用户名: 密码: 验证码:
三峡库区万州区滑坡发育规律及风险研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滑坡因其具有多发性和频发性的特点,已成为地质灾害中的一个重要灾种,其严重的破坏性,不仅给灾害易发区人民生命及财产安全带来威胁,还对环境、社会、经济造成了诸多不良影响,尤其在过去的三十年,随着人口增长和土地利用扩张,滑坡及其次生灾害(如滑坡涌浪、滑坡坝、堰塞湖等)已造成了大量的人员伤亡和经济损失。我国是世界上受地质灾害影响最严重的国家之一,近五年来,地质灾害以平均每年2万起的规模发生,造成了年均1273人伤亡及失踪,年均直接经济损失达41.43亿元。依据《全国地质灾害通报》中2005年以来的数据统计发现,我国滑坡灾害发生数量占全年总灾害数量的百分比,年均达65%,2006年所占百分比最高,为86%。近期,如2012年《全国地质灾害通报》表明,该年全国共发生地质灾害14322起,造成直接经济损失52.8亿元,其中滑坡灾害发生数量占据总灾害数的76%。
     长江三峡库区因其复杂的自然条件和地质环境,历来是地质灾害多发区。自2003年6月以来,三峡水库经历了正式蓄水、库水位逐年抬升并达到设计蓄水位的库水位调度过程,在此期间,库区内地质灾害时有发生、隐患点明显增多。据2010年的相关报道显示,库区已知的崩塌滑坡地质灾害隐患点达5386处。目前,虽然随着三峡库区二、三期地质灾害防治项目的完成,已有887处城镇及居民集中区的地质灾害点采取了相应的工程治理措施,但是仍有大量地质灾害隐患点需要依靠人工监测的方式实现灾害防御。因此,鉴于三峡工程重要的政治、经济、社会地位和库区城镇发展的需要,探明该区滑坡发育规律,尤其是探明在库水位调度和大规模城市建设的大环境下,库岸滑坡失稳和古滑坡复活将会带来的灾害风险问题,对保障库区人民生命及财产安全,促进库区城镇发展具有重要意义。
     重庆市万州区是三峡库区的腹心之地,其特殊的地质环境为滑坡的发育和发生提供了有利条件。鉴于万州区滑坡发育具有分布广、频率大的特点,论文将围绕该区的滑坡灾害问题展开研究和讨论:在探明万州区滑坡发育规律的基础上,基于目前国内外学者普遍接受的风险分析理论和流程,采用理论分析与实例计算相结合的方式,开展了不同尺度的滑坡灾害风险研究。
     目前,在滑坡发育规律及变形破坏机理研究方面,主要存在的问题包括:如何保障滑坡基础资料的完整性和准确性、如何提高滑坡发育时空预测的可靠性、如何界定滑坡发育特征的时效性、如何统一滑坡变形破坏类型分类标准、如何模拟真实的实验环境以及合理进行数值模拟分析,等。在滑坡灾害风险研究方面,主要存在的问题包括:滑坡风险研究的时间尺度如何界定、滑坡风险研究的空间动态性如何表达、运用传统的破坏概率计算方法如何反应三峡库区中常见的蠕滑型滑坡的局部破坏概率、如何提高风险成果的可信度以及如何加强和完善风险管理工作,等。
     论文针对目前研究中存在的部分问题,在充分收集和整理万州区滑坡灾害相关资料的基础上,重点在滑坡规模发育规律、区域滑坡易发性分析和单体滑坡局部破坏概率分析方面进行了探讨。通过完成万州区滑坡灾害发育规律分析和不同尺度滑坡灾害风险分析,论文主要取得了以下成果和结论:
     (1)综合考虑滑坡发育的地质环境条件和滑坡发育的形态规模特征,进行三峡库区万州区滑坡发育规律分析。基于万州区最新和最完整的地质灾害排查资料,进行万州区滑坡灾害的发育规律分析,主要从滑坡发育的地质环境分析和滑坡形态规模尺寸分析两个方面进行。滑坡发育地质环境条件的分析主要包括滑坡的分布高程、地形地貌、水文地质条件、滑坡边界条件和滑坡物质组成及地层年代等;滑坡形态规模分析包括滑坡的平剖面形态和滑坡的尺寸(长、宽、面积、体积)等。通过分析滑坡在上述各项内容中的分布情况,总结万州区已知滑坡的发育特征和规律。
     (2)基于滑坡发育的规模尺寸,进行三峡库区万州区滑坡发育规模尺寸间的关系分析。根据论文所收集得到的滑坡发育规模尺寸指标(滑坡最大长度、平均宽度、面积和体积)的分布数据,探讨各指标间的关系,主要得出:万州区,无论是涉水型,还是非涉水型滑坡,滑坡发育长度与其宽度的相关性不明显,且通常不发育为在长宽方向上同时具有极大值的滑坡;滑坡发育面积与其长度(宽度)之间具有一定的相关性,滑坡发育面积较大的滑坡,其长度(宽度)也相应发育较大,但随着滑坡发育面积增大,滑坡面积与其长度(宽度)分布图的离散性越明显、相关性越低;滑坡发育体积也满足体积越大,其发育长度和宽度相应较大的特点,但是滑坡体积与滑坡长度(宽度)分布图的离散性更强、相关性较差;滑坡发育体积与面积的相关性相对较好,滑坡体积发育较大时,其发育面积也相应较大,此外,滑坡发育规模增大,滑坡分布数量相应减少,滑坡体积与面积分布图表现出离散性的分布特征、相关性降低。
     (3)从分析滑坡发生频率密度规模关系的角度,进行三峡库区万州区滑坡规模发育规律研究。论文将万州区滑坡编录数据分为全区滑坡、涉水型滑坡和非涉水型滑坡三组数据,分别探讨了各组数据中滑坡发生频率密度-规模分布函数方程及拟合曲线。所得结果表明,万州区滑坡发生频率密度-规模分布满足三参数反伽马函数的概率密度分布,并在较大滑坡规模尺寸上满足非累计幂指数函数分布;万州区滑坡规模往往集中发育在一定尺寸范围内,其中非涉水型滑坡在发育规模(宽度、面积、体积)上较涉水型滑坡集中性更强、涉水型滑坡发育为较大规模(宽度、面积、体积)滑坡的可能性更大。此外,通过对比依据不同地区、不同事件诱发下滑坡发生记录得到的滑坡发生频率密度-规模关系分布曲线发现,滑坡发生频率密度-规模关系分布规律具有普适性;滑坡发育受到地质环境和外界因素的控制,其发育规模具有集中于某范围尺寸间分布的特征,滑坡编录数据越完整,滑坡发生频率密度-规模分布曲线越接近基于初始完整滑坡数据所得分布曲线。
     (4)基于聚类模型,结合万州区地质环境资料、滑坡分布资料,以及滑坡发生频率密度-规模拟合曲线,进行三峡库区万州区滑坡危险性分析。论文首先选择地层年代、高程分布等七个指标作为万州区滑坡易发性分析的评价指标,同时,统计分析已知滑坡在各指标中分布的栅格数据,得到各个评价指标的滑坡易发性等级分布图。其次,基于熵权法和层次分析法的综合评判法,进行万州区滑坡易发性各评价指标的权重计算,得出,地层年代和地形坡度指标对万州区滑坡易发性分析影响最大。再则,选择聚类模型和信息量模型进行万州区滑坡灾害易发性区划,实现了聚类模型算法编写、优化了聚类模型只分类不分级的问题。通过对比两种模型所得滑坡易发性区划结果,信息量模型的区划精度高于聚类模型,但结果过于保守,聚类模型的预测结果更贴近实际情况。最后,结合万州区滑坡分布图和滑坡发生频率密度-规模分布曲线,在进一步修正滑坡易发性区划图的基础上,得到万州区滑坡危险性区划图。总体来看,万州区具有江南区滑坡极高危险区较江北区滑坡极高危险区分布面积广、主城区及长江上游部分地区滑坡极高危险区分布较为集中以及长江下游地区滑坡高危险区呈零星分布的特征。
     (5)在统计万州全区承灾体及其价值、人口密度分布情况的基础上,进行万州全区滑坡风险分析。万州区承灾体划分为人口、房屋建筑物、交通道路和土地资源四大类。通过分析万州区承灾体易损性,得到:从整体上看,万州主城区的承灾体易损性较大;人口易损性等级分布与滑坡危险性等级分布一致;房屋建筑易损性等级最高的区域集中分布于主城区沿长江、竺溪河交界处的,较高易损性的房屋在滑坡危险性等级为极高的区域内成零星散布;交通道路的易损性等级表现出段状分布的特征,整体上看,交通道路类型级别越高,其抗灾害能力越强,相同等级灾害强度作用下,易损性越小;主城区附近土地资源的易损性等级最高,其余易损性较高的区域与滑坡危险性等级为较高的区域分布基本一致。综合该区经济价值和人口密度分布信息,分析得到万州全区滑坡灾害风险无论是人口风险还是经济风险,主城区的滑坡灾害风险最大。
     (6)基于加卸载响应比模型,进行三舟溪滑坡地表位移与降雨、库水位响应关系分析。结合三舟溪滑坡GPS地表位移监测资料、降雨及库水位调度资料,运用加卸载响应比模型,探讨了滑坡地表变形与其影响因素之间的响应关系,主要得出:三舟溪滑坡变形加卸载响应比能较好的表征滑坡点的稳定性状况及其变形时段特征;该滑坡处于整体基本稳定、局部欠稳定状态;降雨对该滑坡变形具有促进作用,而与库水位作用比较而言,库水位升降作用对该滑坡的影响更大;从整体上看,三舟溪滑坡在库水作用上表现出中前部先响应变形,中后部后响应变形的牵引式变形特征。
