用户名: 密码: 验证码:
长江口门附近海域悬沙时空变化和输运研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
悬沙是河口(特别是高浊度河口)水体的重要物质组成之一。悬沙的空间分布、时间变化和输运对河口和相邻海域的生态环境和工程具有重要意义。尽管国内外对河口悬沙做过大量研究,但是鉴于径流、潮流、波浪、沿岸流和人类活动多因子和多尺度的复杂影响以及不同河口的自然背景差异,河口(尤其是口门水域)悬沙时空变化规律和输运机制的研究还有待深入。本文以长江口崇明岛向海侧近岸水域9个不同测点(从潮间带至20m水深)上18个测次(非风暴天气条件下)的实测资料为基础,探讨悬沙浓度和粒径的垂向剖面特征和变化规律;揭示悬沙浓度和粒径变化的周期性(潮周期、大小潮和季节性)和趋势性(悬沙浓度对流域来沙减少的响应);通过计算和对比水动力剪切应力及底床沉积物临界侵蚀剪切应力,初步探讨水体和底床泥沙交换的的动力机制;通过单宽输水、输沙量分析,了解泥沙的水平净输运方向和通量。主要的结果和结论有:
     (1)悬沙浓度的垂向变化。402条单一(即瞬时测量)悬沙浓度剖面形态类型多种多样,可分为“L”型、阶梯型、斜上凹型、斜上凸类型、“S”类型、反“S”类型、斜线型、垂向准直线型、“弓”型等9种基本类型,它们只占总剖面数55%,另45%的剖面是过渡类型。但是,402条单一剖面的平均剖面呈现显著非线性向下(自表层向底层)增大的趋势(越向下增长率越大)(R2=0.99)。基于平均悬沙浓度剖面的近底层悬沙浓度和表层悬沙浓度的比率(R近底床/1H)为2.8,与欧洲学者提出的该比值的假定值3相近)。传统的Rouse公式不能很好地拟合本研究区的平均悬沙浓度剖面,但本文在Rouse公式基础上改进的一个新公式与实测剖面之间的相关系数R2达到0.99。
     (2)悬沙粒径的垂向变化。尽管41条单一悬沙粒径剖面变化复杂,但其平均剖面呈显著线性向下变粗趋势(R2=0.99),平均剖面上底层悬沙粒径(7.2μm)是表层悬沙粒径的1.6倍。这表明,悬沙浓度的向下增大趋势中包含粒径向下增大的贡献。
     (3)悬沙浓度变化的周期性和趋势性。潮周期内悬沙浓度变化明显,不同测点和测次的潮周期内变化特点存在一定差异,落急时段出现悬沙浓度极大值,而涨憩时段会出现悬沙浓度极小值,反映潮周期内不同阶段潮动力、径流-潮流相互作用和垂向混合差异的复杂影响。大潮悬沙浓度通常大于小潮悬沙浓度,不同测点和测次的大、小潮悬沙浓度值为0.05~3.10g/l,平均0.36g/l;主要原因是大潮流速明显大于小潮。枯季悬沙浓度一般大于洪季,测点H枯/洪季悬沙浓度比值为1.62,主要原因是洪季径流的稀释作用大于枯季(径流的悬沙浓度明显低于口门研究区悬沙浓度)以及枯季风浪引起的泥沙再悬浮作用大于洪季。目前研究区的悬沙浓度与三十年前相比下降了约25%,反映研究区对流域人类活动引起的长江入海悬沙通量下降有敏感响应。
     (4)泥沙沉降-再悬浮的动力机制。潮流剪切应力(τc)与流-浪联合剪切应力(τcw)之比值均大于0.82,说明在非风暴天气条件下研究区的水动力以流为主。τcw既有大于(底床沉积物的临界侵蚀剪切应力τcr的时间段(约48%),也有小于τcr的时间段(52%),说明研究区底床和水体之间存在频繁的泥沙交换过程。但是,τcw与悬沙浓度之间的统计相关性不显著,说明潮周期内悬沙浓度的时间变化可能主要受平流作用而不是受局地剪切应力引起的泥沙沉降-再悬浮影响。波浪在研究区内沉积动力的贡献率随着测点水深的减小而增大。
     (5)悬沙的输运。从表层至底层减小的流速剖面和向下增大的悬沙浓度剖面导致作为两者乘积的悬沙输运率剖面具有不确定的垂向变化趋势:最大悬沙输运率可出现在表层、底层或中层,以中层较为普遍。各测点和测次的潮周期余流速变化于0.07和0.28m/s之间。近口门测点的水沙净输运方向主要为东向(即向海),反映径流的控制作用。在口门以外40~50km的测点水沙净输运方向受风向的影响较大,有时表现为南向或北向,反映风生流的影响。
Suspended sediment is one of the important material compositions in the water of the estuaries, especially the turbid estuaries. Spatial distribution, temporal variation and transport of suspended sediment play a vital role to the ecology system and engineering in the estuaries and adjacent waters. Numerous researches have been conducted on the suspended sediment. The complexity of multi-factor and multi-scale (e.g. variations of the runoff, current, waves, coastal currents, and human activities) of the estuaries and their natural different characteristics, however, lead to further study of temporal and spatial variations of suspended sediment and transport mechanisms in the estuaries (especially the water column near estuary mouth). Based on data collected from observations of eighteen observation voyages at nine measuring sites (from the intertidal zone to twenty meters depth) located in offshore area in front of Chongming Island, the present study aims to:discuss the variation patterns of vertical profile of suspended sediment concentration and grain size; reveal single tidal cycle, neap-spring cycle, and seasonal periodicity of suspended sediment concentration and grain size, as well as their trends caused by decrease of sediment discharge; discuss the dynamic mechanism of sediment exchange between water column and seabed by comparison between the calculated bottom shear stress and critical bed shear stress for erosion, understand the horizontal net sediment transport flux through the analysis of net water and sediment transport rate per unit width. The main results and conclusion are:
     (1) Vertical variations of suspended sediment concentration. The402individual SSC profiles can be classified as nine basic types:L-shaped, stepwise, slanting concave-up, slanting concave-down, S-shaped, reverse S-shaped, slanting line-shaped, vertical stable, and arc-shaped.55%of the SSC profiles are belonging to the above nine types, while the rest45%are transitional type. The averaged SSC profile, however, shows a nonlinear downward (from the surface to the bottom) increasing trend with greater gradient as the depth (R2=0.99). The ratio between near-bed SSC and water surface SSC was about2.8, which is close to the value of3suggested by Whitehouse et al.(2000). A new approach has been provided to simulate SSC, which is closer to the measured SSC (the correlation coefficient between the simulated and measured SSC exceeds0.99), rather than the classical Rouse equation.
