用户名: 密码: 验证码:
电化学法再生酸性氯化铜蚀刻液与铜回收的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
印刷电路板(PCB)是所有电子产品中重要的组成部分。2006年中国PCB产销量已经超过美国,欧洲及日本,成为世界第一生产大国,到2012年我国总产能已达2亿平方米。在PCB板的生产过程中产生的高含铜蚀刻废液(主要成分为氯化铜)数量巨大。据统计,我国的PCB生产厂家日平均产生废蚀刻液的总量在6000吨以上。如能妥善回收,每年可回收铜约20万吨,除减轻环境压力外可产生100亿人民币以上的效益。为了实现铜回收与蚀刻液循环再生利用,降低新鲜蚀刻液和其它化学添加剂的需求量,从而避免大量的高危险废弃物运输和异地回收,科研人员开发出多种电化学原位再生方法。但现有的电化学法由于经济和技术原因,未得到广泛应用。
     为实现安全、清洁、经济的PCB生产,本文提出并研究了一种新的蚀刻液再生与铜回收的电化学方法。采用碳毡作为多孔三维电极用于氧化Cu(I),从而避免了氯气和氧气的析出。碳毡因具有更大的表面积而表现出更大的极限电流密度,并且与铂电极相比,碳毡电极对析O2反应有一定的抑制作用(析氧电位高于铂电极)。使用碳毡电极电解再生蚀刻液,阳极过电位较低,可有效的避免气体析出,从而不需要添加有害气体处理装置。
     依照上述提及的结构将电解池容积和电极面积同时放大11倍,并通过计算流体力学模拟结果改进了电解池流场分布器。电解实验结果与小型电解池相比,除槽电压由于集流体电阻的增加略有升高外,其它性能参数基本吻合。
     为了控制阳极性能的衰减,对老化电极进行了再生实验。将累积老化100小时碳毡作为阴极,在电位为-3.2V时电解NaOH溶液,除去其表面的含氧、含氯基团(电解过程中生成)。结果显示该再生方法可恢复老化过程所降低电流密度的一半。
     采用热处理和浸渍载铱法修饰电极。经400℃热处理后碳毡性能并未提高,但铱修饰法显著提高了碳毡电极对期望电化学反应(一价铜离子氧化)的活性。电解实验结果显示,采用铱修饰碳毡电极可使槽电压和阳极电位均降低约0.1V。
     使用扫描电子显微镜(SEM)、X射线光电子能谱(XPS)和X射线衍射仪(XRD)研究铱修饰碳毡电极的稳定性。结果表明铱的流失主要发生在老化的前25小时内。老化25小时和75小时铱修饰碳毡电极上铱的总载量相同,但因为老化75小时铱修饰电极载铱中金属铱所占比例较高,所以对一价铜离子氧化有更好的电化学活性。
Printed circuit board (PCB) is an important component in almost any electronicproducts. In2006, China PCB production and sales had surpassed the United States,Europe and Japan, becoming the largest producer in the world. The total annualcapacity of PCB production in China reached about200,000,000m2. As a result, alarge amount of high copper-containing spent etchant was generated. According to-statistics,6,000tons or more spent etchant are generated every day in China's PCBfactories. If they can be properly recycled, about200,000tons of copper would havebeen recovered each year, alleviating environmental pollution and gaining a benefit ofmore than10billion Yuan RMB. Different on-site electrolytic regeneration methodshave been researched and developed, in order to achieve metal recovery and etchantrecycling simultaneously so as to substantially reduce the amount of required freshetchant and other chemicals, while eliminating bulk hazardous waste shipped off-sitefor reclamation. However, electrolytic etchant regeneration has not been widelyadopted so far for technological and/or economical reasons.
     To realize safer, cleaner and yet economically competitive PCB production, anovel electrolytic process for simultaneous cupric chloride etchant regeneration andcopper recovery is proposed and investigated in this dissertation. A three dimensionalanode made of carbon felt is used to oxidize cuprous ions while avoiding oxygen andchlorine evolution. The limiting current of Cu(I) oxidation on carbon felt electrode ismuch higher than that on platinum electrode because of the large real surface area ofcarbon felt. The carbon felt electrode also inhibits gas evolution, as indicated by anobviously higher onset potential of gas evolution reaction in contrast to Pt electrode.The proposed electrolytic regeneration method enables effective Cu(I) oxidation atlow enough over potential that noticeable gas evolution can be avoided, thuseliminating the need of complex safety measures to deal with hazardous chlorine.
