用户名: 密码: 验证码:
滇西北衙超大型金多金属矿床岩浆作用与成矿模式
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
北衙金多金属矿床位于金沙江-哀牢山斑岩成矿带中段,金的储量达超大型矿床规模,并伴生铁、铜、银、铅、锌等金属矿种。本次工作在前人研究的基础上,通过对矿床系统的野外地质调查和研究,以及岩石地球化学、矿床地球化学等方法,对研究区内的岩浆作用成因、地质动力学背景、金属矿床的成因和成矿过程进行了系统研究,取得了部分新的认识和结果,分别建立了岩浆作用和成矿作用模型。取得主要认识如下:
     1、对矿区出露的各类岩浆岩进行了系统的LA-ICP-MS测年,二长花岗斑岩的年龄为36.0±0.49Ma~36.76±0.25Ma;黑云母二长花岗斑岩的年龄为35.92±0.49Ma;煌斑岩的年龄为34.92±0.66Ma。测年数据表明北衙地区不同类型的岩浆活动时代十分接近,均在36~34Ma。
     2、研究表明,北衙地区长英质斑岩总体属于钾玄岩系列,富集Sr和LREE亏损HREE;Sr/Y、(La/Yb)N比值较高,无显著Eu负异常,显示有埃达克岩的地球化学特征,但又以高(Na2O+K2O),高(K2O/Na2O)比值,低的MgO、Cr、Ni不同于典型的埃达克岩。岩石具有富集的Sr-Nd-Pb同位素组成和不均一的εHf(t)同位素组成。显示源区可能为加厚的下地壳,同时混合有富集的岩石圈地幔物质加入。煌斑岩具富碱,高钾、富集大离子亲石元素及轻稀土元素、亏损重稀土及高场强元素、高(87Sr/86Sr)i、低εNd(t)、富集的放射性Pb同位素和εHf(t)等特征。源区可能为受俯冲交代的岩石圈地幔。岩石的形成可能是印度大陆与欧亚大陆的碰撞,导致滇西地区地壳和岩石圈缩短并加厚,在30~40Ma之间加厚的岩石圈的超过了最大稳定性,岩石圈地幔下部发生减薄,残余岩石圈地幔发生部分熔融并底侵于加厚下地壳有关。
     3、首次通过辉钼矿Re-Os同位素年龄确定了矿床成矿年龄为(36.82±0.48)Ma,该年龄与斑岩体的年龄接近。并与金沙江-哀牢山富碱斑岩成矿带的成岩成矿高峰期一致(35Ma左右)。
     4、矿区成矿类型可分为矽卡岩型金铁铜矿、斑岩型铜金矿、热液层(脉)状金多金属矿、砂砾粘土型金铁矿。具有由高温→中温→低温的元素分带的特征。原生矿床成因类型为以矽卡岩型金铁铜矿为主。矽卡岩组成具有分带性,呈现氧化型矽卡岩金矿的特征。
     5、成矿流体从岩浆热液阶段到碳酸盐阶段温度和盐度具有逐渐降低趋势。流体的形成和演化可能经历了熔体出溶→相分离→流体减压沸腾→岩浆热液、挥发分和碳酸盐岩接触交代,流体混合作用的过程。熔体与流体的分离和水岩作用富集了成矿物质,而流体的沸腾作用和混合作用则促使了成矿物质的沉淀。早期成矿流体主要来自岩浆水,晚期有大气降水的混入。成矿物质来源于斑岩岩浆体系。
     6、综合分析矿床地质特征、控矿因素、流体演化、成矿作用等基础上,初步建立了北衙金多金属矿床的成矿模式。
The Beiyagold-polymetallicdeposit is located near the eastern end of the Tethyan orogenic belt in western Yunnan province, China. It is one of the largest gold deposits in China, and contains significant amounts of silver and base metals (Cu, Fe and Pb). This study aims to resolve the problems relating with geodynamic setting, origin and petrogenesis of magmatic rocks, ore-forming processes and to suggest a metallogenetic model in the Beiya deposit.
     1. Systematic LA-ICP-MS U-Pb zircon dating results indicate that all the intrusive rocks in Beiya district are coeval, ranging from34Ma to37Ma.
     2. The results show that felsic porphyries in the Beiya area are shoshonitic rocks with high K2O/Na2O, and enrich in LREE and lack pronounced Eu negative anomalies. Besides, they have high contents of Sr, and enrichment in LILE, but depletion in Yb, Y and HFSE. All characteristics mentioned above indicate that the alkali-rich porphyries from Beiya are similar to adakitesgeochemically. This study presents the lamprophyres werederived from EMII enriched mantle in terms of their isotopic characteristics and regional tectonic evolution history. This lithospheric thinning caused by the collision between Indian and Eurasian plate could have resulted in the upwelling of the asthenosphere beneath western Yunnan, inducing partial melting of the residualmetasomatized lithospheric mantle.[This process generated potassic tomafic melts producelamprophyres, and underplating of such melts beneath thickened lower crust, which triggered partialmelting of the lower crust to produce high-K adakitic magma.] Reword, doesn't make sence.