     (2) The vertical variations of suspended sediment grain size. The averaged profile of41single profiles showed a significant linear downward coarsening (R2=0.996), although each profile showed some different patterns. The averaged bottom suspended sediment grain size,7.2μm, was1.6times as the surface suspended sediment grain size. This suggests that the downward increasing of suspended sediment concentration contained contribution in the particle size downward Increases.
     (3) The periodicity and tendency of the SSC changes. The SSC changes significantly within the tidal cycle, although some differences exist in the tidal cycle of different sites and observation time. The maximum SSC appears in the peak ebb phase, and the minimum value appears at slack flood tide, indicating that the effects of tidal current, runoff-current interactions, and vertical mixing in different tidal stages. The SSC in the present study varies from0.05to2.80g/1, with an average value of0.36g/1. SSC of spring tides is usually greater than that of neap tide, probably because the current velocity of spring tide is significantly greater than the neap tide. The SSC of dry season was bigger than that of flood season (i.e., the ratio of dry season SSC and flood season SSC was1.62at site H). That's mainly due to the dilution of the runoff, whose sediment concentration is lower than the water column of the estuary mouth, and which is smaller in dry season than in flood season, as well as stronger resuspension in dry season caused by the wind wave. The SSC of the present study area has decreased by about25%compared with thirty years ago, which reflects the response of estuarine SSC to the decline in riverine sediment supply due to human activities.
     (4) Dynamic mechanism of sedimentation and resuspension of sediment. In the present study area, the hydrodynamic condition was controlled by currents during calm weather as the contribution of τc to τcw was more than0.82. The frequency of τc greater than τcr (critical bed shear stress for erosion) was48%, while frequency of τc less than τcr was52%, which means that sediment exchange between water column and the seabed was frequent. Correlation between near-bed SSC and τc was not significant, suggesting the SSC change based on the observations once an hour is reflected by advection rather than the deposition and erosion processes caused by local hydrodynamic conditions.
     (5) Suspended sediment transport. Current velocity decreasing downward and SSC increasing downward lead to vary probability for the vertical profile of product them. The maximum product value can occur at the surface, the bottom, or the middle layer, whereas commonly occur at the middle layer. The residual current of each site and voyage varied from0.07to0.28m/s. Net transport direction of the water and sediment at the site near the estuarine mouth is eastward, namely seaward, reflecting sediment transport in this area was controlled by runoff. Net transport of water and sediment are greatly influenced by the wind direction. Wind-induced longshore currents cause southward or northwards net water and sediment transport at the sites40-50km seaward from the estuary mouth.
引文
ABELSON A, MILOH T, LOYA Y. Flow patterns induced by substrata and body morphologies of benthic organisms, and their roles in determining availability of food particles[J]. Limnology and Oceanography,1993,38(6):1116-1124.
    BURCHARD H, BOLDING K, VILLARREAL M R. Three-dimensional modelling of estuarine turbidity maxima in a tidal estuary[J]. Ocean Dynamics,2004,54:250-265.
    CHEN J Y, ZHU H F, DONG Y F, et al. Development of the Changjiang estuary and its submerged delta[J]. Continental Shelf Research,1985,4(1/2):47-56.
    CHEN S L. Seasonal, neap-spring variation of sediment concentration in the joint area between Yangtze Estuary and Hangzhou Bay[J]. Seience in China (Series B),2001,44:57-62.
    CHEN S L, ZHANG G A, YANG S L, et al. Temporal variations of fine suspended sediment concentration in the Changjiang River estuary and adjacent coastal waters, China[J]. Journal of Hydrology,2006,331:137-145.
    CHEN X Q, YAN Y, FU R S, et al. Sediment transport from the Yangtze River, China, into the sea over the Post-Three Gorge Dam Period:A discussion[J]. Quaternary International,2008,186: 55-64.
    CHENG N S. Simplified settling velocity formula for sediment particle[J]. Journal of Hydraulic Engineering,1997,123(2):149-152.
    COLLINS M B, AMOS C L, EVANS G. Observation of some sediment transport process over intertidal flats, The Wash, U.K.[J]. Special Publications of international Association of Sediment,1981,5:81-98.
    COLLINS M B, KE X K, GAO S. Tidally-induced flow structure over intertidal flats[J]. Estuarine, Coastal and Shelf Science,1998,46:233-250.
    DAESSLE L W, CARRIQUIRY J D, CAMACHO-IBAR V, et al. On how the erosion of the Colorado River delta affects the sediment geochemistry of the northern gulf of Califoria. Earth System Processes-Global Meeting[C]. Ediburgh International Conference centre: Poster area,2001.
    DAI Z J, CHU A, LI W H, et al. Has Suspended Sediment Concentration Near the Mouth Bar of the Yangtze (Changjiang) Estuary Been Declining in Recent Years[J]. Journal of Coastal Research,2013,29(4):809-818.
    DAVIES A M, XING J X. Processes influencing suspended sediment movement on the Malin-Hebrides shelf[J]. Continental Shelf Research,2002,22:2081-2113.
    DOXARAN D, FROIDEFOND J M, LAVENDER S, et al. Spectral signature of highly turbid waters:application with SPOT data to quantify suspended particulate matter concentrations[J]. Remote Sensing of Environment,2002,81:149-161.
