用户名: 密码: 验证码:
南通滨海地区全新世沉积物磁性特征及其古环境意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南通滨海地区地处长江三角洲北翼,其全新世环境演变过程备受关注。本文将环境磁学这一古环境研究的重要手段应用于该地区,探讨环境磁学在滨海古环境重建的应用机制及影响因素,以期对南通地区的环境演变过程有更为深刻的认识。
     本文对采自南通滨海地区曹园(CY,长29.90m)、三余(SY,长41.60m)、吕四(LS,长30.25m)、新安(XA,长41.90m)四个中晚全新世钻孔进行了系统的环境磁学研究,结合AMS14C测年、粒度、地球化学、X射线衍射(XRD)、漫反射光谱(DRS)、电镜分析等手段,分析了沉积物的磁性特征及其影响因素,探讨了磁学参数的古环境意义。主要结论如下:
     1、AMS14C测年数据显示,本文研究的四个钻孔为中晚全新世以来的堆积。其中XA、CY孔沉积速率相对较慢,平均速率分别为0.43cm/yr和0.51crn/yr;SY孔沉积速率较快,平均为1.75cm/yr。
     2、南通滨海地区中晚全新世沉积物的磁性特征为亚铁磁性矿物所主导,磁铁矿为主要的亚铁磁性矿物,颗粒大小以假单畴(PSD)-多畴(MD)为主;部分层位存在胶黄铁矿,具有较高的SIRM/χ, S-100、S-300和较低的L-ratio。此外,潮滩相上部(约表层2m)沉积物中针铁矿、赤铁矿、磁赤铁矿等磁性矿物的贡献较为显著。
     3、南通滨海地区中晚全新世沉积物具有相似的地球化学组成,说明物质来源较为稳定,不是引起沉积物磁性特征变化的主要因素。但CY、SY孔和LS、XA孔元素含量与粒度相关关系存在的差异,可能反映了研究地区南北物源存在差异,即北部受更多的黄河物质影响,南部受更多的长江物质影响。
     4、粒度是导致磁性特征变化的重要因素,其中平均粒径与磁化率(X)呈显著正相关,即粒度越粗,磁化率越高。这与较粗的PSD-MD磁性矿物主导了磁性特征,而这些磁性颗粒主要赋存在较粗的砂粒级组分中有关。SY和LS孔XARM与<32μm各粒级含量具有显著正相关,但是CY和XA两孔中非磁滞剩磁(XAMR)与细颗粒组分不具相关性,这可能是由于细颗粒磁性矿物在早期成岩作用过程中的优先溶解所致。
     5、有机质驱动的早期成岩作用对磁性特征的影响,在XA孔的层3浅海相沉积中最为显著,表现为细颗粒磁铁矿的溶解以及不完整反铁磁性矿物比例的上升。而CY孔的有机质层则含有大量的胶黄铁矿,指示了沉积环境的转变。
     6、受成土作用影响,钻孔顶部潮滩沉积物中针铁矿、赤铁矿和磁赤铁矿富集,使得沉积物具有较低的S-ratios和较高的HIRM,这为识别埋藏古土壤提供了新的手段。
     7、利用磁性特征对沉积动力和地球化学特征的指示,可以很好地反映研究区中晚全新世以来的环境演变过程。
The coastal region in Nantong, Jiangsu Province, China is located in the northern part of the Yangtze river delta. Its Holocene environmental evolution has received much attentions. This paper aims to apply environmental magnetism, a important tool in paleoenvironmental study, to the study of environmental change of Nantong, and get a better understanding of the evolution history of Nantong in Holocene.
     In this study,4drill cores from Caoyuan (CY,29.90m in length), Sanyu(SY,41.60m in length)、LvSi (LS,30.25m in length)、Xinan (XA,41.90m in length) were obtained from the present coast of Nantong, which covers the period of mid-late Holocene according to AMS14C dating. Rock magnetism were carried out on samples from the4cores. In combination with analyses of particle size, geochemistry, X-ray diffraction(XRD), diffuse reflectance spectroscopic(DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), this paper discusses the magnetic properties of the cores, its influencing facotors and environmental implications. The conclusion is as follows:
     1. According to AMS14C dating, the recovered cores was deposied since the mid-late Holocene. The deposition rates of core XA and CY are relatively slower, with mean sedimentation rate of0.43cm/a and0.51cm/a, in respectively. The rate of core SY is faster, with an average value of1.75cm/a.
     2. Magnetite dominates magnetic properties of the cores, and the grain size is mainly pseudo single domain (PSD) and multi-domain (MD). Greigite occurs at certain depth in the cores, which can be recognized by higher SIRM/χ, S-100, S-300and lower L-ratio values. In addition, goethite, hematite, maghemitite are more abundant in the top~2m of each cores.
     3. The similar geochemical composition suggests a relatively stable provenance. However, the correlation relationships between geochemical elements and mean size in cores CY and SY are different from those in cores LS and XA. It may reflect that a different sediment source in the study area, with Yellow River materials dominatin in the north and Yangtze River materials in the south.
     4. Particle size plays a dominant role in the varations of magnetic properties. Mean size is positively correlated with magnetic susceptibility (x). It is due to the fact that coarser PSD-MD grains, which are enriched in the sand fractions, dominate magnetic properties of sediments.χARM shows positive correlations with the fraction less than32μm in core SY and LS. But this correlation is not evident in core CY and XA, which is probably caused by the dissolution of fine magnetic minerals under reductive diagenesis.
     5. Early diagenesis drived by organic matter decay has a remarkable influence on magnetic properties in layer3of core XA. It is characterized by the dissolution of fine magnetite and the relative increase of antiferromagnetic minerals proportions. The presence of greigite in the organic layer of core CY suggests the change of sedimentary environment during its formation and preservation.
     6. Enrichment of goethite, hematite and maghematite in the top-2m layer of tidal flat facies is caused by pedogenesis. It results in lower S-ratios and higher HIRM, which provides a new means for buried pelaosol identification.
     7. The variations of magnetic properties respond sensitively to hydrodynamics and geochemical characteristics of sedimentary environments. Magnetic properies of the cores can reflect well the environmental evolution process in the study area since the mid-late Holocene.
引文
An, Z. S., Kukla, G. J., Porter, S. C.& Xiao, J. L. Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130,000 years[J]. Quaternary Research,1991,36(1),29-36.