     3. Re-Os dating of molybdenite indicates the age of36.82±0.48Ma, suggesting the mineralization in the Beiya gold-polymetallic deposit genetically associated to the porphyry.
     4. According to our study, the Beiya deposit is a composite deposit, within which skarn-typeCu-Au-Fedeposit is predominant, and associated with porphyry-typeAu-Cu, and hydrothermal vein-type Fe-Au-Pb-Zn mineralization. It is clearly zoned in element assemblage consistent to temperature decreasingfrom the porphyry to the wallrock. The garnet is andradite-rich, whereas pyroxene is relatively rich in diopside. This mineral assemblage indicates oxidization in the Beiya skarn system.
     5. The ore-forming fluids evolved from high temperature and high salinity conditions to low temperature and low salinity conditions, and experiencedextraction of magma, phase separation of supercritical fluid, decompression andboiling, the filling or metasomatism between magmatic hydrotherm-volatile andcarbonate wall rocks. In the processes of water-rock interaction, magmatic hydrothermal and meteoric water was boiled and mixed. Boiling and mixing could be a significant mechanism of the formation of mineralization.The ore-forming fluids were origined from magma mixing with precipitated water in the later period, while themineralization elementsweremainlyfrom magma.
     6. This study suggests a metallogenic model on the basis of the evolutionof the ore-forming fluids and the settings of this ore deposit.
引文
Atherton MP and Petford N. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature,1993,362(6416):144-146
    Audetat A, Pettke T and Dolejs D. Magmatic anhydrite and calcite in the ore-forming quartz-monzodiorite magma at Santa Rita., New Mexico (USA):Genetic constraints on porphyry-Cu mineralization. Lithos,2002,72(324):147-161
    BallardJR, Palin,JM and Campbell IH.Relative oxidation states of magmasin ferred from Ce(Ⅳ)/Ce(111) inzircon:application to Porphyry copper depositsof northern Chile. Contrib. Mineral. Petrol,2002,144:347-364
    Baker TandLang JR. Reconcilingfluid inclusions, fluid processes and fluid source in skarns:An example from the Bismark skarn deposit, Mexico. Mineralium Deposita,2003,38:474-495
    Baker T, van Achterberg E, RyanCG et al. Composition and evolution of ore fluids in a magmatic-hydrothermal skarn deposit. Geology,2004,32:117-120
    Bird, P.Continental delamination and the Colorado Plateau:Journal of Geophysical Research,1979,84,7561-7571
    Blevin, PL. Paleozoic granite metallogenesis of eastern Australia, in Blevin, P.L., Jones, M., and Chappell, B., ed., Magmas to mineralization:The Ishihara symposium, Record14:Sydney, Geoscience Australia,1993,5-8
    Blevin, PL. Redox and compositional parameters for interpreting the granitoids metallogeny of eastern Australia:Implications for gold-rich ore systems:Resource Geology,2004,54:241-252
    BodnarRJ.Revised equationand table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica Acta,1993,57(3):683-684
    Bodnar RJ. Fluid inclusion evidence for a magmatic source for metals in porphyry copper deposits. In:Thompson JFH (ed.).Mineralogical Association of Canada Short Course Volume23, Magmas,1993, Fluids and Ore Deposits:139-152
    Bottinga Y and Javoy M. Oxygen isotope partitioning among the minerals in igneous and metamorphic rocks. Rev. Geophysics-Space Physics,1979,13:401
    Boynton W V. Geochemistry of the rare earth elements:meteorite studies. In:Henderson P(ed.). Rare earth element geochemistry. Elservier,1984,63-114
    Burnham CW. Magmas and hydrothermal fluids. In:Barnes HL (ed.). Geochemistry of Hydrothermal Ore Deposits.2ed Edition. New York:John Wiley and Sons,1979,71-136
    Brown PE and Essene JE. Activity variations attending tungsten skarn formation, Pine Creek, California:Contributions to Mineralogy and Petrology,1985,89:358-369.
    Candela PA and Pieeoli PM, Model of ore-metal partitioning from melts into vapor and vapor/brine mixtures:Mineralogical Association of Canada Short Course Series,1995,23:101-128
    Canadela PA. A review of shallow, ore related granites:textures, volatiles, and ore metals. Journal of Petrology,1997,38(12):1619-1633
    Castillo PR, Janney PE and Solidum RU. Petrology and geochemistry of Camiguin Island, southern Philippines:Insights to the source of adakites and other lavas in a complex arc setting. Contributions to Mineralogy and Petrology,1997,134(1):33-51
    Chen Y J, Chen H Y, Zaw K, et al. Geodynamic settings and tectonic model of skarn gold desosits in China:an overview. Ore Geology Review,2007,31(1-4):139-169
    Chung SL, Lee TY, Lo CH, et al. Intraplate extension prior to continental extrusion along the Ailao shan-Red River shear zone. Geology,1997,25:311-314
    Chung SL, Lo CH, Lee TY, et al. Diachronous uplift of the Tibetan plateau starting40Myrago. Nature,1998,394:769-773
    Clayton RN, Rex RW, Syers JK, et al. Oxygen isotope abundance in quartz from Pacific pelagic sediments. Jounal of Geophysical Reserch,1972,77(21):3907-3915.