    DUFOIS F O, PIERRE G, PIERRE L H, et al. Wave and current induced bottom shear stress distribution in the Gulf of Lions[J]. Continental Shelf Research,2008,28:1920-1934.
    DYER K R. Coastal and Estuarine Sediment Dynamics[M]. Wiley-Interscience, New York,1986: 342 pp.
    EISMA D. Intertidal Deposits:River Mouths, Tidal Flats and Coastal Lagoons[M]. BocaRaton, Florida:CRC Press.1998:459pp.
    FANOS A M. The impact of human activities on the erosion and accretion of the Nile delta coast[J]. Journal of Coastal Research,1995,11(3):821-833.
    FESTA J F, HANSEN D V. Turbidity maxima in partially mixed estuaries:A two dimensional model[J]. Estuarine Coastal and Marine Science,1976,4:309-323.
    FETTWEIS M, MONBALIU M J, BAEYE B, et al. Weather and climate induced spatial variability of surface suspended particulate matter concentration in the North Sea and the English Channel[J]. Methods in Oceanography,2012,3(4):25-39.
    FETTWEIS M, SAS M, MONBALIU J. Seasonal, Neap-spring and Tidal Variation of Cohesive Sediment Concentration in the Scheldt Estuary, Belgium[J]. Estuarine, Coastal and Shelf Science,1998,47:21-36.
    FRJHY O E, DEBES E A, SAYED W R E. Processes reshaping the Nile delta promontories of Egypt:pre and post-protection[J]. Geomophology,2003,53:263-279.
    GEHRELS W R, LONG A J. Quaternary Land-Ocean Interactions:Sea-Level Change, Sediments and Tsunami[J]. Marine Geology,2007,242:1-220.
    GELFENBAUM G, SMITH J D. Experimental evaluation of a generalized suspended-sediment transport theory[J]. In Shelf Sands and Sandstones, Canadian Society of Petroleum Geologists, Memoir II,1986:133-144.
    GEYER W R. The importance of suppression of turbulence by stratification on the estuarine turbidity maximum[J]. Estuaries,1993,16:113-125.
    GLANGEAUD L. Transport of sedimentation chlans I'estuare et I'embouchure de la girronde[J]. Bulletin of Geological Society of France,1938,8:599-630.
    GUO L C, HE Q. Freshwater flocculation of suspended sedimentsin the Yangtze River, China[J]. Ocean Dynamics,2011,61:371-386.
    HILL P S, NOWELL A R M, JUMAR P A. Flume evaluation of the relationship between suspended sediment concentration and excess boundary shear stress[J]. Journal of Geophysical Research,1988,93:12499-12509.
    HOLDAWAY G P, THORNE P D, FLATT D, et al. Comparison between ADCP and Transmissometer measurements of suspended sediment concentration[J]. Continental Shelf Research,1999,19:421-441.
    HOLMTDAL L E, MYRHAUG D, RUE H. Seabed shear stresses under irregular waves plus current from Monte Carlo simulations of parameterized models[J]. Coastal Engineering,2000, 39:123-147.
    HOUWING E J. Determination of the Critical Erosion Threshold of Cohesive Sediments on Intertidal Mudflats Along the Dutch Wadden Sea Coast[J]. Estuarine, Coastal and Shelf Science,1999,49:545-555.
    HU B Q, YANG Z S, WANG H J, et al. Sedimentation in the three gorges dam and the future trend of Changjiang (Yangtze River) sediment flux to the sea[J]. Hydrology and Earth System Sciences,2009,13:2253-2264.
    HU K L, DING P X, WANG Z B, et al. A 2D/3D hydrodynamic and sediment transport model for the Yangtze Estuaty, China[J]. Journal of Marine Systems,2009,77:114-136.
    INAM A, ALIKHAN T M, AMJAD S, et al.5th International Conference on Asian Marine Geology[C]. AGCP-475 DeltaMAP and APN Mega-Delta,2004.
    JIANG X Z, LU B, HE Y H. Response of the turbidity maximum zone to fluctuations in sediment discharge from river to estuary in the Changjiang Estuary (China)[J]. Estuarine, Coastal and Shelf Science,2013,131:24-30.
    JOHN F O, CHRISSMART C C. An inexpensive turbidi-meter for monitoring suspended sediment[J]. Geomorphology,2005,68:3-15.
    KINEKE G C, STERNBERG R W. The effect of particle settling velocity on computed suspended sediment concentration profiles[J]. Marine Geology,1989,90:159-174.
    KIRBY R. Suspended fine cohesive sediment in the Severn Estuary and inner Bristal Channel, UK[R]. Report prepared by Ravensrodd Consultants Ltd for UKAWA. Report no.ETSU-STP. 1986:40-42.
    KIRBY R, PARKER W R. Distribution and behavior of fine sediment in the Severn Estuary and Inner Bristol Channel, VK[J]. Canadian Journal of Fishery and Aquatic Sciences,1983,40: 83-95.
    KLEMAS V, BARTLETT D, PHILPOT W, et al. Coastal and estuarine studies with ERTs21 and Skylab[J]. Remote Sensing Environment,1974,3:153-177.
    LANE R R, DAY J J W, MARX B D. The effects of riverine discharge on temperature, salinity, suspended sediment and chlorophyll a in a Mississippi delta estuary measured using a flow-through system[J]. Estuarine, Coastal and Shelf Science,2007,74:145-154.
    LEITHOLD E L, PERKEY D W, BLAIR N E, et al. Sedimentation and carbon burial on the northern California continental shelf:the signatures of land-use change[J]. Continental Shelf Research,2005,25:349-371.
    LI G X, WEI H L, HAN Y S. Sedimentation in the Yellow river delta, part Ⅰ:flow and suspended sediment structure in the upper distributary and the estuary[J]. Marine Geology,1998,149: 93-111.
    LI P, YANG S L, MILLIMAN J D, et al. Spatial, Temporal, and Human-Induced Variations in Suspended Sediment Concentration in the Surface Waters of the Yangtze Estuary and Adjacent Coastal Areas[J]. Estuaries and Coasts,2012,35:1316-1327.
