用户名: 密码: 验证码:
蛋白质聚集的多酚抑制调控机制及其材料应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以蛋白质聚集和淀粉样纤维化为研究对象,考察天然产物多酚对蛋白质聚集和淀粉样纤维化过程抑制作用,揭示调控机理,并探索蛋白质聚集及其淀粉样纤维在药物递送和功能材料领域的应用。
     (1)多酚调控胰岛素聚集动力学研究:考察不同多酚化合物对胰岛素淀粉样聚集动力学和形貌结构的影响,研究多酚调控胰岛素聚集过程的作用机制。重点揭示原花青素作用机制为形成原花青素/胰岛素中间聚集体,抑制胰岛素聚集成核过程;分析得出多酚氧化还原性质、化学结构和蛋白质固有性质是影响多酚抑制聚集能力的关键因素。
     (2)激光-芳香小分子解聚胰岛素淀粉样纤维机理研究:建立激光芳香小分子耦合法解聚胰岛素淀粉样纤维方法,利用稳瞬态荧光光谱、密度泛函理论和分子对接计算揭示激光-芳香小分子解聚作用机理以及芳香分子结构和解聚作用关系。研究结果表明激光-芳香小分子解聚本质是扰乱胰岛素淀粉样纤维之间疏水作用,解聚必要条件为小分子与胰岛素淀粉样纤维有效结合,并且激光照射下小分子激发态改变胰岛素淀粉样纤维周围疏水环境。
     (3)原花青素-胰岛素长效纳米药物制备:以天然低聚原花青素(OPC)作为胰岛素聚集体交联剂和稳定剂,提出了一种可控稳定制备长效胰岛素纳米药物的方法。胰岛素聚集体尺寸由OPC浓度、pH值和聚集时间等因素调控,最优条件为100μM OPC、pH7PBS缓冲溶液和聚集时间6h;在该条件下OPC–胰岛素纳米颗粒37天仅释放~21%胰岛素,有望成为一种潜在的长效释放药物。
     (4)β-乳球蛋白聚集法制备金纳米链药载茶多酚:利用热聚集法制备一种茶多酚(TPP)药载的AuNPs/β-LGA纳米链,聚集链长度由TPP浓度、聚集时间和溶液pH调控,最优条件为10μM TPP、聚集时间30min和PBS中性溶液,可形成3─5个AuNPs长度纳米链。该方法结合了β-LG对TPP分子抗氧化保护能力和AuNPs检测应用潜力,同时金纳米链也显示出ThT荧光响应信号。
     (5)β-乳球蛋白聚集模板制备氧化石墨烯纤维及其薄膜性质:以β-LGA作为模板,利用静电和疏水作用制备一种β-LGA/GO纳米纤维及其薄膜材料,形貌结构由溶液pH值和GO/β-LGA体积比调控,最优条件为pH4.6和体积比30:1,可形成直径为20─50nm纳米纤维。结果表明β-LGA/GO薄膜具有较好的电容性质和亲水性,有望用于细胞培养领域。
The present work is concerned with protein aggration and amyloid fibrillation.We concentrate on studying the inhibition of natural polyphenols on protein amyloidfibrillation experimentally and theoretically, which can lead to a better understandingof the polyphenol-regulated mechanism during this process and to give a possiblegeneral mechanism. We try to explore the application of protein aggregation and itsproduct amyloid fibrils on protein drug delivery and material functionalization.
     First of all, we focused on the effects of different polyphenol compounds on thekinetics of insulin aggregation, as well as the structure and morphology of insulinaggregates using various biophysical technologies. Oligomeric polyphenolcompounds showed potent inhibition at all stages of insulin fibrillation and redirectinsulin aggregation pathway via the formation of unstructured, off-pathwayaggregates. The results suggested that the antioxidative activity, chemical structure,and protein inherent properties were key factors on the anti-amyloidogenic activity ofpolyphenol.
     Secondly, insulin amyloid fibrils were disaggregated by laser irradiation coupledwith small aromatic molecules. We investigated the inhibition mechanism by acombination of steady-state/time-resolved fluorescence spectroscopy, DFT calculation,and molecular docking. The results suggested that the nature of disaggregation was todisrupt hydrophobic interactions between insulin amyloid fibrils. Destruction ofamyloid fibrils would occur when small molecules could bind to insulin fibrilsefficiently and change the hydrophobic environment surrounding amyloid fibrils.
     Thirdly, natural oligomeric procyanidin (OPC) with high pharmacological andbiological activities was successfully used to synthesize OPC–insulin (OPC–INS)nanoparticles with different aggregation sizes for sustained and controlled delivery ofhydrophilic insulin. The aggregation size of OPC–INS nanoparticles was regulated byOPC concentration, pH value, and incubation time. The optimal condition was thatinsulin incubated with100μM OPC for6h in pH7PBS buffer. In the self-assemblyof insulin, OPC could serve both in the encompassing of insulin aggregates as astabilizer and cross-linking different amounts of insulin aggregates into OPC–INS nanoparticles as interphase. In the best case for OPC–INS nanoparticles, only~21%of insulin was released in37d. This study showed that the OPC–INS nanosystem ispromising to serve as a long-acting insulin release formulation, and OPC has greatpotential as a drug carrier for nanomedicine.
     Fourthly, we utilized the aggregation of β-LG to form β-LGA-coated AuNPsnanochains for drug delivery of tea polyphenol (TPP). The length ofAuNPs/β-LGA/TPP nanochains was regulated by TPP concentration, aggregationtime and pH value. The optimal condition was TPP of10μM in pH7PBS for30minof incubation time, under which condition we obtained AuNPs/β-LGA/TPP consisted3─5AuNPs. This nanochain could benefit from the protection effect of β-LGA onTPP antioxidant activity and the potential detection application of AuNPs.Furthermore, the nanochains have also shown ThT fluorescence response intensity.
     Lastly, the β-LGA/GO nanofibrils and its thin film were prepared by usingβ-LGA amyloid fibrils as templates via electrostatic and hydrophobic interaction. Themorphology of β-LGA/GO nanofibrils was regulated by pH value and the volumeratio of GO to β-LGA. The optimal condition was pH4.6with the GO/β-LGA ratio of30:1, under which condition β-LGA/GO nanofibrils had a diameter of20─50nm. Theresults suggested that β-LGA/GO thin film has a better capacitance and hydrophilicproperties, facilitating its application in the filed of cell culture.
引文
[1] Hartl F U, Hayer-Hartl M. Converging Concepts of Protein Folding in Vitro and inVivo. Nature structural&molecular biology,2009,16(6):574-581.
    [2] Anfinsen C. The Formation and Stabilization of Protein Structure. BiochemicalJournal,1972,128(4):737.
    [3] Radford S E, Dobson C M. From Computer Simulations to Human Disease:Emerging Themes in Protein Folding. Cell,1999,97(3):291-298.
    [4] Vendruscolo M, Zurdo J, MacPhee C E et al. Protein Folding and Misfolding: AParadigm of Self–Assembly and Regulation in Complex Biological Systems.Philosophical Transactions of the Royal Society of London. Series A: Mathematical,Physical and Engineering Sciences,2003,361(1807):1205-1222.
    [5] Frydman J. Folding of Newly Translated Proteins in Vivo: The Role of MolecularChaperones. Annual review of biochemistry,2001,70(1):603-647.
    [6] Amaral M D. Cftr and Chaperones. Journal of Molecular Neuroscience,2004,23(1-2):41-48.
    [7] Ross C A, Pickart C M. The Ubiquitin–Proteasome Pathway in Parkinson’s Diseaseand Other Neurodegenerative Diseases. Trends in cell biology,2004,14(12):703-711.
    [8] Mandel S, Grunblatt E, Riederer P et al. Gene Expression Profiling of SporadicParkinson’s Disease Substantia Nigra Pars Compacta Reveals Impairment ofUbiquitin-Proteasome Subunits, Skp1a, Aldehyde Dehydrogenase, and ChaperoneHsc-70. Annals of the New York Academy of Sciences,2005,1053(1):356-375.
    [9] Bukau B, Weissman J, Horwich A. Molecular Chaperones and Protein QualityControl. Cell,2006,125(3):443-451.
    [10] Chiti F, Dobson C M. Protein Misfolding, Functional Amyloid, and Human Disease.Annu. Rev. Biochem.,2006,75:333-366.
    [11] Patino M M, Liu J-J, Glover J R et al. Support for the Prion Hypothesis forInheritance of a Phenotypic Trait in Yeast. Science,1996,273(5275):622-626.
    [12] Cox B, Lacroute F. Mad Cows Meet Psi-Chotic Yeast: Minireview the Expansion ofthe Prion Hypothesis. Cell,1997,89:495-498.
    [13] Chapman M R, Robinson L S, Pinkner J S et al. Role of Escherichia Coli CurliOperons in Directing Amyloid Fiber Formation. Science,2002,295(5556):851-855.
    [14] F ndrich M, Fletcher M A, Dobson C M. Amyloid Fibrils from Muscle Myoglobin.Nature,2001,410(6825):165-166.
    [15] Vetri V, Militello V. Thermal Induced Conformational Changes Involved in theAggregation Pathways of Beta-Lactoglobulin. Biophysical chemistry,2005,113(1):83-91.
    [16] Chiti F, Webster P, Taddei N et al. Designing Conditions for in Vitro Formation ofAmyloid Protofilaments and Fibrils. Proceedings of the National Academy ofSciences,1999,96(7):3590-3594.
    [17] Bucciantini M, Giannoni E, Chiti F et al. Inherent Toxicity of Aggregates Implies aCommon Mechanism for Protein Misfolding Diseases. Nature,2002,416(6880):507-511.
    [18] Arnold S E, Hyman B T, Flory J et al. The Topographical and NeuroanatomicalDistribution of Neurofibrillary Tangles and Neuritic Plaques in the Cerebral Cortex ofPatients with Alzheimer’s Disease. Cerebral Cortex,1991,1(1):103-116.
    [19] Goedert M. The Significance of Tau and α-Synuclein Inclusions inNeurodegenerative Diseases. Current opinion in genetics&development,2001,11(3):343-351.