    Clemens JD. S-type granitic magmas-petrogenetic issues, models and evidence:Earth-Science Reviews,2003,61:1-18
    Cline JS, Bodnar RJ. Can economic porphyry copper mineralization be generated by a typicalcalc-alkaline melt.Journal of Geophysical Research-Solid Earth,1991,96(B5): 8113-8126.
    Cline JS. How to concentrate copper.Science,2003,302(5653):2075-2076.
    Davidson P and Kamenetaky SV. Immiscibility and continuous felsic melt fluid evolution within the Rio Blanco porphyry system,Chile:Evidence frominclusions in magmatic quartz. Economic geology,2002,96:1921-1929.
    Defant MJ and Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature,1990,347:662-665
    Depaolo DJ. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth and Planetary Science Letters,1981,53:189-202
    Driesner T and Heinrich CA. The systemH2O-NaCl Part Ⅰ:Correlation formulae for phase relations in temperature-pressure-composition space from0to1000℃,0to5000bar, and0to XNaCl. Geochimica et Cosmochimica Acta,2007,71:4880-4901
    Du AD, Wu SQ, Sun DZ, et al. Preparation and Certification of Re-Os Dating Reference Materials. Geostandard and Geoanalytical Research,2004,28(1):41-52
    Einaudi MT. Descriptions of skarn associated with porphyry copper plutons, southwestern North America, in Titley, S.R., ed., Advances in geology of the porphyry copper deposits, southwestern North America:Tucson, University of Arizona Press,1982a:139-184.
    Einaudi MT. General features and origin of skarns associated with porphyry copper plutons, Southwestern North America, in Titley, S.R., ed., Advances in geology of the porphyry copper deposits, southwestern North America:Tucson, University of Arizona Press,1982b,185-210.
    Einaudi MT, MeinertLD, and Newberry, RJ. Skarn deposits:Economic Geoligy75th Anniversary Volume,1981,317-391.
    Einaudi MT, Hedenquist J, Wandlnan E.Sulfidation state of hydrothermal fluids:The porphyry-epithermal transition and beyond:Society of Economic Geologists Special Publication10,2003:285-313.
    Fleet ME, Crocket JH, Stone, WE. Partioning of platinum group elements (Os, Ir, Ru, Pt, Pd) and gold between sulfide liquid and basalt melt.Geoehim. Cosmochim. Acta,1996,60:2397-241
    Fournier RO. Conceptualmodels of brine evolution inmagmatic-hydrothermal systems:U. S. GeologicalSurvey ProfessionalPaper,1987,1350:1487-1506
    Fournier RO. The influences of depth of burial and the brittle-ductile transition on the evolution of magmatic fluids. Geological Survey of Japan Report,1982,277:57-59
    Garland F, Hawkesworth, CJ, and Mantovani MSM. Description and Petrogenesis of the Parana Rhyolites, Southern Brazil:Journal of Petrology,1995,36:1193-1227.
    Gao YB, Hou ZQ, Kamber BS, Wei R, et al. Adakite-like porphyriesfrom the southern Tibetan continental collision zones:evidence for slab melt metaso-matism. Contributions to Mineralogy and Petrology,2007,153:105-120.
    Gogus OH, and PysklywecRN. Near-surface diagnostics of dripping or delaminating lithosphere:
    Journal of Geophysical Research,2008,113:B11404, doi:10.1029/2007JB00512
    Guo F, Nakamuru E, Fan WM, et al. Generation of Palaeocene adakitic andesites by magma mixing, Yanji Area, NE China. Journal of Petrology,2007,48(4):661-692
    Guo ZF, Wilson M, Liu JQ, et al. Post-collisional, potassic and ultrapotassic magmatism of the northern Tibetan plateau:Constraints on characteristics of the mantle source, geodynamic setting and uplift mechanisms. Journal of Petrology,2006,47(6):1177-1220
    Hawkesworth C J,Turner S P, McDermott, F et al.U-Th isotopes in arc magmas:implications for element transfer from subducted crust. Scienee,1997,276:561-555.
    Hawkesworth CJ and KempAIS. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chemical Geology,2006,226:144-162
    Heinrich CA. Fluid-fluid interations in magmatic-hydrothermal ore formation. Review in mineralogy and geochemistry,2007,65(1):363-387.
