, in order to commercially apply to the rare-earth-based visible optoelectronic devices.
     In summary, the orthorhombic phase MoO3materials and1%,3%, and5%Er-doped MoO3powders have been prepared through solid phase synthesis, and we have studied the morphology structure and luminescence of MoO3material. The grain sizes of crystallites are51,41,40, and44nm respectively corresponding to the undoped,1%,3%, and5%Er-doped MoO3powders. Besides the common stretching, deformation, and lattice modes resulting Raman peaks, the Er-doped MoO3show more obvious other peaks when the Er concentration increases. The intense green photoluminescence ascribed to Er3+intra-4f shell transitions were observed at room temperature. In view of the PLE spectrum, a defect-assisted energy transfer mechanism from MOO3host to Er3+ions is proposed. These results suggest that MoO3may be a suitable host material for rare-earth-based visible optoelectronic devices.
引文
[1]李民乾.纳米科学技术-面向21世纪的新科技[J].物理.1992,21(2):65-69.
    [2]张立德,牟季美,纳米材料和纳米结构[M].科学出版社.2001.
    [3]Y. Wang, W. Mahler. Degenerate four-wave mixing of CdS/polymer composite[J], Opt. Commun.1987,61:233-236.
    [4]闫德.锰氧化物纳米材料的制备及生长机理研究.[博士论文].兰州:兰州大学2009.
    [5]Y. Wang, W. Mahler. Degenerate four-wave mixing of CdS/polymer composite[J], Opt. Commun.1987,61:233-236.
    [6]Ball P, Garwin L. Science in atomic Scale[J]. Nature.1992,355:761-766.
    [7]赵于文,超细粉的性能,制备及应用[J].现代化工.1991,5:52.
    [8]Cavicchi P E, Silsbee R H. Coulomb Suppression of Tunneling Rate from Small Metal Particles[J]. Phys. ReV. Lett.1984,52:1453-1456.
    [9]Zhu X, Birribger R, Herr U. et al. X-ray diffraction structure of nanometer-sized crystalline materials[J]. Phys.ReV. Lett.1987,35:9085-9090.
    [10]A. R. Leheny, R. Rossetti, L. E. Brus, Tetrathiafulvalene photoionization in micellar solutions: a time-resolved Raman scattering study of interfacial solvation[J], J. Phys. Chem.1985,89: 4091-4093.
    [11]Crowen A J, Barry S. Magnetic Phase transitions in nanocryctalline erbium[J]. J. Appl. Phys. 1987,61:3317-3319.
    [12]B. Barbara, W. Wernsdorfer, Quantum tunneling effect in magnetic particles[J], Curr. Opin. Solid State. Mater. Sci.1997,2(2):220-225.
    [13]Herr U, Birringer R, Gonser U and Gleiter H. Investigation of Nanocrystalline iron materials by Mossbauer spectroscopy[J], Appl. Phys. Lett.1987,50:472-474.
    [14]Harada H., Ueda T., Chem. Phys. Lett.1984,106:229.
    [15]Li Q.S., Chem. Lett.,1983,135:321.
    [16]Frank S. N., Bard A. J., J. Phys. Chem.,1977,81:1484.
    [17]Ohdaira T, Nagai H, Kayano S and Kazuhito H, Antifogging effects of a socket-type device with the superhydrophilic, titanium dioxide coated glass for the laparoscope[J]. Surgical Endoscopy,2007,21:333-8.
    [18]Kallio T, Alajoki S, Pore V, Ritala M, Laine J, Leskela M and Stenius P, Antifouling properties of TiO2:Photocatalytic decomposition and adhesion of fatty and rosin acids, sterols and lipophilic wood extractives[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2006,291:162-76.
    [19]Nakajima A, Hashimoto K, Watanabe T, Takai K, Yamauchi G and Fujishima A. Transparent superhydrophobic thin films with self-cleaning properties[J], Langmuir,2000,16: 7044-7.
    [20]Nagaoka K, Takanabe K, Aika K.Influence of phase composition of titania on catalytic behavior of Co/TiO2 for the dry reforming of methane[J].Chem.Commun.,2002,9:1006-1007.
    [21]林映霞,曹立新,纳米发光材料的发展及研究综述[J],山东化工,2004,33(1):12-15.
    [22]陈国珍,黄贤智,郑朱梓等.荧光分析法佛二版)[M].北京:科学出版社,1990
    [23]尚静.新型复合纳米薄膜光催化剂的研究.博士后研究报告.清华大学.2003.
    [24]张培阳.新型铋系光催化剂的制备及其光催化性能研究[硕士论文].中南民族大学.2012.
    [25]Lockwood D, Lu Z and Baribeau J M, Quantum Confined Luminescence in Si/SiO2 Superlattices[J], Physical review letters,1996,76:539-41.
    [26]贾昌文.TiO2基半导体材料的光学和磁学特性研究[博士论文].兰州:兰州大学.2007.
    [27]V. Ko ukharov, P. Vitanov, P.Stefchev, J. Environ. Prot. Eeo.[J],2001,2:107.
    [28]赵建果.TiO2及稀土掺杂Ti02基材料的结构和光学性质的研究[博士论文].兰州:兰州大学.2009.
    [29]X. Bokhimi, A. Morales, M. Aguilar, J.A. Toledo-Atonio and F. Pedraza, Int. J. Hydrogen Energ.[J],2001,26:2279.
    [30]T.K. Kim, M.N.Lee, S.H.Lee, etal. Development of surface coating technology of TiO2 Powder and improvement of Photocatalytic activity by surface modification[J]. Thin Solid Films, 2005,475:171-177.
    [31]Y. Wang, Y.R. Su, L. Qiao, Q. Su, C.Q. Zhu, X.Q. Liu, Nanotechnology[J].2011,22:225702.
    [32]C. Gannoun, R. Delaigle, P. Eloy, D.P. Debecker, A. Ghorbel, E.M. Gaigneaux, Catal. Commun.[J],2011,15:1-5.
    [33]S. Lv, J. Ding, H.Peng,G.Li, Transit. Metal Chem.[J],2010,35:809-813.
    [34]Allly L. Linsebigler, Guangquan Lu and John T.Yates, Chem. Rev.1995,95:735.