    LOU J, PETER V R. Wave-current bottom shear stresses and sediment resuspension in Cleveland Bay, Australia[J]. Coastal Engineering,1996,29:169-186.
    LOZOVATSKY I, LIU Z Y, WEI H, et al. Tides and mixing in the northwestern East China Sea Part I:Rotating and reversing tidal flows[J]. Continental Shelf Research,2008,28:318-337.
    LUO X X, YANG S L, ZHANG J. The impact of the Three Gorges Dam on the downstream distribution and texture of sediments along the middle and lower Yangtze River (Changjiang) and its estuary, and subsequent sediment dispersal in the East China Sea[J]. Geomorphology, 2012,179:126-140.
    MA F K, JIANG C B, RAUEN W B, et al. Modelling sediment transport processes in a macro-tidal estuary[J]. Science in China Series E:Technological Sciences,2009,52(11): 3368-3375.
    MAA J P Y. VIMS Sea Carousel:Its hydrodynamic characteristics[J].In Nearshore and Estuarine Cohesive Sediment Transport, Coastal and Estuarine Studies, Vol.42, edited by A.J. Mehta, 1993:265-280.
    MACIVER R D. Irregular wave bed shear stress measurements[J]. MAST3-3D HYD98-2, University College London,1998.
    MANNING A J, LANGSTON W J, JONAS P J C. A review of sediment dynamics in the Severn Estuary:Influence of flocculation[J]. Marine Pollution Bulletin,2010,61:37-51.
    MIDDLCTON G V, SOUTHARD J B. Mechanics of sediment movement[M].2nd ed. SEPM, Tulsa,1984.
    MILLER M C, MC CAVE I N, KOMAR P D. Threshold of Sediment Motion under Unidirectional Current Sedimentology[J]. Earth Sciences,1977,24:507-527.
    MILLER R L, MCKEE B A. Using MODIS Terra 250 m imagery to map concentrations suspended matter in coastal waters[J]. Remote Sensing of Environment,2004,93:259-266.
    MILLIMAN J D. Blessed dams or dammed dams[J]. Nature,1997,386:325-327.
    MILLIMAN J D. Delivery and fate of fluvial water and sediment to the sea:a marine geologist's view of European rivers[J]. Scientia Marine,2001,65 (Supp1.2):121-132.
    MILLIMAN J D, FARNSWORTH K L. River Discharge To The Coastal Ocean:A Global Synthesis[M]. Cambridge University Press, Cambridge,2011:384pp.
    MILLIMAN J D, HSUEH Y, HU D X, et al. Tidal phase control of sediment discharge from the Yangtze River[J]. Estuarine, Coastal and Shelf Science,1984,19:119-128.
    MISEROCCHI S, LANGONE L, TESI T. Content and isotopic composition of organic carbon within a flood layer in the Po River prodelta (Adriatic Sea)[J]. Continental Shelf Research, 2007,27:338-358.
    MITCHENER H, TORFS H. Erosion of mud/sand mixtures[J]. Coastal Engineering,1996,29: 1-25.
    MURPHY S, VOULGARIS G Identifying the role of tides, rainfall and seasonality in marsh sedimentation using long-term suspended sediment concentration data[J]. Marine Geology, 2006,227:31-50.
    MYRHAUG D, SLAATTELID O H, LAMBRAKOS K F. Seabed shear stresses under random waves:predictions vs. estimates from field measurements[J]. Ocean Engineering,1998, 25(10):907-916.
    ORTON P M, KINEKE G C. Comparing calculated and observed vertical suspended-sediment distribution from a Hudson River estuary turbidity maximum[J]. Estuarine, Coastal and Shelf Science,2001,52:401-410.
    QIAO S Q, SHI X F, ZHU A M, et al. Distribution and transport of suspended sediments off the Yellow River (Huanghe) mouth and the nearby Bohai Sea[J]. Estuarine, Coastal and Shelf Science,2010,86:337-344.
    RICHARD W, RICHARD S, WILLIAM R, et al. Dynamics of estuarine muds:A manual for practical applications[M]. Thomas Telford Publishing,2000:94-95.
    RIDDERINKHOF H, VAN DER HAMA R, VAN DER LEE W. Temporal variations in concentration and transport of suspended sediments in a channel-flat system in the Ems-Dollard estuary[J]. Continental Shelf Research,2000,20:1479-1493.
    ROSALES P, OCAMPO-TORRES F J, OSUNA P, et al. Wave-current interaction in coastal waters:Effects on the bottom-shear stress[J]. Journal of Marine Systems,2008,71:131-148.
    ROSS M A, MEHTA A J. The mechanics of lutoclines and fluidmud[J]. Journal of Coastal Research,1989,5:51-61.
    ROUSE H. Modern conceptions of the mechanics of fluid turbulence[J]. American Society of Civil Engineers,1937,102:463-543.
    SANCHEZ-ARCILLA A, JIMENEZ J A, VALDEMORO H L. The Ebro Delta:morphodynamics and vulnerability[J]. Journal Coastal Research,1998,14:754-772.
    SANZ-MONTERO M E, AVENDANO S, COBO R. Influencia del complejo de embalses Mequinenza-Ribarroja-Flix (Rio Ebro) en la morfologia del cauce situado agues abajo[J]. Rev. Soc. Geol. Espana,2001,14:1-17.
    SCHOELLHAMER D H. Variability of suspended-sediment concentration at tidal to annual time scales in San Francisco Bay, USA[J]. Continental Shelf Research,2002,22:1857-1866.
    SCHOELLHAMER D H, MUMLEY T E, LEATHERBARROW J E. Suspended sediment and sediment-associated contaminants in San Francisco Bay[J]. Environmental Research,2007, 105:119-131.
    SCHUBEL J R. Turbidity maximum of the northern Chesapeake bay[J]. Science,1968,161: 1013-1015.
    SEAWEB. Dams:their impacts on coastal environments[M]. http://www.Briefing Book-Impact of Dams,2002.
