用户名: 密码: 验证码:
植被恢复及地气间CO_2无机交换对典型沙地土壤碳的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤是陆地生态系统最大的碳库,其较小幅度的变化就会引起大气C02浓度的变化,进而影响到全球气候变化。因此,如何增加土壤碳库储量就显得极为重要。植物能将部分通过光合作用固定的C02储存在土壤中,这是影响土壤碳库的重要生物途径。我国半干旱区广泛开展的植被恢复,对土壤有机碳库的储量和稳定性的影响尚不明确。另外,最近的研究表明,半干旱区沙地土壤与大气间存在CO2无机交换过程,在此过程中,土壤可以不通过光合作用等生物途径直接以无机的方式吸收大气CO2,这可能是影响土壤碳库的一种非生物途径。然而,由于相关研究处于初级阶段,这一观点并没有被学术界广泛认可。
     研究分别比较了毛乌素沙地南缘,沙地营造油蒿(Artemisia ordosica)、杨柴(Astragalus mongolicum)和沙柳(Salix psammophila)前后以及退化草地上营造柠条(Caragana microphylla)前后,在0-100cm深度范围内,土壤有机碳、土壤轻组有机碳和土壤重组有机碳的数量变化。另外,研究采用灭活方法排除了土壤呼吸干扰后,对土壤与大气间C02的无机交换过程进行了长期连续地定位观测,分别对土壤无机CO2通量与土壤温度和土壤温度变率间的关系进行了详细分析。在向未经人为干扰的自然土壤喂食13C02后,研究分别量化了储存在土壤固相、气相和逃逸的同位素13C的数量,从而追踪了从大气中进入土壤的C02的去向。研究结果显示:
     (1)在毛乌素沙地南缘,虽然沙地营造油蒿、杨柴和沙柳样地的土壤总有机碳累积速率分别可达59.7g m-2y-1、56.5g m-2y-1和27.6gm-2y-1,但是在增加的土壤有机碳中,周转速率较快、稳定性较差的轻组有机碳分别占42.7%、80.6%和59.8%。过高的轻组有机碳比例,致使沙地营造灌木累积土壤有机碳的作用受到极大的制约。退化草场营造柠条后,在0-60cm深度范围内,土壤有机碳及其密度组分并无显著变化,而由于深层(60-100cm)土壤中周转速率较慢的重组有机碳减少,退化草场营造柠条后0-100cm深度范围内土壤有机碳流失了9.3%。
     (2)在毛乌素沙地南缘,以无机形式直接吸收大气C02是沙地土壤固碳的重要途径。通量观测结果表明,沙地土壤与大气间存在C02无机交换过程。在此过程中,沙地土壤能够持续稳定地从大气中吸收C02,净速率高达0.10μmol m-2s-1。同位素示踪结果也表明,未经人为干扰的自然土壤能够吸收大气C02,大部分吸收的13C能以固态形式稳定地保存在土壤固相中;储存在土壤固相、气相和逃逸的13C数量分别占总吸收数量的72.9%、<0.1%和7.1%。土壤与大气间CO2的无机交换对温度的变化反应十分灵敏,其过程与土壤温度变率却存在非常强的正相关关系(γ>0.90,P<0.01),温度的下降和上升分别伴随着土壤吸收和排放大气CO2的过程。
     在毛乌素沙地南缘,流沙地和退化草地营造灌木,并不是增加土壤碳唯一途径,而沙地土壤以无机形式吸收大气CO2应是其重要的固碳途径之一。这可能会改变该区域土壤仅依靠保存有机碳而实现固碳作用的传统认知,但对这种非生物固碳途径的详细机理,还有待于进一步深入研究。
Soil is the largest organic carbon pool in the biosphere, and its subtle fluctuations of such a huge carbon pool may potentially alter the atmospheric CO2concentration and the global climate. So it is very important to increase the current soil carbon pool. Part of CO2captured by photosynthesis can be stored in the soil by plant, which is a significant pattern for compensating the soil carbon pool. Vegetation rehabilitation was being widely established in semi-arid area in China, its effect on storage and stability of soil carbon is still unknown. In addition, soil in desert can absorb CO2from atmosphere, excluding photosynthesis, may be the other pattern for increasing the soil carbon pool. However, it has not been accepted universally, because the related studies locate in the initial stage.
     We compared the soil organic carbon and its density fractions at the depth of0-100cm after planting Artemisia ordosica, Astragalus mongolicum, Salix psammophila on shifting sand land and planting Caragana microphylla on degraded pasture in Mu Us Desert. After eliminating soil respiration by sterilization, we continuously measured the abiotic soil CO2flux in a long term, and analysised the effect of soil temperature and the rate of change in soil temperature on abiotic soil CO2flux. We quantified the CO2in soil solid phase, vapor phase and escapation, and traced the whereablout of the 'CO2, following adding CO2on natural soil. The conclusions are as follows:
     In Mu Us Desert, after planting shrubs on sand land, the accumulation rates under A. ordosica, A. mongolicum and S. psammophila were59.7g m·2y-1,56.5g m-2y-1and27.6g m-2y-1, respectively. The proportions of light fraction of soil organic carbon with the fast turnover rate in the increased carbon were42.7%、80.6%and59.8%. The high proportions of light fraction of soil organic carbon in increased soil organic carbon resulted in restricting soil organic carbon sequestration. After planting C. microphylla on degraded pasture, there was no significant difference in soil organic carbon at the depth of0-60cm between shrubland and degraded pasture. The induce of heavy fraction of soil organic carbon with slow turnover rate in the deep layer (60-100cm) results in the9.3%of erosion for the total soil organic carbon within0-100cm depth.