     Following the success of above mentioned preliminary feasibility verification,electrolytic cell scale-up has been carried out. Computational fluid dynamicssimulation is employed to study the flow patterns in the electrolytic cell and to aid thedesign of fluid distributor. A new cell as11times the volume and electrode area as theinitial small cell has been build and tested. The performance of the new cell is almost as well as the small cell, with only a little higher cell voltage caused by increasedcontact resistance.
     Restoration of worn carbon felt anode have also been carried out for the firsttime, in order to curb the deterioration of anode performance. The carbon feltaccumulatively worn for100h is restored under a cathodic potential of-3.2V inNaOH electrolyte to reduce the oxygen and chloride containing species formed on thefelt surface during etchant regeneration. Fortunately, roughly half of the decrease incurrent density can be regained through the simple restoration procedure.
     Efforts have also been made to further improve the performance of carbon felt,by thermal or Iridium modifications. While a heat treatment of the carbon felt at400C makes little difference as compared with the pristine carbon felt, Irmodification of the carbon felt significantly increases the limiting current density ofCu(I) oxidation and results in even lower cell voltage at the same Cu(I) concentration.The stability of Ir modified carbon felt is studied by using scanning electronicmicroscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-raydiffractometry (XRD). The results indicate that the loss of iridium from carbon felt ismainly during the first25hours of electrolysis process. The composition of Ir speciesremains almost invariant from the first25hours to75hours of Cu(I) oxidation.Interestingly, the75hours worn Ir modified carbon felt shows even betterelectrochemical performance, due to deepened Ir oxidation.
引文
[1] Adaikkalam, P.; Srinivasan, G.; Venkateswaran, K., The electrochemical recycling of printed-wiring-board etchants. JOM Journal of the Minerals, Metals and Materials Society,2002,54(6):48-50.
    [2]梁志立,中国印制板行业的设备仪器.印制电路信息,2009,(8):8-11.
    [3]王红华;蒋玉思,酸性氯化铜液蚀刻化学及蚀刻液再生方法评述.印制电路信息,2008,(10):57-60.
    [4]郑淑玉,朱龙,汤清泉,从印制电路板蚀刻废液中回收氢氧化铜.环境保护科学,1996,(2):22-23.
    [5]夏青,电子线路设计——PCB设计的一般原则.大家,2011,(12):193-196.
    [6] Scheel, W.,印刷电路板(PCB)在未来十年的发展,2007年中国国际表面贴装和微组装技术大会,2007.
    [7] Holzmann, M., TPCA REPORT-Taiwan Primed for PCB Leadership-After alternating between the US and Japan, the printed circuit boardtechnology arc is turning not toward China but rather its much smaller neighbor. Printed Circuit Design and Fab-Circuits Assembly,2012.29(12):23-26.
    [8] Chen, S. C., A Case Study of Cross-Strait Syndicated Financing Strategies,[D],台湾科技大学,2012.
    [9] Mei, H. S., Market and Capacity Allocation from the Perspectiveof Global Logistics–A Case Study of FCCL Material Supplier,[D],台湾科技大学,2012.
    [10] Raghunath, C.; Raghunath, U.; Yeshaswini, H., et al., Development of new laminates for high performance interconnection technology inavionics applications. Circuit World,2013,39(1):22-30.
    [11] Shahzad, F.; Akbar, M.; Khan, S., et al., TStructDroid: RealtimeMalware Detection using In-execution Dynamic Analysis of Kernel Process Control Blocks on Android.2013.
    [12] Silverbrook, K.; Lapstun, P.; Walmsley, S. R., Method of enabling association of object with surface. In ed.; US Patent20,130,100,297:2013.
    [13] Ko, S. H.; Lin, W. K.; Wang, R. T., A conceptual performancemeasurement framework building and applying for PCB industrry in Taiwan, Business and Information,2012,(7):101-116.
    [14]杨慧,稳健成长科标净化发力PCB行业.印制电路资讯,2013,(1):80-81.
    [15]蓝亦阳,2012:影响PCB行业的十件大事儿.印制电路资讯,2013,(1):18-22.
    [16] Wang, F.; Kuehr, R.; Ahlquist, D., E-waste in China report. http://www.ihdp.unu.edu/zzyzx3/file/get/11082.pdf
    [17]胡耀红;赵国鹏;谢素玲, et al.,印刷线路板含铜废蚀刻液的回用处理(一).电镀与涂饰,2009,(10):32-35.
    [18] Ren, G.; Wang, Z.; Yu, Z., Primary investigation on contamination pattern of legacy and emerging halogenated organic pollutions in freshwater fish from Liaohe River, Northeast China. Environmental Pollution,2013,172:94-99.
