用户名: 密码: 验证码:
渤海南岸LZ908孔海陆交互相地层气候代用指标及沉积环境研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第四纪冰期-间冰期交替的气候变化造成了全球海平面的波动,在海岸带地区表现为海陆交互相沉积。海岸带地区沉积物记录了沉积环境变化的丰富信息。通过研究海陆交互相沉积物来探讨沉积环境演化,重建区域环境变化历史,对于认识海陆相互作用以及预测未来环境演变具有重要意义。本文研究的LZ908孔位于渤海莱州湾南岸,在建立相对可靠的年龄框架的基础上,结合沉积物有孔虫特征研究了渤海南部地区海侵、海退的古海洋环境变化;对沉积物的颜色反射率各参数变化进行主成分分析,根据结果讨论影响海陆交互相沉积物颜色变化的主要因子;对沉积物粒度、颜色反射率、磁化率及孢粉这些指标进行分析,探讨各指标的环境指示意义、周期性变化及可能的影响因素。将各指标反映的气候变化与全球气候变化或海平面变化进行对比,得到莱州湾地区的区域性气候变化特征。得到的初步结论如下:
     1.通过对渤海莱州湾南岸LZ908孔的研究,识别了LZ908孔的有孔虫组合特征,结合AMS14C和光释光测年结果,对比渤海地区其它钻孔资料,对晚第四纪的环境变化过程进行了重建,认为三次大规模海侵开始于MIS7,MIS5和全新世,另外在MIS6的中期也发生了一次小规模的海侵。LZ908孔在MIS3阶段存在海侵地层,但是有孔虫特征显示这一时期的温度低于MIS5阶段。
     2.通过将LZ908孔的亮度与碳酸钙含量进行对比,发现L*值与CaCO3含量曲线的变化非常一致,在海陆交互相沉积物中,将L*值作为碳酸盐的替代指标是可行的。采用方差极大旋转法对样品颜色反射率的一阶导数进行了因子分析,通过将因子的载荷曲线与已知沉积物组分的一阶导数曲线进行对比,得到因子1与沉积物中有机物含量相关,因子2与沉积物中的粘土矿物含量关系较大,因子3与沉积物中针铁矿相关。
     3.通过对沉积物粒度的主成分分析,发现LZ908孔<32μm的细粒部分的含量与65oN夏季太阳辐射的变化和神农架三宝洞石笋的δ18O值的变化十分相似,表明LZ908钻孔沉积物<32μm的细粒部分的含量可以作为指示东亚季风强度的一个很好的指标。通过将磁化率和孢粉数据相结合,结果表明磁化率是一个良好的气候指标,高磁化率指示暖湿气候,低磁化率反映干冷气候。将LZ908孔的磁化率曲线与深海氧同位素曲线进行对比,磁化率高值对应氧同位素低值,为间冰期环境,磁化率低值对应氧同位素高值,为冰期环境。亮度值和CaCO3含量较高的层位大致为海平面较高的时期,指示温暖湿润的环境;相反地,亮度值和CaCO3含量较低的层位表明气候寒冷干燥,大多为海平面较低的时期。在LZ908钻孔的沉积序列中,红度值a*值的变化主要反映了沉积环境的氧化还原状态,冰期时期为低海平面时期的河漫滩环境,沉积环境为氧化环境,高价铁的氧化物和氢氧化物增加,沉积物颜色为红褐色或黄褐色,a*值也较大。间冰期的浅海或滨海环境,沉积环境为还原环境,高价铁的氧化物和氢氧化物转化为低价铁的氧化物和氢氧化物,沉积物颜色为深灰色、灰褐色或棕绿色,a*值也较小。
     4.通过对LZ908钻孔沉积物的粒度、磁化率和红度值a*值时间序列的频谱分析,得到250ka以来,渤海莱州湾南岸海陆交互相沉积物粒度、磁化率和红度值分别记录了轨道岁差、倾斜度和偏心率的周期特征。
Quaternary glacial and interglacial climate change caused alternating fluctuationsin global sea level, and deposited transgressive and regressive interaction strata incoastal area. Coastal sedimentary environment changes frequently, so its sedimentrecords a wealth of information on these changes. Therefore, exploring the evolutionof the sedimentary environment of coastal areas, not only is important forreconstructing the history of regional environmental change and understandingland-sea interaction, but also can provide a scientific basis for predicting the futureevolution of the environment. LZ908core of this study is located in the Laizhou Bay,Bohai Sea, on the basis of relatively reliable age framework, we study transgression,regression changes of the ancient marine environment by sediment foraminiferacharacteristic in southern Bohai Sea; have principal component analysis about eachparameter change of sediment color reflectance, discuss the main factors affectingtransgressive and regressive sediments color change; analysis sediment grain size,color reflectivity, magnetic susceptibility and pollen indicators, to explore variousindicators environmental implications, cyclical changes and possible influencingfactors; contrast climate change indicated by these indicators with global climatechange or sea level changes, get regional climate variations in Laizhou Bay area.Preliminary conclusions are as follows:
     1. The foraminifera assemblages from a new borehole LZ908in the southerncoast of Laizhou Bay, Bohai Sea were studied, and then the transgressive strata wereindentified. Combined with accelerator mass spectrometry radiocarbon14C (AMS14C)and optically stimulated luminescence (OSL) ages, the occurrence time of thesetransgressions were re-determined. The result showed that three major large-scaletransgressions occurred separately at the beginning of marine isotopic stage7(MIS7), the last interglacial period (MIS5) and the Holocene. In addition, a small-scaletransgression occurred in the mid-MIS6, and the corresponding transgressive stratumwas deposited. The transgressive deposition of MIS3was also discovered in this study.However, the characteristics of the foraminifera indicated the environment during thisperiod was colder than that in the MIS5.