     In Mu Us Desert, soil in semi-arid area can absorb CO2from atmosphere is an important pattern for increasing the soil carbon pool. There is an abiotic CO2exchange process between soil and atmosphere. During this process, soil from our study site sequesteres atmospheric CO2at a rate of0.10μmol m-2s-1continuously and most of the absorbed CO2is stored in the solid phase. The added13CO2stored in the soil solid phase, in vapor phase and emitted form soil accountted for72.9%,<0.1%and7.1%of the absorbed13CO2, respectively. The abiotic CO2exchange between soil and atmosphere respond to temperature sensitively. The abiotic soil carbon flux was strongly positively correlated with the rate of change in soil temperature (γ>0.90, p<0.01). CO2absorption and emission by soil is driven by the rate of falling and rising of soil temperature, respectively.
     In Mu Us Desert, vegetation rehabilitation is not the sole way to sequestrate the soil carbon, and abiotic pattern plays an important role in the soil carbon sink. This study may change the traditional standpoint which soil only conserve organic carbon to realize carbon sequestration, while the detailed mechanism of abiotic pattern should be studied in the future study. Our results areis also benefit to assess the capacity of soil carbon sink and identify the carbon cycle in desert ecosystem.
引文
1. 胡亚林,曾德慧,范志平,艾桂艳.半干旱区沙质退化草地造林对土壤质量的影响[J].应用生态学报,2007,18(11):2391-2397.
    2. 吴建国,张小全,王彦辉,等.土地利用变化对土壤物理组分中有机碳分配的影响[J].林业科学,2002,38(4):19-29.
    3. 章程.不同土地利用下的岩溶作用强度及其碳汇效应[J].科学通报,2011,56(26):2174-2180.
    4. Aeschbach-Hertig W. Environmental science:Clean coal and sparkling water [J]. Nature,2009, 458(7238):583-584.
    5. Al Omary A. Effects of aspect and slope position on growth and nutritional status of planted Aleppo pine (Pinus halepensis Mill.) in a degraded land semi-arid areas of Jordan [J]. New Forests, 2011,42(3):285-300.
    6. Bai Y, Colberg T, Romo J T, et al. Does expansion of western snowberry enhance ecosystem carbon sequestration and storage in Canadian Prairies? [J]. Agriculture, ecosystems & environment, 2009,134(3):269-276.
    7. Ball B A, Virginia R A, Barrett J E, et al. Interactions between physical and biotic factors influence CO2 flux in Antarctic dry valley soils [J]. Soil Biology and Biochemistry,2009,41(7):1510-1517.
    8. Batjes N H. Soil carbon stocks of Jordan and projected changes upon improved management of croplands [J]. Geoderma,2006,132(3):361-371.
    9. Batjes N H. Total carbon and nitrogen in the soils of the world [J]. European journal of soil science, 1996,47(2):151-163.
    10. Bechtold H A, Inouye R S. Distribution of carbon and nitrogen in sagebrush steppe after six years of nitrogen addition and shrub removal [J]. Journal of arid environments,2007,71(1):122-132.
    11. Bellamy P H, Loveland P J, Bradley R I, et al. Carbon losses from all soils across England and Wales 1978-2003[J]. Nature,2005,437(7056):245-248.
    12. Bird S B, Herrick J E, Wander M M, et al. Spatial heterogeneity of aggregate stability and soil carbon in semi-arid rangeland [J]. Environmental Pollution,2002,116(3):445-455.
    13. Bonino E E. Changes in carbon pools associated with a land-use gradient in the Dry Chaco, Argentina [J]. Forest ecology and management,2006,223(1):183-189.
    14. Brantley S T, Young D R. Shifts in litterfall and dominant nitrogen sources after expansion of shrub thickets [J]. Oecologia,2008,155(2):337-345.
    15. Brantley S T, Young D R. Shrub expansion stimulates soil C and N storage along a coastal soil chronosequence [J]. Global change biology,2010,16(7):2052-2061.
    16. Breecker D O, McFadden L D, Sharp Z D, et al. Deep autotrophic soil respiration in shrubland and woodland ecosystems in central New Mexico [J]. Ecosystems,2012,15(1):83-96.
    17. Bu X, Ruan H, Wang L, et al. Soil organic matter in density fractions as related to vegetation changes along an altitude gradient in the Wuyi Mountains, southeastern China [J]. Applied Soil Ecology,2012,52:42-47.
    18. Cable J M, Barron-Gafford G A, Ogle K, et al. Shrub encroachment alters sensitivity of soil respiration to temperature and moisture [J]. Journal of Geophysical Research:Biogeosciences (2005-2012),2012,117(G1).
    19. Cable J M, Ogle K, Lucas R W, et al. The temperature responses of soil respiration in deserts:a seven desert synthesis [J]. Biogeochemistry,2011,103(1-3):71-90.
    20. Jianhua C, Daoxian Y, Groves C, Huang F, Yang H, Lu Q, Carbon fluxes and sinks:the consumption of atmospheric and soil CO2 by carbonate rock dissolution [J]. Acta Geologica Sinica-English Edition,2012,86(4):963-972.
    21. Cao J H, Yang H, Kang Z Q. Preliminary regional estimation of carbon sink flux by carbonate rock corrosion:A case study of the Pearl River Basin [J]. Chinese Science Bulletin,2011,56(35): 3766-3773.
    22. Cao C, Jiang D, Teng X, et al. Soil chemical and microbiological properties along a chronosequence of Caragana microphylla Lam. plantations in the Horqin sandy land of Northeast China [J]. Applied Soil Ecology,2008,40(1):78-85.
    23. Charro E, Gallardo J F, Moyano A. Degradability of soils under oak and pine in Central Spain [J]. European journal of forest research,2010,129(1):83-91.
