用户名: 密码: 验证码:
高邮凹陷黄珏—马家嘴地区戴南组沉积及油气成藏研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高邮凹陷是苏北盆地各凹陷中油气资源最丰富的凹陷,具有极其重要的工业价值。近年来,苏北盆地高邮凹陷勘探实践的不断深入,新发现构造类油气圈闭的数量逐年下降,而发现的岩性圈闭数量则日益增加,勘探重点正在逐步从构造圈闭向岩性圈闭转变,因此在凹陷内通过沉积学、构造学方面的研究来寻找有利砂体和通过石油地质学的研究来寻找油气藏成藏特征、规律进而帮助寻找有利圈闭的任务显得尤为重要。
     苏北盆地高邮凹陷是中生代晚白垩世—新生代古近纪断坳、断陷作用形成的陆相断陷湖盆,具有断层发育、构造复杂的特征;黄珏-马家嘴地区位于该凹陷西南端,与高邮凹陷大体上有相同的构造演化特征;由于研究区处在凹陷内的两条控凹断裂—真武、汉留断层的结合部,两组倾向相反的主断层使研究区构造体系更加复杂;黄珏-马家嘴地区戴南组沉积地层为一被断层复杂化的小型断块油气田,具有断块破碎、沉积砂体分布复杂、油气藏分布凌乱的特征,多年来一直困扰着该地区的勘探与开发。
     黄珏、马家嘴地区虽然在地理上相邻相连,但勘探开发中一直将黄珏、马家嘴两个地区分别研究,在研究过程中尚未对其构造、沉积、储层、油气藏进行过整体的研究,此次研究正是在在整合岩心、测井、岩石分析化验、地震、构造、地化等资料的基础上,从构造研究出发,对物源方向、沉积相、沉积砂体成因机制等有关沉积学方面内容开展研究,在此基础上就成岩演化作用对储层影响进行探讨;结合沉积展布规律,对烃源岩、输导、油气藏形成过程、油气分布规律进行了综合分析。
     常规的物源分析方法通常是利用矿物指标等对物源进行面上方向的分析,此次研究除利用沉积学法、岩石学法、重矿物法外,还通过“矿物定区、构造定向”的方法进行,综合了构造样式与物源输送的关系对物源进行细致刻画。通过地震剖面及断层平面组合形式识别出了断槽、断裂调节带、下切河谷等沟谷输送体系,以及断阶、陡坡型坡折输送体系;沟谷、坡折是碎屑物质输送的良好渠道,两类输送体系对沉积物的输送都具有极其重要的作用,控制了沉积物输送的方向与沉积砂体的厚度;通过对黄珏-马家嘴地区戴南组两个层段的重矿物、岩矿组分的分析,对沉积物的物源方向进行了面上的划分,认识到物源主要来自南、北、西三大方向;结合物源输送通道的研究,认为物源输送的具体细节是由构造活动背景下形成的沟谷、坡折带输送体系决定的,具有“构造控制沉积输送方向”的特点。
     基于点-线-面-体-时的研究过程和抓住重点、不放疑点的思想,对黄珏-马家嘴地区戴南组沉积特征进行研究。通过对黄珏-马家嘴地区戴南组沉积特征的分析研究,认为黄珏-马家嘴地区戴南组沉积具有“水体涨落控制沉积相类型”的特点。具体归纳为黄珏-马家嘴地区戴一段湖平面上升,发育了近源的近岸水下冲积扇沉积、湖泊沉积、滑塌-浊积扇沉积;戴二段水体逐步退去,发育了退积型扇三角洲沉积、湖泊沉积、滑塌-浊积扇沉积;在沉积构造与水动力条件关系研究的基础上,进一步分析了这些沉积砂体的成因机制。研究区戴南组地层中主要发育了牵引流和重力流影响下的沉积砂体。对比他人研究成果,对一些存疑的特殊沉积构造进行再研究,识别出了古震和古风暴作用的痕迹,很好地解释了黄珏-马家嘴湖区深凹中新发现的滑塌-浊积扇岩性油藏砂体的成因,认为“重力失衡、外力激发是滑塌-浊积扇发育的促因”,为该地区今后岩性油藏勘探开发提供了方向。通过单井剖面、联井剖面、平面、模式等的综合研究,对黄珏-马家嘴地区的沉积进行了详细的研究。
     抛开地层单位的局限,将黄珏-马家嘴地区储层按埋深进行研究,通过对黄珏-马家嘴地区戴南组储层物性特征和储层成岩演化阶段的研究,发现储层物性特征与储层所处的深度具有明显的相关性,储层物性与所处层段的关系并不强,由于黄珏-马家嘴地区戴南组各个层段所处的埋深不同,造成储层所处的温压场和地层水化学作用不同,储层所经历的成岩阶段也不尽相同;纵向上,处于成岩早A期-早B期的储层由于压实及胶结作用,储层物性随深度逐渐变差,而进入成岩中A期的储层受次生溶蚀等作用能够改造储层,使因压实作用减少的孔隙得到一定的恢复,因此成岩演化体现出埋深较深的黄-马东部地区成岩作用阶段高于埋深较浅的西部,同理南北两侧的成岩阶段高于中间的特征。沉积相对储层物性平面分布上的影响比较突出,扇三角洲前缘、近岸水下冲积扇扇中等沉积亚相发育的储层具有比其它亚相更好的物性特征。体现了“沉积相控制储层、深度控制成岩作用”。以早A、早B、中A、中B期四个成岩阶叠合Ⅱ、Ⅲ类储层类型对研究区储层进行“成岩-物性相”的研究和划分;其中有利储层主要为Ⅱ类储层,构成良好储集性能的储积体,这类储层在早、中成岩阶段都有出现。通过对盖层封闭能力和储、盖系统时空分部的分析,认为黄珏-马家嘴地区的多套储集层和盖层组合具有良好的匹配关系,形成了多套良好的储-盖组合。
     对整个凹陷内烃源岩层系进行了排查比对,认为阜四段烃源岩是凹陷戴南组主要的烃源岩层系,有机质类型为Ⅰ、Ⅱ型,为极好的烃源岩;结合油源对比资料的基础上,认为邵伯次凹发育的阜四段烃源岩是为黄珏-马家嘴地区戴南组油气藏的供烃的主要烃源岩层系;通过对阜四段烃源岩Ro%、氯仿沥青“A”、HC、TOC、S1+S2等参数的研究,认为研究黄珏-马家嘴地区阜四段烃源岩具有有机质类型好、丰度高、有机质演化程度高的特点,是研究区戴南组的主力供烃来源。
     油气成藏的特征的研究围绕着油气输导和保存的问题开展,输导体系,尤其是断层输导体系在断陷盆地油气成藏过程中扮演了重要的角色。通过对骨架砂体、断层、不整合面以及三者的组合形式所形成的油气输导体系进行了分析和评价。各级断层在油气输导中起到不同的作用:一、二级断层活动时沟通烃源岩层系,静止期起到封堵作用;三、四级断层具有一定的控藏能力;静止期的三、四级断层封堵油气,活动期的三、四级断层调节再平衡油气分布。有利相带中沉积砂体的时空展布控制了油气藏的平面展布。可将油气成藏过程概括为“大断层切穿源岩主力输导,小断层阻断运移进行封闭;砂体约束油气平面展布、活动断层进行重新分配”。
     通过研究,认为发育于深湖区的滑塌-浊积扇有着良好的烃源岩-储层-盖层匹配关系,扇三角洲前缘以及近岸水下冲积扇扇端沉积在重力作用下失稳,发生滑落、崩塌及在古震-风暴激发下形成的“滑塌-浊积扇”将成为未来寻找岩性油气藏的重点和希望所在。
Gaoyou sag in Subei basin has the largest amount of petroleum resources,which has great industrial values. In recent years of exploration, the number of newlyexplored structural oil and gas traps decreased while the number of foundedlithological traps increased gradually. The key point of exploration is varying fromstructural traps to subtle ones. Finding favorable sands by the methods ofsedimentology and understanding the characters and laws of hydrocarbonaccumulation in the sag became more and more important.