    [35]J.P. Wileoxon, Photoeatalysis Using Semieonductor Nanoelusters. In Advanced Catalytic Materials:Materials Research Society Syn Posium Proceedings, Boston, MA,1998. Nov30-Dec3.
    [36]Evans P, Pemble M E and Sheel D W, Precursor-directed control of crystalline type in atmospheric pressure CVD growth of TiO2 on stainless steel, Chemistry of materials[J],2006,18: 5750-5.
    [37]张季惠.Ti02光催化降解苯酚的实验研究.[硕士论文].兰州:兰州理工大学.2009.
    [38]F Xiuli, W Qingyin, W Gongying, Q Fali. Preparation of Nano TiO2 by Ethanol-Thermal Method and Its Catalytic Performance for Synthesis of Dibutyl Carbonate by Transesterification [J]. Chinese Journal of Catalysis.2006,27.
    [39]李昀珺.碳化硅纳米材料研究进展.青海科技[M].2008.
    [40]Limmer S J, Seraj i S, Wu Y, Chou T P, Nguyen C, Cao G Z. Template-based growth of various oxide nanorods by sol-gel electrophoresis[J]. Advanced Functional Materials.2002,12: 59-64.
    [41]廖东亮,肖新颜,张会平,万彩霞,陈焕钦.溶胶-凝胶法制备纳米二氧化钛的工艺研究[J].化学工业与工程.2003,20.
    [42]Choi wonyong, Ko joungyun, Park hyunwoong. Investigation on coated optical fibers for gas-phase Photocatalytic oxidation of acetone[J]. Applied Catalysis B:Environmental,2001,31(3): 209-220.
    [43]刘亮亮.镓酸锌粉体的制备及其光催化性能研究.[硕士论文].陕西:陕西科技大学. 2013.
    [44]Yu J G, Wang G H, Cheng B, Zhou M. Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders[J]. Applied Catalysis B:Environmental.2007,69(3-4):171-180.
    [45]胡日博,张新娜,彭芬兰.直接沉淀法制备纳米Ti02粉体的研究[J].昆明冶金高等专科学校学报,2006,22(5):69-73.
    [46]汪国忠,汪春昌,张立德,等.纳米Ti02粉体的制备及应用进展[J].材料研究学报,1997,11(5):527.
    [47]方世杰,徐明霞.纳米Ti02光催化剂的制备方法[J].硅酸盐通报,2002年第2期.
    [48]Lee S, Jeon C and Park Y, Fabrication of TiO2 Tubules by Template Synthesis and Hydrolysis with Water Vapor[J], Chemistry of materials,2004,16:4292-5.
    [49]李和平,张威,掺氮Ti02纳米纤维的制备与表征[J],稀有金属材料与工程,2011,40:119-121.
    [50]Thirumal Krishnamoorthy,ect, A first report on the fabrication of vertically aligned anatase TiO2 nanowiresby electrospinning:Preferred architecture for nanostructured solar cells[J], Energy Environ. Sci.,2011,4:2807-2812.
    [51]Bingan Lu, Chengquan Zhu,ect, Preparation of highly porous TiO2 nanotubes and their catalytic applications[J], J. Mater. Chem.,2012,22:1375-1379.
    [52]Yuan Wang, Visible light photocatalysis of V2O5/TiO2 nanoheterostructures preparedvia electrospinning[J], Materials Letters 2012,75:95-98.
    [53]Xu Y and Schoonen M A A, The absolute energy positions of conduction and valence bands of selected semiconducting minerals[J], American Mineralogist,2000,85:543556.
    [54]Wantala K, Khemthong P, Wittayakun J and Grisdanurak N, Visible light-irradiated degradation of alachlor on Fe-TiO2 with assistance of H2O2[J], Korean Journal of Chemical Engineering,2011,28:2178-83.
    [55]Abe R, Sayama K, Domen K and Arakawa H, A new type of water splitting system composed of two different TiO2 photocatalysts (anatase, rutile) and a IO3-/I- shuttle redox mediator[J]. Chemical Physics Letters,2001,344:339-44.
    [56]施敏.半导体器件.物理与工艺[M].苏州:苏州大学出版社.2008.
    [57]崔玉民,张文保,洪文珊.二氧化钦光催化薄膜[M].化学工业出版社.2011.
    [58]H offm and M R, Martin S T, Choi W Y, et a.l Environmental applications of semiconductor photocatalysis[J]. Chem. Rev.,1995,95 (1):69-96.
    [59]Meng F M, Lu F. Pure and silver (2.5-40 vo%1) modified TiO2 thin films deposited by radio frequency magnetron sputtering at room temperature:surface topography, energy gap and photo-induced hydrophilicity[J]. J. Alloys Compd.,2010,501(1):154-158.
    [60]于小钧,刘素文,冯光建,等.可见光下ZrO2 (Er3+)/TiO2光催化剂的性能研究[J].硅酸盐通报,2009,28(2):324-327.
    [61]Fujishima A and Honda K, Electrochemical photolysis of water at a semiconductor electrode[J]. Nature,1972,238:37-8.
    [62]Liu Z, Sun D, Guo P and Leckie J, An efficient bicomponent TiO2/SnO2 Nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method[J], Nano Lett,2007,7:1081-5.
    [63]He J H, Wu T H, Hsin C L, Li K M, Chen L J, Chueh Y L, Chou L J and Wang Z L, Beaklike SnO2 Nanorods with Strong Photoluminescent and Field Emission Properties[J], Small,2006,2: 116-20.
    [64]Cui H, Dwight K,Soled S, et al., Surface Acidity and Photocatalytic Activity of Nb2O5/TiO2 Photocatalysts[J], J. Solid State Chem.,1995,115:187-191.
    [65]Carey J H, Lawrence J, Tosine H M. Bull Environ. Contam. Toxical.[J],1976,16:697-701.
    [66]Frank S N, Bard A J. J. Am. Chem. Soc.[J],1977,99:4667-4675.
    [67]Frank S N, Bard A J. J. Phys. Chem.[J],1977,81:1484-1486.
    [68]Schrauzer G N, Guth T D. Photocatalytic reactions.1. Photolysis of water and photoreduction of nitrogen on titanium dioxidep[J]. J. Am. Chem. Soc.1977,99(22):7189-7193.
    [69]Kraeutler B, Bard A J. Heterogeneous photocatalytic synthesis of methane from acetic acid-new Kolbe reaction pathway[J]. J. Am. Chem. Soc.1978,100(7):2239-2240.