     2. By comparing the brightness and calcium carbonate content of LZ908core,found that the change of L*values and calcium carbonate content was very consistent,indicating a strong consistency between the two indicators, so the L*value used asalternative indicator of calcium carbonate content was feasible. Factor analysis on thefirst derivative of the color reflectance factor was conducted by great variance rotationmethod. By comparing factor load curve and the first derivative curve of thecomponent known to sediment, concluded that factor1associated with sedimentorganic content, factor2associated with clay mineral content of the sediments, andfactor3associated with the goethite content of the sediments.
     3. Through the principal component analysis of the sediment grain size, found<32μm fine fraction content of LZ908core changed similarly or basically consistentwith65o N summer solar radiation and δ18O value of Shennongjia Sambo CaveStalagmite. This showed that in the vast region of China, climate change wassynchronized, and <32μm fine fraction content of LZ908core could serve as a goodindication of the East Asian monsoon intensity index. By combining magneticsusceptibility and pollen data, the results showed that the magnetic susceptibility wasa good climate indicator, high susceptibility indicating warm and humid climate, lowmagnetic susceptibility reflecting dry and cold climate. Compared magneticsusceptibility curves of LZ908core with deep-sea oxygen isotope curve, highmagnetic susceptibility values corresponded to low oxygen isotopes, as interglacialenvironment, low magnetic susceptibility corresponding high oxygen isotope valuesfor the glacial environment. Brightness values and CaCO3content higher layersroughly corresponded to a period of high sea level, which indicating warm and humidenvironment. Conversely, lower brightness value and CaCO3content layers indicatedthat climate is cold and dry during low sea level period. In LZ908core sedimentary sequence, the red value a*mainly reflected oxidizing or deoxidizing state of thedepositional environment. Floodplain environment for the glacial period, lower sealevel and oxidizing condition, high iron oxides and hydroxides increased, sedimentcolor is reddish-brown or brown, a*value is larger. Between shallow or coastalenvironment, interglacial sedimentary environment is deoxidizing environment, highiron oxides and hydroxides turn into low iron oxides and hydroxides, sediment coloris dark gray, taupe or brown-green, a*value is small.
     4. By analyzing sediment grain size, magnetic susceptibility and red values a*ofLZ908, these indicators demonstrated that the climate in the southern Bohai Searesponded to the orbital forcing at the precession, obliquity and eccentricity bandsrespectively.
引文
1. An Z S, Sun D H, Zhang X Y, et al. Accumulation sequence of Chinese loess and climaticrecords of Greenland ice core during the last150ka.Chinese Science Bulletin,1995,40(15):1272-1276.
    2. An Z, Kukla G J, Porter S C, et al. Magnetic susceptibility evidence of monsoon variation onthe Loess Plateau of central China during the last130,000years. Quaternary Research,1991,36(1):29-36.
    3. Anklin M, Barnola J M, Beer J, et al. Climate instability during the last interglacial periodrecorded in the GRIP ice core. Nature,1993,364:203-207.
    4. Balsam W L, Damuth J E, Schneider R R. Comparison of shipboard vs. shore-based spectraldata from Amazon Fan cores: Implications for interpreting sediment composition.Proceedings of the Ocean Drilling Program, Scientific Results,1997,155:193–215.
    5. Balsam W L, Deaton B C, Damuth J E. Evaluating optical lightness as a proxy for carbonatecontent in marine sediment cores. Marine Geology,1999,161(2):141-153.
    6. Balsam W L, Deaton B C, Damuth J E.The effects of water content on diffuse reflectancespectrophotometry studies of deep-sea sediment cores. Marine Geology,1998,149:177-189.
    7. Balsam W L, Deaton B C. Sediment dispersal in the Atlantic Ocean: evaluation by visiblelight spectra. Reviews in Aquatic Sciences,1991,4(4):411-447.
    8. Balsam W L, Wolhart R J.1993. Sediment dispersal in the Argenine Basin: evidence fromvisible light spectra. Deep-Sea Research Ⅱ,40(4/5):1001–1031
    9. Balsam W L, Wolhart R J. Sediment dispersal in the Argentine Basin: evidence from visiblelight spectra. Deep Sea Research Part II: Topical Studies in Oceanography,1993,40(4):1001-1031.
    10. Balsam W, Ji J, Chen J. Climatic interpretation of the Luochuan and Lingtai loess sections,China, based on changing iron oxide mineralogy and magnetic susceptibility. Earth andPlanetary Science Letters,2004,223(3):335-348.
    11. Barranco Jr F T, Balsam W L, Deaton B C. Quantitative reassessment of brick red lutites:evidence from reflectance spectrophotometry. Marine Geology,1989,89(3):299-314.
    12. Berger A L. Long-term variations of caloric insolation resulting from the Earth's orbitalelements. Quaternary Research,1978,9(2):139-167.
    13. Berger A, Loutre M F. Insolation values for the climate of the last10million years.Quaternary Science Reviews,1991,10(4):297-317.
    14. Bloemendal J, Liu X M, Rolph T C. Correlation of the magnetic susceptibility stratigraphy ofChinese loess and the marine oxygen isotope record: chronological and palaeoclimaticimplications. Earth and Planetary Science Letters,1995,131(3):371-380.
    15. Bodén P, Backman J. A laminated sediment sequence from the northern North AtlanticOcean and its climatic record[J]. Geology,1996,24(6):507-510.
    16. Bond G, Broecker W, Johnsen S, et al. Correlations between climate records from NorthAtlantic sediments and Greenland ice. Nature,1993,365(6442):143-147.
    17. Bond G, Broecker W, Johnsen S, et al. Correlations between climate records from NorthAtlantic sediments and Greenland ice. Nature,1993,365(6442):143-147.
    18. Bond G, Broecker W, Lotti R, et al. Abrupt color changes in isotope stage5in North Atlanticdeep sea cores: implications for rapid change of climate-driven events.Start of a Glacial.Springer Berlin Heidelberg,1992:185-205.