    [19] Gao, S.; Chen, J.; Shen, Z.; Wang, Y.; Ma, S.; Wu, M.; Sheng,G.; Fu, J., Seasonal and spatial distributions and possible sources of polychlorinated biphenyls in surface sediments of Yangtze Estuary, China.Chemosphere,2013.
    [20] Kazmer, D. and C. Roser. Analysis of design for global manufacturing guidelines, DETC2007: Proceedings of the ASME international design engineering technologies conference and computers and informationin engineering conference2007.2007:901-911.
    [21]胡耀红;赵国鹏;谢素玲, et al.,印刷线路板含铜废蚀刻液的回用处理(二).电镀与涂饰,2009,(11):36-40.
    [22] Buyukbay, B.; Ciliz, N.; Goren, G. E., Mammadov, A., Cleanerproduction application as a sustainable production strategy, in a TurkishPrinted Circuit Board Plant. Resources Conservation and Recycling,2010,54(10):744-751.
    [23] Carmon, T.F., O.Z. Maimon, E.M. Dar El, Group set-up for printed circuit board assembly, The International Journal of Production Research,1989.27(10):1795-1810.
    [24] Crepeau, P.C., Multilayer printed circuit board, US. patent,4,249,302,1981.
    [25] Johnston, P., Printed Circuit Board Design Guidelines for Ball Grid Array Packages. Journal of Surface Mount Technology,1996,9:12-18.
    [26] Sawhney, R.; Piper, C., Value creation through enriched marketing–operations interfaces: an empirical study in the printed circuit boardindustry. Journal of Operations Management,2002,20(3):259-272.
    [27][27] Hoebener, K.G., E.M. Hubacher, J.P., Partridge, Fine pitchsolder deposits on printed circuit board process and product, US. patent,5,492,266,1996.
    [28] Suarez, F. F.; Cusumano, M. A.; Fine, C. H., An empirical studyof manufacturing flexibility in printed circuit board assembly. Operations research,1996,44(1):223-240.
    [29] Crama, Y.; van de Klundert, J.; Spieksma, F. C., Production planning problems in printed circuit board assembly. Discrete applied mathematics,2002,123(1):339-361.
    [30] Lake, H., P.E. Grandmont, Multilayer circuit board fabrication process, US. patent,4,915,983,1990.
    [31] Maimon, O.; Shtub, A., Grouping methods for printed circuit board assembly. The International Journal of Production Research,1991,29(7):1379-1390.
    [32] Oh, H. S.; Shin, Y. H.; Cho, J.W., Lim, S., Method of manufacturing printed circuit board. In ed.; US Patent8,399,801,2013.
    [33] Chong, K. H.; Crockett Jr, C. H.; Partridge, J. P., Sanghavi, Bhavyen S, Fine pitch solder formation on printed circuit board process and product. US patent,5,493,075,1996.
    [34] Wolf, G.-D.; Jonas, F.; Schomacker, R., Process for through-holeplating of two-layer printed circuit boards and multilayers. US patent,5,575,898,1996.
    [35] Then, G.; Spiller, G., Multiple-contact connector for a printed circuit board. US Patent,4,136,917,1979.
    [36] Shinada, E.; Arike, S.; Suzuki, T., et al., Multiple wire printed circuit board and process for making the same. US Patent,6,042,685,2000.
    [37] Tien, F.C.; Yeh, C.H.; Hsieh, K.H., Automated visual inspectionfor microdrills in printed circuit board production. International Journalof Production Research,2004,42(12):2477-2495.
    [38] Ping, Z.; ZeYun, F.; Jie, L., et al., Enhancement of leaching copper by electro-oxidation from metal powders of waste printed circuit board. Journal of Hazardous Materials,2009,166(2):746-750.
    [39] Eggers, E. A.; Summa, W. J., Continuous process for the manufacture of printed circuit boards. US Patent,4,659,425,1987.
    [40] Schmitz, A.; Wagner, S.; Hahn, R., et al., Stability of planar PEMFC in Printed Circuit Board technology. Journal of Power Sources,2004,127(1):197-205.
    [41] Coombs, C. F.; Coombs, C. F., Printed circuits handbook. McGraw-Hill New York:2008.
    [42] Schmidt, W.; Martinelli, M., Process for the production of printedcircuit boards with extremely dense wiring using a metal-clad laminate. US Patent5,436,062,1995.
    [43] Vanfleteren, J.; Gonzalez, M.; Bossuyt, F., et al., Printed circuitboard technology inspired stretchable circuits. MRS bulletin,2012,37(3):254-260.
    [44] Ejiri, M.; Uno, T.; Mese, M., et al., A process for detecting defects in complicated patterns. Computer Graphics and Image Processing,1973,2(3):326-339.