    HedenquistJW. The ascent of magmatic fluid:Discharge versu mineralization:Mineralogical Association of Canada Short Course Series,1995,23:263-290
    Hedenquist JW. Arribas Aand Reynolds TJ. Evolution of an intrusion centred hydrothermal systems:Far southeast-Lepanto porphyry and epithermal Cu-Au deposit. Economic Geology,1998,93:373-404
    He XX, Zhu XK, Yang C. et al. High-precision analysis of Pb isotope ratios using MC-ICP-MS.Acta. Geoscientica. Sinica,2005,26:19-22
    Huang XL, Niu YL, Xu YG, et al. Mineralogical and Geochemical Constraints on the petrogensis of post-collisional potassic and ultrapotassic rocks from western Yunnan, SW China. Journal of Petrology,2010,51(8):1617-1654
    Hou ZQ, Ma HW, Khin Z, Zhang YQ, et al. The Himalayan Yulong porphyry copper belt: produced by large-scale strike-slip faulting at Eastern Tibet. Economic Geology,2003,98:125-145
    Hou ZQ, Gao YF, Qu XM, Rui ZY, et al. Origin of adakitic intrusives gener-ated during mid-Miocene east-west extension in southern Tibet. Earth and PlanetaryScience Letters,2004,220:139-155.
    Houseman GA, McKenzie DP, and Molnar P. Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts:Journal of Geophysical Research,1998,86:6115-6132.
    Houseman GA, and Molnar P. Gravitational (Rayleigh-Taylor) instability of a layer with non-linear viscosity and convective thinning of continental lithosphere:Geophysical Journal International,1997,128:125-150.
    Javoy M. Stable isotopes and geothermometry. Journal of the Geological Society,1997,133:609-636.
    Jiang Y H, Jiang S Y, Ling H F, et al. Low-degree melting of a metasomatized lithospheric mantle for the origin of Cenozoic Yulong monzogranite-porphyry, east Tibet:Geochemical and Sr-Nd-Pb-Hf isotopic constraints. Earth and Planetary Science Letters,2006,241:617-633.
    Kay RW and Kay SM. Delamination and delamination magmatism:Tectonophysics,1993,219:177-189.
    Knudsen T L, Griffin W L, Hartz E H et al. In-situ hafnium and lead isotope analyses of detrital zircons from the Devonian sedimentary basin of NE Greenland:A record of repeated crustal reworking. Contrib. Mineral. Petrol.,2001,141:83-94
    Le Maitre RW. Igneous Rocks:A Classification and Glossary of Terms. Cambridge:Cambridge University Press,2002:33-39
    LiJ X, QinK Z, Li G, et al. Petrogenesis and thermal history of the Yulongporphyry copper deposit, Eastern Tibetinsights from U-Pb an d U-Th/He dating, and zircon Hf isotope and trace elementanalysis. Mineralogy and Petrology,2012,105:1-21
    Liu YS, Hu ZC, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology,2008a,257:34-43
    Liu YS, Zong KQ, Kelemen PB, et al. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole:Subduction and ultrahigh-pressure metamorphism of lower crustal cumulates. Chemical Geology,2008b,247:133-153
    Logan MAV. Mineralogy and geochemistryof the Gualilan skarn deposit in thePrecordillera of western Argentina. Ore Geology Reviews,1999,17:113-138
    Lu YJ, Kerrich R, Cawood PA, McCuaig TC, et al. Zircon SHRIMP U-Pb geochronology of potassic felsic intrusions in western Yunnan, SW China:Constraints on the relationship of magmatism to the Jinsha suture:Gondwana Research,2012,22:737-747.
    Lu YJ, Kerrich R, Cawood PA. Geochemical, Sr-Nd-Pb, and Zi rcon Hf-OIsotopic Compositions of Eocene-OligoceneShoshonitic and Potassic adakite-like FelsicIntrusions in Western Yunnan, SW China:Petrogenesis and Tectonic Implications. Journal of Petrology (in press)
    Ludwig KR. ISOPLOT3.00:A Geochronological Toolkit for Microsoft Excel. Berkeley:Berkeley Geochronology Center, California,2003
    Ma CQ, Li ZC, Ehlers C et al. A post-collisional magmatic plumbing system:Mesozoic granotoid plutons from the Dabieshan high-pressure and ultrahigh-pressure metamorphic zone, east-central China. Lithos,1998,45:431
    Macpherson CG, Dreher ST and Thirlwall MF. Adakites without slab melting:high pressure differentiation of island arc magma, Mindanao, the Philippines. Earth and Planetary Science Letters,2006,243(3):581-593
    Maniar PD and Piccoli PM. Tectonic discrimination of granitoids. GSA Bulletin,1989,101(5):635-643
    Martin H. Adakitic magmas:modern analogues of Archaean granitoids. Lithos,1999,46(3): 411-429
    Mao JW, Zhang ZC, Zhang ZH, et al. Re-Os isotopic dating of molybdenites in the Xiaoliugou W (Mo) deposit in the northern Qilian mountains and its geological significance. Geochimica et CosmochimicaActa,1999,63:1815-1818
    Meinert LD. Skarns and skarn deposits:Geoscience Canada,1992,19:145-162.
    Meinert LD. Compositional variation of igneous rocks associated with skarn deposits-chemical evidence for a genetic connection between petrogenesis and mineralization:Mineralogical Association of Canada Short Course Series,1995:401-418.