    19. Bryant E A, Young R W, Price D M, et al. Thermoluminescenge and Uranium‐Thoriumchronologies of pleistocene coastal landforms of the Illawarra region, New South Wales. TheAustralian Geographer,1990,21(2):101-112.
    20. Büdel, J.,1948. Das system klimatischen geomorphologie. Deutscher GeographentagMünchen (Landshut1950), pp.65-100.
    21. Bui E N, Mazzullo J M, Wilding L P. Using quartz grain size and shape analysis todistinguish between aeolian and fluvial deposits in the Dallol Bosso of Niger (West Africa).Earth Surface Processes and Landforms,1989,14(2):157-166.
    22. Chappell J, Omura A, Esat T et al.1996. Reconciliaion of late Quaternary sea levels derivedfrom coral terraces at Huon Peninsula with deep sea oxygen isotope records. Earth andPlanetary Science Letters,141:227-236.
    23. Chappell J. Ocean volume change and the history of sea water. Sea Surface Studies. SpringerNetherlands,1987:33-56.
    24. Chen F H, Bloemendal J, Wang J M, et al. High-resolution multi-proxy climate records fromChinese loess: evidence for rapid climatic changes over the last75kyr. Palaeogeography,Palaeoclimatology, Palaeoecology,1997,130(1):323-335.
    25. Chen J, Ji J, Balsam W, et al. Characterization of the Chinese loess–paleosol stratigraphy bywhiteness measurement. Palaeogeography, Palaeoclimatology, Palaeoecology,2002,183(3):287-297.
    26. Chen Z, Stanley D J. Sea-level rise on eastern China's Yangtze delta. Journal of CoastalResearch,1998:360-366.
    27. Cortijo E, Yiou P, Labeyrie L, et al. Sedimentary record of rapid climatic variability in theNorth Atlantic Ocean during the last glacial cycle. Paleoceanography,1995,10(5):911-926.
    28. Dansgaard W, Johnsen S J, Clausen H B, et al. Evidence for general instability of pastclimate from a250-kyr ice-core record. Nature,1993,364(6434):218-220.
    29. Dansgaard W, Johnsen S, Clausen H, et al. North Atlantic climatic oscillations revealed bydeep Greenland ice cores. Geophysical Monograph Series,1984,29:288-298.
    30. Dansgaard W, White J W C, Johnsen S J. The abrupt termination of the Younger Dryasclimate event. Nature,1989,339:532~533.
    31. Davis A M, Aitchison J C, Flood P G, et al. Late Holocene higher sea-level indicators fromthe South China coast. Marine Geology,2000,171(1):1-5.
    32. Deaton B C, Balsam W L. Visible Spectroscopy--A Rapid Method for Determining Hematiteand Goethite Concentration in Geological Materials: Research Method Paper. Journal ofSedimentary Research,1991,61(4):628-632.
    33. Folk R L, Ward W C. Brazos River bar: a study in the significance of grain size parameters.Journal of Sedimentary Research,1957,27(1):3-26
    34. Friedman G M. Differences in size distributions of populations of particles among sands ofvarious origins: addendum to IAS Presidential Address. Sedimentology,1979,26(6):859-862.
    35. Giosan L, Flood R D, Aller R C. Paleoceanographic significance of sediment color onwestern North Atlantic drifts: I. Origin of color. Marine Geology,2002,189(1):25-41.
    36. Grootos P M, Stulvor I V I, Whltoi J W C. Comparison of oxygen isotope records from theGISP2and and GRIP Greenland ice cores. Nature,1993,366:552-554
    37. Guo Z, Liu T, Guiot J, et al. High frequency pulses of East Asian monsoon climate in the lasttwo glaciations: link with the North Atlantic. Climate Dynamics,1996,12(10):701-709.
    38. Hays J D, Imbrie J, Shackleton N J. Variations in the Earth's orbit: Pacemaker of the ice agesScience,1976,194:1121~1132.
    39. Hayward B W. Estuarine foraminifera, Helena Bay, Northland, New Zealand. Tane,1993,34:79-88.
    40. Heinrich H. Origin and consequences of cyclic ice rafting in the northeast Atlantic Oceanduring the past130,000years. Quaternary research,1988,29(2):142-152.
    41. Heller F, Evans M E. Loess magnetism. Reviews of Geophysics,1995,33(2):211-240.
    42. Heller F, Liu X, Liu T, et al. Magnetic susceptibility of loess in China. Earth and PlanetaryScience Letters,1991,103(1):301-310.
    43. Heller F, Tungsheng L. Magnetism of Chinese loess deposits. Geophysical JournalInternational,1984,77(1):125-141.
    44. Heller F, Tung-sheng L. Magnetostratigraphical dating of loess deposits in China. Nature,1982.300,431-433.
    45. Heller F, Tung‐sheng L. Palaeoclimatic and sedimentary history from magneticsusceptibility of loess in China. Geophysical Research Letters,1986,13(11):1169-1172.
    46. Herbert T D, D'Hondt S L. Precessional climate cyclicity in Late Cretaceous—Early Tertiarymarine sediments: a high resolution chronometer of Cretaceous-Tertiary boundary events.Earth and Planetary Science Letters,1990,99(3):263-275.
    47. Herbert T D, Tom B A, Burnett C. Precise major component determinations in deep-seasediments using Fourier Transform Infrared Spectroscopy. Geochimica et cosmochimica acta,1992,56(4):1759-1763.
    48. Herbert T D. Milankovitch climatic origin of mid-Cretaceous black shale rhythms in centralItaly. Nature,1986,321:739-743.
    49. Hong W. Palaeoenvironment of Holocene chenier and oyster reefs in the Bohai Bay (China).PhD Dissertation, Vrije Universiteit Brussel,1994.
    50. Howell, P., Pisias, N., Ballance, J., Baughman, J., Ochs, L.,2006. ARAND Time-SeriesAnalysis
    51. Hughes G R, Kennedy D M. Late Pleistocene sea-level oscillations (MIS10–2) recorded inshallow marine and coastal plain sediments of the southern Wanganui Basin, New Zealand.Quaternary Research,2009,71(3):477-489.