    [20] Braak H, Rüb U, Gai W et al. Idiopathic Parkinson’s Disease: Possible Routes byWhich Vulnerable Neuronal Types May Be Subject to Neuroinvasion by an UnknownPathogen. Journal of neural transmission,2003,110(5):517-536.
    [21] Westermark P, Andersson A, Westermark G T. Islet Amyloid Polypeptide, IsletAmyloid, and Diabetes Mellitus. Physiological reviews,2011,91(3):795-826.
    [22] Soto C. Unfolding the Role of Protein Misfolding in Neurodegenerative Diseases.Nature Reviews Neuroscience,2003,4(1):49-60.
    [23] Teixeira P F, Cerca F, Santos S D et al. Endoplasmic Reticulum Stress Associatedwith Extracellular Aggregates Evidence from Transthyretin Deposition in FamilialAmyloid Polyneuropathy. Journal of Biological Chemistry,2006,281(31):21998-22003.
    [24] Pease III L F, Sorci M, Guha S et al. Probing the Nucleus Model for OligomerFormation During Insulin Amyloid Fibrillogenesis. Biophysical journal,2010,99(12):3979-3985.
    [25] McParland V J, Kad N M, Kalverda A P et al. Partially Unfolded States ofβ2-Microglobulin and Amyloid Formation in Vitro. Biochemistry,2000,39(30):8735-8746.
    [26] Piccardo P, Safar J, Ceroni M et al. Immunohistochemical Localization of PrionProtein in Spongiform Encephalopathies and Normal Brain Tissue. Neurology,1990,40(3Part1):518-518.
    [27] Rochet J-C, Lansbury Jr P T. Amyloid Fibrillogenesis: Themes and Variations.Current opinion in structural biology,2000,10(1):60-68.
    [28] Kazmirski S L, Howard M J, Isaacson R L et al. Elucidating the Mechanism ofFamilial Amyloidosis–Finnish Type: Nmr Studies of Human Gelsolin Domain2.Proceedings of the National Academy of Sciences,2000,97(20):10706-10711.
    [29] Reches M, Gazit E. Amyloidogenic Hexapeptide Fragment of Medin: Homology toFunctional Islet Amyloid Polypeptide Fragments. Amyloid,2004,11(2):81-89.
    [30] Persey M R, Booth D R, Booth S E et al. Hereditary Nephropathic SystemicAmyloidosis Caused by a Novel Variant Apolipoprotein a-I. Kidney Int,1998,53(2):276-281.
    [31] Nilsson M, Wang X, Rodziewicz-Motowidlo S et al. Prevention of Domain SwappingInhibits Dimerization and Amyloid Fibril Formation of Cystatin C Use of EngineeredDisulfide Bridges, Antibodies, and Carboxymethylpapain to Stabilize the MonomericForm of Cystatin C. Journal of Biological Chemistry,2004,279(23):24236-24245.
    [32] Wang L, Colón W. Urea-Induced Denaturation of Apolipoprotein Serum Amyloid aReveals Marginal Stability of Hexamer. Protein Science,2005,14(7):1811-1817.
    [33] Randles E G, Thompson J R, Martin D J et al. Structural Alterations within NativeAmyloidogenic Immunoglobulin Light Chains. Journal of Molecular Biology,2009,389(1):199-210.
    [34] Buxbaum J, Gallo G. Nonamyloidotic Monoclonal Immunoglobulin DepositionDisease: Light-Chain, Heavy-Chain, and Light-and Heavy-Chain DepositionDiseases. Hematology/oncology clinics of North America,1999,13(6):1235-1248.
    [35] Galkin O, Vekilov P G. Mechanisms of Homogeneous Nucleation of Polymers ofSickle Cell Anemia Hemoglobin in Deoxy State. Journal of Molecular Biology,2004,336(1):43-59.
    [36] Tomidokoro Y, Lashley T, Rostagno A et al. Familial Danish Dementia: Co-Existenceof Danish and Alzheimer Amyloid Subunits (Adan and Aβ) in the Absence ofCompact Plaques. Journal of Biological Chemistry,2005,280(44):36883-36894.
    [37] Sunde M, Blake C. The Structure of Amyloid Fibrils by Electron Microscopy andX-Ray Diffraction. Advances in protein chemistry,1997,50:123-159.
    [38] Serpell L C, Sunde M, Benson M D et al. The Protofilament Substructure of AmyloidFibrils. Journal of Molecular Biology,2000,300(5):1033-1039.
    [39] Fitzpatrick A W, Debelouchina G T, Bayro M J et al. Atomic Structure andHierarchical Assembly of a Cross-β Amyloid Fibril. Proceedings of the NationalAcademy of Sciences,2013,110(14):5468-5473.
    [40] Nelson R, Eisenberg D. Recent Atomic Models of Amyloid Fibril Structure. Currentopinion in structural biology,2006,16(2):260-265.
    [41] Nelson R, Sawaya M R, Balbirnie M et al. Structure of the Cross-β Spine ofAmyloid-Like Fibrils. Nature,2005,435(7043):773-778.
    [42] Tycko R. Molecular Structure of Amyloid Fibrils: Insights from Solid-State Nmr.Quarterly reviews of biophysics,2006,39(01):1-55.
    [43] Petkova A T, Yau W-M, Tycko R. Experimental Constraints on Quaternary Structurein Alzheimer’s β-Amyloid Fibrils. Biochemistry,2006,45(2):498-512.
    [44] Hoshino M, Katou H, Hagihara Y et al. Mapping the Core of the β2-MicroglobulinAmyloid Fibril by H/D Exchange. Nature structural&molecular biology,2002,9(5):332-336.
    [45] Myers S L, Thomson N H, Radford S E et al. Investigating the Structural Propertiesof Amyloid-Like Fibrils Formed in Vitro from β2-Microglobulin Using LimitedProteolysis and Electrospray Ionisation Mass Spectrometry. Rapid communications inmass spectrometry,2006,20(11):1628-1636.
    [46] Jung J-M, Savin G, Pouzot M et al. Structure of Heat-Induced β-LactoglobulinAggregates and Their Complexes with Sodium-Dodecyl Sulfate. Biomacromolecules,2008,9(9):2477-2486.
    [47] Kad N M, Myers S L, Smith D P et al. Hierarchical Assembly of β2-MicroglobulinAmyloid in Vitro Revealed by Atomic Force Microscopy. Journal of MolecularBiology,2003,330(4):785-797.
    [48] Stine W B, Dahlgren K N, Krafft G A et al. In Vitro Characterization of Conditionsfor Amyloid-β Peptide Oligomerization and Fibrillogenesis. Journal of BiologicalChemistry,2003,278(13):11612-11622.
    [49] Petkova A T, Leapman R D, Guo Z et al. Self-Propagating, Molecular-LevelPolymorphism in Alzheimer’s-Amyloid Fibrils. Science,2005,307(5707):262-265.
    [50] Uversky V N, Li J, Souillac P et al. Biophysical Properties of the Synucleins andTheir Propensities to Fibrillate Inhibition of α-Synuclein Assembly by β-andα-Synucleins. Journal of Biological Chemistry,2002,277(14):11970-11978.
    [51] Pedersen J S, Christensen G, Otzen D E. Modulation of S6Fibrillation by UnfoldingRates and Gatekeeper Residues. Journal of Molecular Biology,2004,341(2):575-588.
    [52] Wilson M R, Yerbury J J, Poon S. Potential Roles of Abundant ExtracellularChaperones in the Control of Amyloid Formation and Toxicity. Molecular Biosystems,2008,4(1):42-52.
    [53] Vendruscolo M, Dobson C M. Structural Biology: Protein Self-AssemblyIntermediates. Nature chemical biology,2013,9(4):216-217.
    [54] Chiti F, Dobson C M. Amyloid Formation by Globular Proteins under NativeConditions. Nature chemical biology,2008,5(1):15-22.
    [55] Stefani M, Dobson C M. Protein Aggregation and Aggregate Toxicity: New Insightsinto Protein Folding, Misfolding Diseases and Biological Evolution. Journal ofmolecular medicine,2003,81(11):678-699.
    [56] Chen S-H, Russell W K, Russell D H. Combining Chemical Labeling, Bottom-up andTop-Down Ion-Mobility Mass Spectrometry to Identify Metal-Binding Sites ofPartially Metalated Metallothionein. Analytical Chemistry,2013,85(6):3229-3237.
    [57] Hu W, Walters B T, Kan Z-Y et al. Stepwise Protein Folding at near Amino AcidResolution by Hydrogen Exchange and Mass Spectrometry. Proceedings of theNational Academy of Sciences,2013, doi:10.1073/pnas.1305887110.
    [58] Ahmad A, Millett I S, Doniach S et al. Partially Folded Intermediates in InsulinFibrillation. Biochemistry,2003,42(39):11404-11416.
    [59] Hua Q X, Weiss M A. Mechanism of Insulin Fibrillation-the Structure of Insulinunder Amyloidogenic Conditions Resembles a Protein-Folding Intermediate. Journalof Biological Chemistry,2004,279(20):21449-21460.
    [60] Rambaran R N, Serpell L C. Amyloid Fibrils: Abnormal Protein Assembly. Prion,2008,2(3):112-117.
    [61] DeToma A S, Salamekh S, Ramamoorthy A et al. Misfolded Proteins in Alzheimer’sDisease and Type Ii Diabetes. Chemical Society Reviews,2012,41(2):608-621.
    [62] Liu R, Su R, Liang M et al. Physicochemical Strategies for Inhibition of AmyloidFibril Formation: An Overview of Recent Advances. Current Medicinal Chemistry,2012,19(24):4157-4174.
    [63] Silva J L, Cordeiro Y, Foguel D. Protein Folding and Aggregation: Two Sides of theSame Coin in the Condensation of Proteins Revealed by Pressure Studies. Biochimicaet Biophysica Acta (BBA)-Proteins and Proteomics,2006,1764(3):443-451.
    [64] Dirix C, Meersman F, MacPhee C E et al. High Hydrostatic Pressure DissociatesEarly Aggregates of Ttr105–115, but Not the Mature Amyloid Fibrils. Journal ofMolecular Biology,2005,347(5):903-909.