     Gaoyou sag in subei basin is a terrestrial rift-subsidence lacustrine basin formedfrom Late Cretaceous Period to Paleocene. Huangjue-majiazui district, with theconsistent tectonic evolution characteristics of the whole depression, lays on the westpart of Gaoyou sag, but has a much more complicated tectonic evolution processcaused by the two big controlling faults(Zhengwu&Hanliu fault zone) passedthrough this district. The research target is a small fault-complicated fault-blockoil-gas field, with properties of broken blocks, complicated sand and hydrocarbonaccumulation distribution. Exploring and developing process was plagued by thosefactors above.
     Even though Huangjue and Majiazui district were geographically nearby, theresearch work of the two districts were separated for decades, while the research onstructure, sedimentary, reservoirs, oil and gas accumulations are unrelated. But thispaper discussed the provenance, sedimentary facies, and genetic mechanism of sandbodies based on tectonic evolution by the integration geological materials of cores,well-logging data, seismic data, and tectonic evolution information and so on as awhole. The genesis of reservoir evolution is discussed after those researches. With thedistribution of sedimentaries, source rocks, hydrocarbon transport system,hydrocarbon accumulating process, and the distribution of petroleum were studied.
     Normal research on provenance was mainly based on mineral indexes, anddivided the provenance directions. In this paper, the methods of provenance researchis not only based on minerals but also combined with structural geology ways todescribe the details of provenance. With explained seismic profiles and planecombination forms of faults, fault troughs, fault accommodation zones and incisedvalley transportation systems were recognized. Fault-step slopes and steep slopes transportation systems were found as well. All those transportation systems had greatability on transporting debris, and also controlled the direction of transportationdirections and the thickness of sediments. According to stable heavy minerals andmineral compositions, three directions were described, which came from south, northand west. With the structural researches, the details of provenance were depicted.Architectural patterns of structure determined the paths of provenance.
     The sedimentary characters were studied based on the process of“points-lines-surfaces-bodies”. With the idea of keep the importance and not let go thesuspects, we believed that the sedimentary facies has the attributes of controlling byrise and fall of water surface. In E2d1period, lake-level rose, it developed near-shoresubaqueous alluvial fan, lacustrine, and slump-turbidity fans facies. Up to E2d2period,lake-level fell; it developed fan deltas, lacustrine, and slump-turbidity fan facies.Based on the relationship of hydrodynamic conditions and tectonics, the causes andmechanism of sands were researched. Sands under the influence of tractive currentand gravity flows developed in the area of Dainan formation. Compared with theresults of previous studies, some suspected sedimentary structures were studied.Paleo-earthquakes and paleo-storms were identified. Those phenomenons andessences explained the sands found in deep-lake muds. It is considered that gravityimbalance and external excitation caused the slump-turbidity fans forming. A newdirection for oil and gas exploration was provided.
     Despite the limitations of formations and layers, the reservoirs were studied. Bythe characters and digenesis process, we found the physical property of reservoirs isnot determined by formations but mainly by the burial depth they lay. Differentchemical action caused by temperature field and formation water chemical acts causedby different burial depth of different formation in Huangjue and Majiazui district; thedigenesis of reservoirs were different. In vertical dimension, compaction andcementation which happened in early diagenesis stage A to B decreased the porosityand permeability until middle diagenesis stage A, and then secondary dissolutionbegan to enlarge the pores and improve permeability. With the different buried depth,it shows the phenomenon that diagenesis stage in the east is higher than the west, thenorth and south are higher than the middle. Sedimentary facies controlled the physicalproperties on ichnography. Reservoirs of those subfacies, such as Fan Delta Front,Near-shore Subaqueous Alluvial Fan Middle, have better physical properties than onthe other subfacies. All those above cases were concluded the feature of “sedimentary controlled reservoirs” and “buried depth controlled diagenesis”. Using physicalproperties “styleⅡ and Ⅲ” coupled with diagenesis stages “EA, EB, MA, MB”,“styleⅡ” are the favorable reservoirs and this kind of reservoirs appeared at early tomiddle stages. Reservoirs and seals well matched in research area, formed severalgood reservoir-seal combinations.
     Based on the previous data investigation and comparison of source rocks, E1f4formation is considered to contain the best source rocks in Gaoyou sag and is the besthydrocarbon provider for Dainan formation with the organic matter of typeⅠand typeⅡ. After oil-and-source-rock-correlation research, source rocks in Shaobo Sub-sagwas confirmed as the main source rocks for Dainan formation in research area, whichdeveloped nearest at research area. They were considered of the best type of organics,high in organic matter, and evolution, after studied the index of “Ro”,“chloroformbitumen “A””,“HC”,“TOC”,“S1+S2”, et.al.
     The research of hydrocarbon accumulation is mainly about oil and gastransporting system and oil-gas preservation. Transporting system, especially the faulttransporting system, played a very important role in petroleum transporting of a faultbasin. Oil and gas transporting system made of skeleton sand bodies, faults,unconformities and their combination forms were studied and evaluated. Faults ofdifferent level have different effect ions. Level1and2faults connected source rocksand reservoirs when they were activated while static period they sealed the oil and gas.Level2and3faults have certain capability on controlling oil and gas accumulations.They adjusted and rebalanced oil and gas distributions when active or sealed whenmotionless. Space-time distributions of favorable facies belts controlled thehydrocarbons. It can concluded that faults of high level cut through source rocks andtransferred hydrocarbons, small and low-level faults seal while sand-bodies restrainedthe plane distribution and rebalanced existed hydrocarbon reservoirs.
