用户名: 密码: 验证码:
黄麻再生遗传转化体系优化及UGPase、CesA1、CCoAOMT基因克隆与功能鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄麻(Corchorus capsularis L.),又称绿麻,为椴树科黄麻属一年生草本韧皮纤维作物,是世界上最重要的长纤维作物之一,产量和种植面积仅次于棉花。由于黄麻纤维产量高、有光泽、吸湿性能好、散水快、易降解、质地柔软的特点,在商业上有金色纤维之称。近年来随着育种家的不断努力,黄麻纤维产量有了大幅度的提高,但由于黄麻中纤维素总体含量较低和木质素含量较高,导致黄麻韧皮纤维细胞壁木质化、单纤维细胞较短、粗硬、弹性小、可纺支数低等,严重影响黄麻纤维在面料纺织品上的有效应用和经济效益。
     植物组织培养是基因工程操作的重要基础,在大部分植物中,愈伤组织是实现农杆菌介导遗传转化的直接受体,同时也是获取原生质体、体细胞杂交、植株再生等的重要基础。目前有关黄麻组织培养和再生体系的研究较少,这严重制约着黄麻基因工程的发展。
     本研究主要研究内容为:利用不同公司的RNA提取试剂盒和和提取方法,优化了高质量黄麻RNA提取方法;利用优化的快速获取基因5’端的技术体系,获得了黄麻纤维素合成相关基因UGPase、CesAl和CCoAOMT基因cDNA片段并对该基因进行了功能鉴定;利用不同培养基和激素配比,研究了黄麻组织培养再生体系;利用韧皮部特异启动子定向沉默黄麻CCoAOMT基因。最后利用所获得的UGPase基因转化黄麻,来研究利用UGPase和CCoAOMT基因改良黄麻品质的可行性,主要研究结果如下:
     1.1黄麻组织培养及遗传转化体系的优化
     以圆果种黄麻“黄麻179”为材料,确定了以子叶和幼茎为外植体产生愈伤组织最佳培养基分别为:MS培养基中添加0.5mg/L TDZ+0.1mg/L或0.5mg/LIAA,MS培养基中添加2.0mg/L6-BA+0.5mg/L IAA和MS培养基中添加0.25mg/L TDZ+0.1mg/L或0.5mg/L NAA, MS培养基中添加0.5mg/L6-BA+0.5mg/L NAA。子叶愈伤组织再分化培养基为MS+0.5mg/L6-BA+0.5mg/LNAA,幼茎愈伤组织再分化培养基为MS+0.5mg/L TDZ+2.0mg/L IAA,通过筛选不同种类的褐变抑制剂,最终确定以0.1%的植酸作为黄麻组培中褐变抑制剂效果较好,不定芽诱导中,最终确定子叶节不定芽诱导最佳培养基是MS+2.0mg/L6-BA+0.25mg/L NAA+100mg/L HC。诱导率达到36.4%,不定芽或苗根诱导最佳培养基为MS+0.5mg/L6-BA+1mg/L NAA。选用200mg/L Cef作为子叶节遗传转化的抑制农杆菌生长的抑制剂,20mg/L的潮霉素作为转化后子叶节的筛选临界浓度,最后采用新鲜外植体,菌液中添加100μM的乙酰丁香通,浓度调整为OD值为0.5,侵染时间为10min,获得的GUS染色率较高,所有GUS染色过的植株经过PCR反应均能扩增出目的条带。研究结果为今后黄麻基因工程育种提供了重要的途径。
     1.2黄麻尿苷二磷酸葡萄糖焦磷酸化酶基因(UGPase)基因克隆与功能鉴定
     成功分离了黄麻尿苷二磷酸葡萄糖焦磷酸化酶基因(UGPase),暂命名为CcUGPasel,该基因cDNA全长1,395bp,编码465个氨基酸,编码蛋白的分质量51.15619kD,理论等电点是6.11,CcUGPase生物信息学分析表明,该基因属于糖基转移酶家族成员,RT-PCR分析表明,该基因在根、茎皮、叶中均有表达,其表达量为茎皮>根>叶,在40天和120天时期表达较高,在拟南芥中过量表达CcUGPasel基因表明,转基因植株生长速率加快、高度增加,纤维素含量比对照增加(8%-17%),木质素含量和节间距没有明显变化。表明该基因在植物的生长发育和纤维素代谢过程中起重要的调控作用。
     1.3黄麻纤维素合成酶基因(CcCesA1)克隆与功能鉴定
     克隆黄麻纤维素合成酶CcCesA1基因除5’端500bp序列外的全部cDNA。其序列长度为2529bp,编码627氨基酸残基,经Blast基因比对和蛋白质结构分析,确定是黄麻纤维素合成酶基因。半定量RT-PCR分析表明,CcCesA1在植株不同部位表达量具组织差异性,依次为茎部韧皮>根>叶>顶芽>麻骨。利用CcCesA1基因部分cDNA序列和3'UTR区,构建黄麻CcCesA1基因反义载体,用测序验证的阳性质粒转化模式植物拟南芥。Southern结果表明,外源基因以单拷贝方式整合进入基因组,转基因拟南芥生长严重受阻,植株变得矮小且茎部易弯曲倒伏,角果数量变少,长度变短,纤维素含量有不同程度的降低,本研究结果表明,所克隆的黄麻CcCesA1基因除了参与植物其他生理代谢过程外,还参与纤维素的生物合成。