    Badesab, F., Dobeneck, T. V., Bryan, K. R., Muller, H., Briggs, R.M., Frederichs, T.,Kwoll, E. Formation of magnetite-enriched zones in and offshore of amesotidal estuarine lagoon:An environmental magnetic study of Tauranga Harbourand Bay of Plenty, New Zealand[J]. Geochemistry Geophysics Geosystems,2012,13, Q06012. doi:10.1029/2012GC004125.
    Balsam, W., Ji, J.& Chen, J. Climatic interpretation of the Luochuan and Lingtai loess sections, China, based on changing iron oxide mineralogy and magnetic susceptibility[J]. Earth and Planetary Science Letters,2004,223(3-4),335-348.
    Banerjee, S. K., King, J.& Marvin, J. A Rapid method for magnetic granulometry with applications to environmental studies[J]. Geophysical Research Letters,1981, 8(4),333-336. doi:10.1029/GL008i004p00333.
    Berner, R. A. Sedimentary pyrite formation[J]. American Journal of Science,1970, 268,1-23.
    Berner, R. A. Sedimentary pyrite formation:an update[J]. Geochimica et Cosmochimica Acta,1984,48(4),605-615. dx.doi.org/10.1016/0016-7037(84)9008 9-9.
    Blanchet, C. L., Thouveny, N.& Vidal, L. Formation and preservation of greigit(Fe3S4) in sediments from the Santa Barbara Basin:Implications for paleoenvironmental changes during the past 35 Ka[J]. Paleoceanography,2009.24, PA224,doi:10.1029/2008PA001719.
    Bloemendal, J., Oldfield, F.& Thompson, R. Magnetic measurements used to assess sediment influx at Llyn Goddionduon[J]. Nature,1979,280,50-53. doi:10.1038/280050a0.
    Bloemendal, J.& Demenocal, P. Evidence for a change in the periodicity of tropical climate cycles at 2.4 Myr from whole-core magnetic susceptibility measurements[J]. Nature,1989,342,897-900, doi:10.1038/342897a0.
    Bloemendal, J., King, J. W., Hunt, A., Demenocal, P. B.& Hayashida, A. Origin of the sedimentary magnetic record at Ocean Drilling Program sites on the Owen Ridge, Western Arabian Sea[J]. Journal of Geophysical Research,1993,98(B3), 4199-4219.
    Bloemendal, J.& Liu, X., Rock magnetism and geochemistry of two Plio-Pleistocene Chinese loess-palaeosol sequences-Implications for quantitative palaeoprecipitation reconstruction[J]. Palaeogeography palaeoclimatology Palaeoecology,2005,226(1-2),149-166.
    Burdige, D. J. The biogeochemistry of manganese and iron reduction in marine sediments[J]. Earth-Science Reviews,1993,35(3),249-284.
    Burton, E. D., Bush, R. T., Johnston, S. G., Sullivan, L. A.& Keene, A. F. Sulfur biogeochemical cycling & novel Fe-S mineralization pathways in a tidally re-flooded wetland[J]. Geochimica et Cosmochimica Acta,2011,75(12), 3434-3451.
    Chen, Z., Wang, Z., Schneiderman, J., Taol, J.& Cail, Y. Holocene climate fluctuations in the Yangtze delta of eastern China and the Neolithic response[J]. The Holocene,2005,15(6),915-924.
    Church, T. M., Sornmerfield, C. K., Velinsky, D. J., Point, D., Benoit, C., Amouroux, D., Plaa, D.& Donard, O. Marsh sediments as records of sedimentation, eutrophication and metal pollution in the urban Delaware Estuary[J]. Marine. Chemistry,2006,102(1-2),72-95.
    Cornell, R. M.& Schwertmann, U. The Iron Oxides:Structure, Properties, Reactions,
    Occurrences and Uses[M]. Germany:John Wiley & Sons,2003.
    Day R., Fuller M.&Schmidt V. A. Hysteresis properties of titanomagnetites:grain size and compositional dependence [J]. Physics of the Earth and Planetary Interiors, 1977,13:260-267.
    Deng, C., Vidic, N. J.& Verosub, K. L. et al. Mineral magnetic variation of the Jiaodao Chinese loess/paleosol sequence and its bearing on long-term climatic variability [J]. Journal of Geophysical Research.2005,110, B03103, doi:1011029/2004JB003451.
    Dekkers, M. J. Environmental magnetism:an introduction[J]. Geologic cn Mijnbouw, 1997,76,163-182.
    Ding, Z. L., Yang, S. L., Sun, J. M.& Liu, T. S. Iron geochemistry of loess and red clay deposits in the Chinese Loess Plateau and implications for long-term Asian monsoon evolution in the last 7.0 Ma[J]. Earth and Planetary Science Letters,2001, 185(1-2),99-109.
    Dong Yan, Zhang Weiguo, Dong Chenyin, Ge Can & Yu Lizhong. Magnetic and diffuse reflectance spectroscopic characterization of iron oxides in the tidal flat sequence from the coastal plain of Jiangsu Province, China[J]. Geophysical Journal International,2014,196(1):175-188.
    Egli, R. Characterization of individual rock magnetic components by analysis of remanence curves,1. unmixing natural sediments [J]. Studia Geophysica et Geodetica,2004,48(2),391-446.
    Eisma, D., Ji, Z., Chen, S., Chen, M.S., Van der Gaast, S.J. Clay mineral composition of recent sediments along the China coast[J]. Netherlands Institute Voof ONderzeok der Zee (Report),1995,4,13pp.
    Evans, M. E., Heller, F. Environmental magnetism:principles and applications of environmagnetics[M]. Academic Press,2003,299pp.
    Fan, D. Open-Coast Tidal Flats[A]. In:Davis, J. R. A., Dalrymple, R. W. Principles of Tidal Sedimentology[C].2012, pp.187-229. (eds), Springer, Netherlands.
    Ferreira, T. O., Otero, X. L., Vidal-Torrado, P.& Macias, F. Effects of bioturbation by root and crab activity on iron and sulfur biogeochemistry in mangrove substrate[J]. Geoderma,2007,142(1-2),36-46.
    France, D. E.& Oldfield, F. Identifying goethite and hematite from rock magnetic measurements of soils and sediments[J]. Journal of Geophysical Research,2000, 105(B2),2781-2795.