    24. Chapin III F S, Woodwell G M, Randerson J T, et al. Reconciling carbon-cycle concepts, terminology, and methods [J]. Ecosystems,2006,9(7):1041-1050.
    25. Chen C R, Condron L M, Davis M R, et al. Effects of afforestation on phosphorus dynamics and biological properties in a New Zealand grassland soil [J]. Plant and Soil,2000,220(1-2):151-163.
    26. Chen F S, Zeng D H, Fahey T J, et al. Organic carbon in soil physical fractions under different-aged plantations of Mongolian pine in semi-arid region of Northeast China [J]. Applied soil ecology,2010,44(1):42-48.
    27. Chen L, Gong J, Fu B, et al. Effect of land use conversion on soil organic carbon sequestration in the loess hilly area, loess plateau of China [J]. Ecological Research,2007,22(4):641-648.
    28. Chew R M, Chew A E. The primary productivity of a desert-shrub (Larrea tridentata) community [J]. Ecological Monographs,1965:355-375.
    29. Christensen B T. Physical fractionation of soil and organic matter in primary particle size and density separates [M]. Advances in soil science. Springer New York,1992, pp:1-90.
    30. Christensen B T. Physical fractionation of soil and structural and functional complexity in organic matter turnover [J]. European Journal of Soil Science,2001,52(3):345-353.
    31. Compton J E, Boone R D. Long-term impacts of agriculture on soil carbon and nitrogen in New England forests [J]. Ecology,2000,81(8):2314-2330.
    32. Creamer C A, Filley T R, Olk D C, et al. Changes to soil organic N dynamics with leguminous woody plant encroachment into grasslands [J]. Biogeochemistry,2013,113(1-3):307-321.
    33. Cunningham S C, Metzeling K J, Nally R M, et al. Changes in soil carbon of pastures after afforestation with mixed species:sampling, heterogeneity and surrogates [J]. Agriculture, Ecosystems and Environment,2012,158:58-65.
    34. Curl R L. Carbon shifted but not sequestered [J]. Science,2012,335(6069):655
    35. Daryanto S, Eldridge D J, Throop H L. Managing semi-arid woodlands for carbon storage:Grazing and shrub effects on above-and belowground carbon [J]. Agriculture, Ecosystems and Environment, 2013,169:1-11.
    36. de Wit H A, Palosuo T, Hylen G, et al. A carbon budget of forest biomass and soils in southeast Norway calculated using a widely applicable method [J]. Forest Ecology and Management,2006, 225(1):15-26.
    37. Del Galdo I, Six J, Peressotti A, et al. Assessing the impact of land-use change on soil C sequestration in agricultural soils by means of organic matter fractionation and stable C isotopes [J]. Global Change Biology,2003,9(8):1204-1213.
    38. Detwiler R P, Hall C A S. Tropical forests and the global carbon cycle [J]. Science,1988, 239(4835):42-47.
    39. Diaz-hernandez J L, Fernandez E B, Gonzalez J L. Organic and inorganic carbon in soils pf semiarid regions:a case study from the Guadix-Baza basin (southeast Spain) [J]. Geoderma,2003, 114(1-2):65-80.
    40. Dong X W, Zhang X K, Bao X L, et al. Spatial distribution of soil nutrients after the establishment of sand-fixing shrubs on sand dune [J]. Plant Soil Environ,2009,55(7):288-294.
    41. Emmerich W E. Carbon dioxide fluxes in a semiarid environment with high carbonate soils [J]. Agricultural and Forest Meteorology,2003,116(1):91-102.
    42. Eshel G, Fine P, Singer M J. Total soil carbon and water quality:an implication for carbon sequestration [J]. Soil Science Society of America Journal,2007,71(2):397-405.
    43. Eswaran H, Reich P F, Kimble J M, et al. Global carbon stocks [J]. Global climate change and pedogenic carbonates,2000:15-25.
    44. Fernandez-Ondono E, Serrano L R, Jimenez M N, et al. Afforestation improves soil fertility in south-eastern Spain [J]. European journal of forest research,2010,129(4):707-717.
    45. Franzluebbers A J, Stuedemann J A, Schomberg H H, et al. Soil organic C and N pools under long-term pasture management in the Southern Piedmont USA [J]. Soil Biology and Biochemistry, 2000,32(4):469-478.
    46. Fu B J, Chen L D, Ma K M, et al. The relationships between land use and soil conditions in the hilly area of the loess plateau in northern Shaanxi, China [J]. Catena,2000,39(1):69-78.
    47. Huang G, Zhao XY, Li YQ, et al. Restoration of shrub communities elevates organic carbon in arid soils of northwestern China [J]. Soil Biol. Biochemistry,2012,47:123-132.
    48. Gaumont-Guay D, Black T A, Barr A G, et al. Biophysical controls on rhizospheric and heterotrophic components of soil respiration in a boreal black spruce stand [J]. Tree Physiology, 2008,28(2):161-171.
    49. Gaumont-Guay D, Black T A, Griffis T J, et al. Interpreting the dependence of soil respiration on soil temperature and water content in a boreal aspen stand [J]. Agricultural and Forest Meteorology, 2006,140(1):220-235.
    50. Goberna M, Sanchez J, Pascual J A, et al. Pinus halepensis Mill, plantations did not restore organic carbon, microbial biomass and activity levels in a semi-arid Mediterranean soil [J]. Applied soil ecology,2007,36(2):107-115.
    51. Gocke M, Kuzyakov Y. Effect of temperature and rhizosphere processes on pedogenic carbonate recrystallization:Relevance for paleoenvironmental applications [J]. Geoderma,2011a,166(1): 57-65.