     (7)基于分形理论中的计盒模型,进行三舟溪滑坡地表位移监测点运动轨迹分形维数计算,进而基于反距离插值法,进行三舟溪滑坡变形分形维数分区。首先,根据三舟溪滑坡地表位移各监测点的GPS监测数据,分析和整理监测点地表位移轨迹曲线;其次,以全年和库水位涨落为计算周期,对各监测点的位移轨迹进行分段;然后,对各监测点分段后的位移轨迹曲线进行图像处理和转换,得到各个运动轨迹分段曲线的灰度图像;再则,利用计盒模型计算各个灰度图像的分形维数;最后,采用反距离插值法(IDW)得到滑坡变形各周期阶段的分形维数分区图。所得分形维数分区图表明:三舟溪滑坡从整体上看在库水位下降期变形较库水位上升期变形严重,从局部上看,滑坡的局部变形受到库水位升降作用的综合影响,不同滑坡部位受库水位升降作用的影响程度不同,在库水位涨落期间,滑坡右侧变形较左侧大、中前部变形较滑坡中后部大。
     (8)结合GeoStudio滑坡整体破坏概率计算、滑坡变形分形维数分区图、滑坡发育的地质环境特征以及滑坡现场宏观变形调查数据,进行三舟溪滑坡局部破坏概率分析。论文主要运用GeoStudio数值模拟软件中的SEEP/W功能模块,进行在降雨和库水位共同作用下,三舟溪滑坡在不同年不同库水升降调度周期中地下水位的瞬态模拟,进而耦合SLOP/W功能模块计算三舟溪滑坡在不同计算周期中各模拟地下水位线所对应的滑坡整体破坏概率,按照各计算周期中地下水位线模拟结果的合理性和滑坡稳定性系数最小为原则选择表征该计算周期的滑坡整体破坏概率。此外,根据三舟溪滑坡发育的地质环境特征和滑坡现场调查数据,基于滑坡变形分形维数分区图,修正得到实际中滑坡局部变形的边界形态,进而依据滑坡局部变形的严重程度和滑坡整体破坏概率大小及计算剖面线的位置,定性-半定量分析该滑坡的局部破坏概率。所得三舟溪滑坡局部破坏概率分布图表明:三舟溪滑坡局部破坏概率分布图能较好的反应该滑坡在库水位上升和下降两种工况下的局部变形状态;滑坡右侧危险性较左侧大;整体上看,滑坡在库水位下降期间的危险性高于库水位上升期;同时,结合库水位下降和库水位上升两种工况中,滑坡破坏概率较高的区域与地裂缝展布位置的关系,可以推测,滑坡地表直线形、垂直主滑方向排列的裂缝可能是库水位升降综合作用下滑坡局部变形拉裂的结果,而弧形、由垂直主滑方向向平行主滑方向发育的裂缝更可能是库水位下降时期滑坡局部变形拉裂的结果。
     (9)基于三舟溪滑坡承灾体及其经济价值、人口数量分布资料,进行该滑坡的风险分析。论文按照库水位涨落周期,探讨了三舟溪滑坡的风险,主要考虑的承灾体对象为该滑坡范围内的房屋建筑、室内人口和农田及杂草地。所得不同库水位涨落工况下滑坡风险分析结果表明:从总体上看,三舟溪滑坡库水位下降期滑坡灾害风险高于库水位上升期;对于该滑坡范围内房屋建筑经济价值风险来说,库水位下降期风险总体上高于库水位上升期,在库水位下降期,房屋建筑经济价值风险为0.28至10.1万元,而在库水位上升期,房屋建筑经济价值风险为0.16至2.8万元;对于滑坡范围内室内人口风险来说,部分房屋室内人口风险在库水位下降期高于库水位上升期,在库水位上升期,滑坡范围内室内人口风险共计4人,库水位下降期共计8人;此外,对于其他农用及杂草地的价值风险来说,库水位下降期,滑坡体不同部位土地经济价值风险为933至2160元/亩,库水位上升期,滑坡体不同部位土地经济价值风险为107至933元/亩。
As landslides occurred frequently and caused large economical lose and casualties, it has become one of the major geo-hazards. Landslides and the secondary disaster caused by landslides, such as landslide tsunami, landslide dam and lake, etc, have made the situation even worse, especially in the last30years, on account of the expansion of the growth of population and land use. China is one of those countries, affected by geo-hazards seriously, especially by landslides. In the last5years, there were about20,000geo-hazard events occurred in each year by average and made an average annual casualties1273persons and direct economical lose4,143,000,000Yuan. According to the reports of National Geological Disaster Bulletin from2005to2012, the number of landslide events represents about65%of the number of geo-hazard events. The maximal percentage is in2006with86%. Besides, based on the recent report in2012, the number of geo-hazard events in2012is14,322and caused direct economical lose5,280,000,000Yuan. In this year, the number of landslide events took76%of the number of the geo-hazard events.
     Because of the proper environmental conditions in Three Gorges area, geo-hazards occurred frequently in the history. Since June,2003, the operation of the Three Gorges Dam impoundment has been started, the probability of the occurrence of geo-hazards has increased. According to a report in2010, there were5386landslides had been detected and recorded. And so far, although there were887geo-hazards had been performed prevention and mitigation measures, there are still a large amount of landslides with potential risk. These landslides can only be under manual monitoring. Therefore, on the view of the important political, economical, social status and urban development needs in Three Gorges area, it is meaningful to do research on the development regularities of landslides in this area, and to study on hazard and risk from landslides instability and reactivation by the impoundment of the reservoir water level and the fast urban development. The results would make sense to protect the properties and live, and to promote urban development in this area.