    [65] Martins S M, Chapeaurouge A, Ferreira S T. Folding Intermediates of the PrionProtein Stabilized by Hydrostatic Pressure and Low Temperature. Journal ofBiological Chemistry,2003,278(50):50449-50455.
    [66] Liu R, Su R, Qi W et al. Photo-Induced Inhibition of Insulin Amyloid Fibrillation onOnline Laser Measurement. Biochemical and Biophysical Research Communications,2011,409(2):229-234.
    [67] Yagi H, Ozawa D, Sakurai K et al. Laser-Induced Propagation and Destruction ofAmyloid Β Fibrils. Journal of Biological Chemistry,2010,285(25):19660-19667.
    [68] Ozawa D, Yagi H, Ban T et al. Destruction of Amyloid Fibrils of a Β2-MicroglobulinFragment by Laser Beam Irradiation. Journal of Biological Chemistry,2009,284(2):1009-1017.
    [69] Ozawa D, Kaji Y, Yagi H et al. Destruction of Amyloid Fibrils of KeratoepithelinPeptides by Laser Irradiation Coupled with Amyloid-Specific Thioflavin T. Journalof Biological Chemistry,2011,286(12):10856-10863.
    [70] Re F, Airoldi C, Zona C et al. Beta Amyloid Aggregation Inhibitors: Small Moleculesas Candidate Drugs for Therapy of Alzheimers Disease. Current Medicinal Chemistry,2010,17(27):2990-3006.
    [71] Porat Y, Abramowitz A, Gazit E. Inhibition of Amyloid Fibril Formation byPolyphenols: Structural Similarity and Aromatic Interactions as a Common InhibitionMechanism. Chemical biology&drug design,2006,67(1):27-37.
    [72] Sinha S, Du Z, Maiti P et al. Comparison of Three Amyloid Assembly Inhibitors: TheSugar Scyllo-Inositol, the Polyphenol Epigallocatechin Gallate, and the MolecularTweezer Clr01. ACS Chemical Neuroscience,2012,3(6):451-458.
    [73] Kang I-J, Jeon Y E, Yin X F et al. Butanol Extract of Ecklonia Cava PreventsProduction and Aggregation of Beta-Amyloid, and Reduces Beta-Amyloid MediatedNeuronal Death. Food and Chemical Toxicology,2011,49(9):2252-2259.
    [74] Hafner-Bratkovi I, Ga per i J, mid L M et al. Curcumin Binds to the α-HelicalIntermediate and to the Amyloid Form of Prion Protein-a New Mechanism for theInhibition of Prpsc Accumulation. Journal of Neurochemistry,2008,104(6):1553-1564.
    [75] Moss M A, Varvel N H, Nichols M R et al. Nordihydroguaiaretic Acid Does NotDisaggregate Β-Amyloid (1–40) Protofibrils but Does Inhibit Growth Arising fromDirect Protofibril Association. Molecular pharmacology,2004,66(3):592-600.
    [76] Jiang P, Li W, Shea J-E et al. Resveratrol Inhibits the Formation of Multiple-LayeredΒ-Sheet Oligomers of the Human Islet Amyloid Polypeptide Segment22–27.Biophysical journal,2011,100(6):1550-1558.
    [77] Feng Y, Wang X-p, Yang S-g et al. Resveratrol Inhibits Beta-Amyloid OligomericCytotoxicity but Does Not Prevent Oligomer Formation. Neurotoxicology,2009,30(6):986-995.
    [78] Jang M H, Piao X L, Kim J M et al. Inhibition of Cholinesterase and Amyloid-βAggregation by Resveratrol Oligomers from Vitis Amurensis. Phytotherapy Research,2008,22(4):544-549.
    [79] Levy M, Porat Y, Bacharach E et al. Phenolsulfonphthalein, but Not Phenolphthalein,Inhibits Amyloid Fibril Formation: Implications for the Modulation of AmyloidSelf-Assembly. Biochemistry,2008,47(22):5896-5904.
    [80] Levy-Sakin M, Shreberk M, Daniel Y et al. Targeting Insulin Amyloid Assembly bySmall Aromatic Molecules: Toward Rational Design of Aggregation Inhibitors. Islets,2009,1(3):210-215.
    [81] Li J, Zhu M, Rajamani S et al. Rifampicin Inhibits α-Synuclein Fibrillation andDisaggregates Fibrils. Chemistry&biology,2004,11(11):1513-1521.
    [82] Lieu V H, Wu J W, Wang S S S et al. Inhibition of Amyloid Fibrillization of HenEgg‐White Lysozymes by Rifampicin and p-Benzoquinone. Biotechnology progress,2007,23(3):698-706.
    [83] Ferreira N, Saraiva M J, Almeida M R. Natural Polyphenols Inhibit Different Steps ofthe Process of Transthyretin (TTR) Amyloid Fibril Formation. FEBS letters,2011,585(15):2424-2430.
    [84] Liu Y, Ho L H, Carver J A et al. Ion Mobility Mass Spectrometry Studies of theInhibition of Alpha Synuclein Amyloid Fibril Formation by(–)-Epigallocatechin-3-Gallate. Australian Journal of Chemistry,2011,64(1):36-40.
    [85] Harvey B S, Musgrave I F, Ohlsson K et al. The Green Tea Polyphenol()-Epigallocatechin-3-Gallate Inhibits Amyloid-β Evoked Fibril Formation andNeuronal Cell Death in Vitro. Food Chemistry,2011,129(4):1729-1736.
    [86] Meng F, Abedini A, Plesner A et al. The Flavanol ()-Epigallocatechin3-GallateInhibits Amyloid Formation by Islet Amyloid Polypeptide, Disaggregates AmyloidFibrils, and Protects Cultured Cells against Iapp-Induced Toxicity. Biochemistry,2010,49(37):8127-8133.
    [87] Huong V T, Shimanouchi T, Shimauchi N et al. Catechol Derivatives Inhibit theFibril Formation of Amyloid-β Peptides. Journal of bioscience and bioengineering,2010,109(6):629-634.
    [88] Kim H, Park B-S, Lee K-G et al. Effects of Naturally Occurring Compounds on FibrilFormation and Oxidative Stress of β-Amyloid. Journal of Agricultural and FoodChemistry,2005,53(22):8537-8541.
    [89] Akaishi T, Morimoto T, Shibao M et al. Structural Requirements for the FlavonoidFisetin in Inhibiting Fibril Formation of Amyloid β Protein. Neuroscience letters,2008,444(3):280-285.
    [90] Green N S, Foss T R, Kelly J W. Genistein, a Natural Product from Soy, Is a PotentInhibitor of Transthyretin Amyloidosis. Proceedings of the National Academy ofSciences of the United States of America,2005,102(41):14545-14550.
    [91] Henry-Vitrac C, Berbille H, Mérillon J-M et al. Soy Isoflavones as PotentialInhibitors of Alzheimer-Amyloid Fibril Aggregation in Vitro. Food researchinternational,2010,43(8):2176-2178.
    [92] Rivière C, Richard T, Vitrac X et al. New Polyphenols Active on Β-AmyloidAggregation. Bioorganic&medicinal chemistry letters,2008,18(2):828-831.
    [93] Wang J, Gines S, MacDonald M E et al. Reversal of a Full-Length Mutant HuntingtinNeuronal Cell Phenotype by Chemical Inhibitors of Polyglutamine-MediatedAggregation. BMC neuroscience,2005,6(1):1-12.
    [94] Thapa A, Woo E-R, Chi E Y et al. Biflavonoids Are Superior to Monoflavonoids inInhibiting Amyloid-Β Toxicity and Fibrillogenesis Via Accumulation of NontoxicOligomer-Like Structures. Biochemistry,2011,50(13):2445-2455.
    [95] Soto-Ortega D D, Murphy B P, Gonzalez-Velasquez F J et al. Inhibition ofAmyloid-Β Aggregation by Coumarin Analogs Can Be Manipulated byFunctionalization of the Aromatic Center. Bioorganic&medicinal chemistry,2011,19(8):2596-2602.
    [96] Howlett D, Cutler P, Heales S et al. Hemin and Related Porphyrins InhibitΒ-AmyloidAggregation. FEBS letters,1997,417(2):249-251.
    [97] Atamna H. Heme Binding to Amyloid-Β Peptide: Mechanistic Role in Alzheimer’sDisease. Journal of Alzheimer’s Disease,2006,10(2):255-266.
    [98] Lamberto G R, Torres-Monserrat V, Bertoncini C W et al. Toward the Discovery ofEffective Polycyclic Inhibitors of Α-Synuclein Amyloid Assembly. Journal ofBiological Chemistry,2011,286(37):32036-32044.
    [99] Lamberto G R, Binolfi A, Orcellet M L et al. Structural and Mechanistic BasisBehind the Inhibitory Interaction of Pcts on α-Synuclein Amyloid Fibril Formation.Proceedings of the National Academy of Sciences,2009,106(50):21057-21062.
    [100] Jihoon K, Ryuichi H, Masaki K et al. The Inhibitory Effect of PyrroloquinolineQuinone on the Amyloid Formation and Cytotoxicity of Truncated Alpha-Synuclein.Molecular Neurodegeneration,2010,5.
    [101] Shi A, Huang L, Lu C et al. Synthesis, Biological Evaluation and MolecularModeling of Novel Triazole-Containing Berberine Derivatives asAcetylcholinesterase and Β-Amyloid Aggregation Inhibitors. Bioorganic&medicinalchemistry,2011,19(7):2298-2305.
    [102] T r k M, Abid M, Mhadgut S C et al. Organofluorine Inhibitors of AmyloidFibrillogenesis. Biochemistry,2006,45(16):5377-5383.
    [103] Sood A, Abid M, Hailemichael S et al. Effect of Chirality of Small MoleculeOrganofluorine Inhibitors of Amyloid Self-Assembly on Inhibitor Potency.Bioorganic&medicinal chemistry letters,2009,19(24):6931-6934.