    [70]Matsunaga T, Yamaoka H, Ohtani S, et al. Appl. Catal. A,2008,351:231-238.
    [71]Fujishima A, Ohtsuki J, Yamashita T, Hayakawa S, Behavior of tumor cells on photoexcited semiconductor surface[J]. Photomed Photobiol.1986,8:45-46.
    [72]O'Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2[J]. Nature.1991,353(6346):737-740.
    [73]Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T. Light-induced amphiphilic surfaces[J]. Nature.1997,338(6641):431-432.
    [74]R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides[J], Science.2001,293:269-271.
    [75]Zou Z G, Ye J H, Sayama K, Arakawa H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst[J].Nature.2001,414(6864):625-627.
    [76]龙明策.新型光催化剂的制备、表征及其光催化活性的调控机制[M].上海:上海交通大学出版社.2007.
    [77]Mario Visca. Preparation of uniform colloidal dispersion by chemical reaction in aerosols[J]. J Colloid &Interface Sci,1979,68 (2):308-319.
    [78]黄玉婷.锐钛型二氧化钛光催化性的研究进展[J].2008,24:44-46.
    [79]Zang L, Macyk W, Lange C, et al. Chem. Eur. J.,2000,6:379-384.
    [80]Di Li, Haneda H, Hishita S and Ohashi N, Visible-light-driven NF-codoped TiO2 photocatalysts.2. Optical characterization, photocatalysis, and potential application to air purification[J], Chemistry of materials,2005,17:2596-602.
    [81]Ohno T, Mitsui T and Matsumura M, Photocatalytic activity of S-doped TiO2 photocatalyst under visible light[J], Chemistry Letters,2003,32:364-5.
    [82]Khan S U M, Shahry M, Ingler W B. Efficient photochemical water splitting by a chemically modified n-TiO2[J]. Science,2002,297 (5590):2243-2245.
    [83]Asahi R, Ohwaki T, Aokii K, et al. Visible-light photoca2 talysis in nit rogen doped titanium oxide[J]. Science,2001,293:269-271.
    [84]Nageveni K, Hegde M S, Ravishankar N, et al. Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity[J]. Langmuir,2004,20 (7): 2900-2907.
    [85]Jung S C, Kim S J, Imaishi N, Cho Y I, et al. Effect of TiO2 thin film thickness and specific surface area by low-pressure metal-organic chemical vapor deposition on photocatalytic activities[J]. Appl Catalysis,2005,55:253-257.
    [86]Estrellan C R, Sal im C, H inode H. Photocatalytic decomposition of perfluorooctanoic acid by iron and niobium codoped titanium dioxide[J]. J. Hazard. Mater.[J],2010,179 (1-3):79-83.
    [87]Vijayan P, Mahendiran C, Suresh C, et a.l. Photocatalytic activity of iron doped nanocrystalline titania for the oxidative degradation of 2,4,6-trich lorophenol[J]. Catal. Today, 2009,141 (1-2):220-224.
    [88]Hou X G, H ao F H, Fan B, et a.l Modification of TiO2 photocatalytic films by V+ion implantation[J]. Nucl. Instrum.Methods Phys. Res. Sect. B,2006,243 (1):99-102.
    [89]Wang Z, C hen C, Wu F, et a.l Photodegradation of rhodamine B under visible light by bim etal codoped TiO2 nanocrystals[J]. J. Hazard. Mater.,2009,164 (2-3):615-620.
    [90]陈建华,张辉鹏,王建国,等.Ag掺杂对Ti02性质影响的第一性原理研究[J].广西大学学报:自然科学版,2009,34(2):241-245.
    [91]刘超,杨良准,杜立芬.不同金属离子掺杂Ti02薄膜的制备及光催化活性的研究[J].工业催化,2006,1(14):58-59.
    [92]Ren L L, Zeng Y P, Jiang D L. Preparation, characterization and photocatalytic activities of Ag deposited porous TiO2 sheets[J]. Catal. Commun.,2009,10(5):645-649.
    [93]Zhu B, Li K, Zhou J, et a.l The preparation of palladium modified TiO2 nanofibers and their photocatalytic performance[J]. Catal. Commun.,2008,9(14):2323-2326.
    [94]白爱英,梁伟,云洁,等.掺杂铂的二氧化钛薄膜光催化性能[J].材料处理学报,2010,31(2):6-9.
    [95]Sreethawong T, Junbua C, Chavadej S. Photocatalytic H2 production from water splitting under visible light irradiation using eos in Y-sen sitized m esoporous-assemb led Pt/TiO2 nanocrystal photocatalyst[J]. J. Power Sources,2009,190 (2):513-524.
    [96]Meng F M, Lu F. E ffect of silver conten t on energy gap and phase stru cture of silver-titania thin films prepared by radio frequency magnetron sputtering[J]. 硅酸盐学报,2009,37 (12) 2130-2134.
    [97]Jung J M, Wang M S, Kim E J, et a.l Enhanced photocatalytic activity of Au-buffered TiO2 thin films prepared by radio frequency magnetron sputtering[J]. Appl. Catal. B,2008,84 (3-4): 389-392.
    [98]葛元新.以粉煤灰碱熔融分解物为原料合成4A型沸石[J].中国资源综合利用,2003,3(1):35-37.
    [99]鲁飞,孟凡明.Ti02光催化剂掺杂改性研究进展[J].硅酸盐通报,2011,30:116-119.
    [100]Ho W K, Yu J C, Lin J, et al. Langmuir,2004,20:5865-5869.
    [101]赵西成,赵亚娟,江元汝.粉煤灰利用碱熔-痕量水制备沸石分子筛的方法[P].中国专利:200910020998.0,2009,1-21.
    [102]HuiK S, Chao C Y H. Effects of step-change of synthes is temperature on synthesis of zeolite 4A from coal fly ash[J]. Microporous Mesoporous Mater,2006,88:145-151.
    [103]Dio M,Sara S,miyafuji H,et al. Development of carbonized TiO2-woody composites for environment clearing[J]. Mater Sci Res Int,2000,6(1):615
    [104]施利毅,李春忠,房鼎业,等TiCl4-O2体系高温反应制备超细Ti02光催化材料的研究[J].无机材料学报,1999,14(5):717-725.