    52. Idnurm M, Cook P J. Palaeomagnetism of beach ridges in South Australia and theMilankovitch theory of ice ages. Nature,1980,286:699-702.
    53. Ji J, Balsam W, Chen J. Mineralogic and climatic interpretations of the Luochuan loesssection (China) based on diffuse reflectance spectrophotometry. Quaternary Research,2001,56(1):23-30.
    54. Kissel C, Laj C, Labeyrie L, et al. Magnetic signature of rapid climatic variations in NorthAtlantic sediments. Reconstructing Ocean History. Springer US,1999:419-437.
    55. Kissel C, Laj C, Labeyrie L, et al. Rapid climatic variations during marine isotopic stage3:Magnetic analysis of sediments from Nordic Seas and North Atlantic. Earth and PlanetaryScience Letters,1999,171(3):489-502.
    56. Konert M, Vandenberghe J E F. Comparison of laser grain size analysis with pipette andsieve analysis: a solution for the underestimation of the clay fraction. Sedimentology,1997,44(3):523-535.
    57. Kravchinsky V A, Krainov M A, Evans M E, et al. Magnetic record of Lake Baikalsediments: chronological and paleoclimatic implication for the last6.7Myr. Palaeogeography,Palaeoclimatology, Palaeoecology,2003,195(3):281-298.
    58. Kukla G, Heller F, Ming L X, et al. Pleistocene climates in China dated by magneticsusceptibility. Geology,1988,16(9):811-814.
    59. Kutzbach J E. Monsoon climate of the early Holocene: climate experiment with the earth’sorbital parameters for9000years ago. Science,1981,214(4516):59-61.
    60. Lin J, Zhang S, Qiu J, et al. Quaternary marine transgressions and paleoclimate in theYangtze River delta region. Quaternary Research,1989,32(3):296-306.
    61. Lin J, Zhang S, Qiu J, et al. Quaternary marine transgressions and paleoclimate in theYangtze River delta region. Quaternary Research,1989,32(3):296-306.
    62. Lisiecki L E, Raymo M E. A Pliocene‐Pleistocene stack of57globally distributed benthicδ18O records. Paleoceanography,2005,20(1).PA1003.
    63. Liu J, Saito Y, Wang H, et al. Stratigraphic development during the Late Pleistocene andHolocene offshore of the Yellow River delta, Bohai Sea. Journal of Asian Earth Sciences,2009,36(4):318-331.
    64. Martrat B, Grimalt J O, Lopez-Martinez C, et al. Abrupt temperature changes in the westernMediterranean over the past250,000years. Science,2004,306(5702):1762-1765.
    65. McBride E F. Significance of color in red, green, purple, olive, brown, and gray beds ofDifunta Group, northeastern Mexico. Journal of Sedimentary Research,1974,44(3).760-773.
    66. McIntyre A, Ruddiman W F, Karlin K, et al. Surface water response of the equatorialAtlantic Ocean to orbital forcing. Paleoceanography,1989,4(1):19-55.
    67. McManus J F, Bond G C, Broecker W S, et al. High-resolution climate records from theNorth Atlantic during the last interglacial. Nature,1994,371(6495):326-329.
    68. Milankovitch M M. Canon of Insolation and the Ice Age Problem (English translation by theIsrael prog for Sci. Trans., Washington, DC) Koniglich Serbische Akademie.1941.
    69. Mix A C, Harris S E, Janecek T R. Estimating lithology from nonintrusive reflectance spectra:Leg138. Proceedings of the Ocean Drilling Program, Scientific Results,1995:138,413–427.
    70. Mix A C, Rugh W, Pisias N G, et al. Leg138Shipboard sedimentologists (Hagelberg, T.,Hovan, S., Kemp, A., Leinen, M., Levitan, M., Ravelo, C.), and Leg138Scientific Party,
    1992. Color reflectance spectroscopy: a tool for rapid characterization of deep-sea sediments.Mayer, L., Pisias, N., Janecek, T., et al., Proc. ODP, Init. Repts.138:67-77.
    71. Moberly R. Ephemeral color in deep-sea cores. Journal of Sedimentary Research,1976,46(1):216-225.
    72. Moreno E, Thouveny N, Delanghe D, et al. Climatic and oceanographic changes in theNortheast Atlantic reflected by magnetic properties of sediments deposited on the PortugueseMargin during the last340ka. Earth and Planetary Science Letters,2002,202(2):465-480.
    73. Nádor A, Lantos M, Tóth-Makk á, et al. Milankovitch-scale multi-proxy records from fluvialsediments of the last2.6Ma, Pannonian Basin, Hungary. Quaternary Science Reviews,2003,22(20):2157-2175.
    74. Nagao S, Nakashima S. The factors controlling vertical color variations of North AtlanticMadeira Abyssal Plain sediments. Marine Geology,1992,109(1):83-94.
    75. Peck J A, King J W, Colman S M, et al. A rock-magnetic record from Lake Baikal, Siberia:evidence for Late Quaternary climate change. Earth and Planetary Science Letters,1994,122(1):221-238.
    76. Peck J A, King J W. Magnetofossils in the sediment of Lake Baikal, Siberia. Earth andplanetary science letters,1996,140(1):159-172.
    77. Porter S C, Zhisheng A. Correlation between climate events in the North Atlantic and Chinaduring the last glaciation. Nature,1995,375:305-308.
    78. Porter S C. High-resolution paleoclimatic information from Chinese eolian sediments basedon grayscale intensity profiles. Quaternary Research,2000,53(1):70-77.
    79. Prins M A, Postma G, Weltje G J. Controls on terrigenous sediment supply to the ArabianSea during the late Quaternary: the Makran continental slope. Marine Geology,2000,169(3):351-371.