    [104] Reinke A A, Seh H Y, Gestwicki J E. A Chemical Screening Approach Reveals ThatIndole Fluorescence Is Quenched by Pre-Fibrillar but Not Fibrillar Amyloid-Β.Bioorganic&medicinal chemistry letters,2009,19(17):4952-4957.
    [105] Morshedi D, Rezaei-Ghaleh N, Ebrahim-Habibi A et al. Inhibition of AmyloidFibrillation of Lysozyme by Indole Derivatives-Possible Mechanism of Action. FebsJournal,2007,274(24):6415-6425.
    [106] Bendheim P E, Poeggeler B, Neria E et al. Development of Indole-3-Propionic Acid(Oxigon) for Alzheimer’s Disease. Journal of Molecular Neuroscience,2002,19(1-2):213-217.
    [107] Cohen T, Frydman-Marom A, Rechter M et al. Inhibition of Amyloid FibrilFormation and Cytotoxicity by Hydroxyindole Derivatives. Biochemistry,2006,45(15):4727-4735.
    [108] Campagna F, Catto M, Purgatorio R et al. Synthesis and Biophysical Evaluation ofArylhydrazono-1h-2-Indolinones as β-Amyloid Aggregation Inhibitors. Europeanjournal of medicinal chemistry,2011,46(1):275-284.
    [109] Howlett D R, George A R, Owen D E et al. Common Structural Features Determinethe Effectiveness of Carvedilol, Daunomycin and Rolitetracycline as Inhibitors ofAlzheimer Beta-Amyloid Fibril Formation. Biochemical Journal,1999,343(Pt2):419.
    [110] Saengkhae C, Salerno M, Adès D et al. Ability of Carbazole Salts, Inhibitors ofAlzheimer Β-Amyloid Fibril Formation, to Cross Cellular Membranes. Europeanjournal of pharmacology,2007,559(2):124-131.
    [111] Lee Y R, Kim D J, Mook-Jung I et al. Synthesis of Thia (Oxa) Zolopyridines andTheir Inhibitory Activities for Β-Amyloid Fibrillization. Bulletin of the KoreanChemical Society,2008,29(12):2331-2336.
    [112] Mathura V S, Patel N, Bachmeier C et al. A3d-Qsar Model Based Screen forDihydropyridine-Like Compound Library to Identify Inhibitors of Amyloid Beta (Aβ)Production. Bioinformation,2010,5(3):122-127.
    [113] Dolphin G T, Renaudet O, Ouberai M et al. Phenolic Oxime Oligomers InhibitAlzheimer’s Amyloid Fibril Formation and Disaggregate Fibrils in Vitro.ChemBioChem,2009,10(8):1325-1329.
    [114] Hong H S, Rana S, Barrigan L et al. Inhibition of Alzheimer’s Amyloid Toxicity witha Tricyclic Pyrone Molecule in Vitro and in Vivo. Journal of Neurochemistry,2009,108(4):1097-1108.
    [115] Simons L J, Caprathe B W, Callahan M et al. The Synthesis and Structure–ActivityRelationship of Substituted N-Phenyl Anthranilic Acid Analogs as AmyloidAggregation Inhibitors. Bioorganic&medicinal chemistry letters,2009,19(3):654-657.
    [116] Lorenzo A, Yankner B A. Beta-Amyloid Neurotoxicity Requires Fibril Formation andIs Inhibited by Congo Red. Proceedings of the National Academy of Sciences,1994,91(25):12243-12247.
    [117] Frid P, Anisimov S V, Popovic N. Congo Red and Protein Aggregation inNeurodegenerative Diseases. Brain research reviews,2007,53(1):135-160.
    [118] Feng B Y, Toyama B H, Wille H et al. Small-Molecule Aggregates Inhibit AmyloidPolymerization. Nature chemical biology,2008,4(3):197-199.
    [119] Familian A, Boshuizen R S, Eikelenboom P et al. Inhibitory Effect of Minocycline onAmyloid Β Fibril Formation and Human Microglial Activation. Glia,2006,53(3):233-240.
    [120] Malmo C, Vilasi S, Iannuzzi C et al. Tetracycline Inhibits W7fw14f ApomyoglobinFibril Extension and Keeps the Amyloid Protein in a Pre-Fibrillar, Highly CytotoxicState. The FASEB journal,2006,20(2):346-347.
    [121] Dolphin G T, Chierici S, Ouberai M et al. A Multimeric Quinacrine Conjugate as aPotential Inhibitor of Alzheimer’s β-Amyloid Fibril Formation. ChemBioChem,2008,9(6):952-963.
    [122] Van Der Hilst J, Kluve-Beckerman B, Bodar E et al. Lovastatin Inhibits Formation ofAa Amyloid. Journal of leukocyte biology,2008,83(5):1295-1299.
    [123] Matharu B, Gibson G, Parsons R et al. Galantamine Inhibits β-Amyloid Aggregationand Cytotoxicity. Journal of the neurological sciences,2009,280(1):49-58.
    [124] Han M, Liu Y, Zhang B et al. Salvianic Borneol Ester Reduces β-Amyloid Oligomersand Prevents Cytotoxicity. Pharmaceutical Biology,2011,49(10):1008-1013.
    [125] Zhou Y, Jiang C, Zhang Y et al. Structural Optimization and Biological Evaluation ofSubstituted Bisphenol a Derivatives as β-Amyloid Peptide Aggregation Inhibitors.Journal of medicinal chemistry,2010,53(15):5449-5466.
    [126] Ahn J H, Hu Y, Hernandez M et al. Crocetin Inhibits Beta-Amyloid Fibrillization andStabilizes Beta-Amyloid Oligomers. Biochemical and Biophysical ResearchCommunications,2011,414(1):79-83.
    [127] Yang Jr F, Zhang M, Zhou B-R et al. Oleic Acid Inhibits Amyloid Formation of theIntermediate of Α-Lactalbumin at Moderately Acidic Ph. Journal of MolecularBiology,2006,362(4):821-834.
    [128] Hashimoto M, Shahdat H M, Yamashita S et al. Docosahexaenoic Acid Disrupts inVitro Amyloid β1-40Fibrillation and Concomitantly Inhibits Amyloid Levels inCerebral Cortex of Alzheimer’s Disease Model Rats. Journal of Neurochemistry,2008,107(6):1634-1646.
    [129] Liu S X, White E. Extraction and Characterization of Proanthocyanidins from GrapeSeeds. Open Food Science Journal,2012,6:5-11.
    [130] Lea A G, Arnold G M. The Phenolics of Ciders: Bitterness and Astringency. Journalof the Science of Food and Agriculture,1978,29(5):478-483.
    [131] Preys S, Mazerolles G, Courcoux P et al. Relationship between PolyphenolicComposition and Some Sensory Properties in Red Wines Using Multiway Analyses.Analytica Chimica Acta,2006,563(1):126-136.
    [132] Counet C, Ouwerx C, Rosoux D et al. Relationship between Procyanidin and FlavorContents of Cocoa Liquors from Different Origins. Journal of Agricultural and FoodChemistry,2004,52(20):6243-6249.
    [133] Lea A G H. Color and Tannin in English Cider Apples. Flüssiges Obst,1984,51(8):399-400.
    [134] Kiatgrajai P, Wellons J, Gollob L et al. Kinetics of Epimerization of (+)-Catechin andIts Rearrangement to Catechinic Acid. The Journal of Organic Chemistry,1982,47(15):2910-2912.
    [135] Komatsu Y, Suematsu S, Hisanobu Y et al. Effects of Ph and Temperature onReaction Kinetics of Catechins in Green Tea Infusion. Biosci Biotech Biochem,1993,57(6):907-910.
    [136] Zhu Q Y, Holt R R, Lazarus S A et al. Stability of the Flavan-3-Ols Epicatechin andCatechin and Related Dimeric Procyanidins Derived from Cocoa. Journal ofAgricultural and Food Chemistry,2002,50(6):1700-1705.
    [137] Hümmer W, Schreier P. Analysis of Proanthocyanidins. Molecular nutrition&foodresearch,2008,52(12):1381-1398.
    [138] Kondo K, Kurihara M, Fukuhara K et al. Conversion of Procyanidin β-Type(Catechin Dimer) to a-Type: Evidence for Abstraction of C-2Hydrogen in CatechinDuring Radical Oxidation. Tetrahedron Letters,2000,41(4):485-488.
    [139] Gu L, Kelm M A, Hammerstone J F et al. Concentrations of Proanthocyanidins inCommon Foods and Estimations of Normal Consumption. The Journal of nutrition,2004,134(3):613-617.
    [140] Dixon R A, Xie D Y, Sharma S B. Proanthocyanidins–a Final Frontier in FlavonoidResearch? New Phytologist,2005,165(1):9-28.
    [141] Ding Y, Dai X, Jiang Y et al. Grape Seed Proanthocyanidin Extracts AlleviateOxidative Stress and Er Stress in Skeletal Muscle of Low-Dose Streptozotocin andHigh Carbohydrate/High Fat Diet Induced Diabetic Rats. Molecular nutrition&foodresearch,2013,57(2):365-369.
    [142] Wang J, Ferruzzi M G, Ho L et al. Brain-Targeted Proanthocyanidin Metabolites forAlzheimer’s Disease Treatment. Journal of Neuroscience,2012,32(15):5144-5150.
    [143] Li J, Li J, Li S et al. Ameliorative Effect of Grape Seed Proanthocyanidin Extract onThioacetamide-Induced Mouse Hepatic Fibrosis. Toxicology Letters,2012,213(3):353-360.
    [144] Agackiran Y, Gul H, Gunay E et al. The Efficiency of Proanthocyanidin in anExperimental Pulmonary Fibrosis Model: Comparison with Taurine. Inflammation,2012,35(4):1402-1410.
    [145] Park J-S, Park M-K, Oh H-J et al. Grape-Seed Proanthocyanidin Extract asSuppressors of Bone Destruction in Inflammatory Autoimmune Arthritis. Plos One,2012,7(12): e51377.
    [146] Zhang X, Hu Y Z. Inhibitory Effects of Grape Seed Proanthocyanidin Extract onSelenite-Induced Cataract Formation and Possible Mechanism. Journal of HuazhongUniversity of Science and Technology-Medical Sciences,2012,32(4):613-619.