     Slump-turbidity fans developed in deep lake zone produced the play ofsource-rocks, reservoirs, and seals through the research, those sandstones originatedfrom fan delta front or near-shore subaqueous alluvial fan middle, under the externalforce of earthquakes or hurricanes or internal force of gravity, will one day becomethe new hope and focal point for further exploration on lithological reservoirs.
引文
*南京大学2010-2011年外协项目苏北盆地高邮凹陷戴南组-阜宁组锆石U-Pb同位素测年研究
    *乔秀夫李海兵地震(古地震)诱发沉积物变形(为石油大学准备),多媒体,2009年4月。
    *应凤祥等,高邮凹陷戴南组油气藏输导体系研究,2004,江苏油田档案室.
    [1]朱夏,徐旺.中国中新生代沉积盆地[M].北京:石油工业出版社,1990.
    [2]马永生,牟传龙,郭旭升,等.四川盆地东北部长兴期沉积特征与沉积格局[J].地质论评,2006,52(1):25-29.
    [3]李国玉.海相沉积岩是中国石油工业未来的希望[J].海相油气地质,2005,10(1):5-12.
    [4]洪海涛,杨雨,刘鑫,等.四川盆地海相碳酸盐岩储层特征及控制因素[J].石油学报,2012,33(增刊2):64-73.
    [5]李凤杰,王多云,郑希民,等.陕甘宁盆地华池地区延长组缓坡带三角洲前缘的微相构成[J].沉积学报,2002,20(4):582-587.
    [6]田景春,陈高武,窦伟坦,等.湖泊三角洲前缘砂体成因组合形式和分布规律——以鄂尔多斯盆地姬塬白豹地区三叠系延长组为例[J].成都理工大学学报(自然科学版),2004,31(6):636-641.
    [7]丁晓琪.鄂尔多斯盆地镇原—泾川地区延长组长8-长6沉积体系.层序地层与储层评价[D].成都理工大学,2006.
    [8]李洁,陈洪德,林良彪,等.鄂尔多斯盆地西北部盒8段浅水三角洲砂体成因及分布模式[J].成都理工大学学报(自然科学版),2011,38(2):132-139.
    [9]陈安定.苏北盆地构造特征及箕状断陷形成机理[J].石油与天然气地质,2010,31(002):140-150.
    [10]李儒峰,陈莉琼,李亚军,等.苏北盆地高邮凹陷热史恢复与成藏期判识[J].地学前缘,2010,17(4):151-159.
    [11]张喜林,朱筱敏,钟大康,等.苏北盆地高邮凹陷古近系戴南组沉积相及其对隐蔽油气藏的控制[J].古地理学报,2005,7(2):207-218.
    [12]刘小平,徐健,杨立干.有机包裹体在油气运聚研究中的应用——以苏北盆地高邮凹陷为例[J].石油实验地质,2004,26(1):94-99.
    [13]徐健,熊学洲.苏北盆地高邮凹陷油气成藏特征研究[J].石油勘探与开发,2000,27(4):80-83.
    [14]李亚辉.苏北盆地高邮凹陷构造转换带控油机制研究[J].石油实验地质,2006,28(2):109-112.
    [15]张克鑫,漆家福,任红民,等.苏北盆地高邮凹陷断层演化规律研究[J].大庆石油地质与开发,2008,27(2):21-24.
    [16]史光辉,郑元财,周彬,等.高邮凹陷陡坡带戴南组断裂结构,沉积特征与成藏模式[J].石油天然气学报,2008,30(3):195-197.
    [17]张小兵,郑荣才,张哨楠.高邮凹陷马家嘴-联盟庄地区戴南组构造-沉积体系[J].大庆石油地质与开发,2007,26(1):13-17.
    [18]陈强,张卫海,黄峰,等.高邮凹陷西部油气输导体系类型及特征研究[J].石油天然气学报,2009,31(2):183-186.
    [19]凡友先.马家嘴地区断层识别技术研究[J].石油天然气学报,2008,30(2):456-457.
    [20]张喜林,朱筱敏,郭长敏,等.苏北盆地高邮凹陷古近系戴南组滨浅湖沉积中的遗迹化石[J].沉积学报,2006,24(1):81-89.
    [21]李玉城.苏北盆地高邮凹陷戴南组隐蔽油气藏研究[J].中国石油勘探,2008,13(1):21-27.
    [22]周健,林春明,李艳丽,等.苏北盆地高邮凹陷马家嘴地区古近系戴南组物源分析[J].沉积学报,2010,28(6):1117-1128.
    [23]高丽坤,林春明,姚玉来,等.苏北盆地高邮凹陷古近系戴南组沉积相及沉积演化[J].沉积学报,2010,28(4):706-716.
    [24]邱旭明,刘玉瑞,傅强.苏北盆地上白垩统—第三系层序地层与沉积演化[M].地质出版社,2006:146-149.
    [25]能源,杨桥,张克鑫,等.苏北盆地高邮凹陷晚白垩世—新生代构造沉降史分析与构造演化[J].沉积与特提斯地质,2009,29(2):25-32.
    [26]陈安定.苏北盆地第三系烃源岩排烃范围及油气运移边界[J].石油与天然气地质,2006,27(5):630-636.
    [27]江夏,周荔青.苏北盆地富油气凹陷形成与分布特征[J].石油实验地质,201032(4):319-325.
    [28]贺向阳.苏北盆地高邮凹陷含油气系统与油气勘探[J].勘探家:石油与天然气,2000,5(3):98-103.
    [29] JA Jackson, JP Mehl, KKE Neuendorf. Glossary of geology[M]. WashingtonD.C,American Geological Institute,2005.
    [30] Friedman G M, Sanders J E, Kopaska-Merkel D C. Principles of sedimentary deposits:stratigraphy and sedimentology[M]. Macmillan Coll Div,1992.
    [31] Lyell S C. Principles of geology[M]. Bishen Singh Mahendra Pal Singh,1989.
    [32] Sorby H C. On the origin of the Cleveland Hill ironstone. Proceedings of the YorkshireGeological Society,1857,3:457-461.
    [33] Walther J. Einleitung in die Geologicals historische Wissenschaft. In: Beobachtungen UberDie Bildung Der Gesteine Undihrer organischen Einschlüsse. Jena: Gustav Fischer,1894.