    Gagnon, C., Mucci, A.& Pelletier, E. Anomalous accumulation of acid-volatile sulphides (AVS) in coastl marine sediment, Saguenay Fjord[J]. Geochemica et Cosmochimica Acta,1995,59(13),2663-2675.
    Gao, S. Geomorphology and Sedimentology of Tidal Flats[A]. In:Perillo, G. M. E., Wolanski, E., Cahoon, D. R.& Brinson, M. M. Coastal Wetlands:An Integrated Ecosystem Approach[C],2009, pp.295-316. (eds), Elsevier, Amsterdam.
    George, K., Friedrich, H., Liu, X. M., Xu, T. C., Liu, T. S.& An Z. S. Pleistocene climates in China dated by magnetic susceptibility[J]. Geology,1988,16(9), 811-814.
    Goldhaber, M. B.& Kaplan, I. R. The sulfur cycle[A]. In:Goldberg, E. D. The Sea volume[C],1974,5. PP.569-655. (eds.), John Wiley & Sons, New York.
    Guo, B., Zhu, R. X., Roberts, A. P.& Florindo, F. Lack of correlation between paleoprecipitation and magnetic susceptibility of Chinese loess/paleosol sequences[J]. Geophysical Research Letters,2001,28(22),4259-4262.
    Hanesch, M., Stanjek, H.& Petersen. Thermomagnetic measurements of soil iron minerals:the role of organic carbon[J]. Geophysical Journal International,2006, 165(1),53-61.
    Hansel, C. M., Benner, S. G., Neiss, J., Dohnalkova, A., Kukkadapu, R. K.& Fendorf, S. Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow[J]. Geochimica et Cosmochimica Acta,2003, 67(16),2977-2992.
    Hao, Q., Oldfield, F., Bloemendal, J., Torrent, J.& Guo, Z. The magnetic properties of loess & paleosol samples from the Chinese Loess Plateau spanning the last 22 million years[J]. Palaeogeography Palaeoclmatology Palaeoecology,2008,260(3-4), 389-404.
    Hao, Q. Z., Oldfield, F., Bloemendal, J.& Guo, Z. T. The record of changing hematite and goethite accumulation over the past 22 Myr on the Chinese Loess Plateau from magnetic measurements and diffuse reflectance spectroscopy[J]. Journal Geophysical Research,2009,114(B12), doi:10.1029/2009JB006604.
    Hatfield, R. G., Cioppa, M. T., Trenhaile, A. S. Sediment sorting and beach537 erosion along a coastal foreland:Magnetic measurements in Point Pelee National 538 Park, Ontario, Canada[J]. Sedimentary Geology,2010,231,63-73.
    Heller, F.& Liu, T. S. Magnetism of Chinese loess deposits[J]. Geophysical Journal, 1984,77,125-141.
    Hilton, J. Geigite and the magnetic properties of sediments [J]. Limnology and Oceanography,1990,35(2),509-520.
    Hori, K., Saito, Y., Zhao, Q., Cheng, C., Wang, P., Sato, Y.& Li, C. Sedimentary facies and Holocene progradation rates of the Changjiang (Yangtze) delta, China[J]. Geomorphology,2001,41,233-298.
    Hori, K., Saito, Y., Zhao, Q. H.& Wang, P. X. Evolution of the coastal depositional systems of the Changjiang (Yangtze) River in response to late Pleistocene-Holocene sea-level changes[J]. Journal of Sedimentary Research, 2002a,72(6),884-897.
    Hori, K., Saito, Y., Zhao, Q. H.& Wang, P. X. Architecture and evolution of the tide-dominated Changjiang (Yangtze) River delta, China[J]. Sedimentary Geology, 2002b,146,249-264.
    Hovan, S. A., Rea, D. K., Pisias, N. G.,& Shackleton, N. J. A direct link between the China loess and marine δ18O records:Aeolian flux to the North Pacific[J]. Nature, 1989,340,296-298.
    Hyun, J. H., Smith, A. C.& Kostka, J. E. Relative contributions of sulfate-and iron(Ⅲ) reduction to organic matter mineralization and process controls in contrasting habitats of the Georgia saltmarsh[J]. Applied Geochemistry,2007,22(12), 2637-2651.
    Jiang, Z., Liu, Q., Barron, V., Torrent, J.& Yu, Y. Magnetic discrimination between Al-substituted hematites synthesized by hydrothermal and thermal dehydration methods and its geological significance [J]. Journal of Geophysical Research,2012, 117(B2),doi:10.1029/2011JB008605.
    Johnston, S. G., Keene, A. F., Bush, R. T., Burton, E. D., Sullivan, L. A., Isaacson, L., McElnea, A. E., Ahern, C. R., Smith, C. D.& Powell, B. Iron geochemical zonation in a tidally inundated acid sulfate soil wetland[J]. Chemical Geology,2011, 280(3-4),257-270.
    Judd, D. B.,& Wyszecki, G. Color in Business, Science, and Industry[M]. John Wiley, New York,1975,pp.,576.
    Karlin, R.& Levi, S. Diagenesis of magnetic minerals in recent haemipelagic sediments[J]. Nature,1983,303,327-330.
    Kodama K. P., Lyons J. C.& Siver P. A., et al. A mineral magnetic and scaled-chrysophyte paleolimnological study of two northeastern Pennsylvania lakes: records of fly ash deposition, land-use change, and paleo rainfall variation[J]. Journal of Paleolimnology,1997,7 (2),173-189.
    Kruiver, P. P., Dekkers, M. J.& Heslop, D. Quantification of magnetic coercivity components by the analysis of acquisition curves of isothermal remanent magnetisation[J]. Earth and Planetary Science Letters,2001,189(3-4),269-276.
    Kruiver, P. P.& Passier, H. F. Coercivity analysis of magnetic phases in sapropel S1 related to variations in redox conditions, including an investigation of the S ratio[J]. Geochemistry Geophysics Geosystem,2001,2, doi:10.1029/2001 GC000181.
    Liu, C., Deng, C.& Liu, Q. Mineral magnetic studies of the vermiculated red soils in southeast China and their paleoclimatic significance [J]. Palaeogeography Palaeoclmatology Palaeoecology,2012a,329-330,173-183.