     Wanzhou district, Chongqing city locates in the middle of the Three Gorges Reservoir area. The proper geological environment conditions provides the formation chances of landslides. Thus, in Wanzhou district, landslides occurred frequently and distributed all around this area. In this thesis, amount of work has been carried out in Wanzhou district and based on the widely acceptable theory in landslide hazard and risk research. For instance, landslides development regularities in this area has been made effort to and landslide hazard and risk research in different scale have been studied on.
     At present, there are numerous works have been carried out on landslide development regularities, but there are still some difficulties have not been gone through yet, such as:how to confirm the integrity and the accuracy of landslide records, how to increase the reliability of landslide special-temporal prediction results, how to define the timeliness of landslide development characteristics, how to uniform the standard on landslide failure type classification, how to simulate a real environment to a rational simulation analysis on landslides, and so on. Besides, there are also some problems need to be solved on the study of landslide hazards and risk. For instance, how to define the research period when doing landslide risk analysis, how to express the spatial dynamics of landslide hazard and risk, how to represent the partial failure probability of creep landslides when using traditional failure probability calculation methods, how to improve the reliability of landslides risk results, how to strengthen landslide risk management, and so on.
     In this thesis, some of the above difficulties will be discussed. Based on landslides data collection in Wanzhou district, landsides development regularities, landslide susceptibility in regional scale and landslide failure probability zoning on site scale will be focused on in this thesis. By the end of this study, the results will be given as follows:
     (1) According to the geological environment conditions and the morphological characteristics of landslides, landslide development regularities will be studied in Wanzhou district. This study is based on the latest investigation records and performed in two main aspects. One is on the view of the geological environment where exist landslides and the other is on the view of the morphological characteristics of those landslides. The analysis on the former aspect includes the characteristics of landslides distribution on different elevation, topography, hydrological conditions, landslides boundary conditions, landslide composition and forming age, and so on. In addition, the analysis on the latter aspects includes landslides morphological characteristics and landslide sizes characteristics, such as landslide maximum length, average width, area and volume. Base on the above landslides characteristics statistics, the landslide development regularities in Wanzhou district is aimed to summarized.
     (2) Based on the size distribution of landslides in Wanzhou district, the relationship between different landslide size index are planned to be analyzed. The results in this thesis show, in Wanzhou district, both reservoir water connected landslide or unconnected landslides, the correlation between landslide maximum length and landslide average width is not obvious but commonly, few landslide developed with both length and width in very large value. Besides, there is a certain correlation between landslide area and its maximum length or average width. The larger the area of landslide is, the longer or wider the length or width of landslide will be. However, when the value of the area becomes larger, the distribution of landslides becomes discrete and the correlation between landslide area and its maximum length or average width decline. In addition, the correlation between landslide volume and its maximum length or average width is similar to that between correlation between landslide area and its maximum length or average width. Whereas, when the value of the volume becomes larger, the discrete distribution is more obvious and the correlation is also lower than those between landslide area and its maximum length or average width. What's more, the correlation between landslide volume and area is relatively high. The larger the landslide volume is, the larger the landslide area develops. But, with the increasing of landslide size, the corresponding number of landslides reduce and there shows a discrete distribution and decrease correlation between landslide volume and area.
     (3) From the perspective of landslide frequency density-magnitude distribution, landslide size development regularities has been analyzed. Landslides data in this thesis has been cataloged into three groups, there are group one with total landslide in Wanzhou district, group two with reservoir connected landslides in Wanzhou district and group three with reservoir unconnected landslides in Wanzhou district. The landslide frequency density-magnitude distribution function and curve will be fitted. The results demonstrate, the three-parameter inverse gamma density distribution function fits the landslide frequency density-size distribution well, as well as the noncumulative exponential distribution function fits landslide frequency density-size distribution on large size. Additionally, the size (such as width, area and volume) of landslides in Wanzhou district tend to concentrated in a certain size range, especially of the reservoir unconnected landslides. This regularity proves that for those landslides connect with reservoir are more likely to develop in larger size (such as width, area and volume). Besides, by comparing the landslide frequency density distribution regularity in different places and triggered by different events, it proved that, this kind of landslide distribute regularity is universal. The formation of landslides are controlled by geological environmental conditions and the external factors, and landslides develop concentrated in a certain size range, the more complete the landslide data is the closer the landslide frequency density-size distribution curve will be fitted to the initial distribution of completed landslide inventory data.
     (4) Based on clustering model and combined with geological environment data, landslide distribution and landslides frequency density-magnitude fitting curve, landslide hazard analysis will be studied in Wanzhou district. Firstly, there are7indicators, including strata age, elevation distribution and so on, are chosen to perform landslide susceptibility analysis. In this thesis, landslide susceptibility is based on the location of those landslides in Wanzhou district, with raster data statistics, the indicators landslide susceptibility rating map will be get in this step. Secondly, based on the combination of entropy weight method and AHP method, the weight of each indicator will be calculated. In this thesis, the results show that, the weight of strata age and terrain slope are higher than other indicators for landslide susceptibility. Thirdly, cluster model and information model are used to zone landslide susceptibility map in Wanzhou district. This step implements cluster model algorithm programming and optimizing. The result demonstrates although the accuracy of information model is higher than cluster model, the result from information model is too conservative and the result from cluster model is more closer to the actual situation. In the end, combined with landslides distribution map and landslides frequency density-magnitude fitting curve in this area, landslide susceptibility map will be modified and then the landslide hazard map will be get. Over all, the results show the zones with higher hazard rate in the southern part of the river in Wanzhou district distribute wider than the northern part of the river, the zones with higher hazard rate distribute concentrate in the main city and along the upper part of the river bank while along the downstream section of the river, the zones with higher hazard rate distribute scatteredly.
     (5) By analyzing the distribution of the elements at risk in Wanzhou district, landslide risk zoning will be carried out in this area. In this thesis, the elements at risk include4categories, there are population density, buildings, traffic lines and land resources. The landslide vulnerability zoning result demonstrates, the vulnerability of elements at risk is generally high in the main city of Wanzhou district. Vulnerability distribution of the population is consistent with hazard distribution of landslides. The highest vulnerability distribution of the buildings are concentrated along the junction of Yangtze river and Zhuxi river in the main city and the rest higher vulnerability distribution of the buildings locate on the area with high hazard grade and spread sporadically. The vulnerability of road traffic lines shows the characteristic of section shape distribution. The higher the use level of the traffic lines type, the higher the resilience of the traffic lines should be and under the same intensity of hazard, the smaller the vulnerability of the traffic lines will get. The maximum vulnerability of land resources locate around the main city, and the other higher vulnerability zones generally consistent with hazard distribution of landslides. Besides, based on the analysis of the economic distribution and population density distribution in Wanzhou district, landslide risk zoning map has been gained. The result shows, whether the economical risk or population risk of landslide, the maximum risk value locates around the main city in Wanzhou district.
     (6) Based on LURR model to analyze the response relationship between landslide displacement and the triggering factors, such as rainfall and the water level of reservoir. Combined with GPS surface displacement monitoring data of San Zhouxi landslide, rainfall records and the water level scheduling information, the responding relationship between deformation of landslides and triggering factors is aimed to be found out. The results in this thesis show, LURR model works well in this analysis and the load/unload response ratio can well represent landslide stability and the characteristics of landslide deformation in different time period. The whole San Zhouxi landslide is stable, but some parts of it are less stable. Rainfall makes contribute to the deformation of San Zhouxi landslide, but the changes of the reservoir water level influences the deformation of this landslide more than rainfall and generally, the front part of this landslide responds first to the changes of the reservoir water level and upper part of this landslide responds later, this shows the traction deformation characteristics of San Zhouxi landslide.