    [34] Wentworth C K. A scale of grade and class terms for clastic sediments[J]. The Journal ofGeology,1922,30(5):377-392.
    [35] Pettijohn F J. Sedimentary Rocks[M]. Harper&Row,1957.
    [36] Yagishita K, Ashi J, Ninomiya S, et al. Two types of plane beds under upper-flow-regimein flume experiments: evidence from grain fabric[J]. Sedimentary Geology,2004,163(3):229-236.
    [37] Dolphin T, Vincent C. The influence of bed forms on reference concentration andsuspension under waves and currents[J]. Continental Shelf Research,2009,29(2):424-432.
    [38] Schramkowski G P, Schuttelaars H M, De Swart H E. The effect of geometry and bottomfriction on local bed forms in a tidal embayment[J]. Continental Shelf Research,2002,22(11):1821-1833.
    [39] Shanmugam G.50years of the turbidite paradigm (1950s—1990s): deep-water processesand facies models—a critical perspective[J]. Marine and Petroleum Geology,2000,17(2):285-342.
    [40] Shanmugam G, Shrivastava S K, Das B. Sandy Debrites and Tidalites of PlioceneReservoir Sands in Upper-Slope Canyon Environments, Offshore Krishna–Godavari Basin(India): Implications[J]. Journal of Sedimentary Research,2009,79(9):736-756.
    [41] Shanmugam G. Slope turbidite packets in a fore-arc basin fill sequence of thePlio-Pleistocene Kakegawa Group: their formation and sea-level changes—discussion[J].Sedimentary Geology,1997,112(3):297-300.
    [42] Moretti M. Soft-sediment deformation structures interpreted as seismites in middle-latePleistocene aeolian deposits (Apulian foreland, southern Italy)[J]. Sedimentary Geology,2000,135(1):167-179.
    [43] Mazumder R, Van Loon A J, Arima M. Soft-sediment deformation structures in the Earth'soldest seismites[J]. Sedimentary Geology,2006,186(1):19-26.
    [44] Spalluto L, Moretti M, Festa V, et al. Seismically-induced slumps in Lower-Maastrichtianperitidal carbonates of the Apulian Platform (southern Italy)[J]. Sedimentary Geology,2007,196(1):81-98.
    [45] Long D G F. Tempestite frequency curves: a key to Late Ordovician and Early Siluriansubsidence, sea-level change, and orbital forcing in the Anticosti foreland basin, Quebec,Canada[J]. Canadian Journal of Earth Sciences,2007,44(3):413-431.
    [46] Drummond C, Sheets H. Taphonomic reworking and stratal organization of tempestitedeposition[J]. Journal of Sedimentary Research,2001,71(4):621-627.
    [47] Zhou Z C, Willems H, Li Y, et al. A well-preserved carbonate tempestite sequence from theCambrian Gushan Formation, eastern North China Craton[J]. Palaeoworld,2011,20(1):1-7.
    [48] Zheng N, Jiang Z, Li T, et al. Basic characteristics of tempestite sediments of Middle Sha3Formation in Gunan Subsag of Bohai Bay Basin and their geological significance [J].Geology in China,2010,37(4):1191-1198.
    [49] Bertrand S, Charlet F, Chapron E, et al. Reconstruction of the Holocene seismotectonicactivity of the Southern Andes from seismites recorded in Lago Icalma, Chile,39S[J].Palaeogeography, Palaeoclimatology, Palaeoecology,2008,259(2):301-322.
    [50] Lafortune V, Filion L, Hétu B. Impacts of Holocene climatic variations on alluvial fanactivity below snowpatches in subarctic Québec[J]. Geomorphology,2006,76(3):375-391.
    [51] Pignatti J, Frezza V, Benedetti A, et al. Recent foraminiferal assemblages from mixedcarbonate-siliciclastic sediments of southern Somalia and eastern Kenya[J]. Italian Journalof Geosciences,2012,131(1):47-66.
    [52] Bauch T, Reijmer J J G, McNeill D F, et al. Development of a Pliocene mixed-carbonatesiliciclastic reef (Limon, Costa Rica)[J]. Sedimentary Geology,2011,239(1):37-47.
    [53] Filipiak P, Zaton M, Szaniawski H, et al. Palynology and microfacies of Lower Devonianmixed carbonate-siliciclastic deposits in Podolia, Ukraine[J]. Acta Palaeontologica Polonica,2012,57(4):863-877.
    [54]王随继,倪晋仁,王光谦.河流沉积学研究进展及发展趋势[J].应用基础与工程科学学报,2000,8(4):362-369.
    [55]刘宝珺.中国沉积学的回顾和展望[J].矿物岩石,2001,21(3):1-7.
    [56]张昌民,张尚锋,李少华,等.中国河流沉积学研究20年[J].沉积学报,2004,22(2):183-188.
    [57]孙枢.中国沉积学的今后发展:若干思考与建议[J].地学前缘,2005,12(2):3-10.
    [58]刘宝珺,韩作振,杨仁超.当代沉积学研究进展,前瞻与思考[J].特种油气藏,2006,13(5):1-3.
    [59]夏青松,田景春.浊积岩神话与砂质碎屑流[J].沉积与特提斯地质,2006,26(4):105-108.
    [60]孙龙德,方朝亮,李峰,等.中国沉积盆地油气勘探开发实践与沉积学研究进展[J].石油勘探与开发,2010,37(4):385-396.
    [61]吴因业,朱如凯,罗平,等.沉积学与层序地层学研究新进展-第18届国际沉积学大会综述[J].沉积学报,2011,29(1):199-206.
    [62]李相博,卫平生,刘化清,等.浅谈沉积物重力流分类与深水沉积模式[J].地质论评,2013,59(4):607-614.
    [63]于兴河,郑秀娟.沉积学的发展历程与未来展望[J].地球科学进展,2004,19(2):173-182.
    [64]于兴河,李胜利.碎屑岩系油气储层沉积学的发展历程与热点问题思考[J].沉积学报,2009,27(5):880-895.
    [65]乔秀夫.中国震积岩的研究与展望[J].地质论评,1996,42(4):317-320.
    [66]杜远生,韩欣.论震积作用和震积岩[J].地球科学进展,2000,15(4):389-394.
    [67]杜远生,张传恒,韩欣,等.滇中中元古代昆阳群的地震事件沉积及其地质意义[J].中国科学: D辑,2001,31(4):283-289.
    [68]梁定益,聂泽同,宋志敏.再论震积岩及震积不整合——以川西、滇西地区为例[J].地球科学,1994,19(6):845-850.