    [45] Adolf, D.; Spangler, S.; Austin, K., Neidigk, Matthew; Neilsen,Mike Chambers, Robert, Packaging strategies for printed circuit board components volume i materials and thermal stresses, SANDIA REPORTUnlimited Release, SAND4751,2011:1-114.
    [46]彭丽芬;张小春;陈桧华,酸性蚀刻剂的开发与应用.广东化工,2004,31(4):42-43.
    [47] akIr, O.; Temel, H.; Kiyak, M., Chemical etching of Cu-ETP copper. Journal of Materials Processing Technology,2005,162-163:275-279.
    [48] Li, C. P.; Ciccolo, P.; Yee, D. K., DOW ELECTRONIC MATERIALS. http://www.rohmhaas.com/electronicmaterials/interconnect_technical_site/attachments/101910_IEEE_Sweller.pdf
    [49] Li, C. P.; Ciccolo, P.; Yee, D. K., Inner-layer copper reliability of electroless copper processes. Circuit World,2010,36(1):31-37.
    [50] Xia, Y.; Zhao, X.-M.; Kim, E.; Whitesides, George M, A selective etching solution for use with patterned self-assembled monolayers ofalkanethiolates on gold. Chemistry of Materials,1995,7(12):2332-2337.
    [51] Lee, M. H., Process for etching copper with ammoniacal etchantsolution and reconditioning the used etchant solution. US Patent4,915,776,1990.
    [52] Cordani, J. L.; Letize, R. A., Copper etchant compositions. US Patent4,784,785,1988.
    [53]郭仁东;吴昊;张晓颖,高浓度含铜废水处理方法的研究.当代化工,2004,33(5):280-281.
    [54] Sun, X.; Huang, X.; Liao, X.-p., Shi, B., Adsorptive removal ofCu(II) from aqueous solutions using collagen-tannin resin. Journal of Hazardous Materials,2011,186(2):1058-1063.
    [55] Lam, C. W.; Lim, S.-R.; Schoenung, J. M., Environmental and risk screening for prioritizing pollution prevention opportunities in the U.S. printed wiring board manufacturing industry. Journal of HazardousMaterials,2011,189(1):315-322.
    [56] Xiu, F.-R.; Zhang, F.-S., Recovery of copper and lead from waste printed circuit boards by supercritical water oxidation combined withelectrokinetic process. Journal of Hazardous Materials,2009,165(1):1002-1007.
    [57] Huang, Z.; Xie, F.; Ma, Y., Ultrasonic recovery of copper and iron through the simultaneous utilization of Printed Circuit Boards (PCB)spent acid etching solution and PCB waste sludge. Journal of Hazardous Materials,2011,185(1):155-161.
    [58] Dutra, A. J. B.; Rocha, G. P.; Pombo, F. R., Copper recovery and cyanide oxidation by electrowinning from a spent copper-cyanide electroplating electrolyte. Journal of Hazardous Materials,2008,152(2):648-655.
    [59] Cui, J.; Zhang, L., Metallurgical recovery of metals from electronic waste: A review. Journal of Hazardous Materials,2008,158(2):228-256.
    [60] Veit, H. M.; Bernardes, A. M.; Ferreira, J. Z.; Tenorio, J. A. S..Malfatti, C. D., Recovery of copper from printed circuit boards scrapsby mechanical processing and electrometallurgy. Journal of HazardousMaterials,2006,137(3):1704-1709.
    [61] Choi, J.; Kim, D., Production of ultrahigh purity copper using waste copper nitrate solution. Journal of Hazardous Materials,2003,99(2):147-158.
    [62] Cakir, O., Copper etching with cupric chloride and regeneration of waste etchant. Journal of Materials Processing Technology,2006,175(1-3):63-68.
    [63] Wieszczycka, K.; Kaczerewska, M.; Krupa, M.; Parus, Anna;lszanowski, Andrzej, Solvent extraction of copper(II) from ammonium chloride and hydrochloric acid solutions with hydrophobic pyridineketoximes.Separation and Purification Technology,2012,95:157-164.
    [64] Hu, H. P.; Liu, C. X.; Han, X. T.; Liang, Q. W.; Chen, Q. Y.,Solvent extraction of copper and ammonia from ammoniacal solutionsusing sterically hindered beta-diketone. Transactions of Nonferrous Metals Society of China,2010,20(10):2026-2031.
    [65] Ali, S.; Khan, M. M.; Khan, M. A.; Tufail, M., Sadaf,, Econometrics Models for Copper Recovery: A Case Study of North Waziristan-Copper Deposits. Journal of the Chemical Society of Pakistan,2010,32(5):626-629.