    Liu, Q. S., Deng, C. L., Yu, Y. J., Torrent, J., Jackson, M. J., Banerjee, S. K.& Zhu, R. X. Temperature dependence of magnetic susceptibility in an argon environment: implications for pedogenesis of Chinese loess/palaeosols[J]. Geophysical Journal International,2005,161,102-112.
    Liu, Q. S., Roberts, A. P., Torrent, J., Horng, C. S.& Larrasoana, J. C. What do the HIRM and S-ratio really measure in environmental magnetism?[J]. Geochemistry Geophysics Geosystem,2007,8, Q9011, doi:10.1029/2007GC001717.
    Liu, Q. S., Roberts, A. P., Larrasoana, J. C., Banerjee, S. K., Guyodo, Y., Tauxe, L.& Oldfield, F. Environmental magnetism:Principles and applications[J]. Reviews Of Geophysics,2012b,50(4), doi:10.1029/2012RG000393.
    Liu, S. M., Zhang, W. G, He, Q., Li, D. J., Liu, H., Yu, L. Z. Magnetic properties of East China Sea shelf sediments off the Yangtze Estuary:Influence of provenance and particle size[J]. Geomorphology,2010,119(3-4),212-220.
    Liu, X. M., Hesse, P.& Rolph, T. Origin of maghaemite in Chinese loess deposits: Aeolian or pedogenic?[J]. Physics of the Earth and Planetary Interiors,1999, 112(3-4),191-201.
    Liu, X. M., Rolph, T., An, Z.& Hesse, P. Paleoclimatic significance of magnetic properties on the Red Clay underlying the loess and paleosols in China[J]. Palaeogeography Palaeoclmatology Palaeoecology,2003,199(1-2),153-166.
    Long, X. Y., Ji, J. F.& Chen, J. Rainfall-dependent transformations of iron oxides in a tropical saprolite transect of Hainan Island, South China:Spectral and magnetic measurements [J]. Journal of. Geophysical Research,2011,116(F3), doi:10.1029/2010JF001712.
    Luther Ⅲ, G. W.& Church, T. M. Seasonal cycling of sulfur and iron in porewaters of a Delaware salt marsh[J]. Marine Chemistry,1988,23(3-4),295-309.
    Maher, B. A. Magnetic properties of some synthetic sub-micron magnetites[J]. Geophysical Journal,1988,94(1),83-96.
    Maher, B. A.& Thompson, R. Mineral magnetic record of the Chinese loess and paleosols[J]. Geology.1991,19,3-6.
    Maher, B. A., Karloukovski, V. V.& Mutch, T. J. High-field remanence properties of synthetic and natural submicrometre haematites and goethites:Significance for environmental contexts[J]. Earth and Planetary Science Letters,226(3-4),2004, 491-505.
    Maher, B. A. Thompson R. Quaternary climates, environments and magnetism[M]. Cambridge University Press,1999,382. PP.
    Mansfeldt, T., Schuth, S., Haeusler, W., Wagner, F. E., Kaufhold, S.& Overesch, M. Iron oxide mineralogy and stable iron isotope composition in a Gleysol with petrogleyic properties [J]. Journal of Soils and Sediment,2012,12(1),97-114.
    Mohamed, K. J, Rey, D.& Rubio, B., et al. Onshore-offshore gradient in reductive early diagenesis in coastal marine sediments of the Ria de Vigo, Northwest Iberian Peninsula[J]. Continental Shelf Research,2011,31(5),433-447.
    Oldfield, F., Thompson R.& Brown A. Changing atmospheric fallout o f magnetic particles record in recent ombrotrophic peat section[J]. Science,1978,199,679-690.
    Oldfield, F., Hunt, A., Jones, M. D. H., Chester, J., Dearing, J., Olsson, L.& Prospero, M. Magnetic differentiation of atmospheric dusts[J]. Nature,1985,317,516-518.
    Oldfield, F. Environmental magnetism-a personal perspective[J]. Quaternary Science Review,1991,10(1),73-85.
    Oldfield, F. Toward the discrimination of fine-grained ferrimagnets by magnetic measurements in lake and near-shore marine sediments[J]. Journal of Geophysical Research,1994,99 (B5),9045-9050.
    Oldfield, F.& Yu, L. The influence of particle size variations on the magnetic properties of sediments from the north-eastern Irish Sea[J]. Sedimentology,1994, 41,1093-1108.
    Ozdemir, O.,& Banerjee, S.K.. A preliminary magnetic study of soil samples from west central Minnesota[J]. Earth and Planetary Science Letters,,1982,59,393-403.
    Ozdemir, O.& Dunlop, D. J. Hallmarks of maghemitization in low temperature remanence cycling of partially oxidized magnetite nanoparticles[J]. Journal of Geophysical Research,2010,115(B2), doi:10.1029/2009JB006756.
    Pan, Y. X., Zhu, R. X.& Banerjee, S. K. Rock magnetic properties related to thermal treatment of siderite:Behavior and interpretation [J]. Journal of Geophysical Research,2000,105(B1),83-89.
    Pedersen, H. D., Postma, D., Jakobsen, R.& Larsen, O. Fast transformation of iron oxyhydroxides by the catalytic action of aqueous Fe(II)[J]. Geochimica et Cosmochimica Acta,2005,69(16),3967-3977.
    Peters, C.& Dekkers, M. J. Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size[J]. Physics and Chemistry of the Earth,2003,28(16-19),659-667.
    Quinton, E. E., Dahms, D. E.& Geiss, C. E. Magnetic analyses of soils from the Wind River Range, Wyoming, constrain rates and pathways of magnetic enhancement for soils from semiarid climates[J]. Geochemistry Geophysics Geosystem,2011,12(7), doi:10.1029/2011GC003728.
    Ren, M. E.& Shi, Y. L. Sediment discharge of the Yellow River (China) and its effect on the sedimentation of the Bohai and the Yellow Sea[J]. Continental Shelf Research,1986,6(6),785-810.
    Reynolds, R. L., Rosenbaum, J. G., Metre, P., et al. Greitiet(Fe3S4) as an indicator of drought-the 1912-1994 sedinent magnetic record form White Rock Lake, Dallas Texas, USA[J]. Journal of Paleolimnology.1999,21,193-206.
    Roberts, A. P. Magnetic properties of sedimentary greigite (Fe3S4)[J]. Earth and Planetary Science Letters,1995,134(3-4),227-236.
