用户名: 密码: 验证码:
东海水团特征及黑潮与东海陆架水交换研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
东海水团的消长过程、台湾暖流水的季节变化、东海黑潮流量的变异以及东海陆架水交换过程,这些都是影响东海海洋环境状况、物质和能量输运的关键过程。因此,对这些关键海洋现象及其机制进行系统的研究具有重要的科学意义。本文基于大量的历史观测资料和数模结果,对东海相关海洋现象的演变机制进行了系统研究;利用实测温、盐资料研究了东海水团的季节变化特征,并从动力学和热力学的角度分析其变化机制,并在水团分析的基础上,结合数模结果,探讨了台湾暖流水的体积及其来源的季节变化特征;利用日本气象厅近50年来PN断面的观测资料,研究了东海黑潮流量的年际和年代际变化特征,并讨论了它与太平洋年代际振荡(PDO)和经向风异常的关系;利用高分辨率的数值模式ROMS模拟了东海气候态的环流系统,并分析了东海各主要水道的水量、热量和盐量输运的季节变化特征。得到的主要结论如下:
     (1)给出了东海水团的四季分布情况,并揭示其消长变化规律及其主要的影响因素。结果表明,在东海600m以浅海域,夏季主要存在陆架沿岸水、东海表层水、东海深层水、黑潮表层水、黑潮次表层水、黑潮中层水、黄海表层水和黄海底层水8个水团;而冬季,由于偏北风的增强和垂向混合的加强,黑潮次表层水、东海深层水和黄海底层水随之消失,只存在黑潮表层水、黑潮中层水、东海表层水、陆架沿岸水和黄海表层水5个水团。黑潮次表层水、东海深层水和黄海底层水是季节性水团,只存在于4月至9月间。陆架沿岸水、东海表层水和黑潮表层水的温度和盐度具有十分显著的季节变化特征。风是影响东海水团范围季节变化的最主要因素,它控制着闽浙沿岸流、台湾海峡流的强度,同时还控制着黑潮及其分支的入侵强度。总而言之,风、黑潮及其分支是影响东海主要水团变化的动力学因素,而海表热通量和淡水通量则是影响水团温盐特性变化的重要热力学因素。
     (2)系统地研究了台湾暖流水体积的季节变化特征,并阐述了其来源组成。结果表明,台湾暖流水是东海陆架海域最重要的水团,它的体积具有冬季最大(13746立方公里),秋季最小(11397立方公里),夏季(13165立方公里)、春季(12553立方公里)次之的特点。在秋、冬季,台湾暖流水主要来源于台湾东北部黑潮水的入侵;而在春、夏季,台湾暖流水分为台湾暖流表层水和台湾暖流深层水,其表层水是由来自台湾海峡的暖流水和台湾东北部入侵的黑潮表层水混合而成的,而其深层水则来源于台湾东北部的黑潮次表层水。暖半年期间(4月9月),台湾海峡北上的暖流水是台湾暖流水的主要来源。在49月间,台湾海峡表层暖流水的输送量分别为0.62Sv、0.83Sv、1.05Sv、1.67Sv、1.27Sv和1.04Sv(1Sv=106m3/s)。显然,台湾海峡暖水对台湾暖流水的贡献在7月达到最大,为1.67Sv,占28N断面台湾暖流表层水的56.5%。
     (3)揭示了东海黑潮流量的年际和年代际变化特征。东海黑潮流量基本服从正态分布,主要集中在19-33Sv范围内,其多年平均值为24.30Sv;流量的季节变化主要表现为夏强(25.91Sv)秋弱(24.27Sv)。最大熵谱分析表明,东海黑潮年平均流量的主周期依次为5.3a、24.9a和3.6a。显然,黑潮流量不仅存在着3-5a的年际变化,而且还具有约25a的年代际变化。季平均和冬、夏季东海黑潮流量均有长期的线性增强趋势,在1956-2005年间它们分别增加了8.73Sv、9.86Sv和9.38Sv。相关与合成分析结果表明,黑潮源区和东海黑潮流域上空的经向风异常是黑潮流量年际变化的重要影响因素,而PDO则对黑潮流量的年代际变化有重要作用。
     (4)构架了比较完整的东海环流系统。利用模拟结果,分析了东海及邻近海域各主要水道的水量输运、热量输运和盐量输运的变化特征。结果表明:东海的水交换过程具有明显的季节变化特征。从流量的角度来看,台湾海峡、台湾‐西表岛之间水道和西表岛‐冲绳岛水道是海流流入东海的三个主要水道,而冲绳岛‐奄美大岛、吐噶喇海峡、大隅海峡、济州岛东部和济州海峡是流出东海的水道;它们的年平均流量分别为1.06Sv、20.49Sv、3.2Sv、-0.67Sv、-20.59Sv、-0.30Sv、-2.37Sv、-0.67Sv和-3.05Sv(向内为正)。对比发现,东海与相邻海域各主要水道的水量输运、热量输运和盐量输运均具有相似的季节变化趋势,其最大值往往都出现在夏季(7月或8月),最小值一般都出现在冬季(1月或2月)。通过对热量输运的分析,发现东海是一个热源(0.172PW,1PW=1015W),它在全球大气‐海洋系统热输运和平衡过程中起着不可忽视的作用。
The main physical processes in the East China Sea (ECS) include the evolutions ofwater masses in the ECS, the seasonal variations of the Taiwan Warm Current Water(TWCW) and its sources, the evolution of Kuroshio Volume Transport (KVT) in theECS, as well as the water exchange in the East China Shelf Sea and its seasonalvariations. These processes control the oceanography factors and the transports ofmass and energy in the ECS. Hence, a systematic study of these processes hasimportant scientific