    [66] Sengupta, B.; Bhakhar, M. S.; Sengupta, R., Extraction of copperfrom ammoniacal solutions into emulsion liquid membranes using LIX84I (R). Hydrometallurgy,2007,89(3):311-318.
    [67] Yang, Q.; Kocherginsky, N. M., Copper recovery and spent ammoniacal etchant regeneration based on hollow fiber supported liquid membrane technology: From bench-scale to pilot-scale tests. Journal of Membrane Science,2006,286(1):301-309.
    [68] Hung, Y. P.; Mohamed, N.; Darus, H., Recovery of Copper fromStrong Chloride-based Solution. Journal of Applied Sciences,2005,5(8):1328-1333.
    [69] Allies, V. R.; Lloyd, M. F.; Mccarron, J. M., Process and apparatus for converting spent etchants. US Patent5,560,838,1996.
    [70] Ku, Y.; Chen, C. H., Removal of chelated copper from wastewaters by iron cementation. Industrial&Engineering Chemistry Research,1992,31(4):1111-1115.
    [71]巨佳;王吉坤,废蚀刻液研究现状与展望.云南化工,2009,(6):40-42.
    [72]赵时红;王远明,反应-蒸馏法从废蚀刻液中生产硫酸铜工艺研究,中国上海,2009;中国上海,2009.
    [73]慕光杉;蒋毅民,含铜蚀刻废液的综合利用—硫酸铜生产工艺研究.广西大学学报:自然科学版,1997,22(3):222-224.
    [74]李国斌;杨明平,从含铜蚀刻废液中回收硫酸铜.无机盐工业,2005,(2):41-43.
    [75]李海英;谢逢春,采用酸浸—氨浸工艺处理线路板污泥.环境污染与防治,2009,31(1):94-96.
    [76]杨葵华;杜利成,从刻蚀电路板废液中制取硫酸铜的工艺研究.绵阳师范学院学报,2007,5(1):14-20.
    [77]李英华;李海波;王书文,酸性蚀刻废液处理的试验研究.安全与环境学报,2008,8(6):27-29.
    [78]肖亚娟;吕锡武;李金荣;马素梅,电渗析处理印刷线路板废水的研究.工业用水与废水,2010,41(006):38-40.
    [79]高建程;舒生辉,王水平电镀行业中含铜废水的处理与回收工艺探讨.广西轻工业,2011,(5):38-43.
    [80]陈曙生;周德红,空气湿法氧化法生产硫酸铜工艺.江西冶金,1999,19(4):29-31.
    [81]江丽, CuCl_2蚀刻液制备CuCl的研究.环境污染与防治,2000,04):10-11.
    [82] Kyuchoukov, G.; Bogacki, M. B.; Szymanowski, J., Copper extraction from ammoniacal solutions with LIX84and LIX54. Industrial&Engineering Chemistry Research,1998,37(10):4084-4089.
    [83]李建华;吴东辉,由CuCl_2蚀刻液制取CuCl.南通工学院学报(自然科学版),2002,(3):17-18.
    [84]王万春,一种酸性废蚀刻液的循环再生装置.中国专利,201020301181.9,2011.
    [85]曾国光,酸性氯化铜蚀刻液中铜的回收研究,电镀与环保,1993(06):17-19
    [86]柯传祥;邬星伊;余显俊,基于碱性蚀刻液回收处理中对萃取液选择的研究.科技信息,2010,(25):480-518.
    [87]黄平,酸性蚀刻液铜回收及废液再生新技术.印制电路信息,2010,(S1):164-167.
    [88] Srinivasan, G. N.; Adaikkalam, P.; Venkateswaran, K. V.; Kader,Jama, Electrolytic recovery of copper and regeneration of cupric chloride etchant. Transactions of the Indian Institute of Metals,1998,51(5):379-382.
    [89] Oxley, J. E., Electrolytic regeneration of acid cupric chloride etchant. In ed.; US Patent5,421,966,1995.
    [90] Issabayeva, G.; Aroua, M. K.; Sulaiman, N. M., Electrodepositionof copper and lead on palm shell activated carbon in a flow-throughelectrolytic cell. Desalination,2006,194(1):192-201.
    [91] Keskitalo, T.; Tanskanen, J.; Kuokkanen, T., Analysis of key patents of the regeneration of acidic cupric chloride etchant waste and tinstripping waste. Resources, Conservation and Recycling,2007,49(3):217-243.