    SHEN F, VERHOEF W, ZHOU Y, et al. Satellite Estimates of Wide-Range Suspended Sediment Concentrations in Changjiang (Yangtze) Estuary Using MERIS Data[J]. Estuaries and Coasts, 2010,33:1420-1429.
    SHI B W, YANG S L, WANG Y P, et al. Relating accretion and erosion at an exposed tidal wetland to the bottom shear stress of combined current-wave action[J]. Geomorphology, 2012,138:380-389.
    SHI Z, REN L F, LIN H L. Vertical suspension profile in the Changjiang Estuary[J]. Marine Geology,1996,130:29-37.
    SHI Z, ZHOU H J, EITTREIM S L, et al. Settling velocities of fine suspended particles in the Changjiang Estuary, China[J]. Journal of Asian Earth Science,2003,22:245-251.
    SIMONS R R, MACIVER R D, SALEH W M. Kinematic and shear stresses from combined waves and longshore currents in the UK Coastal Research Facility[J]. Coastal Engineering, 1996:3481-3494.
    SMITH T J, KIRBY R. Generation, stabilization and dissipation of layered fine sediment suspension[J]. Journal of Coastal Research,1989,5:63-73.
    SOULSBY R L. Bed shear stresses due to combined waves and currents[J]. Advances in Coastal Morphodynamic:An Overview of the G-8 Coastal Morphodynamic Project. Delft Hydraulic, Delft, the Netherlands,1995:420-423.
    SOULSBY R L. Methods for predicting suspensions of mud[R]. HR Wallingford Report, TR, 2000:104pp.
    SOULSBY R L, DYER K R. The Form of the Near-Bed Velocity Profile in a Tidally Accelerating Flow[J]. Journal of Geophysical Research,1981,86(C9):8067-8074.
    SOULSBY R L, HAMM L, KLOPMANN G, et al. Wave-current interaction within and outside the bottom boundary layer[J]. Coastal Eng.1993,21:41-69.
    STACEY M T, FRAM J P, CHOW F K. Role of tidally periodic density stratification in the creation of estuarine subtidal circulation[J]. Journal of Geophysical Research,2008, 113(C08):1-13.
    STANLEY D J, WARNE A G Nile delta:recent geological evolution and human impact[J]. Science,1993,260 (5108):628-634.
    STERNBERG R W, CACCHIONE D A, DRAKE D E, et al. Suspended sediment transport in an estuarine tidal channel within San Francisco Bay, California[J]. Marine Geology,1986,71: 237-258.
    SYVITSKI J P M, KETTNER A J, OVEREEM I, et al. Sinking deltas due to human activities[J]. Nature Geoscience,2009,2:681-686.
    TAKI K. Critical shear stress for cohesive sediment transport[J]. Coastal and Estuarine Fine Sediment Processes, Proceedings in Marine Science,2001:53-61.
    TATTERSALLA G R, ELLIOTT A J, LYNN N M. Suspended sediment concentrations in the Tamar estuary[J]. Estuarine, Coastal and Shelf Science,2003,57:679-688.
    TRENHAELE A S, Coastal Dynamics and Landforms[M]. Oxford:Clarendon Press,1997:365pp.
    UNCLES R J, BLOOMER N J. Seasonal variability of salinity, temperature, turbidity and suspended chlorophyll in the Tweed Estuary [J]. The Science of the Total Environment,2000, 251/252:115-124.
    UNCLES R J, STEPHENS J A. Dynamics of Turbidity in the Tweed Estuary[J]. Estuarine, Coastal and Shelf Science,1997,45:745-758.
    UNCLES R J, STEPHENS J A. Turbidity and sediment transport in a muddy sub-estuary [J]. Estuarine, Coastal and Shelf Science,2010,87:213-224.
    VAN LEUSSEN W, DRONKERS J. Physical processes in estuaries:an introduction[M]. In: Dronkers, J., van Leussen, W. (Eds.), Physical processes in estuaries. Springer-Verlag, Berlin Heidelberg, Germany,1988:1-20.
    VAN RIJN L C. Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas[M]. Aqua Publications, Amsterdam, the Netherlands,1993:96-106.
    VANONI V A. Some effects of suspended sediment on flow characteristics[C]. Proc5th Hydr Conf, Bulletin 34, State University of Iowa Studies in Engrg, Iowa City, Iowa,1953.
    VERICAT D, BATALLA R J. Efectos de las presas en la dinamica fluvial del curso bajo del rio Ebro[J]. Cuaternarioy Geomorfologia,2004,18(1-2):37-50.
    WALTER J, PIERRE L E, WALTHER V K, et al. Erosion threshold of sand-mud mixtures[J]. Continental Shelf Research,2011,31:S14-S25.
    WANG H J, YANG Z S, LI Y H, et al. Dispersal pattern of suspended sediment in the shear frontal zone off the Huanghe (Yellow River) mouth[J]. Continental Shelf Research,2007,27: 854-871.
    WHITEHOUSE R, SOULSBY R, WILLIAM R, et al. Dynamics of Estuarine muds:A manual for practical applications[M]. Thomas Telford, London,2000.
    WISEMAN W J, YANG Z S, BORNHOLD B D, et al. Suspended sediment advection by tidal currents off the Huanghe (Yellow River) delta[J]. Geo-Marine Letter,1986,6:107-113.
    WOLANSKI E, ASAEDE T, IMBERGER J. Mixing across a lutocline[J]. Limnology and Oceanography,1989,34:931-938.
    WRIGHT L D, WISEMAN W J, BORNHOLD B D, et al. Marine dispersal and deposition of Yellow river silts by gravity-driven underflows[J]. Nature,1988,332:629-632.
    XIA X M, LI Y, YANG H, et al. Observations on the size and settling velocity distributions of suspended sediment in the Pearl River Estuary, China[J]. Continetal Shelf Research,2004,24: 1809-1826.
    XU K H, MILLIMAN J D. Seasonal variations of sediment load from the Yangtze River before and after impoundment of the Three Gorges Dam[J]. Geomorphology,2009,104:276-283.