    [147] Wei R B, Ding R, Wang Y X et al. Grape Seed Proanthocyanidin Extract ReducesRenal Ischemia/Reperfusion Injuries in Rats. American Journal of the MedicalSciences,2012,343(6):452-457.
    [148] Lee T, Kwon H S, Bang B R et al. Grape Seed Proanthocyanidin Extract AttenuatesAllergic Inflammation in Murine Models of Asthma. Journal of Clinical Immunology,2012,32(6):1292-1304.
    [149] Vinson J, Mandarano M, Shuta D et al. Beneficial Effects of a Novel Ih636GrapeSeed Proanthocyanidin Extract and a Niacin-Bound Chromium in a HamsterAtherosclerosis Model. Molecular and cellular biochemistry,2002,240(1-2):99-103.
    [150] Liu X J, Qiu J, Zhao S H et al. Grape Seed Proanthocyanidin Extract AlleviatesOuabain-Induced Vascular Remodeling through Regulation of Endothelial Function.Molecular Medicine Reports,2012,6(5):949-954.
    [151] Pataki T, Bak I, Kovacs P et al. Grape Seed Proanthocyanidins Improved CardiacRecovery During Reperfusion after Ischemia in Isolated Rat Hearts. The AmericanJournal of Clinical Nutrition,2002,75(5):894-899.
    [152] Prasad R, Vaid M, Katiyar S K. Grape Proanthocyanidin Inhibit Pancreatic CancerCell Growth in Vitro and in Vivo through Induction of Apoptosis and by Targetingthe Pi3k/Akt Pathway. Plos One,2012,7(8): e43064.
    [153] Dauer A, Hensel A, Lhoste E et al. Genotoxic and Antigenotoxic Effects of Catechinand Tannins from the Bark of Hamamelis Virginiana L. In Metabolically Competent,Human Hepatoma Cells (Hep G2) Using Single Cell Gel Electrophoresis.Phytochemistry,2003,63(2):199-207.
    [154] Deters A, Dauer A, Schnetz E et al. High Molecular Compounds (Polysaccharidesand Proanthocyanidins) from Hamamelis Virginiana Bark: Influence on Human SkinKeratinocyte Proliferation and Differentiation and Influence on Irritated Skin.Phytochemistry,2001,58(6):949-958.
    [155] Tatsuno T, Jinno M, Arima Y et al. Anti-Inflammatory and Anti-MelanogenicProanthocyanidin Oligomers from Peanut Skin. Biological&PharmaceuticalBulletin,2012,35(6):909-916.
    [156] Lou H, Yamazaki Y, Sasaki T et al. A-Type Proanthocyanidins from Peanut Skins.Phytochemistry,1999,51(2):297-308.
    [157] Hort M A, Straliotto M R, Duz M S et al. Cardioprotective Effects of aProanthocyanidin-Rich Fraction from Croton Celtidifolius Baill: Focus onAtherosclerosis. Food and Chemical Toxicology,2012,50(10):3769-3775.
    [158] Jin S W, Eerdunbayaer, Doi A et al. Polyphenolic Constituents of CynomoriumSongaricum Rupr. And Antibacterial Effect of Polymeric Proanthocyanidin onMethicillin-Resistant Staphylococcus Aureus. Journal of Agricultural and FoodChemistry,2012,60(29):7297-7305.
    [159] Luck G, Liao H, Murray N J et al. Polyphenols, Astringency and Proline-RichProteins. Phytochemistry,1994,37(2):357-371.
    [160] Charlton A J, Baxter N J, Lilley T H et al. Tannin Interactions with a Full-LengthHuman Salivary Proline-Rich Protein Display a Stronger Affinity Than with SingleProline-Rich Repeats. FEBS letters,1996,382(3):289-292.
    [161] Hagerman A E. Tannin-Protein Interactions. In: Ho Ct, Lee Cy, and Huang Mt, Eds.Phenolic Compounds in Food and Their Effects on Health. I. Analysis, Occurrenceand Chemistry. Washington Dc: Acs Publications,1992,236-247.
    [162] Santos-Buelga C, Scalbert A. Proanthocyanidins and Tannin-Like Compounds-Nature,Occurrence, Dietary Intake and Effects on Nutrition and Health. Journal of theScience of Food and Agriculture,2000,80(7):1094-1117.
    [163] Bate-Smith E C, Swain T. Flavonoid Compounds. In: Mason H S, Florkin a M, Eds.Comparative Biochemistry. New York: Academic Press,1962,755-809.
    [164] Edelmann A, Lendl B. Toward the Optical Tongue: Flow-through Sensing ofTannin-Protein Interactions Based on Ftir Spectroscopy. Journal of the AmericanChemical Society,2002,124(49):14741-14747.
    [165] Komninos J, Kekos D, Macris B et al. Tannin-Resistant α-Amylase from CalvatiaGigantea. Biotechnology and bioengineering,1988,32(7):939-941.
    [166] Strumeyer D, Malin M. Resistance of Extracellular Yeast Invertase and OtherGlycoproteins to Denaturation by Tannins. Biochemical Journal,1970,118(5):899.
    [167] Haslam E. Polyphenol–Protein Interactions. Biochemical Journal,1974,139(1):285.
    [168] Sarni-Manchado P, Cheynier V, Moutounet M. Interactions of Grape Seed Tanninswith Salivary Proteins. Journal of Agricultural and Food Chemistry,1999,47(1):42-47.
    [169] Okuda T, Mori K, Hatano T. Relationship of the Structures of Tannins to the BindingActivities with Hemoglobin and Methylene Blue. Chemical&pharmaceuticalbulletin,1985,33(4):1424-1433.
    [170] Kawamoto H, Nakatsubo F, Murakami K. Relationship between the β-RingHydroxylation Pattern of Condensed Tannins and Their Protein-PrecipitatingCapacity. Journal of wood chemistry and technology,1990,10(3):401-409.
    [171] Snow A D, Castillo G M, Choi P Y et al. Proanthocyanidins for the Treatment ofAmyloid and Alpha-Synuclein Diseases, Us2003/0017998A1.
    [172] Ebrahimi A, Schluesener H. Natural Polyphenols against NeurodegenerativeDisorders: Potentials and Pitfalls. Ageing Research Reviews,2012,11(2):329-345.
    [173] Ono K, Condron M M, Ho L et al. Effects of Grape Seed-Derived Polyphenols onAmyloid Β-Protein Self-Assembly and Cytotoxicity. Journal of Biological Chemistry,2008,283(47):32176-32187.
    [174] Ono K, Li L, Takamura Y et al. Phenolic Compounds Prevent Amyloid β-ProteinOligomerization and Synaptic Dysfunction by Site-Specific Binding. Journal ofBiological Chemistry,2012,287(18):14631-14643.
    [175] Peterson D W, George R C, Scaramozzino F et al. Cinnamon Extract Inhibits TauAggregation Associated with Alzheimer’s Disease in Vitro. Journal of Alzheimer’sDisease,2009,17(3):585-597.
    [176] Toda T, Sunagawa T, Kanda T et al. Apple Procyanidins Suppress AmyloidBeta-Protein Aggregation. Biochemistry research international,2011, doi:10.1155/2011/784698.
    [177] Goldberg D M, Yan J, Ng E et al. A Global Survey of Trans-ResveratrolConcentrations in Commercial Wines. American Journal of Enology and Viticulture,1995,46(2):159-165.
    [178] Jang M, Cai L, Udeani G O et al. Cancer Chemopreventive Activity of Resveratrol, aNatural Product Derived from Grapes. Science,1997,275(5297):218-220.
    [179] Bradamante S, Barenghi L, Villa A. Cardiovascular Protective Effects of Resveratrol.Cardiovascular drug reviews,2004,22(3):169-188.
    [180] Baur J A, Sinclair D A. Therapeutic Potential of Resveratrol: The in Vivo Evidence.Nature Reviews Drug Discovery,2006,5(6):493-506.
    [181] Tseng S-H, Lin S-M, Chen J-C et al. Resveratrol Suppresses the Angiogenesis andTumor Growth of Gliomas in Rats. Clinical Cancer Research,2004,10(6):2190-2202.
    [182] Zhou S, Chan S Y, Goh B C et al. Mechanism-Based Inhibition of Cytochrome P4503a4by Therapeutic Drugs. Clinical pharmacokinetics,2005,44(3):279-304.
    [183] Gautam S, Xu Y, Dumaguin M et al. Resveratrol Selectively Inhibits Leukemia Cells:A Prospective Agent for Ex Vivo Bone Marrow Purging. Bone marrowtransplantation,2000,25(6):639-645.
    [184] Kensler T, Guyton K, Egner P et al. Role of Reactive Intermediates in TumorPromotion and Progression. Progress in clinical and biological research,1995,391:103-116.
    [185] Frankel E, Waterhouse A, Kinsella J E. Inhibition of Human Ldl Oxidation byResveratrol. Lancet,1993,341(8852):1103-1104.
    [186] Suzuki M, Inauen W, Kvietys P R et al. Superoxide Mediates Reperfusion-InducedLeukocyte-Endothelial Cell Interactions. American Journal of Physiology-Heart andCirculatory Physiology,1989,257(5):1740-1745.
    [187] Liang L, Tajmir-Riahi H, Subirade M. Interaction of β-Lactoglobulin withResveratrol and Its Biological Implications. Biomacromolecules,2007,9(1):50-56.
    [188] Hemar Y, Gerbeaud M, Oliver C M et al. Investigation into the Interaction betweenResveratrol and Whey Proteins Using Fluorescence Spectroscopy. InternationalJournal of Food Science&Technology,2011,46(10):2137-2144.
    [189] Jiang X Y, Li W X, Cao H. Study of the Interaction between Trans-Resveratrol andBsa by the Multi-Spectroscopic Method. Journal of solution chemistry,2008,37(11):1609-1623.
    [190] N’ soukpoé-Kossi C, St-Louis C, Beauregard M et al. Resveratrol Binding to HumanSerum Albumin. Journal of Biomolecular Structure and Dynamics,2006,24(3):277-283.