    80. Rasmussen T L, Thomsen E, Weering T C E, et al. Rapid changes in surface and deep waterconditions at the Faeroe Margin during the last58,000years. Paleoceanography,1996,11(6):757-771.
    81. Robinson S G, Maslin M A, McCave I N. Magnetic susceptibility variations in UpperPleistocene deep‐sea sediments of the NE Atlantic: Implications for ice rafting andpaleocirculation at the Last Glacial Maximum. Paleoceanography,1995,10(2):221-250.
    82. Rolett B V, Zheng Z, Yue Y. Holocene sea-level change and the emergence of Neolithicseafaring in the Fuzhou Basin (Fujian, China). Quaternary Science Reviews,2011,30(7):788-797.
    83. Ruddiman W F, Raymo M, McIntyre A. Matuyama41,000-year cycles: North AtlanticOcean and northern hemisphere ice sheets. Earth and Planetary Science Letters,1986,80(1):117-129.
    84. Schulz M, Mudelsee M. REDFIT: estimating red-noise spectra directly from unevenly spacedpaleoclimatic time series. Comput. Geosci,2002,28,421–426.
    85. Schulz, M., Mudelsee, M.,2002. REDFIT: estimating red-noise spectra directly fromunevenly spaced paleoclimatic time series. Comput. Geosci.28,421–426.
    86. Schwertmann U. Relations between iron oxides, soil color, and soil formation. Soil color,1993(soilcolor):51-69.
    87. Shackleton N J, Berger A, Peltier W R. An alternative astronomical calibration of the lowerPleistocene timescale based on ODP Site677. Transactions of the Royal Society ofEdinburgh: Earth Sciences,1990,81(04):251-261.
    88. Shackleton N J, Opdyke N D. Oxygen isotope and palaeomagnetic stratigraphy of EquatorialPacific core V28-238: Oxygen isotope temperatures and ice volumes on a105year and106year scale. Quaternary research,1973,3(1):39-55.
    89. Shi L, Zhai Z, Wang Q, et al. Geochronological study on transgression layers of the CQJ4borehole at Dagang area in Tianjin, China. Geological Review,2009,55(3):375-384.
    90. Siddall M, Rohling E J, Almogi-Labin A, et al. Sea-level fluctuations during the last glacialcycle. Nature,2003,423(6942):853-858.
    91. Soergel W. Das diluviale System. Borntraeger,1939, XII-9,1-92
    92. Software. Brown University, Providence, RI.
    93. Steenbrink J, Kloosterboer-van Hoeve M L, Hilgen F J. Millennial-scale climate variationsrecorded in Early Pliocene colour reflectance time series from the lacustrine Ptolemais Basin(NW Greece). Global and Planetary Change,2003,36(1):47-75.
    94. Stockmarr J. Tablets with spores used in absolute pollen analysis. Pollen et spores,1971,615-621..
    95. Taylor K C, Lamorey G W, Doyle G A, et al. The‘flickering switch’ of late Pleistoceneclimate change. Nature,1993,361(6411):432-436.
    96. Thouveny N, Moreno E, Delanghe D, et al. Rock magnetic detection of distal ice-rafteddebries: clue for the identification of Heinrich layers on the Portuguese margin. Earth andPlanetary Science Letters,2000,180(1):61-75.
    97. Waelbroeck C, Labeyrie L, Michel E, et al. Sea-level and deep water temperature changesderived from benthic foraminifera isotopic records. Quaternary Science Reviews,2002,21(1):295-305.
    98. Wang Y, Cheng H, Edwards R L, et al. Millennial-and orbital-scale changes in the EastAsian monsoon over the past224,000years. Nature,2008,451(7182):1090-1093.
    99. Woodroffe C D, Murray-Wallace C V, Bryant E A, et al. Late Quaternary sea-levelhighstands in the Tasman Sea: evidence from Lord Howe Island. Marine Geology,1995,125(1):61-72.
    100. WU Y, LI S. Significance of lake sediment color for short time scale climate variation.Advance in Earth Sciences,2004,5:789-792.
    101. Xu J, Ma Z, Cheng G, et al. Estimating times of Quaternary tectnoci episodes in the BohaiSea based on geomorphic features of surrounding mountains areas. Quaternary Sciences,2005,25:700-710.
    102. Xu L, Liu T S, Che M Y, et al. Origin of magnetic minerals and magnetic susceptibilityvariations in Chinese loess.Loess Environment and Global Change. Beijing:Science press,1991:229-238.
    103. Xu Q H, Wu C, Yang X L, et al. Palaeochannels on the North China Plain: relationshipsbetween their development and tectonics. Geomorphology,1996,18(1):27-35.
    104. Xu Q H, Wu C, Zhu X Q, et al. Palaeochannels on the North China Plain: stage division andpalaeoenvironments[J]. Geomorphology,1996,18(1):15-25.
    105. Yi L, Lai Z, Yu H, et al. Chronologies of sedimentary changes in the south Bohai Sea, China:constraints from luminescence and radiocarbon dating. Boreas,2013,42(2):267-284.
    106. Yi L, Yu H J, Ortiz J D, et al. Late Quaternary linkage of sedimentary records to threeastronomical rhythms and the Asian monsoon, inferred from a coastal borehole in the southBohai Sea, China. Palaeogeography, Palaeoclimatology, Palaeoecology,2012a,329:101-117.
    107. Yi L, Yu H, Ortiz J D, et al. A reconstruction of late Pleistocene relative sea level in thesouth Bohai Sea, China, based on sediment grain-size analysis. Sedimentary Geology,2012b,281:88-100.
    108. Yim W W S, Huang G, Fontugne M R, et al. Postglacial sea-level changes in the northernSouth China Sea continental shelf: evidence for a post-8200calendar yr BP meltwater pulse.Quaternary International,2006,145:55-67.
    109. Yu L, Oldfield F, Yushu W, et al. Paleoenvironmental implications of magneticmeasurements on sediment core from Kunming Basin, Southwest China. Journal ofPaleolimnology,1990,3(2):95-111.