    [92] Veit, H. M.; Bernardes, A. M.; Ferreira, J. Z.; Tenorio, J. A. S.;Malfatti, C. D., Recovery of copper from printed circuit boards scrapsby mechanical processing and electrometallurgy. Journal of HazardousMaterials,2006,137(3):1704-1709.
    [93] Katagiri, A.; Inoue, H.; Ogure, N., Cathodic polarization of copper electrode in CuCN–KCN solutions and the current distribution for copper deposition on grooved substrates. Journal of Applied Electrochemistry,1997,27(5):529-538.
    [94] R, O.; R, R., Method and apparatus fo rregeneration of a copper-containing etching solution.[P].US4,508,599,1985.
    [95] JE, O.; RJ, S.; RA, P., Apparatus and a process for regeneratinga CuCl2etchant. US624,825,1998.
    [96]曾振欧;李哲;杨华;赵国鹏,铱–钽氧化物涂层阳极氧化再生酸性蚀刻液.电镀与涂饰,2010,29(11):29-32.
    [97] Oishi, T.; Yaguchi, M.; Koyama, K.; Tanaka, M.; Lee, J. C., Hydrometallurgical process for the recycling of copper using anodic oxidation of cuprous ammine complexes and flow-through electrolysis. Electrochimica Acta,2008,53(5):2585-2592.
    [98] R, H. M., Method for the electrolytic regeneration ofetchants formetals. US4,468,305,1984.
    [99] JIANG, Y., Membrane electrolytic regeneration of spent acidic etchant for printed circuit board, Environmental Pollution&Control,2011(2):08-12.
    [100] Tri-Star Technologies Company, Inc. Cupric Chloride Etch Regeneration,1997. http://www.turi.org/content/download/5761/61263/file/Techreport%2045.pdf
    [101] http://www.szjech.net/cn/products/products_details.asp?id=20.
    [102] http://www.nittetsukou.co.jp/rdd-e/products/prd_recyclingsystem.html.
    [103] http://www.cemco.com/regen.htm.
    [104] Chen, Y. Y.; Zhang, T.; Wang, X.; Shao, Y. Q.; Tang, D., Phase Structure and Microstructure of a Nanoscale TiO(2)-RuO(2)-IrO(2)-Ta(2)O(5) Anode Coating on Titanium. Journal of the American Ceramic Society,2008,91(12):4154-4157.
    [105]曾振欧;李哲;杨华,赵国鹏, CuCl2–HCl酸性蚀刻液的ORP测量及其应用.电镀与涂饰,2010(2):14-18.
    [106]王耀;尹平河;梁芳慧;赵玲;刘薇,紫外可见分光光度法鉴别掺兑潲水油的花生油.分析试验室,2006,25(3):92-94.
    [107] Sajjad, S., S.A. Leghari, J. Zhang, Copper Impregnated Ionic Liquid Assisted Mesoporous Titania: Visible Light Photocatalyst, RSC Adv.,2013, http://dx.doi.org/10.1039/C3RA23347B
    [108]张亚刚;樊莉;马莉;文彬;吾满江;艾力,用紫外可见分光光度法测定共轭亚油酸的含量,中国科学院研究生院学报,2002,19(4):436-442.
    [109]于艳,黄凤远,改性稻草颗粒对铜离子的吸附研究,材料导报,2013,27(2):12-18.
    [110] Lin, W. C.; Yang, W. D., Synthesis, Characterization and Photocatalytic Activity of Copper (II)-Doped Titanium Dioxide Powders. Advanced Materials Research,2012,391,728-731.
    [111] Sen Gupta, S.; Singh, S.; Datta, J., Temperature effect on the electrode kinetics of ethanol electro-oxidation on Sn modified Pt catalystthrough voltammetry and impedance spectroscopy. Materials Chemistryand Physics,2010,120(2):682-690.
    [112] Lee, C.-Y.; Fleming, B. D.; Zhang, J.; Guo, Si-Xuan; Elton, Darrell M; Bond, Alan M, Systematic evaluation of electrode kinetics andimpact of surface heterogeneity for surface-confined proteins using analysis of harmonic components available in sinusoidal large-amplitude Fourier transformed ac voltammetry. Analytica chimica acta,2009,652(1):205-214.
    [113] Schindler, C., G. Staikov, R. Waser, Electrode kinetics of CuSiO2based resistive switching cells: Overcoming the voltage-time dilemma of electrochemical metallization memories, Applied Physics Letters,2009,94(7):109-112.
    [114] Hamelers, H. V.; Ter Heijne, A.; Stein, N.; Rozendal, René A;Buisman, Cees JN, Butler–Volmer–Monod model for describing bio-anode polarization curves. Bioresource technology,2011,102(1):381-387.