     1.4黄麻咖啡酰-辅酶A甲基转移酶(CCoAOMT)基因克隆与功能鉴定
     成功分离了黄麻咖啡酰-辅酶A甲基转移酶(CCoAOMT)基因,暂命名为CcCCoAOMT1,该基因cDNA全长609bp,编码202个氨基酸,编码蛋白的分质量22.59887kD,理论等电点是5.59,CcCCoAOMT1生物信息学分析表明,该基因属于PLN02589Methyltransf-3氧甲基转移酶家族成员,RT-PCR分析表明,该基因在根、茎皮、麻骨、叶中均有表达,其表达量为麻骨>根>茎皮>叶,转基因拟南芥研究结果表明,携带CcCCoAOMT1基因的拟南芥与对照相比植株高度、角果长度、茎秆硬度增加,木质素含量比对照增加(17%-21%),表明该基因在植物的生长发育和木质素代谢过程中起关键调控作用。
     1.5尿苷二磷酸葡萄糖焦磷酸化酶基因(TGPase)转化黄麻研究
     以农杆菌介导转化无菌黄麻子叶节,提取所有转化植株叶片DNA,对转化植株进行PCR和Southern杂交检测,最后共确定有7株为转基因阳性植株,对转基因当代植株分析表明,与对照相比转基因的植株高度明显增加,韧皮纤维中纤维素含量与对照相比增加(18%-22%)。该研究结果为利用UGPase基因改良黄麻品质提供了新的视角。
     1.6黄麻(CCoAOMT)基因RNAi载体和人工定向沉默载体构建及转化黄麻研究
     利用韧皮部特异启动子启动GUS基因在烟草中的表达结果表明,与35S相比,韧皮部特异启动子可驱动GUS基因在韧皮部中表达,而在其他部位不表达或表达量较低。利用TCK303质粒和PNW55模板质粒分别构建了CCoAOMT基因RNA干扰载体和人工1niRNA定向沉默载体,农杆菌介导方法转化无菌黄麻子叶节,初步PCR检测结果表明外源基因已整合黄麻基因组中,Southern杂交结果正在检测中,有望筛选出黄麻CCoAOMT基因被定点抑制的转化植株,为后期研究重要材料。
Jute (Corchorus capsularis L.), also called green hemp, belong to tiliaceae, jute genera annual herb bast fiber crops, is one of the most important long staple crops in the world, the yield and planting area are second only to cotton. Because high fiber production, luster, good moisture absorption performance, quickly aproll, easy degradation, the texture of fiber is soft, which is called gold fiber in business. In recent years as breeders of continuous efforts, jute fiber production has improved dramatically, but due to low content of cellulose and high lignin content in the jute, cause the jute bast fiber cell wall lignification, single fiber cell is shorter, the texture of fiber is hard, elastic smal, lower spinning count, seriously affect the jute fiber application in textile industry and economic benefits.
     Plant tissue culture is the important foundation of genetic engineering, in most plants, callus is direct receptor of Agrobacterium mediated genetic transformation, also the method to obtain protoplast, somatic hybridization and plantlet regeneration. At present there are a few research reports about jute tissue culture and regeneration system. Which seriously restricts the development of jute genetic engineering.