    [105]Cheng B, Le Y, Yu J G. Preparat ion and enhanced photocatalytic activity of Ag@ TiO2 core shell nanocompos ite nanowires[J]. J. Hazard. Mater.,2010,177 (1-3):971-977.
    [106]Wang C L, Sun L, Xie K P, et a.l Controllable in corporation of CdS nanoparticles in to TiO2 nanotubes for highly enhancing the photocatalytic response to visible light[J]. Sci. China. Ser. B., 2009,52 (12):2148-2155.
    [107]王媛.Ti02基纳米材料的制备及其光催化性质研究[博士论文].兰州:兰州大学.2012.
    [108]Harad K. et al.Wat Res,1990,24 (11):1415.
    [109]于向阳,梁文,杜永娟等.材料导报[J],2000,2(38):108.
    [110]龙明策,蔡俊,蔡伟民等.环设计新型可见光响应的半导体光催化剂[J].化学进展,2006,18(9):1065-1075.
    [111]陈春英.二氧化铁纳米材料生物效应与安全应用[M].北京:科学出版社.2010.
    [112]Macak J M, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S and Schmuki P, TiO2 nanotubes:Self-organized electrochemical formation, properties and applications[J]. Current Opinion in Solid State and Materials Science,2007,11:3-18.
    [113]Paramasivalm I, Macak J M and Schmuki P, Photocatalytic activity of TiOi-nanotube layers loaded with Ag and Au nanoparticles[J], Electrochemistry Communications,2008,10:71-5.
    [114]Yang Y, Wang X H, Sun C K and Li L T, CeO2 Nanorod-Ti02 Nanotube Hybrid Nanostructure[J], Journal of the American Ceramic Society,2010,93:2555-9.
    [115]Wang Y Q, Hao Y Z, Cheng H M, et al. The photoelectrochemistry of transition metal-ion-doped TiO2 nanocrystalline electrodes and higher solar cell conversion efficiency based on Zn2+-doped TiO2 electrode[J]. J Mater Sci,1999,34:2773-2779.
    [116]牛新书.金属离子掺杂纳米Ti02光催化研究进展[J].电子元件与材料.2004,23:39_45
    [117]Cunningham D, Tsubota S, Kamijo N and Haruta M, Preparation and catalyticbehaviour of sub-nanometer gold deposited on TiO2 by vacuum calcination[J]. Research on chemical intermediates,1993,19:1-13.
    [118]Wang C H, Shao C L, Zhang X T, et al.SnO2 nanostructures-TiO2 nanofibers heterostructures:controlled fabrication and high photocatalytic properties[J]. Inorg. Chem.,2009, 48 (15):7261-7268.
    [119]Kamat P V. Photochemistry on nonreactive and reactive (semiconductor) surfaces[J]. Chem. Rev.,1993,93:267-300.
    [120]Ni M, Leung M K H, Leung D Y C, et al. Renew Sustain Energy Rev.[J],2007,11: 401-425
    [121]Li S, Lin Y, Zhang B, Li J and Nan C, BiFeCVTiC2 core-shell structured nanocomposites as visible-active photocatalysts and their optical response mechanism[J], Journal of Applied Physics, 2009,105:054310.
    [122]Strobel R, Baiker A and Pratsinis S E, Aerosol flame synthesis of catalysts[J], Advanced Powder Technology,2006,17:457-80.
    [123]Tong H, Chen Q, Hu H, Yin Z, Li J and Zhou J, Preparation, characterization and photocatalytic behavior of WOs-TiC2/Nb2O2 catalysts[J], Journal of Central South University of Technology,2007,14:788-92.
    [124]O'Regan B, Gratzel M. Nature[J],1991,353:737-740.
    [125]American-Mineralogist-Crystal-Structure-Database:Molybdite
    [126]王宁.新型透明导电氧化物薄膜的设计与制备及其在有机光电器件中的应用研究:[博士论文],吉林,中国科学院长春光学精密器械与物理研究所,2010.
    [127]N. Tokmoldin, N. Griffiths, D. D. C. Bradley and S. A. Haque, Adv. Mater.[J],2009,21: 3475.
    [128]K. S. Yook, S. O. Jeon, S. Y. Min, J. Y. Lee, H. J. Yang, T. Noh,S. K. Kang and T. W. Lee, Adv. Funct. Mater.[J],2010,20:1797.
    [129]王军.低维纳米材料氧化钼的制备及性能研究.[硕士论文].武汉:华中科技大学.2012.
    [130]Khan Mohamed H, Cole James A. Method for producing nano particles of molybdenum oxide[P]. US Pat:6468497,2002-10-22.
    [131]赵鹏,姚彩珍.三氧化钼纳米纤维的水热法制备与表征[J].化工新型材料,第37,2009.
    [132]Greta R Patzke, Alexej Michailovski, Frank Krumeich, et al. One-step synthesis of submicrometer fibers of Mo03[J]. Chem Mater,2004,16(6):1126-1134.
    [133]任引哲,王建英,王玉湘.纳米级M003微粉的制备与性质[J].化学通报,2002,65(1)47-49.
    [134]赵-鹏,赵亚丽.多形态三氧化钼粉体的水热法制备[J].无机盐工业.2009,41(5):15-17.
    [135]修显武.掺钼氧化锌透明导电薄膜的制备与特性研究[博士论文].山东:山东大学.2006.
    [136]E. C. Lee, Y. S. Kim, Y. G. Jin, K. J. Chang, Phys. ReV. B[J],2001,64:08512.
    [137]T. Yamamoto, Thin Solid Films[J],2002,420-421:100.
    [138]K.Badeker.uber dieelektrische Leitfahigkeit unddie thermoelektrische Kraft einiger Schwermetallverbindungen[J]. Ann. Phys. (Leipzig).1907,22:749-766.
    [139]Kourosh Kalantar-zadeh,Jianshi Tang,Minsheng Wang, Synthesis of nanometre-thick MoO3 sheets[J]. Nanoscale,2010,2:429-433.
    [140]Rabindar K Sharma and G B Reddy. Synthesis and characterization of α-MoO3 microspheres packed with nanoflakes[J].J. Phys. D:Appl. Phys.2014,47:065305.