    [115] Cifuentes, L.; Casas, J. M.; Simpson, J., Modelling the effect oftemperature and time on the performance of a copper electrowinningcell based on reactive electrodialysis. Chemical Engineering Science,2008,63(4):1117-1130.
    [116] Cifuentes, L.; Simpson, J., Temperature dependence of the cathodic and anodic kinetics in a copper electrowinning cell based on reactive electrodialysis. Chemical Engineering Science,2005,60(17):4915-4923.
    [117] Asadauskas, S. J.; Grigucevi ien, A.; Leinartas, K.; Bra inskien, Dalia, Application of three-electrode electrolytic cell to evaluate thinfilms of vegetable and mineral oils. Tribology International,2011,44(5):557-564.
    [118] Inagi, S.; Ishiguro, Y.; Shida, N.; Fuchigami, Toshio, Measurements of Potential on and Current through Bipolar Electrode in U-TypeElectrolytic Cell with a Shielding Wall. Journal of the ElectrochemicalSociety,2012,159(11):146-150.
    [119] Chellammal, S.; Raghu, S.; Kalaiselvi, P.; Subramanian, G, Electrolytic recovery of dilute copper from a mixed industrial effluent of high strength COD. Journal of Hazardous Materials,2010,180(1):91-97.
    [120] Oishi, T.; Koyama, K.; Alam, S., et al., Recovery of high purity copper cathode from printed circuit boards using ammoniacal sulfateor chloride solutions. Hydrometallurgy,2007,89(1-2):82-88.
    [121] Chan, T.-C.; Chueh, Y.-L.; Liao, C.-N., Manipulating the Crystallographic Texture of Nanotwinned Cu Films by Electrodeposition. Crystal Growth&Design,2011,11(11):4970-4974.
    [122] Sieben, J. M.; Duarte, M. M.; Mayer, C., Electro‐Oxidation ofMethanol on P t Ru Nanostructured Catalysts Electrodeposited ontoElectroactivated Carbon Fiber Materials. Chemcatchem,2010,2(2):182-189.
    [123] Knox, J. H.; Kaur, B.; Millward, G., Structure and performanceof porous graphitic carbon in liquid chromatography. Journal of Chromatography A,1986,352(3-25.
    [124] Geneste, F.; Cadoret, M.; Moinet, C.; Jezequel, Guy, Cyclic voltammetry and XPS analyses of graphite felt derivatized by non-Kolbe reactions in aqueous media. New journal of chemistry,2002,26(9):1261-1266.
    [125] Hussain, S.; Asghar, H.; Campen, A.; Brown, NW; Roberts, EPL, Breakdown products formed due to oxidation of adsorbed phenol byelectrochemical regeneration of a graphite adsorbent, Electrochimica Acta,2013, http://dx.doi.org/10.1016/j.electacta.2013.03.017.
    [126] You, X..; Chai, L.; Wang, Y.; Su, Y.; Zhao, N.; Shu, Y., Regeneration of activated carbon adsorbed EDTA by electrochemical method.Transactions of Nonferrous Metals Society of China,2013,23(3):855-860.
    [127] Comsol, A., COMSOL multiphysics user’s guide. Version: September,2005.
    [128] Diaz-Viera, M.; Lopez-Falcon, D.; Moctezuma-Berthier, A., In COMSOL implementation of a multiphase fluid flow model in porous media, Proceedings of the COMSOL Conference,2008;2008.
    [129] Lippmann-Pipke, J.; Kulenkampff, J.; Marion, G., et al., Matching4D Porous Media Fluid Flow GeoPET Data with COMSOL Multiphysics Simulation Results.
    [130] Takata, Y.; Taki, M., Flowthrough-type electrolytic cell. US Patent4,576,706,1986.
    [131] Oxley, J. E.; Smialek, R. J.; Putt, R. A., Apparatus and a process for regenerating a CuCl2etchant. US Patent5,705,048,1998.
    [132] Hillis, M. R. Electrolytic regeneration of spent etchant and metalrecovery|using divided cell with transfer of small soln. amt. to cathode compartment. US patent4,468,305,1980.
    [133]崔旭梅;王军;陈孝娥;赵英涛;李云,全钒氧化还原液流电池一体化复合电极的研究.电源技术,2009,33(11):1019-1021.
    [134]袁俊,余晴春,刘逸枫,马亮亮,吴益华,全钒液流电池性能及其电极材料的研究,电化学2006,12(03):271-274.