    110. Yu Z, Wu S, Zou D, et al. Seismic profiles across the middle Tan-Lu fault zone in LaizhouBay, Bohai Sea, eastern China. Journal of Asian Earth Sciences,2008,33(5):383-394.
    111. Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate65Mato present. Science,2001,292(5517):686-693.
    112. Zhang Y X, Xue Y Q, Chen H H. Characteristics and its environments of seawater depositedin Late Pleistocene layers in the south Laizhou Bay. Acta Oceanologica Sinica,1996,18:61-68.
    113. Zhang Y, Dong S, Shi W. Cretaceous deformation history of the middle Tan-Lu fault zone inShandong Province, eastern China. Tectonophysics,2003,363(3):243-258.
    114. Zhang Yongxiang, Xue Yuqun, Chen Honghan.1996. Characteristics and its environments ofseawater deposited in late Pleistocene layers in the south Laizhou Bay. Acta OceanologicaSinica (in Chinese with English abstract),18:61–68.
    115. Zhou L P, Oldfield F, Wintle A G, et al. Partly pedogenic origin of magnetic variations inChinese loess. Nature,1990,346:737~739
    116. Zong Y. Mid-Holocene sea-level highstand along the Southeast Coast of China. QuaternaryInternational,2004,117(1):55-67.
    117.安阳,翦知湣.末次冰消期南海南部的普林虫低值事件.科学通报,2009(17):2527-2532.
    118.陈明,陈建国,王建芬.环渤海沿岸沼泽化,盐渍化和沙漠化的演化及其与全球变化的关系.第四纪研究,1991,2:113-122.
    119.陈文文,刘东生,邢军辉.渤海湾北部底栖有孔虫的组合分布及沉积环境.内蒙古石油化工,2009(23):135-138.
    120.陈一宁,朱晓东.苏北海岸带有孔虫Ammonia beccarii微环境分布的初步研究.微体古生物学报,2004,2(1):58-63.
    121.陈永胜,王宏,裴艳东,等.渤海湾西岸晚第四纪海相地层划分及地质意义.吉林大学学报(地球科学版),2012,42(3):747-759.
    122.陈宇坤,李振海,邵永新,等.天津地区第四纪年代地层剖面研究.地震地质,2008,30(2):383-399.
    123.程广芬,刘东生,武心尧,等.渤海中,南部表层沉积物中有孔虫的初步研究.中国海洋大学学报(自然科学版),1991,1:109-121.
    124.丁仲礼,刘东生.1.8Ma以来黄土-深海古气候记录对比.科学通报,1991,36(18):1401-1403.
    125.丁仲礼.米兰科维奇冰期旋回理论:挑战与机遇.第四纪研究,2006,26(5):710-717.
    126.段福才,汪永进,董进国,等.13ka以来东亚夏季风演变过程和全新世适宜期问题.地球化学,2009,38(2):105-113.
    127.葛淑兰,石学法,杨刚,等.西菲律宾海780ka以来气候变化的岩石磁学记录:基于地磁场相对强度指示的年龄框架.第四纪研究,2007,27(6):1040-1052.
    128.管清玉,潘保田,高红山,等.高分辨率黄土剖面记录的末次间冰期东亚季风的不稳定性特征.中国科学: D辑,2007,37(1):86-93.
    129.国家海洋局908专项办公室.海洋底质调查技术规范.北京:海洋出版社,2006,63pp.
    130.韩家懋,刘东生.马兰黄土和离石黄土的磁学性质.第四纪研究,1991,(4):310-325.
    131.韩有松,孟广兰,王少青.渤海莱州湾滨海平原晚第四纪地质事件与古环境.海洋科学集刊,1994,35:87-95.
    132.郝诒纯,裘松余,林甲兴,等,有孔虫.北京:科学出版社,1980.
    133.黄春长.环境变迁.北京:科学出版社,2000:13-14.
    134.翦知湣,王博士,乔培军.南海南部晚第四纪表层海水温度的变化及其与极地冰芯古气候记录的比较.第四纪研究,2008,28(3):391-398.
    135.蒋明丽.粒度分析及其地质应用.石油天然气学报,2009,31(1):161-163.
    136.李从先和汪品先.长江晚第四纪河口地层学研究.北京:科学出版社,1998.
    137.李凤林,王宏,阎玉忠,等.渤海湾西岸滨海平原晚第四纪以来的沉积间断.地质调查与研究,2004,27(3):177-183.
    138.李建芬,商志文,王宏,等.渤海湾西部现代有孔虫群垂直分带的特征及其对全新世海面,地质环境变化的指示.地质通报,2010,29(5):650-659.
    139.李建芬.渤海湾西部现代有孔虫种群分布特征及对地质环境的记录.中国地质大学(北京),2010.
    140.李小强,杜乃秋.第四纪花粉的无酸碱分析法.植物学报,1999,41(7):782-784.
    141.李应培.对华北平原第四系的初步认识.中国第四纪研究,1965,4(1):173-180.
    142.李元芳,何希贤.渤海湾北岸表层沉积中的有孔虫群及其生态环境.地理研究,1983,2(1):65-72.
    143.李元芳.海河和蓟运河近海段有孔虫埋葬群及其古地理意义.微体古生物学报,1986,8(8):251–259.
    144.林防,王建中,李建芬,等.渤海莱州湾第四纪晚期以来微体化石组合特征和沉积环境演化.地质通报,2005,24(9):879-884.
    145.林景星.中国第四纪有孔虫动物群的古生态,古气候,古地理研究.海洋地质与第四纪地质,1983,3(1):1-15.
    146.刘东生.黄土与环境.北京,科学出版社:1985:475.
    147.刘恩峰.莱州湾南岸滨海平原沉积环境变化与咸水入侵关系研究.硕士论文,山东师范大学,2002.