    Roberts, A. P., Liu, Q., Rowan, C. J., Chang, L., Carvallo, C., Torrent, J.& Horng, C. Characterization of hematite (a-Fe2O3), goethite (a-FeOOH), greigite (Fe3S4), and pyrrhotite (Fe7S8) using first-order reversal curve diagrams [J]. Journal of Geophysical Research,2006,111(B12), doi:10.1029/2006JB004715.
    Roberts, A.P., L. Chang, C.J. Rowan, C.-S. Horng & F. Florindo. Magnetic properties of sedimentary greigite (Fe3S4):an update[J]. Reviews of Geophysics,2011,49, RG1002,doi:10.1029/2010RG000336.
    Rochette, P., Mathe, P. E., Esteban, L., Rakoto, H., Bouchez, J. L., Liu, Q. S.& Torrent, J. Non-saturation of the defect moment of goethite and fine-grained hematite up to 57 Teslas[J]. Geophysical Research Letters,2005,32(22), doi:10.1029/2005GL024196.
    Rowan, C. J., Roberts, A. P.& Broadbent, T. Reductive diagenesis, magnetite dissolution, greigite growth and paleomagnetic smoothing in marine sediments:A new view[J]. Earth and Planetary Science Letters,2009,277(1-2),223-235.
    Roychoudhury, A. N. Spatial and seasonal variations in depth profile of trace metals in saltmarsh sediments from Sapelo Island, Georgia, USA[J]. Estuarine Coastal and Shelf Science,2007,72(4),675-689.
    Schoonen M A A., Barnes H L. Reactions forming pyrite and marcasite from solution: I. Nucleation of FeS2 below 100℃[J]. Geochimica et Cosmochimica Acta,1991a, 55:1495-1504.
    Schoonen M A A., Barnes H L. Barnes. Reactions forming pyrite and marcasite from solution:Ⅱ. Via FeS precursors below 100℃[J]. Geochimica et Cosmochimica Acta,1991b,55:1505-1514.
    Snowball, I. F. Magnetic hysteresis properties of gerigite(Fe3S4) and a new occurrence in Holocene sediments from Swedish Lappland[J]. Physics of the Earch and Planetary Ineriors,1991,68(1-2),32-40.
    Snowball, I., Sandgren P.& Petterson G. The mineral magnetic properties of an annually laminated Holocene lake-sediment sequence in northern Sweden[J]. The Holocene,1999,9 (3),353-362.
    Snowball, I., Zillen, L.& Gaillard, M. J. Rapid early-Holocene environmental changes in northern Sweden based on studies of two varved lake-sediment sequences[J]. The Holocene.2002,12 (1),7-16.
    Song, B., Li, Z., Saito, Y., Okuno, J., Li, Z., Lu, A. Q., Hua, D., Li, J., Li, Y. X.& Nakashima, R. Initiation of the Changjiang(Yangtze) dalta and its response to the mid-Holocene sea level change[J]. Palaeogeography. Palaeoclimatology. Palaeoecology.2013,388(15),81-97.
    Sundby, B., Caetano, M., Vale, C., Gobeil, C., Luther, G.W.& Nuzzio, D. B. Root-induced cycling of lead in salt marsh sediments[J]. Environmental Science and Technology,2005,39(7),2080-2086.
    Taillefert, M., Neuhuber, S.& Bristow, G. The effect of tidal forcing on biogeochemical processes in intertidal salt marsh sediments [J]. Geochemical Transactions,2007,8, doi:10.1186/1467-4866-8-6.
    Thompson, R., Batterbee R. W.,& O'Sullvivan, P. E., et al. Magnetic susceptibility of lake sediments[J]. Limnology and Oceanography,1975,20,687-698.
    Thompson, R.& Oldfield, F. Environmental Magnetism[M]. Allen & Unwin, London, 1986.
    Torrent, J., Schwertmann, U.& Schulze, D. G. Iron oxide mineralogy of some soils of two river terrace sequences in Spain[J]. Geoderma,1980,23(3),191-208.
    Torrent, J., Barron, V.& Liu, Q.S. Magnetic enhancement is linked to and precedes hematite formation in aerobic soil[J]. Geophysical Research Letters,2006,33,(2), doi:10.1029/2005GL024818.
    Torrent, J., Liu, Q. S., Bloemendal, J.& Barron, V. Magnetic enhancement and iron oxides in the upper Luochuan Loess-Paleosol sequence, Chinese Loess Plateau[J]. Soil Science Society of America Journal,2007,71(5),1570-1578.
    Verosub, K. L.& Roberts, A. P. Environmental magnetism:Past, present and future[J]. Journal of Geophysical Research,1995,100(B2),2175-2192.
    Walden, J., Oldfield, F.& Smith, J. P. Environmental magnetism:a practical guide. (Eds.); Technical Guide 6[J]. Quaternary Research Association, London,1997, 243pp.
    Wang, G., Oldfield, F., Xia, D. S., Chen, F. H., Liu, X. M.& Zhang, W. G. Magnetic properties and correlation with heavy metals in urban street dust:A case study from the city of Lanzhou, China[J]. Atmospheric Environment,2012,46,289-298.
    Wheeler, A. J., Oldfield, F.& Orford, J. D. Depositional and post-depositional controls on magnetic signals from saltmarshes on the north-west coast of Ireland[J]. Sedimentology.1999,46(3),545-558.
    Yamazaki, T., Abdeldayem, A. L.& Ikehara, K. Rock-magnetic changes with reduction diagenesis in Japan Sea sediments and preservation of geomagnetic secular variation in inclination during the last 30,000 years[J]. Earth and Planetary Science Letters,2003,55,327-340.
    Yamazaki, T. Environmental magnetism of Pleistocene sediments in the North Pacific and Ontong-Java Plateau:Temporal variations of detrital and biogenic components[J]. Geochemistry Geophysics Geosystems,2009,10(7), doi:10.1029/2009GC002413.
    Yamazaki, T.& Solheid, P. Maghemite-to-magnetite reduction across the Fe-redox boundary in a sediment core from the Ontong-Java Plateau:influence on relative
    palaeointensity estimation and environmental magnetic application[J]. Geophysical Journal International,2011,185(3),1243-1254.