    Meinert LD, HeftonKKMayesD,et al. Geology, zonation, and fluid evolution of the Big Gossan Cu-Au skarn deposit, Ertsberg district, Irian Jaya:Ecomomicgeology,1997,92:509-526.
    Meinert LD. A review of skarns that contain gold:Mineralogical Association of Canada Short Course Series,1998,26:359-414.
    Meinert LD, HedenquistJW, SatohH, et al. Formation of anhydrous and hydrous skarn in Cu-Au ore deposits by magmatic fluids:Economic geology,2003,98:147-156.
    Meinert L D, Dipple G M and Nicolescu S. World skarn deposit. Economic Geology100th Anniversary Volume,2005,299-336.
    Middlemost EAK. Naming materials in the magma/igneous rock system:Earth-Science Reviews,2002,37:215-224.
    Mo XX, Hou ZQ, Niu YL, et al. Mantle contributions to crust thickening during continental collision:Evidence from Cenozoic igneous rocks in southern Tibet. Lithos,2007,96:225-242
    Nakano T, Yoshino T, Shimazaki H, et al. Pyroxenecomposition as an indicator in the classification of skarn deposits. Economic Geology,1994,89(7):1567-1580
    Ohmoto H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Economicgeology,1972,67(5):551-578
    Ohmoto H, Rye RO. Isotope of sulfur and carbon. Barnes H L. Geochemistry of Hydrothermal Ore Deposits. New York:John Wiley,1979:509-567
    O'Neil JR, Clayton R N and Mayada T K. Oxygen isotope fractionation in divalent metal carbonates. Chemistry Geophysics,1969,51:5547-5558
    Oyarzun R, Maquez A,Lillo J, LoPezI, et al. Giant versus small Porphyry copper deposits of Cenozoic age in northern Chile:Adakitic versus normal cale-alkaline magmatism. Mineral Deposit,2001,36:794-798
    Pan YM and Dong P. The lower Changjiang(Yangtzi River) metallogenic belt,east central China: intrusion and wall rock-relatedCu-Fe-Au,Mo, Zn, Pb, Ag deposits. Ore Geology Reviews,1999,15:177-242
    Petford N, Cruden AR, McCaffrey KJW, et al. Granite magma formation, transport and emplacement in the Earth's crust:Nature,2000,408:669-673.
    Petford N and Gallagher K. Partial melting of mafic lower crust by periodic influx of basaltic magma. Earth and Planetary Sciences Letters,2001,193(3-4):483-499
    Richards JP, and Kerrich R. Adakite-like Rocks:Their diverse origins and questionable role in metallogenesis:Economic geology,2007,102:537-576
    Richards JP. Postsubduction porphyry Cu-Au and epithermal Au deposits:prod-ucts of remelting of subduction-modi fied lithosphere. Geology,2009,37:247-250.
    Ray GE, Ettlinger AD. The distribution of skarns in British Columbia and the chemistry and ages of their related plutonic rocks. Economic Geology,1990:920-937
    Rapp RP and Watson EB. Dehydration Melting of metabasalt at8-32kbar:Implications for continental growth and crust-mantle recycling. Journal of Petrology,1995,36(4):891-931
    Reed MH and Spycher N.Boiling, cooling, and oxidationin epithermal systems:A numerical modeling approach. Reviews in Economic Geology,1985,1:249-272.
    Rollison HR.岩石地球化学(杨学明,杨晓勇,陈双喜译).合肥:中国科学技术大学出版社,2000,1-275
    Rock NMS and Groves DI. Can lamprophyres resolve the genetic controversy over mesothermalgold deposit? Geology,1998,16:538-541
    Rock NMS. Lamprophyres. Glasgow:Blackie,1990,1-285
    Roedder E and Bodnar RJ. Geologic pressure determinations from fluid inclusion studies. Annual Review of Earth and Planetary Sciences,1980,8:263-301
    RoedderE. Fluid inclusions. Mineral Soc. Am. Rev. Mineral,1990,12:644
    Taylor HP Jr. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Economic Geology,1974,69:843-883.
    Taylor SR and Mclennan SM. The Continental Crust:Its Composition and Evolution. London: Black-well,1985
    Turner S, Arnaud N, Liu J, et al. Post-collision, shoshonitic volcanism on the Tibetan Plateau: Implications for convective thinning of the lithosphere and the source of ocean island basalts. Journal of Petrology,1996,37(1):45-71
    Tarney J and Jones CE. Trace element geochemistry of orogenic igneous rocks and crustal growth models. Jormal of the geological society,1994,151:855-868
    ThompsonAB, and Connolly AD. Melting of the continental crust:some thermal and petrological constraints on anatexis in continental collision zones and other tectonic settings:Journal of Geophysical Research,1985,100:15565-15579.