    [141]Imran Shakir,Muhammad Shahid,Usman Ali Ranaand Muhammad Farooq Warsi. In situhydrogenation of molybdenum oxidenanowires for enhanced supercapacitors[J]. Cite this: RSC Adv.,2014,4:8741.
    [142]Khemchand Dewangan, Synthesis and characterization of single-crystalline α-MoO3 nanofibers forenhanced Li-ion intercalation applications[J], CrystEngComm,2011,13,927-933.
    [143]David Z. Pai, Kostya (Ken) Ostrikov, Energy efficiency in nanoscale synthesis using nanosecond plasmas[J], Scientific Reports.
    [144]Microstructure of Hexagonal Phase MoO3 Nanorods, http://materialsworld.utep.edu/Background/SCANNING%20ELECTRON%20MICROSCOPY/SE M%20Exercises/Exercise%20I.htm
    [145]向铁根.钼冶金[M].长沙:中南大学出版社,2002.
    [146]Yang Y A, Cao Y W, Loo B H, et al, Microstructures of electrochromic MoO3 thin films colored by injection of different cations[J]. J Phys Chem B,1998,102 (47):9392-9396.
    [147]董晓东,董相延,刘俊华,等.M003纳米粒子水溶胶的制备与光致变色性质研究[J].稀有金属材料与工程,2005,34(3):421-424.
    [148]邓凡政,梁娟妮,戈霞.M003对染料光催化降解性能研究[J].稀有金属,2004,28(6):1034-1037.
    [149]Comini E, Yubao L, Brando Y, et al. Gas sensing properties of MoO3 nano rods to CO and CH3OH[J]. Chem Phys Lett,2005,407:368-371.
    [150]Li W Y, Cheng F Y, Tao Z L, et al. Vapor transportation preparation and reversible lithium intercalation/deintercalation of MoO3 microrods[J]. J Phys Chem B,2006,110(1):119-124.
    [151]ZhaoY, LiuJ, ZhouY, etal.PreParation of MoO3 nanostruefure sandtheir oPtieal ProPerties. Journal of Physics:Condensed Matter,2003,15:547-552.
    [152]Van GervenT, etal.Arevie Wofintensification of Photoeatalytie Proeesses.Chemical Engineeringand Proeessing.2007,46:781-789.
    [153]C.J. Jia, L.D. Sun, F. Luo, X.C. Jiang, L.H. Wei, C.H. Yan. Struetural transformation induced improved lumineseence Properties for LaV04:Eunanoerystal[J]. APPL.Phys. Lett.2004, 84:5305-5307.
    [154]W.L. Fan, X.Y. Song, Y.X. Bu, S.X. Sun, X. Zhao, Seleeted-Control Hydrothermal Synthesis and Formation Meehanism of Monazite and on Type Lav[J], Nanocrystals.2006,110: 23247-23254.
    [155]M. Yu, J. Lin, Y.H. Zhou, M.L. Pang, X.M. Ha, S.B. Wang, Fabrication Patterning, and optical Properties of Nanoerystalline YV Phosphor Films viasol-Gelsoft Lithography[J], Thin solid Films.2003,444:24.
    [156]Campanella L, et al. [J]. J Electro chem Soc,1971,118:1905-1908.
    [157]Tsumura T, et al. [J]. Solid State Ionics,1997,104:183-189.
    [1]Formhals A. Process and apparatus for preparing artificial threads[P]. US Patent 1,975,504, 1934; Formhals A. Method and Apparatus for Spinning[P]. US Paten:t 2,160,962,1939; Formha Is A. Artificial thread and m ethod of producina sam e [P]. US Patent:2,187,306,1940; Formha Is A. Spinner fo rsyn thetic fibers[P]. US Patent:2,323,025,1943; Formhals A. Spinner for synthetic fibers[P]. US Paten t:2,349,950,1944.
    [2]王永芝,杨清彪.电纺丝技术—种高效低耗的纳米纤维制备方法[J].2005,33:12-14.
    [3]Timot hy Grafe, Kristine Graham, Polymer Nanofibers and Nanofiber Webs:A New Class of Nonwovens,In:International Nonwovens Technical Conference (Joint INDA2TAPPIConference), 2002
    [4]王波,胡平.国内外电纺丝技术新进展[J].塑料.2007,36:74-81.
    [5]PPV和PPV/PVA电纺纤维的研制与性能研究.[学位论文].张文,2006年东北师范大学.
    [6]Zuo Weiwei, Zhu Meifang, Yang Wen, et al. Experimental study on rela2 tionship between jet instability and formation of beaded fibers during elec2 t ro spinning[J]. Polymer Engineering and Science,2005,45 (5):7042 709.
    [7]杨颖.电纺丝技术及其应用[J].高电压技术,2006.
    [8]Yarin A L, Katap hinan W, Reneker D H. Branching in electrospinning of nanofibers[J]. Journal of Applied Physics,2005,98 (6):Art. No.064501.
    [9]Lei Li, You Lo Hsieh. Ult ra2fine polyelect rolyte fiber s f rom elect ro spin2 ning of poly (acrylic acid) [J]. Polymer,2005,46:513325139.
    [10]Kazim Acatay, Eren Simsek, Cleva Ow2Yang, et al. Tunable, superhy2 drop hobically stable polymeric surfaces by elect rospinning [J]. Angew Chem Int Ed,2004,43 (39):521025213.
    [11]Dan li, Younan Xia. Direct fabrication of composite and ceramic hollow nanofibers by electrospinning[J]. Nano Letters,2004,4(5):933-938.
    [12]Jong-M in Lim, Jun Hyuk Moon, G-iRa Yi et a.l Fabrication of one-dimension colloidal assemb lies from electrospun nano fibers[J]. Langmuir,2006,22(8):3445-3449.
    [13]胡平.电纺丝技术在再生医学中的应用进展.第三届“全国再生医学(干细胞与组织工程)学术研讨会”第二届“血管外科与组织工程专题研讨会”,2007年.
    [14]Min Kyoon Shin, Sun IK im, Soon Jeong Kim. Controlled assembly of polymer nano fibers: From helical springs to fully extended[J]. Applied Physics Letters,2006,88(22):223109.
    [15]王波等.国内外电纺丝技术新进展[J].塑料,2007.
    [16]A Koski K Y in, S Shivkumar. Effect of molecular weight on fibrous PVA produced by electrospinning[J]. Matrials Letters,2004,58:493-497.