    Yamazaki, T.& Ikehara, M. Origin of magnetic mineral concentration variation in the Southern Ocean[J]. Paleoceanography.2012,27(2), doi:10.1029/2012PA002373.
    Yang, S. Y., Jung,& H. S.,Lim, D. I., et al. A review of on the provenance discrimination of sediments in the Yellow Sea[J]. Earth Science Reviews.2003, 63(1-2),93-120.
    Zhang, W. G, Yu, L. Z.& Hutchinson, S. M. China's Yangtze Estuary, I. Geomorphic influence on heavy metal accumulation in intertidal sediments [J]. Geomorphology. 2001,41(2-3),195-205.
    Zhang, W. G.& Yu, L. Z. Magnetic properties of tidal flat sediments of the Yangtze Estuary and its relationship with particle size[J]. Science in China (Series D).2003, 46(9),954-966.
    Zhang, W. G, Yu, L. Z, Lu, M., Zheng, X. M.& Shi,Y. X. Magnetic properties and geochemistry of the Xiashu Loess in the present subtropical area of China, and their implications for pedogenic intensity[J]. Earth and Planetary Science Letters.2007a, 260(1-2),86-97.
    Zhang, W. G, Yu, L. Z., Lu, M., Hutchinson, S. M.& Feng, H. Magnetic approach to normalizing heavy metal concentrations for particle size effects in intertidal sediments in the Yangtze Estuary, China[J]. Environmental Pollution.2007b,147, 238-244.
    Zhang, W. G., Xing, Y, Yu, L. Z., Feng, H.& Lu, M. Distinguishing sediments from the Yangtze and Yellow Rivers, China:a mineral magnetic approach[J]. The Holocene.2008,18(7),1139-1145.
    Zhang, W. G., Feng, H., Chang, J. N., Qu, J. G, Xie, H. X.& Yu, L. Z. Heavy metal contamination in surface sediments of Yangtze River intertidal zone:an assessment from different indexes[J]. Environmental Pollution.2009a,157,1533-1543.
    Zhang, W. G., Yu, L. Z., Lu, M., Zheng, X. M., Ji, J. F., Zhou, L. M.& Wang, X. Y. East Asian summer monsoon intensity inferred from iron oxide mineralogy in the Xiashu Loess in southern China[J]. Quaternary Science Review,2009b,28(3-4), 345-353.
    Zhang, W. G., Jiang, H. M., Dong, C. Y, Yan, Q., Yu, L. Z.& Yu, Y. Magnetic and geochemical characterization of iron pollution in subway dusts in Shanghai, China[J]. Geochemistry,Geophysics,Geosystems.2011,12(6), doi: 10.1029/2011GC003524.
    Zhang, W., Dong, C., Ye, L., Ma, H.& Yu, L. Magnetic properties of coastal loess on the Midao islands, northern China:Implications for provenance and weathering intensity[J]. Palaeogeogr. Palaeoclmatol. Palaeoecol.2012a,333,160-167.
    Zhang, W. G, Ma, H. L., Ye, L. P., Dong, C. Y, Yu, L. Z.& Feng, H. Magnetic and geochemical evidence of Yellow and Yangtze River influence on tidal flat deposits in northern Jiangsu Plain, China[J]. Marine Geology.2012b,319,47-56.
    Zheng, H., Oldfield, F.& Yu, L., et al. The magnetie properties of paticle-sized samples from the Luo Chuan loess section:evidence for Pedogenesis[J]. Physics of the Earth and Planetary Interiors,1991.68,250-258.
    Zheng, Y., Zheng, H. B., Kissel, C.& Laj, C. Sedimentation rate control on diagenesis, East China Sea sediments[J]. Physics of the Earth and Planetary Interiors,2011,187,301-309.
    Zhou, L. P., Oldfield, F., Wintle, A. G., Robinson, S. G.& Wang, J. T. Partly pedogenic origin of magnetic variations in Chinese loess[J]. Nature.1990,346, 737-739.
    Zolitschka, B. A 14000 year sediment yield reco rd from western Germany based on annually laminated lake sediments[J]. Geomorphology.1998,22 (1):1-17.
    Zong, Y. Mid-Holocene sea-level highstand along the southeast coast of China[J]. Quaternary International.2004,117,55-67.
    Zong, Y., Innes, J. B,, Wang, Z.& Chen, Z. Mid-Holocene coastal hydrology and salinity changes in the east Taihu area of the lower Yangtze wetlands, China[J]. Quaternary Research,2011,76(1),69-82.
    Zong, Y., Wang, Z., Innes, J. B.& Chen, Z. Holocene environmental change and Neolithic rice agriculture in the lower Yangtze region of China:A review[J]. The Holocene,2011b,22(6),623-635.
    曹光杰,王建,屈贵贤.末次盛冰期以来长江南通段古河谷的地层特征[J].地层学杂志,2007,31(2),175-178.
    操应长,王艳忠,徐涛玉,弭连山.特征元素比值在沉积物物源分析中的应用——以东营凹陷王58井区沙四上亚段研究为例[J].沉积学报,2007,25(2),230-238.
    陈报章,李从先,业治铮.冰后期长江三角洲北翼沉积及环境演变[J].海洋学报,1995,17(1),62-75.
    陈报章.苏北弶港地区埋藏潮沙体的发现与现代辐射状潮流沙脊群的成因[J].海洋通报,1996,15(9),46-52.
    陈吉余.长江三角洲河口段的地形发育[J].地理学报,1957,23(3),241-252.
    陈吉余,恽才兴,徐海根.两千年来长江口发育的模式[J].地理学报,1979,1(1),103-111.
    陈吉余,沈焕庭,恽才兴.长江河口动力过程和地貌演变[M].上海:上海科学技术出版社,1988,13-17.
    陈吉余,王宝灿,虞志英.中国海岸发育过程与演变规律[M].上海:上海科学技术出版社,1989,1-17.
    陈金渊.南通地区成陆过程的探索[J].历史地理,1983,3,21-37.
    陈金渊.南通成陆.苏州:苏州大学出版社[M],2010,260pp.
    单孝全,陈斌,铁军,谢光国,郑焰,金龙珠.土壤和河流沉积物中硫的形态分析[J].环境科学学报,1991,11,172-177.
    邓成龙,刘青松,潘永信,朱日祥.中国黄土环境磁学[J].第四纪研究,2007,27(2),193-208.