    [135]刘素琴,郭小义,黄可龙,刘勇刚,李晓刚,钒电池电极材料聚丙烯腈石墨毡的研究,电池,2005,35(3):183-184
    [136] Sun, B.; Skyllas-Kazacos, M., Chemical modification of graphiteelectrode materials for vanadium redox flow battery application—PartII. Acid treatments. Electrochimica Acta,1992,37(13):2459-2465.
    [137] Chang, Y. Z.; Han, G. Y.; Li, M. Y., et al., Graphene-modifiedcarbon fiber mats used to improve the activity and stability of Pt catalyst for methanol electrochemical oxidation. Carbon,2011,49(15):5158-5165.
    [138] Sieben, J. M.; Duarte, M. M. E.; Mayer, C. E., Electro-Oxidation of Methanol on Pt-Ru Nanostructured Catalysts Electrodeposited ontoElectroactivated Carbon Fiber Materials. Chemcatchem,2010,2(2):182-189.
    [139] Ignaszak, A.; Teo, C.; Ye, S.; Gyenge, E., Pt-SnO2-Pd/C electrocatalyst with enhanced activity and durability for the oxygen reductionreaction at low Pt loading: The effect of carbon support type and activation. Journal of Physical Chemistry C,2010,114(39):16488-16504.
    [140] Xue, F. Q.; Zhang, H. T.; Wu, C. X.; Ning, T.; Xu, X., Performance and mechanism of Prussian blue (PB) modified carbon felt electrode. Transactions of Nonferrous Metals Society of China,2009.19:594-599
    [141] Yang, D. Q.; Sacher, E., Platinum nanoparticle interaction withchemically modified highly oriented pyrolytic graphite surfaces. Chemistry of Materials,2006,18(7):1811-1816.
    [142] Wang, W. H.; Wang, X. D., Investigation of Ir-modified carbonfelt as the positive electrode of an all-vanadium redox flow battery. Electrochimica Acta,2007,52(24):6755-6762.
    [143] Nasraoui, R.; Floner, D.; Geneste, F., Improvement in performance of a flow electrochemical sensor by using carbamoyl-arms polyazamacrocycle for the preconcentration of lead ions onto the electrode. Electrochemistry Communications,2010,12(1):98-100.
    [144] Nasraoui, R.; Floner, D.; Geneste, F., Analytical performances ofa flow electrochemical sensor for preconcentration and stripping voltammetry of metal ions. Journal of Electroanalytical Chemistry,2009,629(1):30-34.
    [145] Cristea, C.; Feier, B.; Geneste, F.; Sandulescu, R.; Moinet, C.,New modified porous electrodes for the removal of heavy metal ions from aqueos solutions. Journal of Environmental Protection and Ecology,2009,10(3):633-640.
    [146] Cheng, T. T.; Gyenge, E. L., Novel catalyst-support interaction for direct formic acid fuel cell anodes: Pd electrodeposition on surface-modified graphite felt. Journal of Applied Electrochemistry,2009,39(10):1925-1938.
    [147] Yoo, D.; Shiratori, S. S.; Rubner, M. F., Controlling Bilayer Composition and Surface Wettability of Sequentially Adsorbed Multilayersof Weak Polyelectrolytes. Macromolecules,1998,31(13):4309-4318.
    [148] Wu, T.; Huang, K.; Liu, S.; Zhuang, S.; Fang, D.; Li, S.; Lu,D.; Su, A., Hydrothermal ammoniated treatment of PAN-graphite felt for vanadium redox flow battery. Journal of Solid State Electrochemistry,2012,16(2):579-585.
    [149] Scott, K.; Rimbu, G.; Katuri, K.; Prasad, K.; Head, I., Application of modified carbon anodes in microbial fuel cells. Process Safety and Environmental Protection,2007,85(5):481-488.
    [150] Allen, J. B.; Larry, R. F., Electrochemical methods fundamentalsand applications. Department of Chemistry and Biochemistry University of Texas at Austin, John Wiley&Sons, Inc,2001,226-239.
    [151]刘永辉,电化学测试技术.北京航空学院出版社:1987.
    [152] Peuckert, M., XPS investigation of surface oxidation layers on aplatinum electrode in alkaline solution. Electrochimica Acta,1984,29(10):1315-1320.
    [153] Folkesson, B., ESCA studies on the charge distribution in somedinitrogen complexes of rhenium, iridium, ruthenium, and osmium. Acta Chem. Scand,1973,27(1):287-302.
    [154] Hara, M.; Asami, K.; Hashimoto, K.; Masumoto, T., An X-rayphotoelectron spectroscopic study of electrocatalytic activity of platinumgroup metals for chlorine evolution. Electrochimica Acta,1983,28(8):1073-1081.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700