    XU K H, MILLIMAN J D, YANG Z, et al. Yangtze sediment decline partly from Three Gorges Dam[J]. Eos, Transactions American Geophysical Union,2006,87 (19):185-186.
    YANG S L, BELKIN I M, BELKINA A I, et al. Delta response to decline in sediment supply from the Yangtze River:evidence of the recent four decades and expectations for the next half-century[J]. Estuarine, Coastal and Shelf Science,2003,57:689-699.
    YANG S L, LI M, DAI S B, et al. Drastic decrease in sediment supply from the Yangtze River and its challenge to coastal wetland management [J]. Geophysical Research Letters,2006, 33(6):1-4.
    YANG S L, MILLIMAN J D, LI P, et al.50,000 dams later:Erosion of the Yangtze River and its delta[J]. Global and Planetary Change,2011,75:14-20.
    YANG S L, ZHANG J, XU X J,2007. Influence of the Three Gorges Dam on downstream delivery of sediment and its environmental implications, Yangtze River[J]. Geophysical Research Letters,2007,34(10):1-5.
    YANG S L, ZHANG J, ZHU J. Response of suspended sediment concentration to tidal dynamics at a site inside the mouth of an inlet:Jiaozhou Bay (China)[J]. Hydrology and Earth System Sciences,2004,8 (2):170-182.
    YANG S L, ZHANG J, ZHU J, et al. Impact of Dams on Yangtze River Sediment Supply to the Sea and Delta Wetland Response[J]. Journal of Geophysical Research,2005,110(F3):1-12.
    YANG S L, ZHAO Q Y, BELKIN I M. Temporal variation in the sediment load of the Yangtze River and the influences of the human activities[J]. Journal of Hydrology,2002,263:56-71.
    YANG Y P, LI Y T, SUN Z H. Suspended sediment load in the turbidity maximum zone at the Yangtze River Estuary:The trends and causes[J]. Journal of Geographical Sciences,2014, 24(1):129-142
    YANG Z, SAITO Y. Response of the Huanghe (Yellow River) delta evolution to the human activities and precipitation changes[J]. Geophysical Research Abstracts,2003,5:9-14.
    YANG Z S, HU D X. Impact of Human Activities and Climate Change on Material Discharge from the Huanghe River to the Seas, the Huanghe Coastal Environment and Delta Socio-economic Development. In Ye Duzheng and Lin Hai (eds.) China Contribution to the Global Change Studies[M]. Beijing:China Science Press,1995:213-217.
    YANG Z S, MILLIMAN J D, GALLER J, et al. Yellow River's water and sediment discharge decreasing steadily[J]. Eos, Transactions American Geophysical Union,1998,79(48): 589-592.
    YU D S, TIAN C. Vertical distribution of suspended sediment at the Yangtze River estuary[J]. International Conference on Estuaries and Coasts,2003:214-220.
    ZHANG W X, YANG S L, ZHU J, et al. Dry-season Variability in suspended sediment concentrations in the South Passage of the Changjiang Estuarine[J]. International Journal of Sediment Research,2007,22 (3):199-207.
    ZHAO Y, ANASTASIOU K. Bottom friction effects in the combined flow field of random waves and current[J]. Coastal Engineering,1993,19:223-243.
    ZHU Q, YANG S L. Intra-tidal sedimentary processes associated with combined current-wave action on an exposed erosional mudflat, southeastern Yangtze River Delta, China[J]. Marine Geology,2014,347:95-106.
    曹祖德,孔令双,焦桂英.波流共同作用下的泥沙运动[J].海洋学报,2003,25(3):113-119.
    曹祖德,唐士芳,李蓓.波、流共存时的床面剪切力[J].水道港口,2001,22(2):56-60.
    长江泥沙公报[R].长江水利委员会(YRWRC), http://www.cjh.com.cn.2001-2012.
    陈斌.长江口附近海域三维悬浮泥沙的数值模拟研究[D].中国科学院海洋研究所博士毕业论文,2008:136 pp.
    陈斌,周良勇,刘健,等.废黄河口海域潮流动力与悬沙输运特征[J].海洋科学,2011,35(5):73-81.
    陈基伟,梅安新,袁江红.从海岸滩涂变迁看上海滩涂土地资源的利用[J].上海地质,2005,26(1):18-20.
    陈吉余.中国河口海岸实践与研究[M].北京:高等教育出版社,2007:18-37.
    陈吉余,沈焕庭,恽才兴,等.长江河口动力过程和地貌演变[M].上海:上海科学技术出版社,1988:253-267.
    陈吉余,恽才兴,徐海根,董永发.两千年来长江河口的发育模式[J].海洋学报,1979,1(1):103-111.
    陈沈良,谷国传,张国安.长江口南汇近岸水域悬沙沉降速度估算[J].泥沙研究,2003,6:45-51.
    陈沈良,张国安,杨世伦,虞志英.长江口水域悬沙浓度时空变化与泥沙再悬浮[J].地理学报,2004,59(2):260-266.
    陈晓宏,陈永勤,赖国友.珠江口悬浮泥沙迁移数值模拟[J].海洋学报,2003,25(2):120-127.
    陈子燊.伶仃河口湾铜鼓水域水沙净输运分析[J].海洋工程,1999,17(1):79-85.
    程江.长江口悬浮细颗粒泥沙絮凝体特性研究[D].华东师范大学硕士学位论文,2004:26-58.
    窦希萍,李来,窦国仁.长江口全沙数学模型研究[J].水利水运科学研究,1999,(2):136-145.
    堵盘军,胡克林,孔亚珍,丁平兴.ECOMSED模式在杭州湾海域流场模拟中的应用[J].海洋学报,2007,29(1):7-16.
    樊辉,黄海军,唐军武.黄河口水体光谱特性及悬沙浓度遥感估测[J].武汉大学学报,2007,32(7):601-604.
    郜昂,赵华云,杨世伦,戴仕宝,陈沈良,李鹏.径流、潮流和风浪共同作用下近岸悬沙浓度变化的周期性探讨—以杭州湾和长江口交汇处的南汇嘴为例[J].海洋科学进展,2008,26(1):44-50.