    [69]宋天锐.北京十三陵前寒武纪碳酸盐岩地层中的一套可能的地震-海啸序列[J].科学通报,1988,38(8):609-611.
    [70]鄢继华,陈世悦,宋国奇,等.三角洲前缘滑塌浊积岩形成过程初探[J].沉积学报,2004,22(4):573-578.
    [71]鄢继华,陈世悦,姜在兴,等.断陷湖盆震浊积岩成因模拟实验[J].古地理学报,2007,9(3):277-282.
    [72]张关龙,陈世悦,鄢继华,等.三角洲前缘滑塌浊积体形成过程模拟[J].沉积学报,2006,24(1):50-55.
    [73]杜远生,韩欣.滇中中元古代昆阳群因民组碎屑风暴岩及其意义[J].沉积学报,2000,18(2):259-262.
    [74]侯方浩,蒋裕强,方少仙,等.四川盆地上三叠统香溪组二段和四段砂岩沉积模式[J].石油学报,2005,26(2):30-37.
    [75]方少仙,何江,侯方浩,等.鄂尔多斯盆地中部气田区中奥陶统马家沟组马五_5-马五_1亚段储层孔隙类型和演化[J].岩石学报,2009,25(10):2425-2441.
    [76]袁静.山东惠民凹陷古近系风暴岩沉积特征及沉积模式[J].沉积学报,2006,24(1):43-49.
    [77]袁静.惠民凹陷古近系风暴沉积研究[J].中国石油大学学报(自然科学版),2006,30(4):1-6.
    [78]华东师范大学地理系,江苏油田沉积相研究组.江苏高邮凹陷马4井下第三系戴南组水下扇的沉积特征[J].上海地质,1987,7(1):6-7.
    [79]董荣鑫,苏美珍.近岸水下冲积扇相特征及实例[J].石油实验地质,1985,7(4):294-302.
    [80]薛良清,徐怀大.苏北盆地高邮凹陷戴南组沉积体系[J].石油与天然气地质,1988,9(3):297-305.
    [81]董荣鑫.高邮凹陷戴南—三垛组古生物与沉积环境演变[J].同济大学学报:自然科学版,1999,27(3):366-370.
    [82]马文睿,傅强,董桂玉,等.高邮凹陷始新统戴南组古环境演化及沉积特征[J].同济大学学报(自然科学版),2012,40(3):478-484.
    [83]张喜林,朱筱敏,钟大康,等.苏北盆地高邮凹陷古近系戴南组沉积相及其对隐蔽油气藏的控制[J].古地理学报,2005,7(2):207-218.
    [84]周健,林春明,张霞,等.高邮凹陷古近系戴南组一段物源体系和沉积相[J].古地理学报,2011,13(2):161-174.
    [85]张妮,林春明,周健,等.苏北盆地高邮凹陷古近系戴南组一段元素地球化学特征及其地质意义[J].地质学报,2012,86(2):269-279.
    [86]张妮,林春明,周健,等.苏北盆地高邮凹陷始新统戴南组一段稀土元素特征及其物源指示意义[J].地质论评,2012,58(2):369-378.
    [87]姚玉来,林春明,高丽坤,等.苏北盆地高邮凹陷深凹带东部古近系戴南组二段沉积相及沉积演化[J].沉积与特提斯地质,2010,30(2):1-10.
    [88]仇永峰,马英俊,崔晓晓,等.高邮凹陷黄珏,联盟庄地区戴一段砂体展布特征研究及应用[J].复杂油气藏,2010(1):15-19.
    [89]杨彦敏,奥立德,刘金华,等.高邮凹陷深凹带戴一段古水体特征[J].油气地质与采收率,2012,19(4):27-30.
    [90]纪友亮,王勇,李清山,等.高邮凹陷古近系戴南组戴一段物源分析[J].同济大学学报(自然科学版),2012,40(9):1406-1413.
    [91]胡朝元.松辽盆地若干石油地质理论问题的探讨(内部材料),松辽盆地石油地质研究报告汇编.1977
    [92] Dow W G. Application of oil-correlation and source-rock data to exploration in Willistonbasin[J]. AAPG bulletin,1974,58(7):1253-1262.
    [93] Perrodon A. Petroleum systems: models and applications[J]. Journal of Petroleum Geology,1992,15(2):319-325.
    [94] Meissner F F. Petroleum geology of the Bakken Formation, Williston basin, north Dakotaand Montana[J]. Petroleum geochemistry and basin evaluation: AAPG,1984,35:159-179.
    [95] G. Demaison. The generative basin concept. Prtroleum Geochemistry and BasinEvaluation, AAPG.1984,35:1-14.
    [96] Umishek G. Stratigraphic aspects of petroleum resource assessment, AAPG.1986:59-68.
    [97] Margoon L.B, Dow W.G. The petroleum system: from source to trap[M]. Tulsa: AmericanAssociation of Petroleum Geologists,1994.
    [98]费琪.“成油体系”分析[J].地学前缘,1995,2(4):163-170.
    [99] Pollastro R M. Ghaba Salt Basin Province and Fahud Salt Basin Province, Oman:Geological Overview and Total Petroleum Systems[M]. US Department of the Interior, USGeological Survey,1999.
    [100] Pollastro R M. Ghaba Salt Basin Province and Fahud Salt Basin Province.Oman-Geologic overview and total petroleum systems[J]. US Geological Survey Bulletin,1999,2167:1-44.
    [101] Law B E, Curtis J B. Introduction to unconventional petroleum systems[J]. AAPGbulletin,2002,86(11):1851-1852.
    [102]田世澄,陈建渝,张树林,等.论成藏动力学,勘探家.1996,1(2):20-25.
    [103]赵文智,何登发,范土芝.含油气系统术语、研究流程与核心内容之我见[J].石油勘探与开发,2002,29(2):1-7.
    [104]张庆春,赵文智.论含油气系统的复杂性及其研究方法—兼论含油气系统综合模拟的科学思维和发展方向[J].石油学报.2003,24(6):1-6.
    [105]蒋有录,谭丽娟,荣启宏,等.油气成藏系统的概念及其在东营凹陷博兴地区的应用[J].石油大学学报.2002,26(6):12-16.
    [106] Roberts W H, Cordell R J. Problems of petroleum migration: introduction[J]. AAPGBulletins,1980,10:6-8.
    [107] Diekey P.A. Posoible primary migration of oil from source rock in oil Phase[J]. AAPGBulletins,1975,59:337-345.
    [108]刘吉余,王明明,李景明.天然气运聚成藏过程模拟研究现状[J].天然气工业,2006,26(7):28-31.