significance. Based on numerous historical in-situ data andsimulation data, this paper studied the evolution mechanisms of these critical marineprocesses in the ECS. The seasonal distributions of water masses in the ECS werediscussed using cluster analysis method, and the dynamic and thermodynamicmechanisms that affected these seasonalvariations were also discussed in detail. Onthe basis of water masses analysis, combined with the model results, the seasonalvariations of the volumeof the TWCW and its sources were explored. Using data inrecent50years derived from the Japan Meteorological Agency, the inter-annual andinter-decadal variability characteristics of the KVT in the ECS were analyzed; theinfluences of the meridional wind and Pacific Decadal Oscillation (PDO) on theKuroshio volume transport were also discussed. The Regional Ocean ModelingSystem (ROMS) was used to simulate the circulation structure of the ECS. Themonthly variability characteristics of the water transport, heat transport and salinitytransport through the main sections around the ECS were also analyzed by using themodel results. The main results and conclusions are as follows:
     (1) The seasonal distributions of water masses in the ECS were obtained by wateranalysis, and the evolution mechanisms of water masses were also discussed. In theECS above a depth of600m, there are eight water masses in summer but only five inwinter. Among these water masses, the Kuroshio Surface Water (KSW), KuroshioIntermediate Water (KIW), ECS Surface Water (ECSSW), Continental Coastal Water(CCW), and Yellow Sea Surface Water (YSSW) exist throughout the year. The Kuroshio Subsurface Water (KSSW), ECS Deep Water (ECSDW) and Yellow SeaBottom Water (YSBW) are all seasonal water masses, occurring from April throughSeptember. The CCW, ECSSW and KSW all have significant seasonal variations,both in their horizontal and vertical extents and in their T-S properties. The wind is thedominant cause of the seasonal variation in spatial extent of the CCW, ECSSW andKSW. It determines the extent of the ZMCC, the strength of the Taiwan Strait Current,and the intrusion of the Kuroshio.In other words, the wind stress, the Kuroshio and itsbranch currents, and coastal currents are all the dynamical factors determining theseasonal variations in the spatial extent of the CCW, the ECSSW and the KSW. Seasurface heat and freshwater fluxes and river runoff might also be important factors inthe seasonal variations of T-S properties of the three water masses.