    52. Gocke M, Pustovoytov K, Kuzyakov Y. Carbonate recrystallization in root-free soil and rhizosphere of Triticum aestivum and Lolium perenne estimated by 14C labeling [J]. Biogeochemistry,2011b,103(1-3):209-222.
    53. Gocke M, Pustovoytov K, Kuzyakov Y. Pedogenic carbonate formation:Recrystallization versus migration-Process rates and periods assessed by 14C labeling [J]. Global Biogeochemical Cycles, 2012,26(1):59-68.
    54. Gocke M, Pustovoytov K, Kuzyakov Y. Pedogenic carbonate recrystallization assessed by isotopic labeling:a comparison of 13C and 14C tracers [J]. Journal of Plant Nutrition and Soil Science, 2011c,174(5):809-817.
    55. Golchin A, Clarke P, Oades J M, et al. The effects of cultivation on the composition of organic-matter and structural stability of soils [J]. Soil Research,1995,33(6):975-993.
    56. Golchin A, Oades J M, Skjemstad J O, et al. Structural and dynamic properties of soil organic-matter as reflected by 13C natural-abundance, pyrolysis mass-spectrometry and solid-state 13C NMR-spectroscopy in density fractions of an oxisol under forest and pasture [J]. Soil Research, 1995,33(1):59-76.
    57. Grace J. Understanding and managing the global carbon cycle [J], Journal of Ecology,2004,92(2): 189-202.
    58. Gregorich E G, Ellert B H. Light fraction and macroorganic matter in mineral soils [J]. Soil sampling and methods of analysis. Lewis Publ., Boca Raton, FL,1993:397-407.
    59. Grunzweig J M, Gelfand I, Yakir D. Biogeochemical factors contributing to enhanced carbon storage following afforestation of a semi-arid shrubland [J]. Biogeosciences Discussions,2007, 4(4):2111-2145.
    60. Grunzweig J M, Lin T, Rotenberg E, et al. Carbon sequestration in arid-land forest [J]. Global Change Biology,2003,9(5):791-799.
    61. Guo L B, Gifford R M. Soil carbon stocks and land use change:a meta-analysis [J]. Global change biology,2002,8(4):345-360.
    62. Guo L B, Wang M, Gifford R M. The change of soil carbon stocks and fine root dynamics after land use change from a native pasture to a pine plantation [J]. Plant and Soil,2007,299(1-2): 251-262.
    63. Hbirkou C, Martius C, Khamzina A, et al. Reducing topsoil salinity and raising carbon stocks through afforestation in Khorezm, Uzbekistan [J]. Journal of Arid Environments,2011,75(2): 146-155.
    64. He N, Wu L, Wang Y, et al. Changes in carbon and nitrogen in soil particle-size fractions along a grassland restoration chronosequence in northern China [J]. Geoderma,2009,150(3):302-308.
    65. Herrera-Arreola G, Herrera Y, Reyes-Reyes B G, et al. Mesquite (Prosopis juliflora (Sw.) DC), huisache (Acacia farnesiana (L.) Willd.) and catclaw(Mimosa biuncifera Benth.) and their effect on dynamics of carbon and nitrogen in soils of the semi-arid highlands of Durango Mexico [J]. Journal of arid environments,2007,69(4):583-598.
    66. Houghton R A. Aboveground forest biomass and the global carbon balance [J]. Global Change Biology,2005,11(6):945-958.
    67. Hu Y L, Zeng D H, Fan Z P, Chen G S, Zhao Q, Pepper D. Changes in ecosystem carbon stocks following grassland afforestation of semiarid sandy soil in the southeastern Keerqin Sandy Lands, China [J]. Journal of Arid Environments,2008,72:2193-2200.
    68. Huang C.Y. Soil science.1st ed. pp 202-203, China agriculture press publishing, Beijing,2000.
    69. Inglima I, Alberti G, Bertolini T, et al. Precipitation pulses enhance respiration of Mediterranean ecosystems:the balance between organic and inorganic components of increased soil CO2 efflux [J]. Global Change Biology,2009,15(5):1289-1301.
    70. Institute of Soil Science, Chinese Academy of Sciences (CAS). Soil Physical and Chemical Analysis, pp 524-525, Shanghai Science Technology Press, Shanghai of China,1978.
    71. Jackson R B, Banner J L, Jobbagy E G, et al. Ecosystem carbon loss with woody plant invasion of grasslands[J]. Nature,2002,418(6898):623-626.
    72. Jankju Borzelabad M, Naseri K. Decoupling of soil nutrient cycles as a function of aridity in global drylands [J]. Nature,2013,502(127):672-676.
    73. Janssens I A, Carrara A, Ceulemans R. Annual Q10 of soil respiration reflects plant phenological patterns as well as temperature sensitivity [J]. Global Change Biology,2004,10(2):161-169.
    74. Janzen H H, Campbell C A, Brandt S A, et al. Light-fraction organic matter in soils from long-term crop rotations [J]. Soil Science Society of America Journal,1992,56(6):1799-1806.
    75. Jasoni R L, Smith S D, Arnone J A. Net ecosystem CO2 exchange in Mojave Desert shrublands during the eighth year of exposure to elevated CO2 [J]. Global Change Biology,2005,11(5): 749-756.
    76. Jeddi K, Cortina J, Chaieb M. Acacia salicina, Pinus halepensis and Eucalyptus occidentalis improve soil surface conditions in arid southern Tunisia [J]. Journal of arid environments,2009, 73(11):1005-1013.
    77. Jia X H, Li X R, Zhang J G, et al. Analysis of spatial variability of the fractal dimension of soil particle size in Ammopiptanthus mongolicus'desert habitat [J]. Environmental geology,2009, 58(5):953-962.