    [109]赵卫卫,李得路,查明.陆相断陷盆地砂岩透镜体油藏成藏过程物理模拟[J].石油实验地质,2012,34(4):438-444.
    [110]薄永德.苏北盆地高邮凹陷区汉留断层下降盘古近纪戴南组岩性圈闭特征探讨[J].地质与可持续发展—华东六省一市地学科技论坛文集,2003:57-59.
    [111]庞金梅,曹冰.高邮凹陷戴南组隐蔽油气藏的成因及勘探实践[J].海洋石油,2005,25(3):7-13.
    [112]陈安定,唐焰.苏北盆地热史,埋藏史研究及其对南黄海南部盆地油气勘探的启示[J].中国海上油气,2007,19(4):234-239.
    [113]黄峰.高邮凹陷西部地区控油断层封闭性研究[D].中国石油大学,2008.
    [114]郭圣德.高邮凹陷南断阶成藏动力系统研究[D].中国石油大学,2008.
    [115]高国强,陈平原.高邮凹陷北斜坡戴南组成藏规律分析[J].石油天然气学报,2009,31(2):251-253.
    [116]李鹤永,邱旭明,刘启东.高邮凹陷戴南组一段暗色泥岩生烃条件再认识[J].复杂油气藏,2009,2(4):17-22.
    [117]仇永峰.包裹体测温技术在高邮凹陷北斜坡戴南组油气成藏期中的应用[J].上海地质,2010(B11):233-235.
    [118]李浩,高先志,孟晓燕,等.高邮凹陷马家嘴地区油气差异分布的影响因素分析[J].高校地质学报,2012,18(2):341-349.
    [119]钱基.苏北盆地油气田的形成与分布特征[J].石油大学学报(自然科学版),2000,24(4):21-25.
    [120]徐田武,宋海强,况昊,等.物源分析方法的综合运用-以苏北盆地高邮凹陷泰一段地层为例[J].地球学报,2009,30(1):111-118.
    [121]马晓鸣.高邮凹陷构造特征研究[D].中国石油大学,2009:38,46.
    [122]张小兵,郑荣才,张哨楠.高邮凹陷马家嘴-联盟庄地区戴南组构造-沉积体系[J].大庆石油地质与开发,2007,26(1):13-17.
    [123]冯有良.断陷湖盆沟谷及构造坡折对砂体的控制作用[J].石油学报,2006,27(1):13-27.
    [124] Dahlstrom C D A. Structural geology in the eastern margin of the Canadian RockyMountains [J]. Bulletin of Canadian Petroleum Geology,1970,18:229-240.
    [125] King B C. Structural and volcanic evolution of the gregory rift valley[C] BISHOPW W.Geological background to fossilman. Geological Society of London, Scottish AcademicPress,1978:29-54.
    [126] Morley C K, Nelson R A, Patton T L, et.al. Transfer zones in the east African rift systemand their relevance to hydrocarbon exploration in rifts [J]. AAPG Bulletin,1990,74:1234-1253.
    [127]李宝刚.高邮凹陷断裂调节带发育特征及其石油地质意义[J].中国石油大学学报(自然科学版),2008,32(1):19-23.
    [128]林畅松,郑和荣,任建业,等.渤海湾盆地东营、沾化凹陷早第三纪同沉积断裂作用对沉积充填的的控制[J].中国科学(D辑),2003,33(11):1025-1036.
    [129] Howell J A, Flint S S. A model for high resolution sequence stratigraphy withinextensional basins[J]. Geological Society, London, Special Publications,1996,104(1):129-137.
    [130]姜在兴.沉积学[M].第一版.北京:石油工业出版社,2003:36-43,393-399.
    [131]钟建华,梁刚.沉积构造的研究现状及发展趋势[J].地质论评,2009.55(6):831-839.
    [132] Gilbert G K.The topographic features of lake shores[J]. United States Geological SurveyAnnual Report,1885,5:104-108.
    [133] Holmes A. Principles of Physical Geology[M]. New York: The Ronald Press Co.1965.
    [134] Mc Gowen.J.H. Gum Hollow Fan Delta, Nueces Bay, Texas[J]. Bureau of EconomicGeology, University of Texas at Austin,1970,69:91.
    [135]吴崇筠,薛叔浩.中国含油气盆地沉积学[M].北京:石油工业出版社,1992.
    [136]张金亮,王宝清.我国含油气湖盆扇三角洲相模式[J].地质论评,1996,42(增刊):147-152.
    [137]李存磊,刘婷,夏连军.高邮凹陷黄珏地区戴二段扇三角洲沉积特征[J].中国海洋大学学报(自然科学版),2010,40(4):65-72.
    [138]马正.应用自然电位测井曲线解释沉积环境[J].石油与天然气地质,1980,3(1):25-40.
    [139]孙永传.湖盆水下冲积扇—一个找油的新领域[J].石油实验地质,1980,17:32-41.
    [140]孙永传,郑浚茂,王德发,等.湖盆水下冲积扇—一个找油的新领域[J],科学通报,1980,(17):799-801.
    [141]张萌,田景春.“近岸水下扇”的命名、特征及其储集性[J].岩相古地理,1999,19(4):42-52.
    [142]刘家铎,田景春,何建军,等.近岸水下扇沉积微相及储层的控制因素研究─以沾化凹陷罗家鼻状构造沙四段为例[J].成都理工学院学报,1999,26(4):365-369.
    [143]田景春,付东钧.近岸水下扇砂砾岩体的储集性研究[J].成都理工学院学报,2001,28(4):366-370.
    [144]端木合顺,朱莲芳.酒西盆地下白垩统下沟组重力流水下扇沉积[J].沉积学报,1990,8(2):75-85.
    [145]徐怀大.地震地层学解释基础[M].武汉:中国地质大学出版社,1990.
    [146]张海峰,田景春,张涛,等.花池-庆阳地区延长组长6-长7油层组浊积岩特征及成因[J].成都理工大学学报(自然科学版).2012,39(3):238-246.
    [147]陆金波,王英民,张雷,等.阿克库勒地区三叠系湖底扇沉积及其主控因素[J].中国石油大学学报(自然科学版),2011,35(2):12-18.
    [148]王亚青,林承焰,董春梅,等.史115浊积扇的展布规律及其控制要素[J].西南石油大学学报,2007,29(6):51-54.
    [149]李凌.车西洼陷沙三上亚段滑塌浊积砂体的沉积特征[J].西安石油大学学报(自然科学版),2010,25(2):22-25,29-30.
    [150]于兴河.碎屑岩系油气储层沉积学(第二版)[M].北京:石油工业出版社,2008:179-208.