     (7) Based on the fractal theory and using box-counting method, the fractal dimension of the moving traces of landslide surface monitoring points have been calculated. After that, based on IDW method, the fractal dimension zoning map of San Zhouxi landslide are obtained. Details are, firstly, according to San Zhouxi landslide GPS monitoring data, the moving traces of these monitoring points are analyzed and made as trajectory curves. Secondly, divided the trajectory curves by two ways, one way is by annually, the other way is by the water impoundment cycles. Thirdly, to process and convert the displacement trajectory curve segments into grayscale image. Then, using box-counting method to calculate the fractal dimension for each grayscale image. Finally, based on IDW method to obtain fractal dimension zoning map for each period. The results show, the whole San Zhouxi landslide is more active when during the drop period of the reservoir water level than during the rise period of the reservoir water level. Besides, from a local point of view, parts of this landslide are influenced by the changes of the reservoir water level and with different effects. In general, the deformation on right side of the landslide are serious than on the left side of the landslide, the deformation on the lower part of landslide are serious than on the upper part of the landslide.
     (8) Based on landslide failure probability calculation by GeoStudio and landslide deformation fractal dimension maps, San Zhouxi landslide failure probability zoning will be studied on. In this thesis, landslide failure probability analysis is based on GeoStudio simulation software. The function module SEEP/W will be used to make transient simulation of the ground water level of San Zhouxi landslide under different reservoir water scheduling cycles and different years. This ground water level simulation will consider the combined effect of rainfall and water level. After this simulation, the function module SLOP/W will be used to calculate landslide failure probability according to different simulated ground water level in different calculation periods. Then, by comparing the reliability of the simulation results and the safety factor values from landslide stability calculation in a certain calculation period, one landslide failure probability result will be chosen to stand for this corresponding calculation period. In addition, in order to modify the real boundry of the partial deformed zone of this landslide, the geological enviroment conditions and the feild survey records of San Zhouxi landslide have been combined with the obtained landslide fractal demension zoning map for analysis. Landslide partial deformation degree map will be obtained from this step and then, based on this landslide deform situation, landslide failure probability get from last step and location of the simulation profile, landslide partical failure probability will be analyzed. The results in this step shows that the failure probability zoning map represents the deformation situation of San Zhouxi landslide well, the failure probability on the right side of the landslide is higher than on the left side of the landslide. And generally speaking, the failure probability of San Zhouxi landslide, when during the drop period of the reservoir water, is higher than during the rising period of the reservoir water. Besides, by analyzing the cracks on the surface of San Zhouxi landslide, the straight and vertical to the main slip direction cracks maybe formed because of reservoir water level fluctuation and those curved and from vertical to parallel to the main slip direction cracks are more likely formed because of the drop affection of reservoir water level.
     (9) Based on the analysis on the distribution of elements at risk on San Zhouxi landslide, landslide risk map of this landslide is aimed to get. In this part, time scale of landslide risk is considered. The landslide risk map based on two period, one is during the rising period of reservoir water level and the other is during the dropping period of reservoir water level. The elements at risk in this case includes buildings, indoor population and agriculture and weeds land. The results show, when during the drop period of reservoir water, San Zhouxi landslide will under higher landslide risk than during the rise period of rese economic risk, when during the drop period of the reservoir water level is higher than during the rise period of the reservoir water level. In the former period, the range of the buildings' economic risk is2,800to101,000Yuan, while in the later period, the range of the buildings' economic risk is1,600to2,8000Yuan. Besides, for the indoor population risk, some of them are under higher risk during the drop period of the reservoir water level than during the rise period of the reservoir water level. In the former period, the indoor population risk is8persons and in the later period, the indoor population risk is4persons. In addition, for other agricultural and weeds land economic risk, during the drop period of reservoir water the range of the economic risk is933to2,160Yuan/mu, while during the rise period of reservoir water the range of the economic risk is107to933Yuan/mu.
引文
[1]丁锡祉.积极发挥滑坡专业委员会的作用[C].四川省滑坡研究及防治经验交流会.成都:科学技术文献出版社.1983:1-6.
    [2]王恭先.滑坡学与滑坡防治技术[M].中国铁道出版社,2004.
    [3]Montgomery DR, Dietrich WE. A physically based model for the topographic control on shallow landsliding [J]. Water resources research,1994,30(4):1153-1171.
    [4]夏金梧,郭厚桢.长江上游地区滑坡分布特征及主要控制因素探讨[J].水文地质工程地质,1997,(1):19-22+32.
    [5]Malamud BD> Turcotte DL, Guzzetti F, et al. Landslide inventories and their statistical properties [J]. Earth Surface Processes and Landforms,2004,29(6):687-711.
    [6]Roering JJ, Kirchner JW, Dietrich WE. Characterizing structural and lithologic controls on deep-seated landsliding:Implications for topographic relief and landscape evolution in the Oregon Coast Range, USA [J]. Geological Society of America Bulletin,2005,117(5-6): 654-668.
    [7]王治华.三峡水库区城镇滑坡分布及发育规律[J].中国地质灾害与防治学报,2007,18(1):33-38.
    [8]祁生文,许强,刘春玲,等.汶川地震极重灾区地质背景及次生斜坡灾害空间发育规律[J].工程地质学报,2009,17(1):39-49.
    [9]Zhang F, Chen W, Liu G, et al. Relationships between landslide types and topographic attributes in a loess catchment, China [J]. Journal of Mountain Science,2012,9(6):742-51.
    [10]Vorpahl P, Elsenbeer H, Marker M, et al. How can statistical models help to determine driving factors of landslides? [J]. Ecological Modelling,2012,239:27-39.
    [11]缪海波.三峡库区侏罗系红层滑坡变形破坏机理与预测预报研究[D];中国地质大学,2012.
    [12]Jakob M. The impacts of logging on landslide activity at Clayoquot Sound, British Columbia [J]. Catena,2000,38(4):279-300.
    [13]Guthrie R, Evans S. Analysis of landslide frequencies and characteristics in a natural system, coastal British Columbia [J]. Earth Surface Processes and Landforms,2004,29(11): 1321-1339.
    [14]Salciarini D, Godt JW, Savage WZ, et al. Modeling regional initiation of rainfall-induced shallow landslides in the eastern Umbria Region of central Italy [J]. Landslides,2006,3(3): 181-194.
    [15]王洁.奉节县新址主城区复杂地质体成因机制研究及稳定性评价[D];成都理工大学,2011.
    [16]张茂省,李同录.黄土滑坡诱发因素及其形成机理研究[J].工程地质学报,2011,19(4):530-540.
    [17]Jemec M, Komac M. Rainfall patterns for shallow landsliding in perialpine Slovenia [J]. Natural Hazards,2013,67(3):1011-1023.
    [18]张茂省,孙传尧,校培喜,等.延安市宝塔区地质灾害详细调查示范[J].西北地质,2007,40(2):29-55.
    [19]黄润秋.20世纪以来中国的大型滑坡及其发生机制[J].岩石力学与工程学报,2007,26(3):433-454.
    [20]Lee HJ. Timing of occurrence of large submarine landslides on the Atlantic Ocean margin [J]. Marine Geology,2009,264(1):53-64.
    [21]钱璐.历史时期长江三峡地区山地地质灾害的时空分布研究[D];西南大学,2012.
    [22]Scheingross JS, Minchew BM, Mackey BH, et al. Fault-zone controls on the spatial distribution of slow-moving landslides [J]. Geological Society of America Bulletin,2013, 125(3-4):473-489.
    [23]李远耀.三峡库区渐进式库岸滑坡的预测预报研究[D];中国地质大学,2010.
    [24]Petley DN, Bulmer MH, Murphy W. Patterns of movement in rotational and translational landslides [J]. Geology,2002,30(8):719-722.
    [25]Petley D, Mantovani F, Bulmer M, et al. The use of surface monitoring data for the interpretation of landslide movement patterns [J]. Geomorphology,2005,66(1):133-147.
    [26]Rotaru A, Oajdea D, Raileanu P. Analysis of the landslide movements [J]. International Journal of Geology,2007,1(3):70-79.