    78. Jia X, Zha T, Wu B, et al. Temperature response of soil respiration in a Chinese pine plantation: Hysteresis and seasonal vs. diel Q10 [J]. PloS one,2013,8(2):e57858.
    79. Jiao Y, Xu Z, Zhao J. Effects of grassland conversion to cropland and forest on soil organic carbon and dissolved organic carbon in the farming-pastoral ecotone of Inner Mongolia [J]. Acta Ecologica Sinica,2009,29(3):150-154.
    80. Jin H M, Sun O J, Luo Z K, et al. Dynamics of soil respiration in sparse Ulmus pumila woodland under semi-arid climate[J]. Ecological research,2009,24(4):731-739.
    81. Keeling R F, Piper S C, Heimann M. Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration [J]. Nature,1996,381:218-221.
    82. Kowalski A S, Serrano-Ortiz P, Janssens I A, et al. Can flux tower research neglect geochemical CO2 exchange? [J]. Agricultural and forest meteorology,2008,148(6):1045-1054.
    83. Kuzyakov Y, Domanski G. Carbon input by plants into the soil. Review [J]. Journal of Plant Nutrition and Soil Science,2000,163(4):421-431.
    84. Laclau P. Biomass and carbon sequestration of ponderosa pine plantations and native cypress forests in northwest Patagonia [J]. Forest Ecology and Management,2003,180(1):317-333.
    85. Laganiere J, Angers D A, Pare D. Carbon accumulation in agricultural soils after afforestation:A meta-analysis [J]. Global Change Biology,2010,16(1):439-453.
    86. Laik R, Kumar K, Das D K, et al. Labile soil organic matter pools in a calciorthent after 18 years of afforestation by different plantations [J]. Applied Soil Ecology,2009,42(2):71-78.
    87. Lal R. Forest soils and carbon sequestration [J]. Forest ecology and management,2005,220(1): 242-258.
    88. Lal R. Potential of desertification control to sequester carbon and mitigate the greenhouse effect [J]. Climatic Change,2001,51(1):35-72.
    89. Lal R. Sequestering carbon in soils of arid ecosystems [J]. Land degradation & development,2009, 20(4):441-454.
    90. Larson C. An unsung carbon sink [J]. Science,2011,334(6058):886-887.
    91. Li Y, Cui J, Zhang T, et al. Effectiveness of sand-fixing measures on desert land restoration in Kerqin Sandy Land, northern China [J]. Ecological Engineering,2009,35(1):118-127.
    92. Li Y, Xu M, Zou X, Shi P, Zhang Y. Comparing soil organic carbon dynamics in plantation and secondary forest in wet tropics in Puerto Rico [J]. Global Change Biology,2005,11(2):239-248.
    93. Liao J D, Boutton T W, Jastrow J D. Organic matter turnover in soil physical fractions following woody plant invasion of grassland:Evidence from natural 13C and 15N [J]. Soil Biology and Biochemistry,2006,38(11):3197-3210.
    94. Lima A, Silva I R, Neves J C L, et al. Soil organic carbon dynamics following afforestation of degraded pastures with eucalyptus in southeastern Brazil [J]. Forest ecology and management, 2006,235(1):219-231.
    95. Liu G.S. Standard Methods for Observation and Analysis in Chinese Ecosystem Research Network: Soil Physical and Chemical Analysis and Description of Soil Profiles-Standards Press of China, Beijing 1996, (in Chinese).
    96. Liu X, Li F M, Liu D Q, et al. Soil organic carbon, carbon fractions and nutrients as affected by land use in semi-arid region of Loess Plateau of China [J]. Pedosphere,2010,20(2):146-152.
    97. Liu Z, Shao M, Wang Y. Effect of environmental factors on regional soil organic carbon stocks across the Loess Plateau region, China [J]. Agriculture, Ecosystems & Environment,2011,142(3): 184-194.
    98. Liu Z, Zhao J. Contribution of carbonate rock weathering to the atmospheric CO2 sink [J]. Environmental Geology,2000,39(9):1053-1058.
    99. Llorente M, Glaser B, Turrion M B. Storage of organic carbon and Black carbon in density fractions of calcareous soils under different land uses [J]. Geoderma,2010,159(1):31-38.
    100. Lu R K 1999 Methods of agrochemical soil analysis. China Agricultural Science Press, Beijing
    101.Luan J, Xiang C, Liu S, Luo Z, Gong Y, Zhu X. Assessments of the impacts of Chinese fir plantation and natural regenerated forest on soil organic matter quality at Longmen mountain, Sichuan, China [J]. Geoderma,2010,156(3):228-236.
    102. Luo YQ, Zhou XH (2006) soil respiration and the environment. Higher Education Press, Beijing
    103. Ma J, Wang Z Y, Stevenson B A, et al. An inorganic CO2 diffusion and dissolution process explains negative CO2 fluxes in saline/alkaline soils [J]. Scientific reports,2013,3:20-25.
    104. MacKenzie M D, DeLuca T H, Sala A. Forest structure and organic horizon analysis along a fire chronosequence in the low elevation forests of western Montana [J]. Forest Ecology and Management,2004,203(1):331-343.
    105. Maestre F T, Bowker M A, Puche M D, et al. Shrub encroachment can reverse desertification in semi-arid Mediterranean grasslands [J]. Ecology Letters,2009,12(9):930-941.
    106. Mao R, Zeng D H. Changes in soil particulate organic matter, microbial biomass, and activity following afforestation of marginal agricultural lands in a semi-arid area of Northeast China [J]. Environmental management,2010,46(1):110-116.
    107. Marin-Spiotta E, Silver WL, Swanston CW. Chemical and mineral control of soil carbon turnover in abandoned tropical pastures [J]. Geoderma,2008,143:49-62.