    董辰寅,张卫国,王冠,马鸿磊,刘圆,刘莹,叶雷平,俞立中[J].上海宝山区城市土壤铅污染来源的同位素判别.环境科学,2012,(3),754-759.
    董艳,张卫国,钱鹏,蒋庆丰,刘莹,董辰寅.南通市任港河底泥重金属污染的磁 学诊断[J].环境科学学报,2012,32(3),696-705.
    冯义.三余湾海岸的形成及其演变[J].海洋通报,1993,12(4),77-82.
    高晓琴,王张华,李琳,吴绪旭.长江口现代潮滩表层沉积物磁性特征和自生铁硫化物的分布[J].古地理学报,2012,14(5),673-684.
    葛宗诗.南黄海QC2孔磁化率研究[J].海洋地质与第四纪地质,1996,16(4),35-42.
    郭蓄民,许世远,王靖泰.长江河口地区全新统的分层与分区[J].同济大学学报,1979,2,15-26.
    何炎,胡兰英,王克良.江东东部第四纪有孔虫[J].中国科学院南京地质古生物研究所集刊,1965,(4),51-162.
    胡忠行,朱丽东,张卫国,叶玮.江西九庐公路红土剖面的磁学特征及其反映的风化成土作用[J].地球物理学报,2011,54(5),1319-1326.
    胡忠行,张卫国,董辰寅,刘莹,陈静,俞立中.东海内陆架沉积物磁性特征对早期成岩作用的响应[J].第四纪研究,2012,32(4),670-678.
    黄湘通,郑洪波,杨守业,Mark, Dekker.,章振铨,谢听,方国庆.长江三角洲DY03孔磁性地层研究及其意义[J].海洋地质与第四纪地质,2008,28(6),87-93.
    吉云松,刘苍字,洪雪晴,孙艳梅.长江口北支中全新世以来的两次环境变异[J].海洋地质动态,2003,19(3),1-5.
    吉云松.2004.利用有孔虫建立高精度海平面变化尺度[D].上海:华东师范大学,2004.
    贾海林,刘苍字,张卫国,孟诩,洪雪晴.崇明岛CY孔沉积物的磁性特征及其环境意义[J].沉积学报,2004,22(1),117-123.
    蒋富清,李安春.冲绳海槽南部表层沉积物地球化学特征及其物源和环境指示意义[J].沉积学报,2002,20(4):680-686.
    李保华.冰后期长江三角洲下切河谷体系与河口湾演变[D].上海:同济大学,2005.
    李从先,陈庆强,范代读,张家强,杨守业.末次盛冰期以来长江三角洲地区的沉积相和古地理[J].古地理学报,1999,1(4),12-25.
    李从先,张桂甲.晚第四纪长江三角洲高分辩率层序地层学的初步研究[J].海洋地质与第四纪地质,1996,16(3),13-24.
    李从先,汪品先.长江晚第四纪河口地层学研究[M].北京:科学出版社,1998,114-172.
    李从先,范代读,Hofi,K.冰后期海侵海退与长江口地区环境变化的若干问题[J].南京师大学报(自然科学版),2000,23(4),181-188.
    李从先,范代读.全新世长江三角洲的发育及其对相邻海岸沉积体系的影响[J].古地理学报,2009,11(1),115-122.
    李海燕,张世红.黄铁矿加热过程中的矿相变化研究——基于磁化率随温度变化特征分析[J].地球物理学报,2006,48(6),1384-1391.
    林承坤.黄海粘土沉积物的来源与分布[J].地理研究,1992,11(2),41-51.
    凌申.黄河南徙与苏北海岸线的变迁[J].海洋科学,1988,5,54-58.
    凌申.沙洲并陆与长江口北部岸线的演变[J].台湾海峡,2001,20(4),484-489.
    刘广虎,李军,陈道华,刘坚.台西南海域表层沉积物元素地球化学特征其物源指示意义[J].海洋地质与第四纪地质,2006,26(5):61-68.
    刘健.磁性矿物还原成岩作用述评[J].海洋地质与第四纪地质,2000,20(4),103-107.
    刘健,朱日祥,李绍全,Jeong-Hae Chang.南黄海东南部冰后期泥质沉积物中磁性矿物的成岩变化及其对环境变化的响应[J].中国科学(D辑),2003,33(6),583-592.
    刘莹,张卫国,杨世伦,罗艺,董辰寅,俞立中.杭州湾北岸芦潮港潮滩沉积物磁性特征的年际变化及其粒度控制[J].沉积学报,2012,30(3),547-555.
    刘秀铭,刘东生,F.H.,许同春.黄土频率磁化率与古气候冷暖变换[J].第四纪研 究,1990,(1),42-50.
    刘秀铭,刘东生,John, S.中国黄土磁性矿物特征及其古气候意义[J].第四纪研究,1993,(3),281-87.
    刘振夏,Berne S.中更新世以来东海陆架的古环境[J].海洋地质与第四纪地质,1999,(2),1-10.
    隆茜,周菊珍,孟颉,达良俊.城市道路绿化带不同植物叶片附尘对大气污
    染的磁学响应[J].环境科学,2012,33(12):4188-4193.
    罗艺,张卫国,刘莹,刘园.嘉陵江三大水系边滩沉积物磁性特征及其物源指示意义[J].华东师范大学学报(自然科学版),2011,2,99-107.
    鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000,621pp.
    吕全荣,严肃庄.长江河口重矿物组合的研究及其意义[J].华东师范大学学报,1981,1,73-83.
    马鸿磊.长江口及东海内陆架沉积物柱样磁性特征及其影响因素[D].上海:华东师范大学,2011.
    马鸿磊,张卫国,胡忠行,贾铁飞,董辰寅,刘莹.长江口外CX21柱样的磁性特征及其影响因素[J].华东师范大学学报(自然科学版),2012,(3),120-129+153.
    钱鹏,周立曼,郑祥民,蒋庆丰,闫德智.江苏南通表土、地面灰重金属污染及潜在生态风险评价[J].环境化学,2012,31(4),483-489.
    覃建雄,杨作升,梁卫,曾凡刚.东海陆架全新统高分辨率层序地层学研究[J].岩相古地理,1998,(6),11-26.
    秦蕴珊,赵一阳,陈丽蓉,赵松龄.东海地质[M].北京:科学出版社,1987,290pp.