     (2) Theseasonal variations of the volumeof the TWCWas well as its origins wereanalyzed. The results indicated that the Taiwan Warm Current Water was dominatewater mass in the East Chia Shelf Sea; the volume of the TWCW exhibitedpronounced seasonal variations, it reach a maximum (13746km3) in winter, secondin summer (13165km3) and spring (12553km3), andminimum (11397km3)in autumn,,respectively. In winter and autumn, the TWCW is mainly coming from shelf intrusionof the Kuroshio northeast of Taiwan; however, in spring and summer, the TWCW canbe divided into two types: Taiwan Warm Current Surface Water (TWCSW) andTaiwan Warm Current Deep Water (TWCDW). The TWCSW is formed by the mixingof the Kuroshio Surface Water from the east of Taiwan with the water coming fromTaiwan Strait, and the TWCDW is completely originated from the KuroshioSubsurface Water East of Taiwan. In warm half year (April-September), the TWCSWcoming from Taiwan Strait are0.62,0.83,1.05,1.67,1.27and1.01Sv(1Sv=10)respectively. Obviously, the warm water from Taiwan Strait make largest contributionto the TWCSW in July (1.67Sv), about56.5%.
     (3) High inter-annual and inter-decadal variability was identified in the KuroshioVolume Transport. The analysis results showed thatthe frequency distributions ofKVT appeared nearly to obey normal distribution with a range of19-33Sv; themulti-year seasonal average of the KVT through the PN section is24.30Sv.The (25.91) in summer and minimum (24.27) in fall. The spectral analysis resultsindicated that the primary periods of the KVT variations were5.3,24.9and3.6a,respectively.A linear long-term KVT upward trend was identified for the period1956to2005, the seasonal mean, winter and summer volume transports increased8.72Sv、9.86and9.38Sv in this period, respectively. Correlation and composite analysisshowed that meridional wind anomalies over the source area of Kuroshio and theKuroshio area in the East China Sea were responsible for the inter-annual variabilityin the KVT. Additionally, the inter-decadal variability of the KVT was closelyassociated with the PDO.
     (4) The relatively complete system of the circulation structure in the ECS wasconstructed. The ROMS results were applied to analyze the monthly volume transport,heat transport and salinity transport through the critical sections in the ECS andadjacent regions. Analysis results showed that the water exchanges in the ECSexhibited pronounced seasonal variations, which mainly take place in the TaiwanStrait (TWS), the section east of Taiwan (TWE), the two sections along Ryuku Island(R1and R2), the Tokara Strait (TKRS), the Osumi Strait (OS), the section east ofCheju Island(CE) and Cheju Strait (CS). The annual mean volume transport throughthese sections were1.06Sv,20.49Sv,3.2Sv,-0.67Sv,-20.59Sv,-0.30Sv,-2.37Svand-0.67Sv (Positive means inward). Comparison of these transports (volume, heatand salinity) indicated that these transports in the ECS had similar trends, themaximum flux often appeared in summer (July or August), and the minimum oftenappeared in winter (January or February). The results also showed that the ECS was aheat source (0.172PW,1PW=1015W), it played a critical role in theglobalheatbalances and transports in the atmosphere and ocean.