    108. Marin-Spiotta E, Silver W L, Swanston C W, et al. Soil organic matter dynamics during 80 years of reforestation of tropical pastures [J]. Global change biology,2009,15(6):1584-1597.
    109. McCalley C K, Sparks J P. Controls over nitric oxide and ammonia emissions from Mojave Desert soils [J]. Oecologia,2008,156(4):871-881.
    110. McCarron J K, Knapp A K, Blair J M. Soil C and N responses to woody plant expansion in a mesic grassland [J]. Plant and Soil,2003,257(1):183-192.
    111. Montane F, Romanya J, Rovira P, et al. Mixtures with grass litter may hasten shrub litter decomposition after shrub encroachment into mountain grasslands [J]. Plant and soil,2013, 368(1-2):459-469.
    112. Murage E W, Voroney P, Beyaert R P. Turnover of carbon in the free light fraction with and without charcoal as determined using the C natural abundance method [J]. Geoderma,2007,138(1): 133-143.
    113. Myneni R B, Dong J, Tucker C J, et al. A large carbon sink in the woody biomass of northern forests [J]. Proceedings of the National Academy of Sciences,2001,98(26):14784-14789.
    114. Nordt L C, Hallmark C T, Wilding L P, et al. Quantifying pedogenic carbonate accumulations using stable carbon isotopes [J]. Geoderma,1998,82(1-3):115-136.
    115. Nosetto M D, Jobbagy E G, Paruelo J M. Carbon sequestration in semi-arid rangelands: Comparison of Pinus ponderosa plantations and grazing exclusion in NW Patagonia [J]. Journal of Arid Environments,2006,67(1):142-156.
    116. Nuruzzaman M, Lambers H, Bolland M D A, et al. Phosphorus benefits of different legume crops to subsequent wheat grown in different soils of Western Australia [J]. Plant and Soil,2005, 271(1-2):175-187.
    117. O'Hara C P, Bauhus J, Smethurst P J. Role of light fraction soil organic matter in the phosphorus nutrition of Eucalyptus globulus seedlings [J]. Plant and soil,2006,280(1-2):127-134.
    118. Parsons A N, Barrett J E, Wall D H, et al. Soil carbon dioxide flux in Antarctic dry valley ecosystems [J]. Ecosystems,2004,7(3):286-295.
    119. Paul K I, Polglase P J, Nyakuengama J G, et al. Change in soil carbon following afforestation [J]. Forest ecology and management,2002,168(1):241-257.
    120. Paul S, Veldkamp E, Flessa H. Soil organic carbon in density fractions of tropical soils under forest-pasture-secondary forest land use changes [J]. European journal of soil science,2008,59(2): 359-371.
    121. Phillips C L, Nickerson N, Risk D, et al. Interpreting diel hysteresis between soil respiration and temperature [J]. Global change biology,2011,17(1):515-527.
    122. Pinault J L, Baubron J C. Signal processing of soil gas radon, atmospheric pressure, moisture, and soil temperature data:A new approach for radon concentration modeling [J]. Journal of Geophysical Research:Solid Earth (1978-2012),1996,101(B2):3157-3171.
    123. Pinno B D, Belanger N. Ecosystem carbon gains from afforestation in the Boreal Transition ecozone of Saskatchewan (Canada) are coupled with the devolution of Black Chernozems [J]. Agriculture, ecosystems & environment,2008,123(1):56-62.
    124. Plummer L N, Parkhurst D L, Wigley T M L. Critical review of the kinetics of calcite dissolution and precipitation. In:Chemical Modeling—Speciation, Sorption, Solubility and Kinetics in Aqueous Systems (ed. E. Jenne),1979, pp.537-573. American Chemical Society, Washington, D. C.
    125. Plummer L N, Wigley T M L, Parkhurst D L. The kinetics of calcite dissolution in CO2-water systems at 5°and 60℃ and 0.0 to 1.0 atm CO2 [J]. American Journal of Science,1978,278: 179-216.
    126/Qiu L, Zhang X, Cheng J, et al. Effects of black locust (Robinia pseudoacacia) on soil properties in the loessial gully region of the Loess Plateau, China [J]. Plant and soil,2010,332(1-2):207-217.
    127. Rasmussen C. Distribution of soil organic and inorganic carbon pools by biome and soil taxa in Arizona [J]. Soil Science Society of America Journal,2006,70(1):256-265.
    128. Reynolds J F, Smith D M S, Lambin E F, et al. Global desertification:building a science for dryland development [J]. Science,2007,316(5826):847-851.
    129. Richards A E, Dalal R C, Schmidt S.Soil carbon turnover and sequestration in native subtropical tree plantations [J]. Soil Biology and Biochemistry,2007,39(8):2078-2090.
    130. Ritter E, Vesterdal L, Gundersen P. Changes in soil properties after afforestation of former intensively managed soils with oak and Norway spruce [J]. Plant and soil,2003,249(2):319-330.
    131. Ritter E. Carbon, nitrogen and phosphorus in volcanic soils following afforestation with native birch (Betula pubescens) and introduced larch (Larix sibirica) in Iceland [J]. Plant and soil,2007, 295(1-2):239-251.
    132. Rosenqvist L, Kleja D B, Johansson M B. Concentrations and fluxes of dissolved organic carbon and nitrogen in a Picea abies chronosequence on former arable land in Sweden [J]. Forest ecology and management,2010,259(3):275-285.
    133. Rotenberg E, Yakir D. Contribution of semi-arid forests to the climate system [J]. Science,2010, 327(5964):451-454.
    134. Ruiz-Navarro A, Barbera G G, Navarro-Cano J A, et al. Soil dynamics in Pinus halepensis reforestation:Effect of microenvironments and previous land use [J]. Geoderma,2009,153(3): 353-361.