    [27]Parry S, Campbell S. Deformation associated with a slow moving landslide, Tuen Mun, Hong Kong, China [J]. Bulletin of Engineering Geology and the Environment,2007,66(2): 135-141.
    [28]Pytharouli SI, Kontogianni VA, Stiros SC. Kinematics of two deep-seated landslides in Greece [J]. Proceedings of the ICE-Geotechnical Engineering,2007,160(3):179-183.
    [29]许强,曾裕平.具有蠕变特点滑坡的加速度变化特征及临滑预警指标研究[J].岩石力学与工程学报,2009,28(6):1099-1106.
    [30]熊道锟.四川宣汉天台滑坡的变形位移特征及形成机理[J].岩土工程技术,2008,22(4):198-202.
    [31]Bishop AW. The strength of soils as engineering materials [J]. Geotechnique,1966,
    [32]Palmer AC, Rice J. The growth of slip surfaces in the progressive failure of over-consolidated clay [J]. Proceedings of the Royal Society of London A Mathematical and Physical Sciences,1973,332(1591):527-548.
    [33]Leroueil S. Natural slopes and cuts:movement and failure mechanisms [J]. Geotechnique, 2001,51(3):197-243.
    [34]Eberhardt E, Stead D, Coggan J. Numerical analysis of initiation and progressive failure in natural rock slopes-the 1991 Randa rockslide [J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(1):69-87.
    [35]王永刚.双层反翘滑坡渐进破坏力学模型及时效变形分析[D];中国科学院研究生院(武汉岩土力学研究所),2006.
    [36]Urciuoli G, Picarelli L, Leroueil S. Local soil failure before general slope failure [J]. Geotechnical and Geological Engineering,2007,25(1):103-122.
    [37]胡显明,晏鄂川,吕坤,等.基于深部位移监测的渐进推移式滑坡变形传递过程研究[J].地球与环境,2011,39(3):338-342.
    [38]邹宗兴,唐辉明,熊承仁,等.大型顺层岩质滑坡渐进破坏地质力学模型与稳定性分析[J].岩石力学与工程学报,2012,31(11):2222-2231.
    [39]鲁涛.范家坪、白水河滑坡形成机理及后期演化趋势预测[D];三峡大学,2012.
    [40]汤罗圣,殷坤龙.基于R/S分析方法的渐进式滑坡位移预测研究[J].水文地质工程地质,2013,40(3):93-97.
    [41]程谦恭.剧冲式高速岩质滑坡运动全过程动力学机制研究[J].岩石力学与工程学报,1999,18(1):116.
    [42]冯振,殷跃平,李滨,等.鸡尾山特大型岩质滑坡的物理模型试验[J].中南大学学报(自然科学版),2013,44(7):2827-2835.
    [43]刘传正,刘艳辉,连建发.长江三峡巴东复杂斜坡系统成因研究[J].地质论评,2006,52(4):510-521.
    [44]刘传正,王恭先,崔鹏.地质灾害防治研究现状与展望,F,2008[C].
    [45]徐刚.重庆城市滑坡及崩塌的发育规律分析[J].西南师范大学学报(自然科学版),1990,(4):540-545.
    [46]陆关祥,李林.重庆市滑坡、崩塌的发育规律及区域危险性程度区划[J].地质科学,2001,36(3):335-341.
    [47]卓光俊.重庆市主城区崩滑地质灾害诱因及评价[D];重庆大学,2002.
    [48]高克昌.基于GIS的万州区滑坡地质灾害危险性评价研究[D];重庆师范大学,2003.
    [49]罗冲.三峡库区重庆市万州区近水平地层滑坡成因机理研究[D];中国地质大学,2005.
    [50]杨宗佶,乔建平,陈晓林,等.三峡库区万州侏罗系红层滑坡成因机制研究[J].世界科技研究与发展,2008,30(2):174-176.
    [51]成国文,李善涛,李晓,等.万州近水平地层区堆积层滑坡成因与变形破坏特征[J].工程地质学报,2008,16(3):17-23.
    [52]王志俭.万州区红层岩土流变特性及近水平地层滑坡成因机理研究[D];中国地质大学,2008.
    [53]于永贵.三峡库区万州、开县段堆积层滑坡发育规律及破坏模式[D];中国地质大学(北京),2008.
    [54]左昌虎.三峡库区重庆市万州区近水平地层滑坡群成因机制研究与防治对策研究[D];成都理工大学,2008.
    [55]朱大鹏.三峡库区典型堆积层滑坡复活机理及变形预测研究[D];中国地质大学,2010.
    [56]简文星,王志俭,殷坤龙.三峡库区万州缓倾角红层基岩滑坡启滑机制;和谐地球上的水工岩石力学——第三届全国水工岩石力学学术会议,中国上海,2010[C].
    [57]徐刚.重庆市万州区近水平岩层滑坡发育分布规律及防治对策研究[D];成都理工大学,2011.
    [58]吕大洋.三峡库区堆积层滑坡降雨敏感性分析——以万州塘角2号滑坡为例[J].贵州地质,2013,30(3):223-226
    [59]Carrara A. Multivariate models for landslide hazard evaluation [J]. Journal of the International Association for Mathematical Geology,1983,15(3):403-26.
    [60]Brabb EE. Innovative approaches to landslide hazard and risk mapping [M].1984.
    [61]Varnes DJ, Landslides tIAEGCo, Slopes OMMo. Landslide hazard zonation:a review of principles and practice [J].1984,
    [62]Einstein H. Special lecture:landslide risk assessment procedure; proceedings of the Proc 5th Int Symp on Landslides, Lausanne, F,1988 [C].
    [63]Cruden D, Fell R. Landslide Risk Assessment:Proceedings of the International Workshop on Landslide Risk Assessment, Honolulu, Hawaii, USA,19-21 February 1997 [M]. Balkema; Ashgate,1997.
    [64]殷跃平.中国地质灾害减灾回顾与展望——从国际减灾十年到国际减灾战略[J].国土资源科技管理,2001,18(3):26-29.
    [65]Glade T, Anderson M, Crozier MJ. Landslide hazard and risk [M]. Wiley Online Library, 2005.
    [66]Fell R, Corominas J, Bonnard C, et al. Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning [J]. Engineering Geology,2008,102(3):99-111.
    [67]AGS. A national landslide risk management framework for Australia, Australian geomechanics society [J]. Australian Geomechanics,2007,42(1):1-12.
    [68]Interior USDot, Survey USG,2006.
    [69]Gerath R, Jakob M, Mitchell P, et al. Guidelines for legislated landslide assessments for proposed residential development in British Columbia [J]. Vancouver, British Columbia, Canada:Association of Professional Engineers and Geoscientists of British Columbia,2006,
    [70]Kong E-H. Hong Kong:Geotechnical Engineering Office,1998.
    [71]Fell R, Ho K, Lacasse S, et al. State of the Art Paper 1-A framework for landslide risk assessment and management; proceedings of the Proceedings of the International Conference on Landslide Risk Management, Vancouver, Canada, F,2005 [C].
    [72]杜娟.单体滑坡灾害风险评价研究[D];中国地质大学,2012.
    [73]van Westen CJ, Castellanos E, Kuriakose SL. Spatial data for landslide susceptibility, hazard, and vulnerability assessment:an overview [J]. Engineering geology,2008,102(3):112-131.
    [74]Bonachea J, Remondo J, Teran D, et al. Landslide risk models for decision making [J]. Risk Analysis,2009,29(11):1629-1643.
    [75]胡爱军,李宁,吴吉东,等.基于经验似然比函数模型的降水型滑坡灾害概率风险分析与预测[J].灾害学,2009,24(3):1-6.