引文
鲍献文.东中国海环流及其相关动力过程的模拟与分析.200,中国海洋大学
    丁裕国,江志红.气象数据时间序列信号处理[M].北京:气象出版社,1998,18-50
    方国洪,魏泽勋,崔秉昊,等.中国近海域际水、热、盐输运:全球变网格模式结果.中国科学,2002,32(12):969-977
    范立群,苏育嵩,李凤岐.南海北部海区水团分析.海洋学报,1988,2:136-145
    黄荣辉.中国气候灾害的分布和变化[M].北京:气象出版社,1996,1-20
    管秉贤,陈上及,1964.中国近海的海流系统.全国海洋综合调查报告第五册第六章,国家科委海洋组海洋综合调查办公室遍,1964,1-85
    管秉贤.我国台湾及其附近海底地形对黑潮途径的影响.海洋科学集刊,1978,14:1-21
    管秉贤.东海黑潮流量的变动及其原因分析[M].中国海洋湖沼学会水文气象学会学术会议(1980)论文集.北京:科学出版社,1982,103-116
    管秉贤.中国东南近海冬季逆风海流.青岛:中国海洋大学出版社,2002
    郭炳火,林葵等,东海环流的某些特征。黑潮调查研究论文集。北京:海洋出版社,1987,15-37
    国家海洋局科技司.黑潮调查研究综合报告.北京:海洋出版社,1995
    李凤岐,苏育嵩,喻祖祥.聚类分析在浅海变性水团分析中的实验.海洋学报,1983,5(6):675-686
    李凤岐,王凤钦,苏育嵩等.黄、东海域春季水团的划分、判别与分析.青岛海洋大学学报,1989, S1:22-33
    李凤岐,苏育嵩.海洋水团分析.青岛:青岛海洋大学出版社.2000,1-397
    刘树勋,韩士鑫,魏永康.东海西北部水团分析与渔场的关系.水产学报,1984,2:125-133
    刘树勋,沈新强,王幼琴,韩士鑫.渤、黄、东海水团多年月平均分布于变化的初步分析》.海洋学报,1993,15(4):1-11
    刘勇刚,袁耀初.1992年东海黑潮的变异.海洋学报,1998,20(6):1-11
    刘勇刚,袁耀初.1993和1994年东海黑潮的变异.海洋学报,1999,21(3):15-29
    刘勇刚,袁耀初.1995年东海黑潮的变异.海洋学报,2000,22(增刊):39-51
    毛汉礼,任允武,万国铭.应用T-S关系定量分析浅海水团的初步研究.海洋与湖沼,1964,6(1):1-22
    潘玉球、苏纪兰和徐瑞蓉.1984年12月-1985年1月填完暖流附近区域的水文状况.黑潮调查研究论文集.北京:海洋出版社,1987b,149-161
    松宫义晴,和田时夫.水型から见た东シナ海黄海の水块解析と底鱼渔场にノリて.长崎大学水产学部研究报告,1977,43:1-21
    侍茂崇.物理海洋学.济南:山东教育出版社,2004,1-462
    苏纪兰.中国近海的环流动力学.海洋学报,2001,23(3):1-6
    苏育嵩.划分变性水团边界的温盐点聚对照法与东海西部海区变性水团分析.海洋学报,1980,2(1):1-16
    苏育嵩,喻祖祥,李凤岐.聚类分析法在浅海水团分析中的应用及黄、东海变性水团的分析.海洋与湖沼,1983,14(1):1-12
    藤原伊佐美.東シナ海の海况[J].海洋科学,1981,13(4):264-270
    汤毓祥,林葵,田代知二.关于东海黑潮流量某些特征的分析.海洋与湖沼,1994,25(6):643-651
    魏泽勋.中国近海环流及其季节变化的数值模拟.2004,中国科学院海洋研究所
    翁学传,王从敏.台湾暖流水(团)夏季T-S特征和来源的初步分析.海洋科学集刊,1984,21:113-133
    翁学传,王从敏.台湾暖流水的研究.海洋科学,1985,9(1):7-10
    翁学传,张启龙,杨玉玲等.东海黑潮热输送及其与黄淮平原区汛期降水的关系.海洋与湖沼,1996,27(3):237-245
    薛惠洁,蔡扉,侍茂崇.吕宋海峡水平通量计算.中国海洋学文集,2001,13:152-167
    杨红,章守宇,戴小杰等.夏季东海水团变动特征及对鲐鲹渔场的影响.水产学报,2001,25(3):209-214
    杨天鸿.东海黑潮水团的初步分析.海洋科学集刊,1984,21:179-199
    姚静娴,王宗山.北太平洋环流与风应力场关系的初步探讨.海洋学报,1992,14(4):124-127
    于淑秋,林学椿.北太平洋海洋的气候跃变及其对气候效应.热带气象学报,2002,18(4):265-275
    余帆.东海黑潮上层环流季节、年际变化与局地风应力的关系.2012,中国海洋大学
    袁耀初,杨成浩,王彰贵.2000年东海黑潮和琉球群岛以东海流的变异:Ⅰ.东海黑潮和其附近中尺度涡的变异.海洋学报,2006,28(1):1-13
    赵保仁,方国洪.东海主要水道的流量估算.海洋学报,1991,13(2):169-178
    赵保仁.长江冲淡水的转向机制问题.海洋学报,1991,13(5):600-610
    朱建荣,肖成猷,沈焕庭.夏季长江冲淡水扩展的数值模拟.海洋学报,1998,20(5):13-22
    张启龙,翁学传.应用对应分析法划分夏季东海水团的初步分析.海洋科学,1985,9(2):14-18
    张启龙,翁学传,程明华.华北地区汛期降水与热带西太平洋暖池和黑潮的关系.高原气象,1999,18(4):575-583
    张启龙,翁学传,候一筠等.西太平洋暖池表层暖水的纬向运移.海洋学报,2004,26(1):33-39
    张启龙,王凡.舟山渔场及其邻近海域水团的气候学分析.海洋与湖沼,2004,35(1):48-54
    张启龙,王凡,赵卫红.舟山渔场及其邻近海域水团的季节变化.海洋学报,2007,29(5):1-9
    张启龙,候一筠,齐庆华等.东海黑潮热输送变异与径向风异常.海洋科学进展,2008,26(2):126-134
    张兴法.东海黑潮强度的长周期变化与西北太平洋副热带高压关系的研究.海洋研究,1981,1:26-29
    Bai X Z, Hu D X. A numerical study on seasonal variation of the Taiwan WarmCurrent. Chinese Journal of Oceanology and Limnology,2004,22(3):278-285