    [17]Sureeporn Koom bhongse, Wenxia Liu, Darre 11H Reneker. Flat polymer ribbons and other shapes by electrospinning[J]. Journal of Polymer Science(Part B):Po lymer Physics,2001, 39(21):2598-2606.
    [18]Jing Liu, Satish Kum ar. Microscopic polymer cups by electrospinning[J]. Polymer,2005,46: 3211-3214.
    [19]郭建.纳米纤维静电纺丝机-纳米蜘蛛[J].全球科技经济瞭望,2005(2):64.
    [20]杨颖,贾志东.电纺丝技术及其应用[J].高电压技术.2006,32:91-96.
    [21]林洪峰.硅基光电薄膜材料的制备与特性研究.[博士论文].兰州:兰州大学.2006.
    [22]杨亮.773 K和473K Fe-Ti-Sn三元系合金相关系的研究.[硕士论文].广西:广西大学.2009.
    [23]张振兴.’稀土掺杂宽带隙氮化物半导体薄膜的制备与性能研究.[博士论文].兰州:兰州大学.2009.
    [24]徐轶君.石墨烯的低温等离子体制备及掺杂研究.[硕士论文].苏州:苏州大学.2013.
    [25]张清敏,徐蹼编.扫描电子显微镜和X射线微区分析[M].天津:南开大学出版社,1988.
    [26]陈国珍,黄贤智,郑朱梓等.荧光分析法(第二版)[M].北京:科学出版社,1990
    [27]周名成,俞汝勤.紫外与可见分光光度分析法[M].北京:化学工业出版社,1986.
    [1]Formhals A. Process and apparatus for preparing artificial threads[P]. US Patent 1,975,504, 1934; Formhals A. Method and Apparatus for Spinning[P]. US Paten:t 2,160,962,1939; Formha Is A. Artificial thread and m ethod of producina same[P]. US Patent:2,187,306,1940; Formha Is A. Spinner fo rsyn thetic fibers[P]. US Patent:2,323,025,1943; Formhals A. Spinner for synthetic fibers[P]. US Paten t:2,349,950,1944.
    [2]Li D, Xia Y N. Fabrication of titania nanofibers of nickel ferrite prepared by electrospinning[J]. Nano Letters.2003,3; 555-560.
    [3]Ding B, Kim H, Kim C, et al. Fabrication of a super-hydrophobic nanofibrous zinc oxide film surface by electrospinning[J], Thin Solid Films.2008.516:2495-2501.
    [4]Barakat NAM, Khil M S, Sheikh F A, et al. Synthesis and optical properties of two cobalt oxides(CoO and C03O4) nanofibers produced by electrospinning process[J]. Journal of Physical Chemistry C.2008,112:12225-12233.
    [5]李金田.纳米二氧化钛光催化机理及应用分析[J].洁净与空调技术.2006,1:23-25.
    [6]Gholamkhass B, Mametsuka H, Koike K, Tanabe T, Fume M and Ishitani O, Architecture of supramolecular metal complexes for photocatalytic CO2 reduction:Ruthenium-rhenium bi-and tetranuclear complexes[J], Inorganic chemistry,2005,44:2326-36.
    [7]Varghese 0 K, Paulose M, LaTempa T J and Grimes C A, High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels[J], Nano Letters,2009,9:731-7.
    [8]Anpo M, Zhang S G, Mishima H, Matsuoka M and Yamashita H, Design of photocatalysts encapsulated within the zeolite framework and cavities for the decomposition of NO into N2 and (? at normal temperature[J]. Catalysis Today,1997,39:159-68.
    [9]Cui H, Dwight K,Soled S, et al., Surface Acidity and Photocatalytic Activity of Nb2O5/TiO2 Photocatalysts[J], J. Solid State Chem.,1995,115:187-191.
    [10]H offm annM R, Martin S T, ChoiW Y, et a.l Environmental applications of semiconductor photocatalysis[J]. Chem. Rev.,1995,95 (1):69-96.
    [11]M eng F M, Lu F. Pure and silver (2.5-40 vo%1) m od ified TiO2 thin films deposited by radio frequency magnetron sputtering at room temperature:surface topography, energy gap and photo induced hyd rophilicity [J]. J. Alloys Compd.,2010,501(1):154-158.
    [12]于小钧,刘素文,冯光建,等.可见光下ZrO2 (Er3+)/TiO2光催化剂的性能研究[J].硅酸盐通报,2009,28(2):324-327.
    [13]王嫒.Ti02基纳米材料的制备及其光催化性质研究[博士论文].兰州:兰州大学.2012.
    [14]Yu J, Wang Q, Cheng B, Zhou M, Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders, Applied catalysis B:environmental,2007 69 171-80.
    [15]Doh S J, Kim C, Lee S G, Lee S J and Kim H, Development of photocatalytic TiO2 nanofibers by electrospinning and its application to degradation of dye pollutants,Journal of Hazardous Materials,2008 154 118-27.
    [16]Chuangchote S, Jitputti J,Sagawa T and Yoshikawa S, Photocatalytic activity for hydrogen evolution of electrospun TiO2 nanofibers, ACS Applied Materials &Interfaces,2009 1 1140-3.
    [17]Choi S K,Kim S, Lim S K and Park H,Photocatalytic Comparison of TiC^Nanoparticles and Electrospun TiO2 Nanofibers:Effects of Mesoporosity and Interparticle Charge Transfer, The Journal of Physical Chemistry C,2010,114,164:75-80
    [18]Rodella C, Nascente P, Franco R, Magon C, Mastelaro V and Florentino A, Surface characterisation of V2O5/TiO2 catalytic system, physica status solidi (a),2001 187,161-9.
    [19]Bingan Lu, Chengquan Zhu, Preparation of highly porous TiO2 nanotubes and their catalytic applications[J], J. Mater. Chem.,2012,22,1375.
    [20]A. K. Geim and K. S. Novoselov, Nat. Mater.,2007,6,183-191.
    [21]Y. Li, S. Sun, M. Ma, Y. Ouyang and W. Yan, Chem. Eng. J.,2008,142,147-155.
    [22]W. Suprun, E. M. Sadovskaya, C. Rudinger, H.-J. Eberle, M. Luteckiand H. Papp, Appl. Catal., A,2011,391,125-136.