    [76]Jaiswal P, Westen Cv, Jetten V. Quantitative assessment of direct and indirect landslide risk along transportation lines in southern India [J]. Natural Hazards and Earth System Science, 2010,10(6):1253-1267.
    [77]殷坤龙.滑坡灾害风险分析[M].科学出版社,2010.
    [78]唐亚明,张茂省,薛强.一种大比例尺的滑坡风险区划方法——以延安市区黄土滑坡风险评价为例[J].地质通报,2011,01):166-172.
    [79]李红英,权威,李二兵,等.基于滑坡风险评价的水电站坝址比选研究[J].水文地质工程地质,2012,39(5):103-110.
    [80]刘鑫.单体滑坡风险评价方法研究[D],2008.
    [81]Hungr O, McDougall S. Two numerical models for landslide dynamic analysis [J]. Computers & Geosciences,2009,35(5):978-992.
    [82]Anderson MG, Holcombe E, Esquivel M, et al. The efficacy of a programme of landslide risk reduction in areas of unplanned housing in the Eastern Caribbean [J]. Environmental management,2010,45(4):807-821.
    [83]Papathoma-Kohle M, Kappes M, Keiler M, et al. Physical vulnerability assessment for alpine hazards:state of the art and future needs [J]. Natural hazards,2011,58(2):645-680.
    [84]吴越,刘东升,李明军.岩体滑坡冲击能计算及受灾体易损性定量评估[J].岩石力学与工程学报,2011,30(5):901-909.
    [85]魏爽.三峡库区土质边坡风险性分析及安全评价[D];重庆交通大学,2012.
    [86]胡瑞林,范林峰,王珊珊,等.滑坡风险评价的理论与方法研究[J].工程地质学报,2013,21(1):76-84.
    [87]Fotopoulou S, Pitilakis K. Vulnerability assessment of reinforced concrete buildings subjected to seismically triggered slow-moving earth slides [J]. Landslides,2012,1-20.
    [88]谢全敏.滑坡灾害风险评价及其治理决策方法研究[D];武汉理工大学,2004.
    [89]汪洋.3S架构下的地质灾害灾情风险评估原理、方法与系统集成技术研究[D];重庆师范大学,2004.
    [90]邢万波.堤防工程风险分析理论和实践研究[D];河海大学,2006.
    [91]李兵.地铁车站施工风险管理研究[D];北京交通大学,2006.
    [92]张俊.基坑工程风险管理研究[D];华南理工大学,2012.
    [93]Westen Cv. Development of a Spatial Decision Support System for Analyzing Changes in Hydro-meteorological Risk [M].2013:71.
    [94]曾勇.道路边坡施工风险分析与评价[D];重庆交通大学,2011.
    [95]王涛,吴树仁,石菊松.国际滑坡风险评估与管理指南研究综述[J].地质通报,2009,28(8):1006-1019.
    [96]Hutchinson J. Keynote paper:landslide hazard assessment [J]. Landslides Balkema, Rotterdam,1995,1805-1841.
    [97]张梁.地质灾害风险评价理论与方法[J].中国地质矿产经济,1996,4(6):25-29.
    [98]孟庆华.秦岭山区地质灾害风险评估方法研究[D];中国地质科学院,2011.
    [99]Tsai Z-X, You GJY, Lee H-Y, et al. Modeling the sediment yield from landslides in the Shihmen Reservoir watershed, Taiwan [J]. Earth Surface Processes and Landforms,2013, 38(7):661-674.
    [100]边亦海.基于风险分析的软土地区深基坑支护方案选择[D];同济大学,2006.
    [101]张雷,袁戟.城市地下工程对周围建筑风险评价的价值模型[J].地下空间与工程学报,2010,(5):1098-1103.
    [102]周建昆.云南省山区高速公路工程风险评价与管理研究[D];中国铁道科学研究院,2009.
    [103]石菊松,石玲,吴树仁,等.滑坡风险评估实践中的难点与对策[J].地质通报,2009,28(8):1020-1030.
    [104]刘莉.城市防震减灾能力标定及可接受风险研究[D];中国地震局工程力学研究所,2009.
    [105]殷坤龙,简文星,汪洋,等.三峡库区万州区近水平地层滑坡成因机制与防治工程研究[M].武汉:中国地质大学出版社,2007.
    [106]骆黎.万州区地质灾害分析与对策研究[D];西南大学,2006.
    [107]苏爱军,刘红星,孙云志,等.三峡库区水平层状滑坡成因研究[J].武汉理工大学学报(交通科学与工程版),2004,29(3):427-430.
    [108]Carrara A, Crosta G, Frattini P. Geomorphological and historical data in assessing landslide hazard [J]. Earth Surface Processes and Landforms,2003,28(10):1125-1142.
    [109]Guzzetti F, Mondini AC, Cardinali M, et al. Landslide inventory maps:New tools for an old problem [J]. Earth-Science Reviews,2012,112(1-2):42-66.
    [110]Martha TR, van Westen CJ, Kerle N, et al. Landslide hazard and risk assessment using semi-automatically created landslide inventories [J]. Geomorphology,2012,
    [111]Westen CJ, Asch TWJ, Soeters R. Landslide hazard and risk zonation-why is it still so difficult? [J]. Bulletin of Engineering Geology and the Environment,2006,65(2):167-184.
    [112]Harp EL, Keefer DK, Sato HP, et al. Landslide inventories:The essential part of seismic landslide hazard analyses [J]. Engineering Geology,2011,122(1-2):9-21.
    [113]Foster C, Pennington CVL, Culshaw M, et al. The national landslide database of Great Britain:development, evolution and applications [J]. Environmental Earth Sciences,2012, 66(3):941-953.
    [114]Malamud BD, Turcotte DL, Guzzetti F, et al. Landslide inventories and their statistical properties [J]. Earth Surface Processes and Landforms,2004a,29(6):687-711.
    [115]Malamud BD, Turcotte DL, Guzzetti F, et al. Landslides, earthquakes, and erosion [J]. Earth and Planetary Science Letters,2004b,229(1):45-59.
    [116]Frattini P, Crosta GB. The role of material properties and landscape morphology on landslide size distributions [J]. Earth and Planetary Science Letters,2013,361:310-319.
    [117]Stark CP, Hovius N. The characterization of landslide size distributions [J]. Geophysical Research Letters,2001,28(6):1091.
    [118]Van Den Eeckhaut M, Poesen J, Govers G, et al. Characteristics of the size distribution of recent and historical landslides in a populated hilly region [J]. Earth and Planetary Science Letters,2007,256(3-4):588-603.
    [119]Guzzetti F, Malamud BD, Turcotte DL, et al. Power-law correlations of landslide areas in central Italy [J]. Earth and Planetary Science Letters,2002,195(3-4):169-183.
    [120]Hovius N, Stark CP, Allen PA. Sediment flux from a mountain belt derived by landslide mapping [J]. Geology,1997,25(3):231.
    [121]Guthrie RH, Evans SG. Analysis of landslide frequencies and characteristics in a natural system, coastal British Columbia [J]. Earth Surface Processes and Landforms,2004b,29(11): 1321-1339.
    [122]Catani F, Casagli N, Ermini L, et al. Landslide hazard and risk mapping at catchment scale in the Amo River basin [J]. Landslides,2005,2(4):329-342.
    [123]Havenith HB, Torgoev I, Meleshko A, et al. Landslides in the Mailuu-Suu Valley, Kyrgyzstan-Hazards and Impacts [J]. Landslides,2006,3(2):137-147.
    [124]Chien-Yuan C, Fan-Chieh Y, Sheng-Chi L, et al. Discussion of landslide self-organized criticality and the initiation of debris flow [J]. Earth Surface Processes and Landforms,2007, 32(2):197-209.
    [125]Brunetti M, Guzzetti F, Rossi M. Probability distributions of landslide volumes [J]. Nonlinear Processes in Geophysics,2009,16(2):179-188.