    Turner S, Sims K W W, Reagan M et al. A Pb-Ra-Th-U study of Klyuchevskoy and Bezymianny volcanoes, Kamchatka.Geochimica et Cosmochimica Acta,2007,71:4771-4785
    Scherer EE, Cameron KL and Blichert-Toft J. Lu-Hf garnet geochronology:Closure temperature relative to the Sm-Nd system and the effects of trace mineral inclusion. Geochim. Cosmochim. Acta,2000,64:3413-3432
    Selby D, Creaser RA, Hart CJ,et al. Absolute timing of sulfide and gold mineralization:A comparison of Re-Os molybdenite and Ar-Ar mica methods from the Tintina Gold Belt, Alaska. Geology,2002,30:791-794
    Seward TM and Barnes HL. Metal transport by hydrothermal ore fluids [M]//Barnes H L, ed. Geochemistry of Hydrothermal Ore Deposits.3rd edition.1997, New York:John Wiley&Sons:435-486.
    Shinohara H, and Hedenquist J W. Constraints on magma degassing beneath the Far Southeast porphyry Cu-Au deposit, Philippines:Journal of Petrology,1997,38(12):1
    Sillitoe RH. Porphyry copper systems. Economic geology,2010,105:3-41
    Stein HJ, Markey R J, Morgan J W, et al. Highly precise and accurate Re-Os ages for molybdenite from the East Qinling molybdenite belt, Shananxi Province, China. Economic Geology,1997,92:827-835
    Stein HJ, Markey R J, Morgan J W. The remarkable Re-Os chronometer in molybdenite:how and why it works. Terra Nova,2001,13(6):479-486
    Sun SS and Mcdonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes. In:Saunders A D and Norry M J (eds.) Magmatism in the Ocean Basins. Geological Society, London, special Publications,1989,42:313-345
    Suzuki K, Shimizu H and Masuda A. Re-Os dating of molybdenites from ore deposits in Japan: implication for the closure temperature of the Re-Os system for molybdenite and the cooling history of molybdenum ore deposits. Geochimica et Cosmochimica Acta,2007,60:3151-3159
    Xu JF, Shinjo R, Defant MJ. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China:partial melting of delaminated lower continental crust? Geology,2002,30(12):1111-1114
    Xu J, Shinjio R, Defant MJ, et al. Cretaceous high-potassium intrusive rocks in the Yueshan-Hongzhen area of east China:Adakites in an extensional tectonic regime within a continent. Geochem J,2004,38:417-434
    Xu XW, Cai XP, Xiao QB et al. Porphyry Cu-Au and associated polymetallic Fe-Cu-Au deposits in the Beiya area, western Yunnan province, South China. Ore Geology Reviews,2007a,31:224-246
    Xu XW, Cai XP, Zhong JY et al. Formation of tectonic peperities from alkaline magmas intruded into wet sediments in the Beiya area, western Yunnan, China. Journal of Structural Geology,2007b,29:1400-1413
    Yang K and Bodnar RJ. Why is economic porphyry copper mineralization absent from the granitoids of the Gyeong sang Basin, South Korea? Evidence from silicate melt and aqueous fluid inclusions. International Geology Review,1994,36:608-628
    Yin A and Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen. In:Jeanloz R, Albee A L and Burke K C. Annual review of earth and planetary sciences,2000,28:211-280