    Beardsley R C, Limeburner R, Yu H, Cannon G A. Discharge of the Changjiang(Yangtze River) into the East China Sea. Cont. Shelf Res.,1985,4(1-2):57-76
    Chen C T A, Ruo R, Pai S C, Liu C T, Wong G T F. Exchange of water massesbetween the East China Sea and the Kuroshio off northeastern Taiwan. Cont. ShelfRes.,1995,15:19-39
    Chen C T A. The Kuroshio intermediate water is the major source of nutrients on theEast China Sea continental shelf. Oceanol. Acata,1996,19:523-527
    Chen C T A, Sheu D D. Does the Taiwan Warm Current originate in the Taiwan Straitin wintertime? J. Geophys. Res.,2006,111: C04005
    Chen CS, Beardsley RC, Limeburner R, Kim K. Comparison of winter and summerhydrographic observations in the Yellow and East China Seas and the adjacentKuroshio during1986. Continental Shelf Research,1994,14:909-929
    Chen Y L, Hu D X, Wang F. Long-term variabilities of thermodynamics structure ofthe East China Sea cold eddy in summer. Chin. J. Oceanology Limnol.,2004,22(3):224-230
    Chen XY, Wang XH, Guo JS. Seasonal variability of the sea surface salinity in theEast China Sea during1990-2002. Journal of Geophysical Research,2006,111:C05008
    Egber G D, Erofeeva S Y. Efficient Inverse Modeling of Barotropic Ocean Tides. J.Atmos. Oceanic Technol.,2002,19:183-204
    Fang G, Zhao B R. A note on the main forcing of the northeastward flowing currentoff the southeast China coast.Progr.Oceanogr.,1988,21:363-372
    Fang G, Zhao B R,Zhu Y H.Water volume transport through the Taiwan Strait and thecontinental shelf of the East China Sea measured with current meters. In: Takano K,ed. Oceanography of Asian marginal seas. Amsterdam: Elsevier,1991:345-358
    Fang G H, Wei Z X, Choi B H, Wang K, Fang Y, Li W. Interbasin freshwater, heat andsalt transport through the boundaries of the East andSouth China Seas from avariable-grid global ocean circulation model. Science in China(Series D),2003,46(2):149-161
    Guo X Y, Hukuda H, Miyazawa Y, et al. A triply nested ocean model for simulationthe Kuroshio-Roles of horizontal resolution on JEBAR. J. Phys. Oceanogr.,2003,33(1):146-169
    Guo X Y, Miyazawa Y, Yamagata T. The Kuroshio onshore intrusion along the shelfbreak of the East China Sea: The origin of the Tsushima Warm Current. J. Phys.Oceanogr.,2006,36(12):2205-2231
    Hao J J, Chen Y L, Wang F et al. Seasonal thermocline in the China Seas andnorthwestern Pacific Ocean.Journal of Geophysical Research,2012,117: C0202
    Hao J J, Chen Y L, Wang F. Temperature inversion in China Seas.Journal ofGeophysical Research,2010,115: C12025
    Hur H B, Jacobs G A, Teague W J. Monthly variation of water masses in the Yellowand East China Sea.Journal of Oceanography,1999,55:171-184
    Imasato N, Qiu B. An event in water exchange between continental-shelf and theKuroshio off southern japan-lagrangian tracking of a low-salinity water mass on theKuroshio. J.Phys. Oceanogr.,1987,17(7):953-968