    135. Sartori F, Lal R, Ebinger M H, et al. Changes in soil carbon and nutrient pools along a chronosequence of poplar plantations in the Columbia Plateau, Oregon, USA [J]. Agriculture, ecosystems & environment,2007,122(3):325-339.
    136. Schedlbauer J L, Kavanagh K L. Soil carbon dynamics in a chronosequence of secondary forests in northeastern Costa Rica [J]. Forest Ecology and Management,2008,255(3):1326-1335.
    137. Schimel D S, Braswell B H, Holland E A, McKeown R, Ojima D S, Painter T H, Parton W J, Townsend A R. Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils [J]. Global Biogeochem. Cycles,1994,8:279-293.
    138. Schlesinger W H. Carbon storage in the Caliche of arid soils:a case study from Arizona [J]. Soil Science,1982,133:247-255.
    139. Schlesinger W H, Belnap J, Marion G. On carbon sequestration in desert ecosystems [J]. Global Change Biology,2009,15(6):1488-1490.
    140. Schulze DE, Freibauer A. Carbon unlocked from soil [J]. Nature,2005,437:205-206.
    141. Shanhun F L, Almond P C, Clough T J, et al. Abiotic processes dominate CO2 fluxes in Antarctic soils [J]. Soil Biology and Biochemistry,2012,53:99-111.
    142. Silva C C, Guido M L, Ceballos J M, et al. Production of carbon dioxide and nitrous oxide in alkaline saline soil of Texcoco at different water contents amended with urea:A laboratory study [J]. Soil Biology and Biochemistry,2008,40(7):1813-1822.
    143. Six J, Conant R T, Paul E A, et al. Stabilization mechanisms of soil organic matter:implications for C-saturation of soils [J]. Plant and soil,2002,241(2):155-176.
    144. Smal H, Olszewska M. The effect of afforestation with Scots pine(Pinus silvestris L.) of sandy post-arable soils on their selected properties. Ⅱ. Reaction, carbon, nitrogen and phosphorus [J]. Plant and Soil,2008,305(1-2):171-187.
    145. Sombroek W G, Nachtergaeke F O, Hebel A. Amounts, dynamics and sequestrations of carbon in tropical and subtropical soils. AMBIO,1993,22:417-426.
    146. Springsteen A, Loya W, Liebig M, et al. Soil carbon and nitrogen across a chronosequence of woody plant expansion in North Dakota [J]. Plant and soil,2010,328(1-2):369-379.
    147. Stevenson B A, Verburg P S J. Effluxed CO2-13C from sterilized and unsterilized treatments of a calcareous soil [J]. Soil Biology and Biochemistry,2006,38(7):1727-1733.
    148. Stone R. Have desert researchers discovered a hidden loop in the carbon cycle? [J]. Science,2008, 320(5882):1409-1410.
    149. Stumm W, Morgan J J. Aquatic chemistry:chemical equilibria and rates in natural waters [M]. John Wiley and Sons,2012.
    150. Su Y Z, Wang X F, Yang R, et al. Effects of sandy desertified land rehabilitation on soil carbon sequestration and aggregation in an arid region in China [J]. Journal of environmental management, 2010,91(11):2109-2116.
    151. Su Y Z. Soil properties and plant species in an age sequence of Caragana microphylla plantations in the Horqin Sandy Land, north China [J]. Ecological Engineering,2003,20(3):223-235.
    152. Tang G, Li K, Sun Y, et al. Dynamics and stabilization of soil organic carbon after nineteen years of afforestation in valley-type savannah in southwest China [J]. Soil Use and Management,2013, 29(1):48-56.
    153. Tang J, Baldocchi D D, Xu L. Tree photosynthesis modulates soil respiration on a diurnal time scale [J]. Global Change Biology,2005,11(8):1298-1304.
    154. Tans P P, Fung I Y, Takahashi T. Observational constraints on the global atmospheric CO2 budget [J]. Science,1990,247(4949):1431-1438.
    155. Tomar O S, Minhas P S, Sharma V K, et al. Performance of 31 tree species and soil conditions in a plantation established with saline irrigation [J]. Forest Ecology and Management,2003,177(1): 333-346.
    156. Vargas R, Baldocchi D D, Allen M F, et al. Looking deeper into the soil:biophysical controls and seasonal lags of soil CO2 production and efflux [J]. Ecological Applications,2010,20(6): 1569-1582.
    157. Vargas R, Detto M, Baldocchi D D, et al. Multiscale analysis of temporal variability of soil CO2 production as influenced by weather and vegetation [J]. Global Change Biology,2010,16(5): 1589-1605.
    158. Walker J C G, Hays P B, Kasting J F. A negative feedback mechanism for the long-term stabilization of Earth's surface temperature [J]. Journal of Geophysical Research:Oceans (1978-2012),1981,86(C10):9776-9782.
    159. Walkley A, Black I A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method [J]. Soil science,1934,37(1): 29-38.
    160. Wang C M, Ouyang H, Shao B, et al. Soil carbon changes following afforestation with Olga Bay larch (Larix olgensis Henry) in northeastern China [J]. Journal of Integrative Plant Biology,2006, 48(5):503-512.
    161. Wang W Y, Wang Q J, Lu Z Y. Soil organic carbon and nitrogen content of density fractions and effect of meadow degradation to soil carbon and nitrogen of fractions in alpine Kobresia meadow [J]. Science in China Series D:Earth Sciences,2009,52(5):660-668.