    高抒,程鹏,汪亚平,曹奇.长江口外海域1998年夏季悬沙浓度特征[J].海洋通报,1999,18(6):44-50.
    顾峰峰,沈淇,孔令双,万远扬,王巍.长江口北槽悬沙垂线分布经验公式研究[J].水运工程,2013,11:142-146.
    谷国传.长江口外水域悬沙分布特征[J].东海海洋,1986,4(1):10-15.
    谷国传,胡方西.我国沿海近岸带水域的悬沙分布特征[J].地理研究,1989,8(2):1-15.
    韩其为,陈绪坚,薛晓春.不平衡输沙含沙量垂线分布研究[J].水科学进展,2010,21(4):512-522.
    何超.近二十年长江口邻近海域悬沙分布比较研究[C].华东师范大学优秀硕士论文集,2007:1-66.
    何金林.长江口区风浪要素计算的探讨[J].东海海洋,1996,14(3):1-7.
    何青,恽才兴,时伟荣.长江口表层水体悬沙浓度场遥感分析[J].自然科学进展,1999,9(2):160-164.
    贺松林,孙介民.长江河口最大浑浊带的悬沙输移特征[J].海洋与湖沼,1996,27(1):60-66.
    胡方西,胡辉,谷国传,等.长江口锋面研究[M].上海:华东师范大学出版社,2002:40-113.
    胡辉,李身铎,等.长江口外海滨余流特征分析[M].长江河口动力过程和地貌演变,上海:上海科学技术出版社,1988:108-110.
    康琮,宋志尧,孔俊.珠江口磨刀门灯笼山断面枯季输沙关系分析[J].海洋工程,2009,27(3):113-116.
    孔令双,曹祖德,焦桂英,等.波、流共存时的床面剪切力和泥沙运动[J].水动力学研究与进展,2003,A18(1):93-97.
    孔亚珍,丁平兴,贺松林,何超,肖文军.长江口外及其邻近海域含沙量时空变化特征分析 [J].海洋科学进展,2006,24(4):446-454.
    孔亚珍,丁平兴,贺松林.长江口邻近海域余流的基本特征分析[J].海洋科学进展,2007,25(4):367-375.
    乐肯堂,于振娟.长江口外海流结构及其季节变化[C].海洋科学集刊,第33集.北京:科学出版社,1992:51-67.
    李广雪.黄河入海泥沙扩散与河海相互作用[J].海洋地质与第四纪地质,1999,19(3):1-10.
    李婧,高抒,汪亚平.长江口水域悬沙含量时空变化卫星遥感定量研究方法探讨[J].海洋学报,2009,31(4):167-175.
    李九发,陈小华,万新宁,等.长江河口枯季河床沉积物与河床沙波现场观测研究[J].地理研究,2003,22(4):513-519.
    李九发,何青,张琛.长江河口拦门沙河床淤积和泥沙再悬浮过程[J].海洋与湖沼,2000,31(1):101-109.
    李鹏,杨世伦,龚文浩,等.上海洋山建港后港域夏季水文泥沙状况分析[J].海洋工程,2009,7(25):81-88.
    李鹏.长江供沙锐减背景下河口及其邻近海域悬沙浓度变化和三角洲敏感区冲淤响应[D].华东师范大学博士学位论文,2012:1-20.
    李四海,恽才兴.河口表层悬浮泥沙气象卫星遥感定量模式研究[J].遥感学报,2001,5(2):154-161.
    李四海,唐军武,恽才兴.河口悬浮泥沙浓度SeaWif遥感定量模式研究[J].海洋学报,2002,24(2):1-58.
    李军,高抒,曾志刚,等.长江口悬浮体粒度特征及其季节性差异[J].海洋与湖沼,2003,34(5):499-510.
    李占海,陈沈良,张国安.长江口崇明东滩水域悬沙粒径组成和再悬浮作用特征[J].海洋学报,2008,30(6):154-163.
    梁文,黎广钊.廉州湾海域的悬沙分布特征[J].海洋地质,2001,(4):1-9.
    刘锋,陈沈良,周永东,等.黄河2009年调水调沙期间河口水动力及悬沙输移变化特征[J].泥沙研究,2010,6:1-8.
    刘高峰,朱建荣,沈焕庭,等.河口涨落潮槽水沙输运机制研究[J].泥沙研究,2005,5:51-57.
    刘曙光,李从先,丁坚,等.黄河三角洲整体冲淤平衡及其地质意义[J].海洋地质与第四纪地质,2001,21(4):13-17.
    罗秉征,沈焕庭.三峡工程与河口生态环境[M].科学出版社,1994:1-337.
    罗向欣.长江中下游、河口及邻近海域底床沉积物粒径的时空变化—自然机制和人类活动的影响[D].华东师范大学博士学位论文,2013:1-96.
    茅志昌,潘安定,沈焕庭.长江河口悬沙的运动方式与沉积形态特征分析[J].地理研究,2001,20(2):170-177.
    泥沙公报[R].黄河水利建设委员会,黄河水文网:http://www.hwswj.gov.cn.2003.
    潘玉球,王康塔,黄树生,1997.长江冲淡水输运和扩散途径的分析[J].东海海洋,15(2):25-34.
    钱宁,万兆惠.近底高含沙量流层对水流及泥沙运动影响的初步探讨[J].水利学报,1965,5:22-34.
    邵宇阳,严以新,马平亚,等.长江口徐六泾河段洪季中长期悬浮泥沙沉降特性[J].泥沙研究,2011,(3):29-36
    上海海岸带联合调查组,上海市海岸带和滩涂资源综合调查报告冈.上海:上海科学技术出版社,1988:15-26.
    上海市海岛资源综合调查报告编写组,上海市海岛资源综合调查报告[R].上海:上海科学技术出版社,1996:30-38.
    沈焕庭,郭成涛,朱慧芳,等.长江河口最大浑浊带的变化规律及其成因探讨[C].海岸河口区动力地貌沉积过程论文集,科学出版社,1984:76-89.