    Ichikawa H. Beardsley R C. Temporal and spatial variability of volume transport ofthe Kuroshio in the East China Sea. Deep-Sea Res,1993,40:583-605
    Ichikawa H, Chaen M. Seasonal variation of heat and freshwater transports by theKuroshio in the East China Sea. Journal of Marine Systems,2000,24:119-129
    Jan S, Sheu D D, Kuo H M. Water mass and throughflow transport variability in theTaiwan Strait. J. Geophys. Res.,2006,111:(C12012)
    Johns W E, Lee T N, Zhang D X et al. The Kuroshio east of Taiwan: Moored transportobservations from the WOCE PCM-1arrray. J. Phys. Oceanogr.,2001,31(4):1031-1053
    Lan Y C, Lee M A, Liao C H et al. Copepod community structure of the winter frontalzone induced by the Kuroshio branch current and the china coastal current in theTaiwan strait. Journal of marine science and technology TAIWAN,2009,17(1):1-6
    Large W G, McWilliams J C, Doney S C. Oceanic vertical mixing: A review and amodel with a nonlocal boundary layer parameterization. Rev. Geophys.,1994,32(4):363-403
    Lee J S, Matsuno T. Intrusion of Kuroshio water onto the continental shelf of the EastChina Sea. Journal of Oceanography,2007,63(2):309-325
    LevitusS, Boyer T. World Ocean Atlas1994CD-ROM Data Set Documentation,National Oceanographic Data Center, Informal Report No.13,1994
    Li G X, Han X B, Yue S H et al. Monthly variation of water masses in the East ChinaSea. Cont. Shelf. Res.,2006,26(16):1954-1970
    Lie H J and Cho C H. Recent advances in understanding the circulation andhydrography of the East China SEA. Fisheries Oceanography,2002,11(6):318-328
    Lin S F, Tang T Y, Jan S et al. Taiwan strait current in winter. Cont. Shelf Res.,2005,25(9):1023-1042
    Matsuno T, Lee J S, Yanao S. The Kuroshio exchange with the south and East ChinaSea. Ocean Sci.,2009,5(3):303-312
    Mellor G L and Yamada T.Development of a turbulence closure model forgeophysical fluid problems. Rev. Geophys.,1982,20(4):851-875
    Umlauf L and Burchard H. A generic length-scale equation for geophysical turbulencemodel. Journal of Maine Reserch,2003,61(2):225-235
    Saiki M. Relation between the geostrophic flux of the Kuroshio in the eastern ChinaSea and its large meanders in south of Japan.Oceanogr. Mag.,1982,32(1-2):11-18
    Shchepetkin A F and McWilliams J C. The regional oceanic modeling system(ROMS): a split-explicit, free-surface, topography-following-coordinate oceanicmodel. Ocean Modle,2005,9(4):347-404
    Shchepetkin A F and McWilliams J C. Ocean forecasting in terrain-following system.J. Comput Phys.,2009,228(24):8985-9000
    Song Y and Haidvogel D. A Semi-implicit Ocean Circulation Model Using aGeneralized Topography-Following Coordinate System. Journal of ComputeationalPhysics,1994,115(1):228-224