    Wang JH, Yin A, Harrison TM. A tectonic model for Cenozoic igneous activities in the eastern Indo-Asian collision zone. Earth and Planetary Science Letters,2001,188:123-133
    Wang Q, Xu JF, Jian P, et al. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China:Implications for the genesis of porphyry coppermineralization:Journal of Petrology,2006,47:119-144
    Zindler A and Hart S R. Chemical geodynamics. Annual review of earth and planetary sciences,1986,14:493-571
    Zaw K and Singoyi B. Formation of magnetite-scheelite skarn mineralization at Kara, northwestern Tasmania:Evidence from mineral chemistry and stable isotopes: Ecnomicgeology,2000,95:1215-1230
    毕献武,胡瑞忠,彭建堂,等.姚安和马厂箐富碱侵入体的地球化学特征.岩石学报,2005,21(1):113-124
    蔡新平,刘秉光,李成云,等.滇西北衙金矿矿床特征及成因初探.黄金科技动态,1991,(7):7-19
    蔡新平.滇西北衙金矿矿床特征、成因及找矿远景预测.中国金矿地质地球化学研究.北京:科学出版社,1991,134-151
    杜安道,赵敦敏,王淑贤,等Carius管溶样和负离子热表面电离质谱准确测定辉钼矿铼-锇同位素地质年龄.岩矿测试,2001,20(4):247-252
    崔银亮,陈贤胜,宴建国.北衙红色粘土型金矿地质特征和成矿条件.矿物学报,2001,21(4):654-658
    崔银亮,晏建国,陈贤胜.滇西北衙金矿床找矿标志和找矿模式研究.黄金,2003,24(7):7-10
    陈衍景,秦善,李欣.中国矽卡岩型金矿的成矿时间、空间、地球动力学背景和成矿模式.北京大学学报(自然科学版),1997,33(4):456-466
    邓军,高帮飞,王庆飞,等.成矿流体系统的形成与演化.地质科技情报,2005,24(1):49-54
    邓军,杨立强,葛良胜,等.滇西富碱斑岩型金成矿系统特征与变化保存.岩石学报,2010,26(6):1633-1645
    邓军,杨立强,王长明.三江特提斯复合造山与成矿作用研究进展.岩石学报,2011,27(9):2501-2509
    邓军,王长明,李龚建.三江特提斯叠加成矿作用样式及过程.岩石学报,2012,28(5):1349-1361
    邓万明,钟大赉.壳-幔过渡带及其在岩石圈构造演化中的地质意义.科学通报,1997,42:2472-2482
    邓万明,黄萱,钟大赉.滇西新生代富碱斑岩的岩石特征及成因.地质科学,1998,33(4):412-425
    顾雪祥,刘丽,董树义,等.山东沂南金铜铁矿床中的液态不混溶作用与成矿:流体包裹体和氢氧同位素证据.矿床地质,2010,29(1):43-57
    郭远生,曾普胜,杨伟光,等.北衙金多金属矿床地质特征与成因.中国工程科学,2005,7:218-223
    葛良胜,郭晓东,邹依林,等.北衙金矿床地质特征及成因研究.地质找矿论丛,2002,17(1):32-46
    莫宣学,路凤香,沈上越,等.三江特提斯火山作用与成矿.北京:地质出版社,1993:1-267
    莫宣学,潘桂棠.从特提斯到青藏高原形成:构造—岩浆事件的约束.地学前缘,2006,13(6):43-51
    和文言,喻学惠,莫宣学,等.滇西马厂箐斑岩型铜钼(金)矿床成岩成矿时代研究.地学前缘,18(1):207-215
    和文言,喻学惠,莫宣学,等.北衙金多金属矿床矿田成因类型及其与富碱斑岩关系初探.岩石学报,2012,28(5):1401-1412
    侯增谦,曲晓明,王淑贤,等.西藏高原冈底斯斑岩铜矿带辉钼矿Re-Os年龄:成矿作用时限与动力学背景应用.中国科学(D辑),2003,33(7):609-618
    侯增谦,钟大赉,邓万明.青藏高原东缘斑岩铜钼金成矿带的构造模式.中国地质,2004, 31(1):1-14
    侯增谦,潘桂堂,王安建等.青藏高原碰撞造山带:Ⅱ晚碰撞转换成矿作用.矿床地质,2006a,25(5):521-543
    侯增谦,莫宣学,杨志明,等.青藏高原碰撞造山带成矿作用:构造背景、时空分布和主要类型.中国地质,2006b,33(2):340-351.
    华仁民.成矿过程中由流体混合而导致金属沉淀的研究.地球科学进展,1994,9(4):15-22.
    李怀坤,朱士兴,相振群,等.北京延庆高于庄组凝灰岩的锆石U-Pb定年研究及其对华北北部中元古界划分新方案的进一步约束.岩石学报,2010,26(7):2131-2140
    李兴振,刘文均,王义昭.西南三江地区特提斯构造演化与成矿.北京:地质出版社,1999,1-276
    李元,秦德先.北衙金矿的氧化特征及找矿意义.昆明理工大学学报,1999,24(1):210-124
    李勇,莫宣学,喻学惠,等.滇西“三江“地区高镁钾质火山岩地球化学特征及其地质意义.岩石学报,2011b,27(09):2510-2518
    李勇,2012.滇西“三江”地区新生代钾质岩浆岩年代学特征、岩石成因及其地质意义.中国地质大学(北京)
    刘福田,刘建华,何建坤,等.滇西特提斯造山带下扬子地块的俯冲板片.科学通报,2000,45(1):79-84
    刘秉光,陆德复,蔡新平.滇川西部金矿床研究.北京:海洋出版社,1999,1-241
    刘建云.云南北衙金矿煌斑岩地质特征及找矿意义.黄金地质,2004,10(1):20-23
    刘建云.北衙万洞山金矿床地质特征及找矿方向.黄金,2003,24(9):10-12.
    刘建华,刘福田,吴华,等.中国南北带地壳和上地幔的三维速度图象.地球物理学报,1989,32(2):143-152
    刘嘉麒.中国火山.北京:科学出版社,1999,1-219
    吕伯西,钱祥贵.滇西三江地区新生代碱性系列岩浆岩构造类型.云南地质,2000,3:232-243
    卢焕章.成矿流体.北京:北京科学技术出版社,1997:66-78
    卢焕章.2011.流体不混溶性和流体包裹体[J].岩石学报,24(1):1253-1261.