    [151] Seilacher A. Fault-grade bed Interpreted as seismites[J]. Sedimentology,1969,13(1-2):155-159.
    [152]乔秀夫,宋天锐,高林志,等.碳酸盐岩振动液化地震序列[J].地质学报,1994,68(1):16-32.
    [153]乔秀夫,宋天锐,高林志,等.中国震积岩的研究与展望[J].地质论评,1996,42(4):317-320.
    [154]尹国勋,汤友谊.地史时期地震事件的岩石学证据—以四川峨嵋晚侏罗世湖泊沉积中的震积岩为例[J].地震地质,1993,15(1):61-65.
    [155]杜远生,韩欣.论海啸作用与海啸岩[J].地质科技情报,2000,19(1):19-22.
    [156]龚一鸣.风暴岩、震积岩、海啸岩—几个名词含义的商榷[J].地质论评.1988,34(5):481-428.
    [157]杨剑萍,王辉,陈世悦,等.济阳坳陷古近系震积岩特征[J].沉积学报,2004,22(2):281-286.
    [158]鄢继华,崔永北,陈世悦.几种常见震积岩相标志在模拟实验中的识别[J].沉积学报,2009,12(6):1131-1137.
    [159]杜远生,韩欣.论震积作用和震积岩[J].地球科学进展,2000,15(4):389-394.
    [160]乔秀夫,李海兵.地震(古地震)诱发沉积物变形(为石油大学准备),多媒体,2009年4月.
    [161]袁静.山东惠民凹陷古近纪震积岩特征及其地质意义[J].沉积学报,2004,22(1):41-46.
    [162] Kelling G,Mullin.P.R. Graded limestone and limestone quartzite couplets: possible stormsediments Pleistocene of Massachusetts[J]. Petrology,1975,38:971-984.
    [163] AIGNER T. Schill-Tempestite im Oberen Muschelkalk (Trias, SW-Deutschland)[J].Neues Jahrbuch für Geologie und Pal ontologie, Abhandlungen,1979,157:326-343.
    [164]毛凤鸣,张金亮,许正龙.高邮凹陷油气成藏地球化学[M].北京:石油工业出版社,2002.
    [165]张胜斌,刘震,金博,等苏北盆地高邮凹陷古近系岩性油藏形成特征及分布规律[J].天然气地球科学,2012,23(1):99-105.
    [166]李淑贞,朱家祥.苏北高邮凹陷下第三系戴一段有机质类型及其地球化学特征[J].同济大学学报,1989,4(19):527-534.
    [167]黄善炳.苏北高邮凹陷下第三系砂岩次生孔隙形成与油气的关系[J].江苏地质,1987,1(2):14-20.
    [168]施小荣,曾玉兰,马文睿,等.苏北盆地HJ油田古近系戴南组储层物性影响因素分析[J].石油天然气学报,2012,34(10):28-32,167.
    [169]姚合法,林承焰,候建国,等.苏北盆地粘土矿物转化模式与古地温[J].沉积学报,2004,22(1):29-34.
    [170]张莹莹.华庆地区长63小层储层砂岩中碳酸盐胶结物形成机制及其对储层质量的影响[D].四川成都,成都理工大学,2012.
    [171]陈丽华.扫描电镜下砂岩储集层的胶结特征和孔隙类型[J].石油勘探与开发,1989,4:26-36.
    [172]方少仙,候方浩.石油天然气储层地质学[M].山东东营:石油大学出版社,1998.
    [173]庄松生,左燕春,黎琼.苏北溱潼凹陷戴南组二段成岩作用与次生孔隙预测[J].矿物岩石,1998,18(4):64-71.
    [174] Beard D C, Weyl P K. Influence of texture on porosity and permeability ofunconsolidated sand[J]. AAPG Bulletin,1973,57:349-369.
    [175]胡忠贵,朱忠德,李相明,等.沉积微相对储层物性控制作用的定量评价[J].油气地质与采收率,2004,11(4):4-7.
    [176]季汉成,翁庆萍,杨潇等.鄂尔多斯盆地安塞—神木地区山西组成岩与沉积相耦合关系[J].石油勘探与开发,2009,36(6):709-717.
    [177]韩登林,张昌民,尹太举.层序界面成岩反应规律及其对储层储集物性的影响[J].石油与天然气地质,2010,31(4):449-454,462.
    [178] Byrnes A P. Empirical methods of reservoir quality prediction[J]. SEPM, Short Course,1994(30):10-21.
    [179]石波,付广,徐明霞.我国主要含油气盆地盖层封闭特征[J].天然气地球科学,1999,10(3-4):49-53.
    [180]付广,陈章明,姜振学.盖层封堵能力评价方法及其应用[J].石油勘探与开发,1995,22(3):46-50.
    [181]吕廷防,王清海.盖层封闭天然气有效性研究方法及其应用[J].油气成藏机理及油气资源评价国际研讨会论文集,1996,7(1)1:49-53.
    [182]蒋有录.油气藏盖层厚度与所封盖烃柱高度关系问题探讨[J].天然气工业,1999,18(2):20-23.
    [183]付广,杨勉.盖层发育特征及对油气成藏的作用[J].天然气工业.2000,11(3):18-25.
    [184]付广,付小飞,薛永超,等.引起油气藏破坏与再分配的地质因素分析[J].天然气工业,2000,11(6):1-7.
    [185] Schlomer&Krooss. Experimental characterization of the hydrocarbon sealing efficiencyof cap rocks[J]. Marine and Petroleum Geology,1997,14(5):565-580.
    [186]王铁冠,钟宁宁,侯读杰,等.细菌在板桥凹陷生烃机制中的作用[J].中国科学(B辑),1995,25(8):882-889.
    [187]钟宁宁,侯读杰,熊波,等.煤系低熟油形成机制及其意义[J].江汉石油学院学报,1995,17(1):1-7.
    [188]包建平,刘玉瑞,朱翠山,等.北部湾盆地迈陈凹陷徐闻X1井油气地球化学特征[J].天然气地球科学,2006,17(3):300-304.
    [189]王文军,宋宁,姜乃煌,等.未熟油与成熟油的混源实验、混源理论图版及其应用[J].石油勘探与开发,1999,26(4):34-38.
    [190]李素梅,庞雄奇,黎茂稳,等.低熟油、烃源岩中含氮化合物分布规律及其地球化学意义[J].地球化学,2002,31(1):1-7.
    [191] Keith M L, Weber J N. Carbon and oxygen isotopic composition of selected limestonesand fossils[J]. Geochimica et Cosmochimica Acta,1964,28(10):1787-1816.