    [23]X. Xu, X. Fang, T. Zhai, H. Zeng, B. Liu, X. Hu, Y. Bando and D. Golberg, Small,2010,7, 445-449.
    [1]龙明策,蔡俊,蔡伟民等.环设计新型可见光响应的半导体光催化剂[J].化学进展,2006,18(9):1065-1075.
    [2]陈春英.二氧化铁纳米材料生物效应与安全应用[M].北京:科学出版社.2010.
    [3]Longo C, Freitas J and De Paoli M A, Performance and stability of TiCVdye solarcells assembled with flexible electrodes and a polymer electrolyte, Journal of Photochemistry and PhotobioIogyA:Chemistry,2003,159:33-9.
    [4]桥本和仁,藤岛昭,图解光催化技术大全,北众,科学出版社:2003.
    [5]Nakamura I, Negishi N, Kutsuna S, Ihara T, Sugihara S and Takeuchi K, Role ofoxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal, Journal of Molecular Catalysis A:Chemical,2000,161:205-12.
    [6]Xiao Q, Zhang J, Xiao C, Tan X K. Photocatalytic degradation of methylene blue over Co3O4 /Bi2WO6 composite under visible light irradiation [J]. Catal. Commun.,2008,9(6):1247.
    [7]Yu H B, Chen S, Quan X, Zhao HM, Zhang YB. Fabrication of a TiO2-BDD heterojunction and ts app lication as a photocata2 lyst for the simultaneous oxidation of an azo dye and reductoion of Cr(V I) [J]. Environ. Sci. Technol.,2008,42 (10):3791.
    [8]Shangguan W, Yoshida A. Synthesis and photocatalytic properties of CdS-intercalated metal oxides[J]. Solar Energy Materials& Solar Cells,2001,69:189-194
    [9]Y. Bessekhouad, N. Chaoui, M. Trzpit, N. Ghazzal, D. Robert UV-vis versus visible degradation of Acid Orange II in a coupled CdS/TiO2 semiconductors suspension [J]. Journal of Photochemistry and Photobiology A:Chemistry,2006,183:218-224.
    [10]李芳柏等.WO2/TiO2纳米材料的制备及光催化性能[J].物理化学学报,2000,11:997-1002.
    [11]A. Mabakazu, T. Kawamura, S. Kodama, et al., J. Phys. Chem.1998,92 (2):438440.
    [12]Ni M, Leung M K H, Leung D Y C, et al. Renew Sustain Energy Rev.[J],2007,11:401-425
    [13]Li S, Lin Y, Zhang B, Li J and Nan C, BiFeCVTiC2 core-shell structured nanocomposites as visible-active photocatalysts and their optical response mechanism[J], Journal of Applied Physics, 2009,105:054310.
    [14]Strobel R, Baiker A and Pratsinis S E, Aerosol flame synthesis of catalysts[J], Advanced Powder Technology,2006,17:457-80.
    [15]Tong H, Chen Q, Hu H, Yin Z, Li J and Zhou J, Preparation, characterization and photocatalytic behavior of WOs-TiC2/Nb2O2 catalysts[J], Journal of Central South University of Technology,2007,14:788-92.
    [16]CHUNG S K, CHM ILENKO N A, Ya B A, et a.l Rechargeable lith ium cells w ith mod ified anadium ox ideca thodes [J]. Journa 1 of Powe r Sources,1999,84 (1):6-11.
    [17]DA I J, LI S F Y, GAO Z, e t a.1 A new form of vanadium oxide for use as a cathode material in lithium batteries[J]. Journal of Power Sources,1998,74 (1):40-45.
    [18]Grtzel M, Photoelectrochemical cells[J]. Nature,2001,414:338-44.
    [19]Mora-Ser I and Bisquert J. Fermi level of surface states in TiO2 nanoparticles[J]. Nano Letters, 2003,3:945-9.
    [20]王媛.TiO2基纳米材料的制备及其光催化性质研究[D];兰州大学;2012年.
    [21]Lambrecht W, Djafari-Rouhani B, Lannoo M and Vennik J, The energy band structure of V2O5.I. Theoretical approach and band calculations[J], Journal of Physics C:Solid State Physics, 1980,13:2485-501.
    [22]Chakrabarti A, Hermann K, Druzinic R, Witko M, Wagner F and Petersen M, Geometric and electronic structure of vanadium pentoxide:A density functional bulk and surface study[J], Physical Review B,1999,59:10583-90.
    [1]Hiroaki T, Tomohiro M, Tomokazu K, TomokiA, Koji T. All-solid-state Z-scheme in CdS-Au-TiO2 three-component nano junction system[J]. Nat. Mater,2006,5:782.
    [2]Long M C, Cai W M, Cai J, Zhou B X, Chai X Y, Wu Y H. Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation[J]. J. Phys. Chem. B,2006,110 (41):20211.
    [3]Brahimi, R, Bessekhouad Y, Bouguelia A, TrariM. CuAlO2/TiO2 heterojunction applied to visible light H2 production [J]. J.Photoch. Photobio. A,2007,186 (223):242.
    [4]Jia H M, Xu H, Hu Y, et al. TiO22@CdS core-shell nanorods films:Fabrication and dramatically enhanced photoelectro chemical properties[J]. Electrochem Commun,2007,9 (3):354.
    [5]Wang D A, Yu B, Hao J C, et al. Evaporizing deposition to synthesize micro and nanoscale spherical anatase TiO2 film[J]. Mater Lett,2008,62(12-13):2036.
    [6]Gu L, Cao X B, Zhao C. Gramscale preparation of hollow spheres of ZnS by scarifying ZnO crystallites within coreshellst ructured ZnS/ZnO precursors[J]. Colloids Surf A,2008,326(1-2): 98.
    [7]Zeng H B, Liu P S, Cai W P, et al. Controllable Pt/ZnO porous nanocages with improved photocatalytic activity[J]. J Phys Chem C,2008,112(49):19620
    [8]Huang L, Peng F, Yu H, et al. Preparation o f cuprousoxides with different sizes and their behaviors of adsorption, visiblelight driven photocatalysis and photocor rosion[J]. Solid State Sci, 2009,11(1):129.
    [9]Schneider J J. Magnetic core/shell and quantumconfined semiconductor nano particles via chimie douce or ganometallic synthesis[J]. Adv Mater,2001,13(7):529.