    马德云,韩润生.北衙金矿床构造地球化学特征及靶区优选.地质与勘探,2001,37(2):64-68
    潘桂棠,徐强,侯增谦,等.西南三江多岛弧造山过程成矿系统与资源评价.北京:地质出版社,2003:1-419
    屈文俊,杜安道.高温密闭溶样电感耦合等离子体质谱准确测定辉钼矿铼—锇地质年龄.岩矿测试,2003,22(4):254-262
    沙绍礼,刘宇淳.大理点苍山正片麻岩初步研究.云南地质,2000,19(3):260-269
    王登红,屈文俊,李志伟,等.金沙江-红河成矿带斑岩铜钼矿的成矿集中期:Re-Os同位素定年.中国科学(D辑),2004,34(4):345-349
    王二七.2006.青藏高原新生代地壳变形对同碰撞岩浆侵位的制约.岩石学报.22(3):558-566
    王建,李建平,王江海.滇西大理-剑川地区钾玄岩岩浆作用:后碰撞走滑拉伸环境岛弧型岩浆作用的地球化学研究.岩石学报,2003,19(1):61-70
    王奖臻,李朝阳,孙燕,等.四川盐源西范坪斑岩铜矿的钾长环斑结构及其意义.成都理工学院学报,2002,29(4):418-421
    吴开兴.滇西新生代富碱火成岩及其与金成矿关系研究-以北衙金矿为例.中国科学院地球化学研究所,2005.
    肖骑彬,蔡新平,徐兴旺.云南北衙表生金矿形成与保存探讨.矿床地质,2003,22(4):401-407
    肖晓牛,喻学惠,莫宣学,等.滇西北衙金多金属矿床流体包裹体研究.地学前缘,2009,16(2):250-261
    肖晓牛,喻学惠,莫宣学,等.滇西北衙金多金属矿床成矿地球化学特征.地质与勘探,2011,47(2):170-179
    谢鸿森.地球深部物质科学导论,北京,科学出版社,1997,215-265
    谢应雯,张玉泉.横断山不同成因类型花岗岩类岩石中黑云母的标型特征.矿物学报,1987,7(3):245-254
    谢应雯,张玉泉,钟孙霖等.云南洱海东部新生代高钾碱性岩浆岩痕量元素特征.岩石学报.岩石学报,1998,15(1):75-82
    吴福元,李献华,郑永飞,等.锆石Hf同位素体系及其岩石学应用.岩石学报,,2007,23(2):185-220
    徐受民,莫宣学,曾普胜,等.北衙富碱斑岩的特征及成因.现代地质,2006,20(4):527-535
    徐受民.滇西北衙金矿床的成矿模式及与新生代富碱斑岩的关系.中国地质大学(北京),2007.
    徐兴旺,蔡新平,宋宝昌,等.滇西北衙金矿区碱性斑岩岩石学、年代学和地球化学特征及成因机制.岩石学报,2006,22(3):631-642
    徐兴旺,蔡新平,张宝林,等.矿床矿床类型与结构模型.矿床地质,2007,2(3):249-264
    薛传东,侯增谦,刘星,等.滇西北衙金多金属矿田的成岩成矿作用:对印-欧大陆碰撞造山过程的响应.岩石学报,2008,24(3):457-472
    杨立强,刘江涛,张闯,等.哀牢山造山带金成矿系统:复合造山构造演化与成矿作用初探.岩石学报,2010,26(6):1723-1739
    杨立强,邓军,赵凯,等.哀牢山造山带金矿成矿时序及动力学背景探讨.岩石学报,2011,27(9):2519.2532
    应汉龙,蔡新平.云南北衙矿区富碱斑岩正长石和白云母的40Ar-39Ar年龄.地质科学,2004,39(1):107-110
    於崇文,岑况,鲍征宇,等.成矿作用动力学.北京:地质出版社,2007,1-230.
    喻学惠,肖小牛,杨贵来,等.滇西“三江”南段几个花岗岩的锆石SHIRMP U-Pb定年及其地质意义.岩石学报,2008,24(2):377-383
    赵斌,赵劲松,刘海臣.长江中下游地区若干Cu(Au)、Cu-Fe(Au)和Fe矿床中钙质矽卡岩的稀土元素地球化学行为.地球化学,1999,28(2):113-125
    赵斌,赵劲松,刘海臣.大冶九江地区FeCu(Au)和Au(Cu)矿床矽卡岩矿物里的熔融包裹体特征.中国科学(D辑),2003,32(7):550-561
    赵劲松,夏斌,丘学林,等.海南岛石碌矽卡岩铁矿石中石榴子石的熔融包裹体及其意义.岩石学报,2008,24(1):149-160
    赵欣,喻学惠,莫宣学,等.滇西新生代富碱斑岩及其深源包体的岩石学和地球化学特征.现代地质,2004,18(2):217-228
    赵一鸣.矽卡岩矿床研究的某些重要新进展.矿床地质,2002,21(2):114-120
    曾普胜,侯增谦,高永峰,等.印度-亚洲碰撞带东段喜马拉雅期铜-钼-金矿床Re-Os年龄及成矿作用.地质论评,2006,52(1):72-84
    祝向平,莫宣学,White NC,等.云南哈播斑岩型(铜-钼-金)矿床地质与成矿背景研究.地质学报,2009,83(12):1916-192
    张理刚.稳定同位素在地质科学中的应用.西安:陕西科学技术出版社,1985,1-267.
    张玉泉,谢应雯,涂光炽.哀牢山-金沙江富碱侵入岩及其与裂谷构造关系初步研究.岩石学报,1987,4(1):17-25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700