    162. Wang X P, Li X R, Xiao H L, et al. Evolutionary characteristics of the artificially revegetated shrub ecosystem in the Tengger Desert, northern China [J]. Ecological Research,2006,21(3):415-424.
    163. Wang Y, Fu B, Lii Y, et al. Effects of vegetation restoration on soil organic carbon sequestration at multiple scales in semi-arid Loess Plateau, China [J]. Catena,2011,85(1):58-66.
    164. Wang Y, Li Y, Ye X, et al. Profile storage of organic/inorganic carbon in soil:From forest to desert [J]. Science of the Total Environment,2010,408(8):1925-1931.
    165. Wei X, Shao M, Fu X, et al. Distribution of soil organic C, N and P in three adjacent land use patterns in the northern Loess Plateau, China [J]. Biogeochemistry,2009,96(1-3):149-162.
    166. Wheeler C W, Archer S R, Asner G P, et al. Climatic/edaphic controls on soil carbon/nitrogen response to shrub encroachment in desert grassland [J]. Ecological Applications,2007,17(7): 1911-1928.
    167. Whittaker R H, Niering W A. Vegetation of the Santa Catalina Mountains, Arizona. V. Biomass, production, and diversity along the elevation gradient [J]. Ecology,1975,56(4):771-790.
    168. Wohlfahrt G, Fenstermaker L F, ARNONE III J A. Large annual net ecosystem CO2 uptake of a Mojave Desert ecosystem [J]. Global Change Biology,2008,14(7):1475-1487.
    169. Wong V N L, Dalal R C, Greene R S B. Carbon dynamics of sodic and saline soils following gypsum and organic material additions:a laboratory incubation [J]. Applied Soil Ecology,2009, 41(1):29-40.
    170. Woomer P L, Toure A, Sall M. Carbon stocks in Senegal's Sahel transition zone [J]. Journal of arid environments,2004,59(3):499-510.
    171. Xie J, Li Y, Zhai C, et al. CO2 absorption by alkaline soils and its implication to the global carbon cycle[J]. Environmental Geology,2009,56(5):953-961.
    172. Xu W, Chen X, Luo G, et al. Using the CENTURY model to assess the impact of land reclamation and management practices in oasis agriculture on the dynamics of soil organic carbon in the arid region of North-western China [J]. Ecological Complexity,2011,8(1):30-37.
    173. Yamashita T, Flessa H, John B, et al. Organic matter in density fractions of water-stable aggregates in silty soils:effect of land use [J]. Soil Biology and Biochemistry,2006,38(11):3222-3234.
    174. Yang Z P, Zhang Q, Wang Y L, et al. Spatial and temporal variability of soil properties under Caragana microphylla shrubs in the northwestern Shanxi Loess Plateau, China [J]. Journal of Arid Environments,2011,75(6):538-544.
    175. Yates E L, Detweiler A M, Iraci L T, et al. Assessing the role of alkaline soils on the carbon cycle at a playa site [J]. Environmental Earth Sciences,2013,70(3):1047-1056.
    176. Yu X, Zha T, Pang Z, et al. Response of soil respiration to soil temperature and moisture in a 50-year-old oriental arborvitae plantation in China [J]. PloS one,2011,6(12):e28397.
    177. Yuksek T, Yiiksek F. The effects of restoration on soil properties in degraded land in the semi-arid region of Turkey [J]. Catena,2011,84(1):47-53.
    178. Zaimes G N, Schultz R C, Isenhart T M. Total phosphorus concentrations and compaction in riparian areas under different riparian land-uses of Iowa [J]. Agriculture, ecosystems & environment,2008,127(1):22-30.
    179. Zavaleta E S, Kettley L S. Ecosystem change along a woody invasion chronosequence in a California grassland [J]. Journal of arid environments,2006,66(2):290-306.
    180. Zhang L H, Chen Y N, Zhao R F, et al. Significance of temperature and soil water content on soil respiration in three desert ecosystems in Northwest China [J]. Journal of arid environments,2010, 74(10):1200-1211.
    181. Zhang L, Chen Y, Li W, et al. Abiotic regulators of soil respiration in desert ecosystems [J]. Environmental geology,2009,57(8):1855-1864.
    182. Zhang T H, Su Y Z, Cui J Y, et al. A Leguminous Shrub(Caragana microphylla) in Semiarid Sandy Soils of North China [J]. Pedosphere,2006,16(3):319-325.
    183. Zhang Y Q, Liu J B, Jia X, et al. Soil Organic Carbon Accumulation in Arid and Semiarid Areas after Afforestation:a Meta-Analysis [J]. Polish Journal of Environmental Studies,2013, 22(2):611-620.
    184. Zhang Y, Cao C, Han X, et al. Soil nutrient and microbiological property recoveries via native shrub and semi-shrub plantations on moving sand dunes in Northeast China [J]. Ecological Engineering,2013,53:1-5.
    185. Zhao H L, Zhou R L, Su Y Z, et al. Shrub facilitation of desert land restoration in the Horqin Sand Land of Inner Mongolia [J]. Ecological Engineering,2007,31(1):1-8.
    186. Zhou Q L, Jiang D M, Liu Z M, et al. The return and loss of litter phosphorus in different types of sand dunes in Horqin Sandy Land, northeastern China [J]. Journal of Arid Land,2012,4(4): 431-440.
    187. Zucca C, Julitta F, Previtali F. Land restoration by fodder shrubs in a semi-arid agro-pastoral area of Morocco. Effects on soils [J]. Catena,2011,87(3):306-312.
    188. Zuo X, Zhao H, Zhao X, et al. Spatial pattern and heterogeneity of soil properties in sand dunes under grazing and restoration in Horqin Sandy Land, Northern China [J]. Soil and Tillage Research, 2008,99(2):202-212.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700