    [10]Nagao D, Kats C M, Hayasaka K, et al. Synthesis of hollow asymmetrical silica dumbbells with a movable inner core[J]. Langmuir,2010,26(7):5208.
    [11]Zhu W, Wang G Z, Hong X, et al. One-step fabrication of Ni/TiO2 core/shell nanorod arrays in anodic aluminum oxide membranes[J]. J Phys Chem C,2009,113(14):5450.
    [12]Lee J W, Othman M R, Eomc Y, et al. The effects of sonification and TiO2 depo sition on the microcharacteristics of the thermally treated SiO2/TiO2 spherical coreshell particles for photocatalysis of methyl orange[J]. Microporous Mesoporous Mater,2008,116(1-3):561.
    [13]Fei B, Lu H F, Qi K H, et al. Multi-functional microcapsules produced by aero sol reaction[J]. J Aerosol Sci,2008,39(12):1089.
    [14]Liu D X, Yates M Z. Fabr ication of size-tunable TiO2 tubes using rodshaped calcite templates[J]. Langmuir,2007,23(20):10333.
    [15]Smith W, Zhao Y P. Superior photocatalytic performance by vertically aligned coreshell TiO2 /WO3 nanorod arrays [J].Catal Commun,2009,10(7):1117.
    [16]王智宇,陈景鑫,张福安,等.核壳结构CdS/TiO2的制备与表征[J].稀有金属材料与工程,2008,37(2):330.
    [17]Abramson S, Srithammav anh L, Siaug ue J M, et al. Nanometric core-shell-shell c-Fe2O3/SiO2/TiO2 particles[J]. J Nanopart Res,2009,11:459.
    [18]T suji H, Sag imor i T, Kur ita K, et al. Surface mo dificatio of TiO2 (rutile) by metal negative ion implantation for improving catalytic properties[J]. Surf Coat Techn,2002,208:158-159.
    [19]Liu G, Yan X X, Chen Z G, et al. Synthesis of rutile-anatase core-shell structured TiO2 for photocatalysis[J]. J Mater Chem,2009,19(38):6590.
    [20]Sung Y M, Lee J K, Chae W S. Controlled crystallization of nanoporous and core/shell structure titania photocatalyst particles[J]. Cryst Growth Des,2006,6(4):805.
    [21]CHUNG S K, CHM ILENKO N A, Ya B A, et a.l Rechargeable lith ium cells w ith mod ified anadium ox ideca thodes [J]. Journa 1 of Power Sources,1999,84 (1):6-11.
    [22]DA I J, LI S F Y, GAO Z, e t a.1 A new form of vanadium oxide for use as a cathode material in lithium batteries[J]. Journal of Power Sources,1998,74 (1):40-45.
    [23]王嫒.TiO2基纳米材料的制备及其光催化性质研究[博士论文].兰州:兰州大学.2012.
    [24]Wang Y, Su Q, Chen C, Yu M, Han G, Wang Q Xin K, Lan W and Liu X, Lowtemperature growth of vanadium pentoxide nanomaterials by chemical vapourdeposition using VO(acac)2 as precursor, Journal of Physics D:Applied Physics,2010,43:185102-6.
    [1]Steckl AJ, Park J H, Zavada JM. Prospects for rare earth doped GaN lasers on Si[J]. Mater Today.2007,10:20-7.
    [2]Su Y, Lu B, Xie Y, Ma Z, Liu L, Zhao H, et al. Temperature effect on electrospinning of nanobclte:the case of hafnium oxidc[J]. Nanotcchnology 2011,22:285609.
    [3]Zhang ZX, Pan XJ, Liu LX, Ma ZW, Zhao HT, Jia L, et al. Green photoluminescence from Zn3N2:Tb films prepared by magnetron sputtering[J]. J Appl Phys.2009,105:016101.
    [4]Mai L, Yang F, Zhao Y, Xu X, Xu L, Hu B, et al. Molybdenum oxide nanowires:synthesis & properties[J]. Mater Today.2011,14:34653.
    [5]Brezesinski T, Wang J, Tolbert SH, Dunn B. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors[J]. Nat Mater.2010,9:146-51.
    [6]Li J, Liu X. Preparation and characterization of α-MoO3 nanobelt and its application in supercapacitor[J]. Mater Lett,2013,112:39-42.
    [7]Kourosh Kalantar-zadeh,Jianshi Tang,Minsheng Wang, Synthesis of nanometre-thick MoO3 sheets[J]. Nanoscale,2010,2:429-433.
    [8]Rabindar K Sharma and G B Reddy. Synthesis and characterization of α-MoO3 microspheres packed with nanoflakes[J] J. Phys. D:Appl. Phys.2014,47:065305.
    [9]Imran Shakir,Muhammad Shahid,Usman Ali Ranaand Muhammad Farooq Warsi. In situhydrogenation of molybdenum oxidenanowires for enhanced supercapacitors[J]. Cite this: RSC Adv.,2014,4:8741.
    [10]Khemchand Dewangan, Synthesis and characterization of single-crystalline α-MoO3 nanofibers forenhanced Li-ion intercalation applications[J], CrystEngComm,2011,13,927-933.
    [11]David Z. Pai, Kostya (Ken) Ostrikov, Energy efficiency in nanoscale synthesis using nanosecond plasmas[J], Scientific Reports.
    [12]Sinaim H, Ham DJ, Lee JS, Phuruangrat A, Thongtem S, Thongtem T. Free-polymer controlling morphology of α-MoO3 nanobelts by a facile hydrothermal synthesis, their electrochemistry for hydrogen evolution reactions and optical properties[J]. J Alloys Compd., 2012,516:172-8.
    [13]Navas I, Vinodkumar R, Mahadevan Pillai VP. Self-assembly and photolumi-nescence of molybdenum oxide nanoparticles[J]. Appl Phys A.2011,103:373-80.
    [14]Dong B, Li ZA, Cao B, Yu N, Sun M. Quasi-one dimensional Er3+-Yb3+ codoped single-crystal MoO3 ribbons:synthesis, characterization and up-conversion luminescence. Opt Commun.[J],2011,284:2528-31.
    [15]Sardar DK, Chandrasekharan S, Nash KL, Gruber JB. Optical intensity analyses of Er3+:YAlO3[J]. J Appl Phys.,2008,104:023102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700