    [191] Pantusa M, Sportelli L, Bartucci R. Influence of Stearic Acids on Resveratrol-HsaInteraction. European Biophysics Journal,2012,41(11):969-977.
    [192] Bastianetto S, Dumont Y, Quirion R et al. Catechins and Resveratrol as ProtectivePolyphenols against Beta-Amyloid-Induced Toxicity: Possible Significance toAlzheimer’s Disease. In: Ramassamy C and Bastianetto S, Eds. Recent Advances onNutrition and the Prevention of Alzheimer’s Disease. India: Transworld ResearchNetwork, Inc,2011,145-154.
    [193] Mishra R, Sellin D, Radovan D et al. Inhibiting Islet Amyloid Polypeptide FibrilFormation by the Red Wine Compound Resveratrol. ChemBioChem,2009,10(3):445-449.
    [194] Ladiwala A R A, Lin J C, Bale S S et al. Resveratrol Selectively Remodels SolubleOligomers and Fibrils of Amyloid Aβ into Off-Pathway Conformers. Journal ofBiological Chemistry,2010,285(31):24228-24237.
    [195] Wickner R B.[Ure3] as an Altered Ure2Protein: Evidence for a Prion Analog inSaccharomyces Cerevisiae. Science,1994,264(5158):566-569.
    [196] Kenney J M, Knight D, Wise M J et al. Amyloidogenic Nature of Spider Silk.European Journal of Biochemistry,2002,269(16):4159-4163.
    [197] Fowler D M, Koulov A V, Alory-Jost C et al. Functional Amyloid Formation withinMammalian Tissue. PLoS biology,2005,4(1): e6.
    [198] Maji S K, Perrin M H, Sawaya M R et al. Functional Amyloids as Natural Storage ofPeptide Hormones in Pituitary Secretory Granules. Science,2009,325(5938):328-332.
    [199] Maji S K. Amyloid: A Natural Nanomaterial. International Journal of Nanoscience,2011,10(04&05):909-917.
    [200] Mankar S, Anoop A, Sen S et al. Nanomaterials: Amyloids Reflect Their BrighterSide. Nano reviews,2011, doi:10.3402/nano.v2i0.6032.
    [201] Smith J F, Knowles T P, Dobson C M et al. Characterization of the NanoscaleProperties of Individual Amyloid Fibrils. Proceedings of the National Academy ofSciences,2006,103(43):15806-15811.
    [202] Knowles T P, Fitzpatrick A W, Meehan S et al. Role of Intermolecular Forces inDefining Material Properties of Protein Nanofibrils. Science,2007,318(5858):1900-1903.
    [203] Sweers K, Bennink M, Subramaniam V. Nanomechanical Properties of SingleAmyloid Fibrils. Journal of Physics: Condensed Matter,2012,24(24):243101-243112.
    [204] Knowles T P, Buehler M J. Nanomechanics of Functional and Pathological AmyloidMaterials. Nature nanotechnology,2011,6(8):469-479.
    [205] Reches M, Gazit E. Casting Metal Nanowires within Discrete Self-AssembledPeptide Nanotubes. Science,2003,300(5619):625-627.
    [206] Gazit E. Self Assembly of Short Aromatic Peptides into Amyloid Fibrils and RelatedNanostructures. Prion,2007,1(1):32-35.
    [207] Zhang L, Li N, Gao F et al. Insulin Amyloid Fibrils: An Excellent Platform forControlled Synthesis of Ultrathin Superlong Platinum Nanowires with HighElectrocatalytic Activity. Journal of the American Chemical Society,2012,134(28):11326-11329.
    [208] Scheibel T, Parthasarathy R, Sawicki G et al. Conducting Nanowires Built byControlled Self-Assembly of Amyloid Fibers and Selective Metal Deposition.Proceedings of the National Academy of Sciences,2003,100(8):4527-4532.
    [209] Hamedi M, Herland A, Karlsson R H et al. Electrochemical Devices Made fromConducting Nanowire Networks Self-Assembled from Amyloid Fibrils andAlkoxysulfonate Pedot. Nano letters,2008,8(6):1736-1740.
    [210] Holmes T C. Novel Peptide-Based Biomaterial Scaffolds for Tissue Engineering.TRENDS in Biotechnology,2002,20(1):16-21.
    [211] Hauser C A, Zhang S. Designer Self-Assembling Peptide Nanofiber BiologicalMaterials. Chemical Society Reviews,2010,39(8):2780-2790.
    [212] Gras S L, Tickler A K, Squires A M et al. Functionalised Amyloid Fibrils for Roles inCell Adhesion. Biomaterials,2008,29(11):1553-1562.
    [213] Glimcher M J, Levine P T, Bonar L C. Morphological and BiochemicalConsiderations in Structural Studies of the Organic Matrix of Enamel. Journal ofultrastructure research,1965,13(3):281-295.
    [214] Engler A J, Sen S, Sweeney H L et al. Matrix Elasticity Directs Stem Cell LineageSpecification. Cell,2006,126(4):677-689.
    [215] Orive G, Hernandez R M, Rodríguez Gascón A et al. Drug Delivery in Biotechnology:Present and Future. Current opinion in biotechnology,2003,14(6):659-664.
    [216] Maji S K, Schubert D, Rivier C et al. Amyloid as a Depot for the Formulation ofLong-Acting Drugs. PLoS biology,2008,6(2): e17.
    [217] Gupta S, Chattopadhyay T, Singh M P et al. Supramolecular Insulin Assembly Ii for aSustained Treatment of Type1Diabetes Mellitus. Proceedings of the NationalAcademy of Sciences,2010,107(30):13246-13251.
    [218] Nagai Y, Unsworth L D, Koutsopoulos S et al. Slow Release of Molecules inSelf-Assembling Peptide Nanofiber Scaffold. Journal of controlled release,2006,115(1):18-25.
    [219] Koutsopoulos S, Unsworth L D, Nagai Y et al. Controlled Release of FunctionalProteins through Designer Self-Assembling Peptide Nanofiber Hydrogel Scaffold.Proceedings of the National Academy of Sciences,2009,106(12):4623-4628.
    [220] Bhak G, Lee S, Park J W et al. Amyloid Hydrogel Derived from Curly Protein Fibrilsof Α-Synuclein. Biomaterials,2010,31(23):5986-5995.
    [221] Ahn M, Kang S, Koo H J et al. Nanoporous Protein Matrix Made of Amyloid Fibrilsof Β2‐Microglobulin. Biotechnology progress,2010,26(6):1759-1764.
    [222] Li C, Adamcik J, Mezzenga R. Biodegradable Nanocomposites of Amyloid Fibrilsand Graphene with Shape-Memory and Enzyme-Sensing Properties. Naturenanotechnology,2012,7(7):421-427.
    [223] Knowles T P, Oppenheim T W, Buell A K et al. Nanostructured Films fromHierarchical Self-Assembly of Amyloidogenic Proteins. Nature nanotechnology,2010,5(3):204-207.
    [224] Garrido J, Borges F. Wine and Grape Polyphenols-a Chemical Perspective. Foodresearch international,2011,44(10):3134-3148.
    [225] Perumalla A, Hettiarachchy N S. Green Tea and Grape Seed Extracts-PotentialApplications in Food Safety and Quality. Food research international,2011,44(4):827-839.
    [226] Scalbert A, Manach C, Morand C et al. Dietary Polyphenols and the Prevention ofDiseases. Critical reviews in food science and nutrition,2005,45(4):287-306.
    [227] Shoval H, Weiner L, Gazit E et al. Polyphenol-Induced Dissociation of VariousAmyloid Fibrils Results in a Methionine-Independent Formation of Ros. BiochimicaEt Biophysica Acta-Proteins and Proteomics,2008,1784(11):1570-1577.
    [228] Gabetta B, Fuzzati N, Griffini A et al. Characterization of Proanthocyanidins fromGrape Seeds. Fitoterapia,2000,71(2):162-175.
    [229] Gu L, Kelm M A, Hammerstone J F et al. Screening of Foods ContainingProanthocyanidins and Their Structural Characterization Using Lc-Ms/Ms andThiolytic Degradation. Journal of Agricultural and Food Chemistry,2003,51(25):7513-7521.
    [230] Hellstr m J K, T rr nen A R, Mattila P H. Proanthocyanidins in Common FoodProducts of Plant Origin. Journal of Agricultural and Food Chemistry,2009,57(17):7899-7906.
    [231] Karonen M, Loponen J, Ossipov V et al. Analysis of Procyanidins in Pine Bark withReversed-Phase and Normal-Phase High-Performance Liquid Chromatography–Electrospray Ionization Mass Spectrometry. Analytica Chimica Acta,2004,522(1):105-112.
    [232] Al-Awwadi N, Azay J, Poucheret P et al. Antidiabetic Activity of Red WinePolyphenolic Extract, Ethanol, or Both in Streptozotocin-Treated Rats. Journal ofAgricultural and Food Chemistry,2004,52(4):1008-1016.
    [233] Aron P M, Kennedy J A. Flavan-3-Ols: Nature, Occurrence and Biological Activity.Molecular nutrition&food research,2008,52(1):79-104.
    [234] Jayaprakasha G, Selvi T, Sakariah K. Antibacterial and Antioxidant Activities ofGrape (Vitis Vinifera) Seed Extracts. Food research international,2003,36(2):117-122.
    [235] Llópiz N, Puiggròs F, Céspedes E et al. Antigenotoxic Effect of Grape SeedProcyanidin Extract in Fao Cells Submitted to Oxidative Stress. Journal ofAgricultural and Food Chemistry,2004,52(5):1083-1087.
    [236] Counet C, Collin S. Effect of the Number of Flavanol Units on the AntioxidantActivity of Procyanidin Fractions Isolated from Chocolate. Journal of Agriculturaland Food Chemistry,2003,51(23):6816-6822.
    [237] Lins R D, Pereira C S, Hünenberger P H. Trehalose–Protein Interaction in AqueousSolution. Proteins: Structure, Function, and Bioinformatics,2004,55(1):177-186.