    Su Y S, Weng X C. Water Masses in China Seas.D. Zhou, Y.B. Liang, C.K. Zeng(Eds.), Oceanology of China Seas, vol.1Kluwer Academic, Netherlands (1994), pp.3–16
    Sverdrup H U, Johnson M W, Felming R H. The Oceans, their physics, chemistry andgeneral biology. New York: Prentice-Hall, INC,1946,1-1087
    Tang T Y, Yang Y J. Low frequency current variability on the shelf break northeast ofTaiwan. Journal of Oceanography,1993,49(2):193-210
    Takano K.(ed.) Oceanography of Asian Marginal Seas. Tokyo: Elsevieroceanography series,1991,1-431
    Teague W J, Jacobs G A, Ko D S et al. Connectivity of the Taiwan, Cheju, and Koreastraits. Cont. shelf Res.,2003,23(1):63-77
    Toba Y. Seasonal and year to year variability of the Tsushima-Tsugaru Warm Currentsystem with its possible cause. Lame,1992,20:41-51
    Warner J C, Sherwood C R et al.“Performance of four turbulence closure modelsimplemented using a generic length scale method.” Ocean Modelling8(1-2):81-113
    Wei Y Z, Huang D J, Zhu X H. Interannual to decadal variability of the KuroshioCurrent in the East China Sea from1955to2010as indicated by in-situ hydrographicdata. J. Oceanogr,2013,69:671-589
    Wei Z X, Fang G H, Choi B H, Fang Y, He Y J. Seasurface height and transportstream function of the South China Sea from a variable-grid global ocean circulationmodel. Science in China(Series D),2003,46(2):139-148
    Wong G, Chao S Y, Li Y H et al. The Kuroshio edge exchange processes (KEEP)study-an introduction to hypotheses and highlights. Cont. Shelf Res.,2000,20(4-5):335-347
    Yang D Z, Yin B S, Liu Z L, Feng X R. Numerical study of the ocean circulation onthe East China Sea shelf and a Kuroshio bottom branch northeast of Taiwan insummer. Journal of Geophysical Research,2011,116: C05015.
    Yang D Z, Yin B S, Liu Z L, Bai T, Qi J F, Chen H Y. Numerical study on the patternand origins of Kuroshio branches in the bottom water of southern East China Sea insummer. Journal of Geophysical Research,2012,117: C02014
    You Y and Tomczak M. Thermocline circulation and ventilation in the Indian Oceanderived from water mass analysis. Deep Sea Res.,1993,40(1):13-56
    Yuan Y, Pan Z, Kaneko I et al. Variability of the Kuroshio in the East China Sea andthe currents east of the Ryukyu Islands [M]. Proceedings of China-Japan JSCRK,Qingdao, China Ocean Press,1994,121-144
    Zhang Q L, HouY J, Yan T Z. Interanuual and interdecadal variability in the Kuroshioheat transport in the East China Sea. Int. J. Climatol.,2012,32(4):481-488
    Zuo T, Wang R, Chen Y Q et al. Autumn net copepod abundance and assemblages in
    relation to water masses on the continental shelf of the Yellow Sea and East China Sea.
    J. Marine Syst.,2006,59(1-2):159-172

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700