    沈焕庭,李九发,朱慧芳.长江河口悬沙输移特性[J].泥沙研究,1986,(1):1-13.
    沈焕庭,潘安定.长江河口最大浑浊带[M].北京:海洋出版社,2001:194pp.
    时钟.长江口细颗粒泥沙过程[J].泥沙研究,2000,(6):72-80.
    时钟,凌鸿烈.长江口细颗粒悬沙浓度垂向分布[J].泥沙研究,1999,(2):59-64.
    时钟,周洪强.长江口北槽口外悬沙浓度垂线分布的数学模拟[J].海洋工程,2000,18(3): 57-62.
    时钟.长江口北槽细颗粒悬沙絮凝体的沉降速率的近似估算[J].海洋通报,2004,23(5):51-58.
    史本伟,杨世伦,罗向欣,徐晓君.淤泥质光滩-盐沼过渡带波浪衰减的观测研究-以长江口崇明东滩为例[J].海洋学报,2010,32(2):174-178.
    唐建华,何青,王元叶等.长江口浑浊带絮凝体特性[J].泥沙研究,2008,4(2):27-33.
    陶菲,张鹰,王晶晶,张芸.悬浮泥沙浓度遥感反演模式研究[J].海洋工程,2007,25(4):96-101.
    田向平.珠江河口伶仃洋最大浑浊带研究[J].热带海洋,1986,5(2):27-35.
    万新宁,李九发,沈焕庭.长江口外海滨悬沙分布及扩散特征[J].地理研究,2006,25(2):294-302.
    王爱军,汪亚平,高抒,等.长江口枯季悬沙粒度与浓度之间的关系[J].海洋科学进展,2005,23(2):159-167.
    王厚杰,原晓军,王燕,等.现代黄河三角洲废弃神仙沟-钓口叶瓣的演化及其动力机制[J].泥沙研究,2010,(4):51-60.
    王建峰.波流共同作用下悬沙浓度垂向分布的研究[D].天津大学硕士学位论文,2004:2-6.
    汪亚平,潘少明,WANG H V,等.长江口水沙入海通量的观测与分析[J].地理学报,2006,61a(1):35-46.
    汪亚平,高抒,贾建军.浪流联合作用下潮滩沉积动力过程的高分辨率数据采集与分析[J].科学通报,2006b,51(3):339-348.
    吴加学,张叔英,任来法.长江河口北槽抛泥作业状态下的悬沙浓度分布与扩散过程[J].海洋与湖沼,2003,34(1):83-93.
    吴宋仁,严以新.海岸动力学3版[M].北京:人民交通出版社,2000:24-25.
    吴祥柏,汪亚平,潘少明.长江河口悬沙与盐分输运机制分析[J].海洋学研究,2008,26(4):8-19.
    肖天铎.掺气紊动水流基本方程式的应用[J].水利学报,1963,5:22-34.
    许炯心,孙季.近50年来降水变化和人类活动对黄河入海径流通量的影响[J].水科学进展, 2003,14(6):690-695.
    徐晓君,杨世伦,李鹏.河口河槽和口外海滨对流域来沙减少响应的差异性研究—以长江口南槽-口外海滨体系为例[J].海洋通报,2008,27(05):100-104.
    严福生.Rouse方程的应用及其改进[J].水运工程,2010,11:18-21.
    闫龙浩.长江口外海滨悬沙输运研究—以崇明东滩近岸水域为例[D].华东师范大学硕士学位论文,2010:1-5.
    杨华,侯志强,许家帅.洋山港区悬浮泥沙运动遥感分析[J].水道港口,2003,24(3):126-129.
    杨世伦,丁平兴,王厚杰,等.长江三角洲冲淤演变过程与原因分析[M].近50年我国典型海岸带演变过程与原因分析,科学出版社,2013:22-61.
    杨世伦,ZHU J,李明.长江入海泥沙的变化趋势与上海滩涂资源的可持续利用[J].海洋学研究,2009,27(2):7-15.
    杨作升,庞重光,张军,等.黄河口最大浑浊带发育、演变及其影响因素[R].山东海洋学院河口海岸研究所,1987.
    于东升,田淳,严以新.长江口悬沙含量垂向分布数值模拟[J].水利水运工程学报,2004,(1):35-40.
    恽才兴.长江河口近期演变基本规律[M].北京,海洋出版社,2004:290 pp.
    恽才兴.中国河口三角洲的危机[M].北京,海洋出版社,2010:256 pp.
    恽才兴,蔡孟裔,王宝全.利用卫星照片分析长江入海泥沙扩散问题[J].海洋与湖沼,1981,12(5):391-401.
    翟晓明.长江口水动力和悬沙分布特征初[D].华东师范大学硕士毕业论文,2006:87 pp.
    张文祥,杨世伦,杜景龙,闫龙浩.长江口南槽最大浑浊带短周期悬沙浓度变化[J].海洋学研究2008,26(3):25-33.
    张勇.基于GIS的长江口及邻近海域环境时空多维分析[D].中国海洋大学博士毕业论文,2008:114 pp.
    赵纯厚,朱振宏,周端庄.世界江河与大坝[M].北京:中国水利水电出版社,2000:1059 pp.
    朱慧芳,恽才兴,茅志昌,等.长江河口的风浪特性和风浪经验关系[J].华东师范大学学报(自然科学版),1984,(01):74-84.
    朱首贤,丁平兴,史峰岩,等.杭州湾、长江口余流及其物质输运作用的模拟研究-冬季余流及其对物质的输运作用[J].海洋学报,2000,22(6):1-12.
    朱文谨,潘锡山,孙杰.基于Rouse方程的河口海岸水域泥沙垂线浓度分析[J].河海大学学报(自然科学版),2012,40(2):216-219.
    朱泽南,王惠群,管卫兵,等.丰水期珠江口黏性泥沙输运的三维数值模拟[J].海洋学研究,2013,31(3):25-35.
    左书华.长江河口典型河段水动力、泥沙特征及影响因素分析[D].华东师范大学硕士学位论文,2006:2-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700