    [126]Jaiswal P, Westen CJ. Frequency-size relation of shallow debris slides on cut slopes along a railroad corridor:A case study from Nilgiri hills, Southern India [J]. Natural Hazards,2012, 61(3):1263-1275.
    [127]Pelletier JD, Malamud BD, Blodgett T, et al. Scale-invariance of soil moisture variability and its implications for the frequency-size distribution of landslides [J]. Engineering Geology, 1997,48(3):255-268.
    [128]Malamud BD, Turcotte DL. Self-organized criticality applied to natural hazards [J]. Natural Hazards,1999,20(2):93-116.
    [129]Iwahashi J, Watanabe S, Furuya T. Mean slope-angle frequency distribution and size frequency distribution of landslide masses in Higashikubiki area, Japan [J]. Geomorphology, 2003,50(4):349-364.
    [130]Bak P, Tang C, Wiesenfeld K. Self-organized criticality:An explanation of the 1/f noise [J]. Physical Review Letters,1987,59(4):381-384.
    [131]Guthrie RH, Deadman PJ, Cabrera AR, et al. Exploring the magnitude-frequency distribution: a cellular automata model for landslides [J]. Landslides,2008,5(1):151-159.
    [132]Turcotte DL, Malamud BD. Landslides, forest fires, and earthquakes:examples of self-organized critical behavior [J]. Physica A:Statistical Mechanics and its Applications, 2004,340(4):580-589.
    [133]Turcotte DL, Malamud BD, Guzzetti F, et al. Self-organization, the cascade model, and natural hazards [J]. Proceedings of the National Academy of Sciences of the United States of America,2002,99(Suppl 1):2530-2537.
    [134]Hergarten S, Neugebauer HJ. Self-organized criticality in a landslide model [J]. Geophysical Research Letters,1998,25(6):801-804.
    [135]Guthrie R, Evans S. Magnitude and frequency of landslides triggered by a storm event, Loughborough Inlet, British Columbia [J]. Natural Hazards and Earth System Science,2004, 4(3):475-483.
    [136]Dahl M-PJ, Mortensen LE, Jensen NH, et al. Magnitude-frequency characteristics and preparatory factors for spatial debris-slide distribution in the northern Faroe Islands [J]. Geomorphology,2013,188:3-11.
    [137]Harp EL, Jibson RW. Landslides triggered by the 1994 Northridge, California, earthquake [J]. Bulletin of the Seismological Society of America,1996,86(1B):S319-S32.
    [138]Cardinali M, Ardizzone F, Galli M, et al. Landslides triggered by rapid snow melting:the December 1996-January 1997 event in Central Italy; proceedings of the Proceedings 1st Plinius Conference on Mediterranean Storms, F,2000 [C]. Bios:Cosenza.
    [139]Bucknam RC, Coe JA, Chavarria MM, et al. Landslides triggered by hurricane Mitch in Guatemala:Inventory and discussion [M]. US Department of the Interior, US Geological Survey,2001.
    [140]Hovius N, Stark CP, Hao-Tsu C, et al. Supply and removal of sediment in a landslide-dominated mountain belt:Central Range, Taiwan [J]. The Journal of Geology,2000,108(1): 73-89.
    [141]Guzzetti F, Reichenbach P, Cardinali M, et al. The impact of landslides in the Umbria region, central Italy [J]. Natural Hazards and Earth System Science,2003,3(5):469-486.
    [142]桂蕾,殷坤龙,王佳佳.基于聚类分析的滑坡灾害危险性区划研究[J].水文地质工程地质,2013,40(1):100-105.
    [143]向东进.实用多元统计分析[M].武汉:中国地质大学出版社,2005.
    [144]高克昌,崔鹏,赵纯勇,等.基于地理信息系统和信息量模型的滑坡危险性评价——以重庆万州为例[J].岩石力学与工程学报,2006,25(5):991-996.
    [145]朱良峰,吴信才,殷坤龙,等.基于信息量模型的中国滑坡灾害风险区划研究[J].地球科学与环境学报,2004,26(3):52-56.
    [146]Uzielli M, Nadim F, Lacasse S, et al. A conceptual framework for quantitative estimation of physical vulnerability to landslides [J]. Engineering Geology,2008,102(3):251-256.
    [147]Deng Q, Zhu Z, Cui Z, et al. Mass rock creep and landsliding on the Huangtupo slope in the reservoir area of the Three Gorges Project, Yangtze River, China [J]. Engineering geology, 2000,58(1):67-83.
    [148]Wu SR, Shi L, Wang RJ, et al. Zonation of the landslide hazards in the forereservoir region of the Three Gorges Project on the Yangtze River [J]. Engineering Geology,2001,59(1-2): 51-58.
    [149]Travelletti J, Delacourt C, Allemand P, et al. Correlation of multi-temporal ground-based optical images for landslide monitoring:Application, potential and limitations [J]. ISPRS Journal of Photogrammetry and Remote Sensing,2012,70:39-55.
    [150]Angeli M-G, Pasuto A, Silvano S. A critical review of landslide monitoring experiences [J]. Engineering Geology,2000,55(3):133-147.
    [151]Wang G-Q. Kinematics of the Cerca del Cielo, Puerto Rico landslide derived from GPS observations [J]. Landslides,2012,9(1):117-130.
    [152]Dogan U, Oz D, Ergintav S. Kinematics of landslide estimated by repeated GPS measurements in the Avcilar region of Istanbul, Turkey [J]. Studia Geophysica et Geodaetica, 2013,57(2):217-232.
    [153]Calcaterra S, Cesi C, Di Maio C, et al. Surface displacements of two landslides evaluated by GPS and inclinometer systems:a case study in Southern Apennines, Italy [J]. Natural Hazards,2012,61(1):257-266.
    [154]Tarchi D, Casagli N, Fanti R, et al. Landslide monitoring by using ground-based SAR interferometry:an example of application to the Tessina landslide in Italy [J]. Engineering Geology,2003,68(1):15-30.
    [155]Liu P, Li Z, Hoey T. et al. Using advanced InSAR time series techniques to monitor landslide movements in Badong of the Three Gorges region. China [J]. International Journal of Applied Earth Observation and Geoinformation,2013,21:253-264.
    [156]Colesanti C, Ferretti A, Prati C. et al. Monitoring landslides and tectonic motions with the Permanent Scatterers Technique [J]. Engineering Geology,2003,68(1):3-14.
    [157]Tofani V, Raspini F, Catani F, et al. Persistent Scatterer Interferometry (PSI) Technique for Landslide Characterization and Monitoring [J]. Remote Sensing,2013,5(3):1045-1065.
    [158]Yin Y, Wang H, Gao Y, et al. Real-time monitoring and early warning of landslides at relocated Wushan Town, the Three Gorges Reservoir, China [J]. Landslides,2010,7(3): 339-349.
    [159]Gili JA, Corominas J, Rius J. Using Global Positioning System techniques in landslide monitoring [J]. Engineering Geology,2000,55(3):167-192.
    [160]Chen Y, Ding X, Huang D, et al. A multi-antenna GPS system for local area deformation monitoring [J]. EARTH PLANETS AND SPACE,2000,52(10):873-876.
    [161]Ifadis IM. A new approach to mapping the atmospheric effect for GPS observations [J]. Earth, planets and space,2000,52(10):703-708.
    [162]Malet J-P, Maquaire O, Calais E. The use of Global Positioning System techniques for the continuous monitoring of landslides:application to the Super-Sauze earthflow (Alpes-de-Haute-Provence, France) [J]. Geomorphology,2002,43(1):33-54.
    [163]Hastaoglu KO, Sanli DU. Monitoring Koyulhisar landslide using rapid static GPS:a strategy to remove biases from vertical velocities [J]. Natural Hazards,2011,58(3):1275-1294.