    [238] Vilasi S, Iannuzzi C, Portaccio M et al. Effect of Trehalose on W7fw14fApomyoglobin and Insulin Fibrillization: New Insight into Inhibition Activity.Biochemistry,2008,47(6):1789-1796.
    [239] Gazit E. A Possible Role for Π-Stacking in the Self-Assembly of Amyloid Fibrils.The FASEB journal,2002,16(1):77-83.
    [240] Makin O S, Atkins E, Sikorski P et al. Molecular Basis for Amyloid Fibril Formationand Stability. Proceedings of the National Academy of Sciences of the United Statesof America,2005,102(2):315-320.
    [241] Gon alves R, Mateus N, De Freitas V. Influence of Carbohydrates on the Interactionof Procyanidin B3with Trypsin. Journal of Agricultural and Food Chemistry,2011,59(21):11794-11802.
    [242] Squier T C. Oxidative Stress and Protein Aggregation During Biological Aging.Experimental gerontology,2001,36(9):1539.
    [243] Hu M, McClements D J, Decker E A. Antioxidant Activity of aProanthocyanidin-Rich Extract from Grape Seed in Whey Protein Isolate StabilizedAlgae Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry,2004,52(16):5272-5276.
    [244] Natella F, Belelli F, Gentili V et al. Grape Seed Proanthocyanidins Prevent PlasmaPostprandial Oxidative Stress in Humans. Journal of Agricultural and FoodChemistry,2002,50(26):7720-7725.
    [245] Sommer A P, Bieschke J, Friedrich R P et al.670Nm Laser Light and EgcgComplementarily Reduce Amyloid-Β Aggregates in Human Neuroblastoma Cells:Basis for Treatment of Alzheimer’s Disease? Photomedicine and laser surgery,2012,30(1):54-60.
    [246] Li M, Yang X, Ren J et al. Using Graphene Oxide High near-Infrared Absorbance forPhotothermal Treatment of Alzheimer’s Disease. Advanced Materials,2012,24(13):1722-1728.
    [247] Granovsky A A. Firefly version7.1.G,http://classic.chem.msu.su/gran/firefly/index.html.
    [248] Schmidt M W, Baldridge K K, Boatz J A et al. General Atomic and MolecularElectronic Structure System. Journal of Computational Chemistry,1993,14(11):1347-1363.
    [249] Bode B M, Gordon M S. Macmolplt: A Graphical User Interface for Gamess. Journalof Molecular Graphics&Modelling,1998,16(3):133-138.
    [250] Van Aalten D, Bywater R, Findlay J et al. Prodrg, a Program for GeneratingMolecular Topologies and Unique Molecular Descriptors from Coordinates of SmallMolecules. Journal of computer-aided molecular design,1996,10(3):255-262.
    [251] Schuttelkopf A W, van Aalten D M. Prodrg: A Tool for High-ThroughputCrystallography of Protein-Ligand Complexes. Acta Crystallographica Section D:Biological Crystallography,2004,60(8):1355-1363.
    [252] Liu R, He M, Su R et al. Insulin Amyloid Fibrillation Studied by TerahertzSpectroscopy and Other Biophysical Methods. Biochemical and BiophysicalResearch Communications,2010,391(1):862-867.
    [253] Khurana R, Coleman C, Ionescu-Zanetti C et al. Mechanism of Thioflavin T Bindingto Amyloid Fibrils. Journal of structural biology,2005,151(3):229-238.
    [254] Krebs M, Bromley E, Donald A. The Binding of Thioflavin-T to Amyloid Fibrils:Localisation and Implications. Journal of structural biology,2005,149(1):30-37.
    [255] Khurana R, Uversky V N, Nielsen L et al. Is Congo Red an Amyloid-Specific Dye?Journal of Biological Chemistry,2001,276(25):22715-22721.
    [256] Puchtler H, Sweat F, Levine M. On the Binding of Congo Red by Amyloid. Journalof Histochemistry&Cytochemistry,1962,10(3):355-364.
    [257] Ge J-F, Qiao J-P, Qi C-C et al. The Binding of Resveratrol to Monomer and FibrilAmyloid Beta. Neurochemistry international,2012.
    [258] Biancalana M, Koide S. Molecular Mechanism of Thioflavin-T Binding to AmyloidFibrils. Biochimica et biophysica acta,2010,1804(7):1405-1412.
    [259] Zhang G, Musgrave C B. Comparison of Dft Methods for Molecular OrbitalEigenvalue Calculations. The Journal of Physical Chemistry A,2007,111(8):1554-1561.
    [260] Liu R, Su R, Yu Y et al. Regeneration of Insulin Monomers from Amyloid Fibrils bya Nh3/H2o2Two-Step Method. Biotechnology letters,2012,34(10):1959-1964.
    [261] Mishra R, Winter R. Cold-and Pressure-Induced Dissociation of Protein Aggregatesand Amyloid Fibrils. Angewandte Chemie International Edition,2008,47(35):6518-6521.
    [262] Foguel D, Suarez M C, Ferr o-Gonzales A D et al. Dissociation of Amyloid Fibrils ofΑ-Synuclein and Transthyretin by Pressure Reveals Their Reversible Nature and theFormation of Water-Excluded Cavities. Proceedings of the National Academy ofSciences,2003,100(17):9831-9836.
    [263] Hoeg-Jensen T, Havelund S, Nielsen P K et al. Reversible Insulin Self-Assemblyunder Carbohydrate Control. Journal of the American Chemical Society,2005,127(17):6158-6159.
    [264] Munch H K, Heide S T, Christensen N J et al. Controlled Self-Assembly ofRe-Engineered Insulin by Feii. Chemistry-A European Journal,2011,17(26):7198-7204.
    [265] Bolli G B, Owens D R. Insulin Glargine. The lancet,2000,356(9228):443-445.
    [266] Panyam J, Labhasetwar V. Biodegradable Nanoparticles for Drug and Gene Deliveryto Cells and Tissue. Advanced drug delivery reviews,2003,55(3):329-347.
    [267] Allen T M, Cullis P R. Drug Delivery Systems: Entering the Mainstream. Science,2004,303(5665):1818-1822.
    [268] Peng Q, Zhang Z-R, Gong T et al. A Rapid-Acting, Long-Acting Insulin FormulationBased on a Phospholipid Complex Loaded Phbhhx Nanoparticles. Biomaterials,2012,33(5):1583-1588.
    [269] Dorkoosh F A, Coos Verhoef J, Ambagts M H et al. Peroral Delivery Systems Basedon Superporous Hydrogel Polymers: Release Characteristics for the Peptide DrugsBuserelin, Octreotide and Insulin. European journal of pharmaceutical sciences,2002,15(5):433-439.
    [270] Pan Y, Li Y-j, Zhao H-y et al. Bioadhesive Polysaccharide in Protein Delivery System:Chitosan Nanoparticles Improve the Intestinal Absorption of Insulin in Vivo.International journal of pharmaceutics,2002,249(1):139-147.
    [271] Xia E-Q, Deng G-F, Guo Y-J et al. Biological Activities of Polyphenols from Grapes.International Journal of Molecular Sciences,2010,11(2):622-646.
    [272] Schroeter H, Heiss C, Balzer J et al.(–)-Epicatechin Mediates Beneficial Effects ofFlavanol-Rich Cocoa on Vascular Function in Humans. Proceedings of the NationalAcademy of Sciences of the United States of America,2006,103(4):1024-1029.
    [273] Mantena S K, Baliga M S, Katiyar S K. Grape Seed Proanthocyanidins InduceApoptosis and Inhibit Metastasis of Highly Metastatic Breast Carcinoma Cells.Carcinogenesis,2006,27(8):1682-1691.
    [274] Fujii H, Yokozawa T, Kim Y A et al. Protective Effect of Grape Seed Polyphenolsagainst High Glucose-Induced Oxidative Stress. Bioscience, biotechnology, andbiochemistry,2006,70(9):2104-2111.
    [275] Gonthier M-P, Donovan J L, Texier O et al. Metabolism of Dietary Procyanidins inRats. Free Radical Biology and Medicine,2003,35(8):837-844.
    [276] Hagerman A E, Rice M E, Ritchard N T. Mechanisms of Protein Precipitation forTwo Tannins, Pentagalloyl Glucose and Epicatechin16(4→8) Catechin (Procyanidin).Journal of Agricultural and Food Chemistry,1998,46(7):2590-2595.
    [277] Zou T, Li Z, Percival S S et al. Fabrication, Characterization, and CytotoxicityEvaluation of Cranberry Procyanidins-Zein Nanoparticles. Food Hydrocolloids,2012,27(2):293-300.
    [278] Shutava T G, Balkundi S S, Vangala P et al. Layer-by-Layer-Coated GelatinNanoparticles as a Vehicle for Delivery of Natural Polyphenols. ACS nano,2009,3(7):1877-1885.
    [279] Zhai W, Chang J, Lin K et al. Crosslinking of Decellularized Porcine Heart ValveMatrix by Procyanidins. Biomaterials,2006,27(19):3684-3690.
    [280] Liu B S. Fabrication and Evaluation of a Biodegradable Proanthocyanidin-Crosslinked Gelatin Conduit in Peripheral Nerve Repair. Journal of BiomedicalMaterials Research Part A,2008,87(4):1092-1102.
    [281] Deprez S, Mila I, Huneau J-F et al. Transport of Proanthocyanidin Dimer, Trimer, andPolymer across Monolayers of Human Intestinal Epithelial Caco-2Cells.Antioxidants and redox signaling,2001,3(6):957-967.
    [282] Sundar S, Kundu J, Kundu S C. Biopolymeric Nanoparticles. Science and Technologyof Advanced Materials,2010,11(1):014104-014115.
    [283] Yamakoshi J, Saito M, Kataoka S et al. Safety Evaluation of Proanthocyanidin-RichExtract from Grape Seeds. Food and Chemical Toxicology,2002,40(5):599-607.
    [284] Waugh D F. A Fibrous Modification of Insulin. I. The Heat Precipitate of Insulin.Journal of the American Chemical Society,1946,68(2):247-250.