    任美锷,史运良.黄河输沙及其对渤海、黄海沉积作用的影响[J].地理科学,1986,6(1),1-12.
    孙艳梅,刘苍字,洪雪晴.长江口北支中全新世以来环境深变变异事件及影响因素[J].海洋地质动态,2005,21(1),11-17.
    孙艳梅,刘苍字,洪雪晴.中全新世以来长江口北支环境的演变[J].海洋科学,2007,31(12),47-52.
    唐保根,咎一平.长江水下三角洲浅孔岩芯的地层划分[J].海洋地质与第四纪地质,1986,6(2),41-52.
    唐珉,杨守业,李保华,李从先,王强,赵泉鸿.长江三角洲冰后期沉积物的有机碳氮和有机碳同位素组成与古环境指示[J].海洋地质与第四纪地质,2006,26(5),1-10.
    陶士康.长江三角洲地区晚新生代沉积物磁性特征及其沉积环境、物源与古气候意义[D].上海:华东师范大学,2007.
    同济大学三角洲科研组.全新世长江三角洲的形成和发育[J].科学通报,1978,23(5),310-313.
    王建,刘泽纯,姜文英,董龄祥,朱明哲,高丰.磁化率与粒度、矿物的关系及其古环境意义[J].地理学报,1996,51(2),155-163.
    王靖泰,郭蓄民,许世远,李萍,李从先.全新世长江三角洲的发育[J].地质学报,1981,55(1),67-81.
    王润华,郭坤一,于振江,张于平,梁小红.长江三角洲地区第四纪磁性地层学研究[J].地层学杂志,2005,29(增刊),612-617.
    王颖,朱大奎,周旅复,王雪瑜,蒋松柳,李海宇,施丙文,张永战.南黄海辐射沙脊群沉积物点及其演变[J].中国科学(D辑),1998,28(5),385-393.
    王永红,沈焕庭,张卫国.长江与黄河河口沉积物磁性特征对比的初步研究[J].沉积学报,2004,(4),658-663.
    吴绪旭,王张华,何中发.总硫总有机碳比(TS/TOC)对长江三角洲南部平原沉积环境的指示意义[J].古地理学报,2012,14(6),821-828.
    谢红霞,张卫国,顾成军,戴雪荣,俞立中, John Dearing.巢湖沉积物磁性特征及其对沉积动力的响应[J].湖泊科学,2006,18(1),43-48.
    邢云,张卫国,杨世伦,俞立中.潮滩表层沉积物磁性特征的季节性变化及其对沉积动力作用的响应:以杭州湾北岸为例[J].沉积学报,2007,25(2),267-273.
    严钦尚,许世远.长江三角洲现代沉积研究[-M].上海:华东师范大学出版社,1987,438pp.
    杨达源,张建军,李徐生.黄河南徙、海平面变化与江苏中部的海岸线变迁[J].第四纪研究,1999,19(3),283-283.
    杨怀仁,韩同春,杨达源,谢志仁.长江下游晚更新世以来河道变迁类型与机制[J].南京大学学报(自然科学版),1983,2,341-350.
    杨守业,李从先,张家强.苏北滨海平原全新世沉积物物源研究[J].沉积学报,1999,17(3),458-463.
    杨守业,李从先,赵泉鸿,1oshiki Saito.长江口冰后期沉积物的元素组成特征[J].同济大学学报(自然科学版),2000,5(25),532-536.
    虞志英,陈德昌,唐寅德.关于苏北中部平原海岸古砂堤形成年代的认识[J].海洋科学,1982,(4),11-14.
    张景文,李桂英,赵希涛.苏北地区全新世海陆变迁的年代学研究[J].海洋科学,1983,(6),8-11.
    张忍顺.苏北黄河三角洲及滨海平原的成陆过程[J].地理学报,1984,39(2),173-184.
    张卫国,俞立中.长江口潮滩沉积物的磁学性质及其与粒度的关系[J].中国科学(D辑),2002,32(9),783-792.
    张卫国,戴雪荣,张福瑞,师育新,俞立中,Dearing, J.A.近7000年巢湖沉积物环境磁学特征及其指示的亚洲季风变化[J].第四纪研究,2007a,27(6),1053-1062.
    张卫国,俞立中,Hutchinson, S. M.长江口南岸边滩沉积物重金属污染记录的磁诊断方法[J].海洋与湖沼,2000,31(6),616-623.
    张卫国,贾铁飞,陆敏,瞿建国,刘苍字,陈中原,俞立中,周菊珍.长江口水下三角洲Y7柱样磁性特征及其影响因素[J].第四纪研究,2007b,27(6),1063-1071.
    赵松龄.关于全新世以来长江水下三角洲的沉积结构问题.中国海平面变化[M].北京:海洋出版社,1986,132-140.
    郑妍,郑洪波,邓成龙,王敏杰,范代读.还原成岩作用对磁性矿物的影响及古气候意义:以长江口水下三角洲岩芯YD0901沉积物为例[J].第四纪研究,2012,32(4),655-662.
    周开胜,孟翊,刘苍字,洪雪晴.长江口北支潮流沙体沉积物来源分析[J].海南师范学院学报(自然科学版),2007,(03),277-282.
    周开胜,孟翊,张军弘.崇明东滩DT孔有孔虫组合特征及其环境意义[J].微体古生物学报,2012,29(2),130-135.
    赵一阳,鄢明才.黄河、长江、中国浅海沉积物化学元素含量比较[J].科学通报,1992,37,1-3.
    朱诚,程鹏,卢春成,王文.长江三角洲及苏北沿海地区7000年以来海岸线演变规律分析[J].地理科学,1996,16(3),207-213.
    朱诚,张强,张芸,张之恒,沈明洁.长江三角洲长江以北地区全新世以来人地关系的环境考古研究[J].地理科学,2003,(06),705-712.
    朱大奎,柯贤坤,高抒,南京大学海洋地貌与沉积研究室.江苏海岸潮滩沉积的研究[J].黄渤海海洋,1986,4,19-27.
    朱骥德,顾斌.南通地理[M].南京:南京大学出版社,1990,334pp.
    朱晓东,任美锷,朱大奎.南黄海辐射沙洲中心沿岸晚更新世以来的沉积环境演
    变[J].海洋与湖沼,1999,34(4),427-434.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700