    [164]Cencetti C, Conversini P, Radicioni F, et al. The evolution of Montebestia landslide (Umbria, Central Italy). Site investigations, in-situ tests and GPS monitoring [J]. Physics and Chemistry of the Earth, Part B:Hydrology, Oceans and Atmosphere,2000,25(9):799-808.
    [165]Squarzoni C, Delacourt C, Allemand P. Differential single-frequency GPS monitoring of the La Valette landslide (French Alps) [J]. Engineering Geology,2005,79(3):215-229.
    [166]Nordvik T, Nyrnes E. Statistical analysis of surface displacements-an example from the Aknes rockslide, western Norway [J]. Nat Hazards Earth Syst Sci,2009,9(3):713-724.
    [167]Wang NY, Wu J, Xia L, et al. GPS Monitoring and Warning on Bazimen Landslide [J]. Applied Mechanics and Materials,2012,204:3532-3538.
    [168]Du J, Yin K, Lacasse S. Displacement prediction in colluvial landslides, Three Gorges Reservoir, China [J]. Landslides,2012,10(2):203-218.
    [169]Paronuzzi P, Rigo E, Bolla A. Influence of filling-drawdown cycles of the Vajont reservoir on Mt. Toc slope stability [J]. Geomorphology,2013,191:75-93.
    [170]Haneberg WC. Pore pressure diffusion and the hydrologic response of nearly saturated, thin landslide deposits to rainfall [J]. The Journal of Geology,1991,886-892.
    [171]Reid ME. A pore-pressure diffusion model for estimating landslide-inducing rainfall [J]. The Journal of Geology,1994,709-717.
    [172]Corominas J, Moya J. Reconstructing recent landslide activity in relation to rainfall in the Llobregat River basin, Eastern Pyrenees, Spain [J]. Geomorphology,1999,30(1):79-93.
    [173]Tsaparas I, Rahardjo H, Toll DG, et al. Controlling parameters for rainfall-induced landslides [J]. Computers and Geotechnics,2002,29(1):1-27.
    [174]Kim D, Im S, Lee SH, et al. Predicting the rainfall-triggered landslides in a forested mountain region using TRIGRS model [J]. Journal of Mountain Science,2010,7(1):83-91.
    [175]Wang XT, Chen SJ, Feng Q. Bankside Stability Analysis under the Actions of Rainfall and Reservoir Water Level Fluctuation [J]. Advanced Materials Research,2012,610:2658-2662.
    [176]Zhang M, Dong Y, Sun P. Impact of reservoir impoundment-caused groundwater level changes on regional slope stability:a case study in the Loess Plateau of Western China [J]. Environmental Earth Sciences,2012,66(6):1715-1725.
    [177]Austin NJ, Muller JP, Gong L, et al. A regional investigation of urban land-use change for potential landslide hazard assessment in the Three Gorges Reservoir Area, People's Republic of China:Zigui to Wanzhou [J]. International Journal of Remote Sensing,2013,34(8): 2983-3011.
    [178]Ataie-Ashtiani B, Shobeyri G. Numerical simulation of landslide impulsive waves by incompressible smoothed particle hydrodynamics [J]. International Journal for Numerical Methods in Fluids,2008,56(2):209-232.
    [179]Fan X, van Westen CJ, Korup O, et al. Transient water and sediment storage of the decaying landslide dams induced by the 2008 Wenchuan earthquake, China [J]. Geomorphology,2012, 171:58-68.
    [180]Chai B, Yin K, Du J, et al. Correlation between incompetent beds and slope deformation at Badong town in the Three Gorges reservoir, China [J]. Environmental Earth Sciences,2012, 69(1):209-223.
    [181]Qinghui J, Zhenhua Z, Wei W, et al. Research on triggering mechanism and kinematic process of Qianjiangping Landslide [J]. DISASTER ADVANCES,2012,5(4):631-636.
    [182]Keqiang H, Shangqing W, Wen D, et al. Dynamic features and effects of rainfall on landslides in the Three Gorges Reservoir region, China:using the Xintan landslide and the large Huangya landslide as the examples [J]. Environmental earth sciences,2010,59(6): 1267-1274.
    [183]Yin X-C, Yin C, Chen X-Z. The precursor of instability for nonlinear systems and its application to earthquake prediction-the load-unload response ratio theory [J]. Geophysical Monograph Series,1994,83:55-60.
    [184]Yin X-c, Chen X-z, Song Z-p, et al. A new approach to earthquake prediction:The Load/Unload Response Ratio (LURR) theory [J]. Pure and Applied Geophysics,1995, 145(3-4):701-715.
    [185]许强,黄润秋.用加卸载响应比理论探讨斜坡失稳前兆[J].中国地质灾害与防治学报,1995,6(2):25-30.
    [186]姜彤,马瑾,许兵.基于加卸载响应比理论的边坡动力稳定分析方法[J].岩石力学与工程学报,2007,26(3):626-631.
    [187]邬凯,盛谦,张勇慧.基于加卸载响应比理论的降雨型滑坡预警研究[J].防灾减灾工程学报,2011,31(6):632-636.
    [188]Mandelbrot BB. The fractal geometry of nature [M]. New York:W. H. Freeman and Company; First Edition edition (1982),1983.
    [189]陈颓,陈凌.分形几何学[M].北京:地震出版社,2005.
    [190]Micallef A, Berndt C, Masson DG, et al. Scale invariant characteristics of the Storegga Slide and implications for large-scale submarine mass movements [J]. Marine Geology,2008, 247(1):46-60.
    [191]Sivakumar B. Fractal analysis of rainfall observed in two different climatic regions [J]. Hydrological sciences journal,2000,45(5):727-738.
    [192]Kotowski P. Fractal dimension of metallic fracture surface [J]. International journal of fracture,2006,141(1-2):269-286.
    [193]Zhang Y, Yu J, Fan W. Fractal features of urban morphology and simulation of urban boundary [J]. Geo-spatial Information Science,2008,11(2):121-126.
    [194]汪华斌,李江风,吴树人.滑坡灾害系统非线性研究进展[J].地球科学进展,2000,15(3):271-276.
    [195]Katz O, Aharonov E. Landslides in vibrating sand box:What controls types of slope failure and frequency magnitude relations? [J]. Earth and Planetary Science Letters,2006,247(3): 280-294.
    [196]Li C, Ma T, Zhu X, et al. The power-law relationship between landslide occurrence and rainfall level [J]. Geomorphology,2011,130(3):221-229.
    [197]郑明新,王恭先,王兰生.分形理论在滑坡预测中的应用研究[J].地质灾害与环境保护,1998,9(2):18-26.
    [198]贺可强,孙林娜,王思敬.滑坡位移分形参数Hurst指数及其在堆积层滑坡预报中的应用[J].岩石力学与工程学报,2009,28(6):1107-1115.
    [199]Sezer E. A computer program for fractal dimension (FRACEK) with application on type of mass movement characterization [J]. Computers & Geosciences,2010,36(3):391-396.
    [200]Buczkowski S, Kyriacos S, Nekka F, et al. The modified box-counting method:analysis of some characteristic parameters [J]. Pattern Recognition,1998,31(4):411-418.
    [201]Jimenez J, Ruiz de Miras J. Fast box-counting algorithm on GPU [J]. Computer Methods and Programs in Biomedicine,2012,108(3):1229-1242.
    [202]Conci A, Proenca CB. A fractal image analysis system for fabric inspection based on a box-counting method [J]. Computer Networks and ISDN Systems,1998,30(20):1887-1895.
    [203]Hu XM, Yan EC, Lv K, et al. Fractal Characteristics of Motion Trace Curve of Landslide Monitoring Points [J]. Applied Mechanics and Materials,2011,90:1285-1290.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700