    [285] Nielsen L, Khurana R, Coats A et al. Effect of Environmental Factors on the Kineticsof Insulin Fibril Formation: Elucidation of the Molecular Mechanism. Biochemistry,2001,40(20):6036-6046.
    [286] Bouchard M, Zurdo J, Nettleton E J et al. Formation of Insulin Amyloid FibrilsFollowed by Ftir Simultaneously with Cd and Electron Microscopy. Protein Science,2000,9(10):1960-1967.
    [287] Chalasani K B, Russell-Jones G J, Jain A K et al. Effective Oral Delivery of Insulinin Animal Models Using Vitamin B12-Coated Dextran Nanoparticles. Journal ofcontrolled release,2007,122(2):141-150.
    [288] Cui F, Shi K, Zhang L et al. Biodegradable Nanoparticles Loaded with Insulin–Phospholipid Complex for Oral Delivery: Preparation, in Vitro Characterization andin Vivo Evaluation. Journal of controlled release,2006,114(2):242-250.
    [289] Sarmento B, Ribeiro A, Veiga F et al. Alginate/Chitosan Nanoparticles Are Effectivefor Oral Insulin Delivery. Pharmaceutical research,2007,24(12):2198-2206.
    [290] Bhumkar D R, Joshi H M, Sastry M et al. Chitosan Reduced Gold Nanoparticles asNovel Carriers for Transmucosal Delivery of Insulin. Pharmaceutical research,2007,24(8):1415-1426.
    [291] Wu Z M, Zhou L, Guo X D et al. Hp55-Coated Capsule Containing Plga/RsNanoparticles for Oral Delivery of Insulin. International journal of pharmaceutics,2012,425(1):1-8.
    [292] Xiong X Y, Li Y P, Li Z L et al. Vesicles from Pluronic/Poly (Lactic Acid) BlockCopolymers as New Carriers for Oral Insulin Delivery. Journal of controlled release,2007,120(1):11-17.
    [293] Pocker Y, Biswas S B. Conformational Dynamics of Insulin in Solution. CircularDichroic Studies. Biochemistry,1980,19(22):5043-5049.
    [294] Tan S Y, Pepys M B. Amyloidosis. Histopathology,1994,25(5):403-414.
    [295] Selkoe D J. Alzheimer’s Disease: Genes, Proteins, and Therapy. Physiologicalreviews,2001,81(2):741-766.
    [296] Sipe J D, Cohen A S. Review: History of the Amyloid Fibril. Journal of structuralbiology,2000,130(2):88-98.
    [297] Kelly J W, Balch W E. Amyloid as a Natural Product. The Journal of cell biology,2003,161(3):461-462.
    [298] Cherny I, Gazit E. Amyloids: Not Only Pathological Agents but Also OrderedNanomaterials. Angewandte Chemie International Edition,2008,47(22):4062-4069.
    [299] Gras S L. Surface-and Solution-Based Assembly of Amyloid Fibrils for Biomedicaland Nanotechnology Applications. Advances in Chemical Engineering,2009,35:161-209.
    [300] Mezzenga R, Bolisetty S, Harnau L et al. Gelation, Phase Behavior and Dynamics ofBeta-Lactoglobulin Amyloid Fibrils at Varying Concentrations and Ionic Strengths.Bulletin of the American Physical Society,2013.
    [301] Nicolai T, Britten M, Schmitt C. Β-Lactoglobulin and Wpi Aggregates: Formation,Structure and Applications. Food Hydrocolloids,2011,25(8):1945-1962.
    [302] Gunasekaran S, Xiao L, Ould Eleya M. Whey Protein Concentrate Hydrogels asBioactive Carriers. Journal of applied polymer science,2006,99(5):2470-2476.
    [303] Gunasekaran S, Ko S, Xiao L. Use of Whey Proteins for Encapsulation andControlled Delivery Applications. Journal of food engineering,2007,83(1):31-40.
    [304] Liang L, Leung Sok Line V, Remondetto G E et al. In Vitro Release of α-Tocopherolfrom Emulsion-Loaded Β-Lactoglobulin Gels. International Dairy Journal,2010,20(3):176-181.
    [305] Bagheri L, Madadlou A, Yarmand M et al. Nanoencapsulation of Date Palm PitExtract in Whey Protein Particles Generated Via Desolvation Method. Food researchinternational,2013.
    [306] Shpigelman A, Israeli G, Livney Y D. Thermally-Induced Protein–PolyphenolCo-Assemblies: Beta Lactoglobulin-Based Nanocomplexes as ProtectiveNanovehicles for Egcg. Food Hydrocolloids,2010,24(8):735-743.
    [307] Lee D, Choe Y J, Choi Y S et al. Photoconductivity of Pea-Pod-Type Chains of GoldNanoparticles Encapsulated within Dielectric Amyloid Protein Nanofibrils ofα-Synuclein. Angewandte Chemie International Edition,2011,50(6):1332-1337.
    [308] Slot J W, Geuze H J. A New Method of Preparing Gold Probes for Multiple-LabelingCytochemistry. European journal of cell biology,1985,38(1):87-93.
    [309] Smirnoff N, Cumbes Q J. Hydroxyl Radical Scavenging Activity of CompatibleSolutes. Phytochemistry,1989,28(4):1057-1060.
    [310] Demers L M, Mirkin C A, Mucic R C et al. A Fluorescence-Based Method forDetermining the Surface Coverage and Hybridization Efficiency of Thiol-CappedOligonucleotides Bound to Gold Thin Films and Nanoparticles. Analytical Chemistry,2000,72(22):5535-5541.
    [311] KoVá oVá R, SynytSyA A, tětInA J. Characterisation of Whey Proteins–PectinInteraction in Relation to Emulsifying Properties of Whey Proteins. Czech Journal ofFood Science,2009,27: S4-S8.
    [312] Bellino M G, Calvo E J, Gordillo G. Adsorption Kinetics of Charged Thiols on GoldNanoparticles. Physical Chemistry Chemical Physics,2004,6(2):424-428.
    [313] Lakowicz J R. Principles of Fluorescence Spectroscopy,3rd Ed. New York: SpringerPublications,2006,282-303.
    [314] Stojadinovic M, Radosavljevic J, Ognjenovic J et al. Binding Affinity betweenDietary Polyphenols and β-Lactoglobulin Negatively Correlates with the ProteinSusceptibility to Digestion and Total Antioxidant Activity of Complexes Formed.Food Chemistry,2013,136(3–4):1263-1271.
    [315] Bolisetty S, Adamcik J, Mezzenga R. Snapshots of Fibrillation and AggregationKinetics in Multistranded Amyloid Β-Lactoglobulin Fibrils. Soft Matter,2011,7(2):493-499.
    [316] Shukla R, Chanda N, Zambre A et al. Laminin Receptor Specific Therapeutic GoldNanoparticles (198aunp-Egcg) Show Efficacy in Treating Prostate Cancer.Proceedings of the National Academy of Sciences,2012,109(31):12426-12431.
    [317] Li B, Du W, Jin J et al. Preservation of ()-Epigallocatechin-3-Gallate AntioxidantProperties Loaded in Heat Treated Β-Lactoglobulin Nanoparticles. Journal ofAgricultural and Food Chemistry,2012,60(13):3477-3484.
    [318] Malisauskas M, Meskys R, Morozova-Roche L A. Ultrathin Silver NanowiresProduced by Amyloid Biotemplating. Biotechnology progress,2008,24(5):1166-1170.
    [319] Bolisetty S, Vallooran J J, Adamcik J et al. Amyloid-Mediated Synthesis of Giant,Fluorescent, Gold Single Crystals and Their Hybrid Sandwiched Composites Drivenby Liquid Crystalline Interactions. Journal of colloid and interface science,2011,361(1):90-96.
    [320] Uetz P, Giot L, Cagney G et al. A Comprehensive Analysis of Protein–ProteinInteractions in Saccharomyces Cerevisiae. Nature,2000,403(6770):623-627.
    [321] Han T H, Lee W J, Lee D H et al. Peptide/Graphene Hybrid Assembly intoCore/Shell Nanowires. Advanced Materials,2010,22(18):2060-2064.
    [322] Adamcik J, Jung J-M, Flakowski J et al. Understanding Amyloid Aggregation byStatistical Analysis of Atomic Force Microscopy Images. Nature nanotechnology,2010,5(6):423-428.
    [323] Stankovich S, Dikin D A, Piner R D et al. Synthesis of Graphene-Based NanosheetsVia Chemical Reduction of Exfoliated Graphite Oxide. Carbon,2007,45(7):1558-1565.
    [324] Cote L J, Kim J, Tung V C et al. Graphene Oxide as Surfactant Sheets. Pure andApplied Chemistry,2010,83(1):95-110.
    [325] Li S, Aphale A N, Macwan I G et al. Graphene Oxide as a Quencher for FluorescentAssay of Amino Acids, Peptides, and Proteins. ACS applied materials&interfaces,2012,4(12):7069-7075.
    [326] Sun X, Liu Z, Welsher K et al. Nano-Graphene Oxide for Cellular Imaging and DrugDelivery. Nano research,2008,1(3):203-212.
    [327] Wilson N R, Pandey P A, Beanland R et al. Graphene Oxide: Structural Analysis andApplication as a Highly Transparent Support for Electron Microscopy. ACS nano,2009,3(9):2547-2556.
    [328] Park S, An J, Piner R D et al. Aqueous Suspension and Characterization ofChemically Modified Graphene Sheets. Chemistry of Materials,2008,20(21):6592-6594.
    [329] Phan-Xuan M-T. Elaboration of Microgel Protein Particles by ControlledSelfassembling of Heat‐Denatured Beta‐Lactoglobulin. Thesis, Université DuMaine,2012.
    [330] Xu B, Yue S, Sui Z et al. What Is the Choice for Supercapacitors: Graphene orGraphene Oxide? Energy&Environmental Science,2011,4(8):2826-2830.
    [331] Ruiz O N, Fernando K S, Wang B et al. Graphene Oxide: A Nonspecific Enhancer ofCellular Growth. ACS nano,2011,5(10):8100-8107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700