    148.刘秀铭,刘东生, Heller F,等.黄土频率磁化率与古气候冷暖变换.第四纪研究,1990,1(1):42-50.
    149.刘秀铭,刘东生.中国黄土磁性矿物特征及其古气候意义.第四纪研究,1993(3):281-287.
    150.刘泽纯,黄巧华.昆明盆地两孔岩芯的沉积特征及环境磁学分析.沉积学报,1992,10(2):54-61.
    151.刘振夏.中更新世以来东海陆架的古环境.海洋地质与第四纪地质,1999,19(2):1-10.
    152.鹿化煜,安芷生.洛川黄土记录的最近2500ka东亚冬夏季风变化周期.地质评论,1998,44(5):553-558.
    153.鹿化煜,安芷生.洛川黄土粒度组成的古气候意义.科学通报,1997,42(1):66-69.
    154.鹿化煜,安芷生.前处理方法对黄土沉积物粒度测量影响的实验研究.科学通报,1997,42(23):2535-2538.
    155.罗运利,孙湘君.南海深海沉积物花粉记录的快速气候波动事件.第四纪研究,1999(6):536-540.
    156.梅西,郑洪波,黄恩清,等.南海南部近50万年来沉积物特点及古环境意义.海洋地质与第四纪地质,2007,27(4):77-84.
    157.孟庆海,韩美.弥河冲洪积扇和古河道初步研究.山东师范大学学报:自然科学版,1999,14(1):46-50.
    158.孟庆海,韩美.弥河冲洪积扇和古河道初步研究.山东师范大学学报:自然科学版,1999,14(1):46-50.
    159.孟庆勇,李安春,李铁刚,等.西菲律宾海沉积物200ka以来的地球磁场相对强度记录及其年代学意义.中国科学: D辑,2009(1):24-34.
    160.闵秋宝,汪品先.论上海地区的第四纪海进[J].同济大学学报(自然科学版),1979,2:109-128.
    161.庞奖励,黄春长.青藏高原冰芯记录与黄土堆积和深化海沉积记录之对比.高原气象,2000,19(4):504-511.
    162.秦蕴珊,赵一阳,陈丽蓉,等.东海地质.北京科学出版社,1987.
    163.秦蕴珊,赵一阳,赵松龄,等.渤海地质.北京:科学出版社,1985:1-233.
    164.沈吉,刘兴起,王苏民,等.晚冰期以来青海湖沉积物多指标高分辨率的古气候演化.中国科学: D辑,2004,34(6):582-589.
    165.沈明洁,谢志仁,朱诚.中国东部全新世以来海面波动特征探讨.地球科学进展,2002,17(6):886-894.
    166.舒强,李才林,赵志军,等.苏北盆地浅钻沉积物磁化率与粒度记录的末次冰消期以来的环境变化.沉积学报,2009,27(1):111-117.
    167.舒强,萧家仪,张茂恒,等.苏北盆地末次间冰期以来的气候变化记录.地质科技情报,2008,27(5):59-64.
    168.孙湘君,罗运利.南海北部280ka以来深海花粉记录.中国科学: D辑,2001,31(10):846-853.
    169.汤贤赞,陈忠.西太平洋暖池温区中心沉积物磁化率记录的YD和Heinrich冷事件.科学通报,2003,48(5):491-495.
    170.同济大学海洋地质系,化石群的分异度与古地理分析,1976.
    171.汪海斌,陈发虎.黄土高原西部地区黄土粒度的环境指示意义.中国沙漠,2002,22(1):21-26.
    172.汪品先,闵秋宝,卞云华,等.我国东部第四纪海侵地层的初步研究.地质学报,1981,1:1-13.
    173.汪品先,闵秋宝.我国第四纪海侵研究中的几个基本问题.海洋地质与第四纪地质,1985,5(1):15-25.
    174.汪品先,章纪军,赵泉鸿,等.东海底质中的有孔虫与介形虫.北京:海洋出版社,1988:1-307.
    175.汪品先和闵秋宝.海洋微体古生物论文集.海洋出版社,1980.
    176.汪永进,穆西南.末次冰期南京石笋高分辨率气候记录与GRIP冰芯对比.中国科学:D辑,2000,30(5):533-539.
    177.王宝灿.第四纪时期海平面变化与我国海岸线变迁的探讨.华东师范大学学报(自然科学版),1978,1:62-75.
    178.王飞飞,赵全民,丁旋,等.渤海东北海域有孔虫埋葬群特点与沉积环境的关系.海洋地质与第四纪地质,2009,29(2):9-14.
    179.王宏,范昌福.环渤海海岸带14C数据集(Ⅱ).第四纪研究,2005,25(2):141-156.
    180.王宏,李凤林,范昌福,等.环渤海海岸带14C数据集(Ⅰ).第四纪研究,2004,24(6):601-613.
    181.王靖泰,汪品先.中国东部晚更新世以来海面升降与气候变化的关系.地理学报,1980,35(4):299-312.
    182.王昆山,石学法,程振波,等.南黄海陆架中部沉积物反射率光谱的影响因素分析.海洋科学进展,2007,25(1):46-53.
    183.王强,高秀林,李玉德.十五万年来渤海西,南平原海平面变化及古气候.见:国际地质对比计划第200号项目中国工作组.中国海平面变化.北京:海洋出版社,1986:53-59.
    184.王强,李凤林.渤海湾西岸第四纪海陆变迁.海洋地质与第四纪地质,1983,3(4):83-89.
    185.王强,田国强.中国东部晚第四纪海侵的新构造背景.地质力学学报,1999,5(4):41-48.
    186.王强,张玉发,袁桂邦,等. MIS3阶段以来河北黄骅北部地区海侵与气候期对比.第四纪研究,2008,28(1):79-95.
    187.王张华,赵宝成,陈静,等.长江三角洲地区晚第四纪年代地层框架及两次海侵问题的初步探讨.古地理学报,10(1):99-110.