    [192]傅强,李益,张国栋,等.苏北盆地晚白垩世—古新世海侵湖泊的证据及其地质意义[J].沉积学报,2007,25(3):380-385.
    [193]钱泽书,陈永祥,何承全.苏北东台坳陷古新世至始新世非海相微体浮游藻类[J].古生物学报,1986,25(1):17-29.
    [194]吴向阳,高德群.苏北盆地高邮凹陷阜宁组油气成藏期研究[J].中国石油勘探,2011,16(4):37-41,86.
    [195] T. Gentzis等,杨玉峰译.有机质类型和基质岩性对成熟度指标的影响—加拿大北极群岛Melville岛的实例[J].国外油气勘探,1994,6(6):680-687.
    [196]宋宁,侯建国,王文军.利用测井技术评价苏北盆地生油岩[J].海洋石油,2001,21(1):8-13.
    [197]朱平,毛凤鸣,李亚辉,等.复杂断块油藏形成机理和成藏模式[M].北京:石油工业出版社,2008.
    [198]李明诚.油气运移研究的现状与发展[J].地球物理学进展,1991,6(3):17-21.
    [199]李明诚.油气运移研究的现状与发展[J].石油勘探与开发,1994,21(2):1-7.
    [200] Demaison G J. Migration Research Will it Benefit the Oil Exploration Industry[C].2ndIFP Exploration Research Conference,1987.
    [201]谢泰俊,潘祖荫,杨学昌.油气运移动力及通道体系[A].南海北部大陆边缘盆地分析与油气聚集[C].北京:科学出版社,1997:385-405.
    [202] Galeazzi J S. Structural and stratigraphic evolution of the western Malvinas basin,Argentina[J]. AAPG Bulletin,1998,82:596-636.
    [203]赵忠新,王华,郭齐军,等.油气输导体系的类型及其输导性能在时空上的演化分析[J].石油试验地质,2002,24(6):527-536.
    [204]卓勤功,宁方兴,荣娜.断陷盆地输导体系类型及控藏机制[J].地质论评,2005,51(4):416-422.
    [205]李丕龙,庞雄奇.陆相断陷盆地油气藏形成-以济阳坳陷为例[C].北京:石油工业出版社,2004,233.
    [206]张照录,王华,杨红.含油气盆地的输导体系研究[J].石油与天然气地质,2000,21(2):133-135.
    [207]邱旭明.苏北盆地高邮凹陷油气输导特征及油气分布[J].石油与天然气地质,2008,29(4):437-443.
    [208]陈强,张卫海,黄峰,等.高邮凹陷西部油气输导体系类型及特征研究[J].石油天然气学报,2009,31(2):183-186.
    [209]李浩,高先志.高邮凹陷有效砂岩输导层分布及控藏作用[J].中国石油大学学报(自然科学版),2012,36(2):53-59.
    [210]唐建伟,陈莉琼.高邮凹陷油气输导体系评价研究[J].复杂油气藏,2011,4(2):14-17.
    [211]李梅,金爱民,朱蓉,等.高邮凹陷古近系水动力作用与油气运聚机理[J].中国矿业大学学报,2012,41(3):460-468.
    [212]李明诚.石油与天然气运移研究综述[J].石油勘探与开发,2000,27(4):3-10.
    [213]李明诚.石油与天然气运移[M].北京:石油工业出版社,2004.
    [214]潘钟祥.不整合对于油气运移聚集的重要性及寻找不整合面下的某些油气藏[J].地质论评,1983,29(4):374-381.
    [215]张卫海,查明,曲江秀.油气输导体系的类型及配置关系[J].新疆石油地质,2003,24(2):118-120.
    [216]陈欢庆,朱筱敏,张琴,等.输导体系研究进展[J].地质论评,2009,55(2):269-276.
    [217]陈强,张卫海,黄峰,等.高邮凹陷西部油气输导体系类型及特征研究[J].石油天然气学报,2009,31(2):183-186.
    [218]高长海,查明.不整合运移通道类型及输导油气特征[J].地质学报,2008,82(8):1113-1120.
    [219]高先志,李浩,刘启东.高邮凹陷断层控油气作用的多样性[J].地球科学与环境学报,2012,34(1):20-28.
    [220]罗佳强,隋风贵.复杂断裂带三,四级断层遮挡成藏研究与勘探实践[J].油气地质与采收率,2002,9(5):14-16.
    [221]黄峰,张卫海,王有智.高邮凹陷西部控油断层封闭性研究[J].断块油气田,2009,16(2):36-39.
    [222] Philippi G T. On the depth, time and mechanism of petroleum generation [J]. Geochimicaet Cosmochimica Acta,1965,29(9):1021-1049.
    [223] Hooper E C D. Fluid migration along growth faults in compacting sediments[J]. Journalof Petroleum Geology,1991,14(S1):161-180.
    [224]赵密福,刘泽容,信荃麟,等.控制油气沿断层纵向运移的地质因素[J].石油大学学报:自然科学版,2001,25(6):21-24.
    [225]宋胜浩.从断裂带内部结构剖析油气沿断层运移规律[J].大庆石油学院学报,2006,30(3):17-20.
    [226]付广,孟庆芬.断层封闭性影响因素的理论分析[J].天然气地球科学,2002,13(3-4):40-44.
    [227]郑秀娟,于兴河,王彦卿.断层封闭性研究的现状与问题[J].大庆石油地质与开发,2004,23(6):19-21.
    [228]吕延防,李国会.断层封闭性的定量研究方法[J].石油学报,1996,17(3):39-45.
    [229]吕延防,付广,张云峰.断层封闭性研究[M].北京:石油工业出版社,2002.
    [230] Lindsay N G, Murphy F C, Walsh J J, et al. Outcrop studies of shale smears on faultsurfaces[J]. The Geological Modeling of Hydrocarbon Reservoirs and Outcrop Analogues,1993,15:113-123.
    [231] Hindle A D. Petroleum migration pathways and charge concentration: Athree-dimensional model[J]. AAPG Bulletin,1997,81:1451-1481.
    [232]张文淮.流体包裹体的研究和应用现状[J].地质科技情报,1984,4:007.
    [233]叶德胜.流体包裹体研究的新进展[J].沉积与特提斯地质,1990,6:006.
    [234]李明诚,单秀琴,马成华,等.油气成藏期探讨(为庆祝克拉玛依油田勘探开发50周年而作)[J].新疆石油地质,2005,26(5):587-591.
    [235]刚文哲,高岗,王勇,等.高邮凹陷古近系原油成因类型及其油气运聚模式研究[J].山东科技大学学报(自然科学版),2012,31(1):21-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700