    188.吴标云,李从先,长江三角洲第四纪地质.北京,海洋出版社,1987.
    189.吴时国,余朝华,邹东波,等.莱州湾地区郯庐断裂带的构造特征及其新生代演化.海洋地质与第四纪地质,2007,26(6):101-110.
    190.吴艳宏,李世杰.湖泊沉积物色度在短尺度古气候研究中的应用.地球科学进展,2004,19(5):789-792.
    191.肖国桥,郭正堂,陈宇坤,等.渤海湾西岸BZ1钻孔的磁性地层学研究.第四纪研究,2008,28(5):909-916.
    192.徐方建,李安春,肖尚斌,等.末次冰消期以来东海内陆架古环境演化.沉积学报,2009,27(1):118-127.
    193.薛春汀,丁东.渤海莱州湾南岸潍河-弥河三角洲:沉积序列和沉积格架.地理科学,2008,28(5):672~676.
    194.阎玉忠,王宏,李凤林,等.渤海湾西岸BQ1孔揭示的沉积环境与海面波动.地质通报,2006b,25(3):357-382.
    195.阎玉忠,王宏,李凤林,等.渤海湾西岸晚更新世沉积的差异性特征.第四纪研究,2006a,26(3):321-326.
    196.杨浩,夏应菲,赵其国.红土系列剖面的磁化率特征与古气候冷暖变换.土壤学报,1995,32(2):195-196.
    197.杨怀仁,陈西庆.中国东部第四纪海面升降,海侵海退与岸线变迁.海洋地质与第四纪地质,1985,5(4):59-80.
    198.杨小强,李华梅.南海南部NS93-5孔沉积物磁化率特征及其对全球气候变化的记录.海洋地质与第四纪地质,2002,22(1):31-36.
    199.杨旭辉,冯秀丽,褚忠信,等.中国东部陆架表层沉积物粒度特征及其沉积环境浅析.中国海洋大学学报(自然科学版),2012,42(7-8):126-134.
    200.杨子赓,李幼军,丁秋玲,等.试论河北平原东部第四纪地质几个基本问题.地质学报,1979,4:263-279.
    201.杨子赓,林和茂.中国东部第四纪进程与国际对比.北京,地质出版社,1993.
    202.姚檀栋.古里雅冰芯中末次间冰期以来气候变化记录研究.中国科学: D辑,1997,27(5):447-452.
    203.姚檀栋.末次冰期青藏高原的气候突变:古里雅冰芯与格陵兰GRIP冰芯对比研究.中国科学: D辑,1999,29(2):175-184.
    204.姚衍桃,詹文欢.南海西北部末次盛冰期以来的古海岸线重建.中国科学: D辑,2009(6):753-762.
    205.姚政权,郭正堂,陈宇坤,等.渤海湾海陆交互相沉积的磁性地层学.海洋地质与第四纪地质,2006,26(1):9-15.
    206.于洪军,韩德亮.中国近海北部陆架海相地层解体问题的研究.海洋学报,1999,21(3):83-89.
    207.于洪军,刘敬圃.中国陆架第四纪地质学研究的最新进展.地球科学进展,1995,10(6):531-536.
    208.于洪军.中国东部陆架黄土成因的新探索.第四纪研究,1999,7(4):367-372.
    209.袁金红,罗运利,徐兆良,等.3.0~2.0MaBP南海南部深海沉积物孢粉记录及其对全球气候变化的响应.海洋通报:英文版,2006,8(1):1-10.
    210.张静,林景星,剧远景,等.东海E1孔晚更新世以来的地层,生物与环境.地质学报,2004,78(1):9-16.
    211.赵华,卢演俦,张金起,等.天津大直沽晚第四纪沉积物红外释光测年及环境变迁年代学.地质科学,2002,37(2):174-183.
    212.赵松龄,刘敬圃.晚更新世末期陆架沙漠化环境演化模式的探讨.中国科学: D辑,1996,26(2):142-146.
    213.赵松龄,杨光复,苍树溪,等.关于渤海湾西岸海相地层与海岸线问题.海洋与湖沼,1978,9(1):15-25.
    214.赵松龄,于洪军,严理.晚更新世末期的陆架沙漠化环境.海洋科学,1992,1:30-33.
    215.赵松龄.近百年来中国东部沿海地区海面变化研究状况.中国海平面变化.北京:海洋出版社,1986:15-27.
    216.赵松龄.陆架沙漠化.北京,海洋出版社,1996:107-111,165.
    217.赵长荣, Hus J,阎玉忠,等.渤海湾西岸湾顶晚更新世-全新世年代地层序列与地磁极漂移.地质调查与研究,2003,26(3):183-192.
    218.郑妍,郑洪波,王可.末次冰期以来东海内陆架沉积反映的海平面变化.同济大学学报:自然科学版,2010,38(9):1381-1386.
    219.郑执中,郑守仪,王喜堂.山东省打渔张灌区第四纪有孔虫及其沉积环境的初步探讨.海洋科学集刊,1978,13:16-65.
    220.周斌,郑洪波,杨文光,等.末次冰期以来南海北部物源及古环境变化的有机地球化学记录.第四纪研究,2008,28(3):407-413.
    221.周开胜.长江口北支兴隆沙沉积环境分析.华东师范大学硕士学位论文,2005.
    222.朱而勤,于联生,李建华,等.东海北部表层沉积物的颜色.海洋地质与第四纪地质,1983,3(1):67-73.
    223.朱永其,曾成开,金长茂.东海大陆架晚更新世以来海面变化.科学通报,1981,19(1):195-1.
    224.庄丽华,李铁刚,常凤鸣,等.东海中陆架晚第四纪底栖有孔虫定量分析.海洋地质与第四纪地质,2004,24(1):43-50.
    225.庄振业,曹有益.渤海南部S3孔晚第四纪海相地层的划分及环境演变.海洋地质与第四纪地质,1999,19(2):27-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700