     The main research content is:optimized RNA extraction sisterm using different company extract kits and methods, established high-quality RNA extraction method of jute, using optimized5'end method, we isolated the UGPase, CesAl and CCoAOMT gene and analyzed its function. Research different medium and hormone influence on tissue culture regeneration. Using phloem specific promoter to directional inhibition CCoAOMT gene. Transfer the UGPase and CCoAOMT gene into jute, tudy the possibility to improve the fiber quality of jute using UGPase and CCoAOMT gens, the main results were as follows:
     1.1The establish of plant regeneration and genetic transformation system of jute
     Take cotyledon and caulicle of "jute179" as explants to study the callus induction. The best callus induce medium respectively is:MS+0.5mg/L TDZ+0.1mg/L or0.5mg/L IAA, MS+2.0mg/L6-BA+0.5mg/L IAA and MS+0.25mg/L TDZ +0.1mg/L or0.5mg/L NAA, MS+0.5mg/L6-BA+0.5mg/L NAA. redifferentiation culture medium of cotyledon callus is MS+0.5mg/L6-BA+0.5mg/L NAA, redifferentiation culture medium of caulicle callus is MS+0.5mg/L TDZ+2.0mg/L IAA. We obetain good result using0.1%phytic acid as the browning inhibitor. The best culture medium of bud induction was MS+2.0mg/L6-BA+0.25mg/L NAA+100mg/L HC, the rate induced is36.4%, the best medium of root induction adventitious bud is MS+0.5mg/L6-BA+1mg/L NAA. Section200mg/L Cef as for inhibited the growth of the Agrobacterium after transformation,20mg/L hygromycin as screening concentration of cotyledon. At last we use fresh explant, adjusted concentration of Agrobacterium to OD600=O.5and add100μM/L AS before30min, infection time is10min, after2days, the rate of GUS staining is higher, all GUS staining plants could amplified fragment after PCR reaction. The results provides an important way for genetic engineering breeding of jute.
     1.2The clone and functional identification of UDP-glucose pyrophosphorylase gene
     In this study we successfully cloned the full-length cDNA of the jute UDP-glucose pyrophosphorylase gene, designated CcUGPasel, using homologous cloning and modified RACE techniques. RT-PCR analysis revealed tissue difference (stem>root>leaf) and temporal differences in CcUGPasel expression, with the highest expression levels at40d and120d. Overexpression of CcUGPasel revealed increased height and more rapid growth rate in transgenic Arabidopsis compared with control lines. Importantly, the cellulose content of transgenic Arabidopsis was increased compared with control lines, although the lignin content remained unchanged. Our results indicate that jute UGPase participates in cellulose biosynthesis. These data provide an important basis for the application of the UGP gene in the improvement of jute fiber quality.
     1.3The clone and functional identification of Cellulose synthase(Ces41) gene
     We took stem bark of jute cultivar179(Corchorus capsularis L.) as materials, successfully cloned the full-length cDNA of jute cellulose synthetase gene except500bp of5' terminal, using homologous cloning and modified RACE techniques. The sequence length is2529bp, encoding a627amino acids protein. Gene alignment and protein structure analysis showed that it belongs to jute cellulose Synthetase gene family. Semi-quantitative RT-PCR analysis indicated that the expression level of CcCesAl gene in different parts of plant was bark> root> leaf> bud> sticks. Using partial cDNA and3'UTR region of CcCesA1gene, constructed the antisense vector of the jute CcCesAl gene, the positive plasmids were transformed into the model plant Arabidopsis thaliana. Southern blot analysis showed that the exogenous genes were transformed into Arabidopsis genome as one copy. The growth of tansgenic Arabidopsis was badly inhibited so that plants became dwarf with easing bending stem, shorter silique, and less silique numbers. This finding shows that CcCesAl gene is involved in not only cellulose synthesis, but also other plant growth process.
     1.4The clone and functional identification of CCoAOMT gene
     The Caffeoyl-CoA3-O-methyltransferase(CCoAOMT) is a key enzyme in lignin biosynthesis in plants. In this study we cloned the full-length cDNA of the Caffeoyl-CoA3-O-methyltransferase(CCoAOMT) gene from jute using homology clone (Primers were designed according to the sequence of CCoAOMT gene of other plants), and a modified RACE technique, subsequently named "CcCCoAOMT1" Bioinformatic analyses showed the gene is a member of the CCoAOMT gene family. Real-time PCR analysis revealed that the CcCCoAOMT1gene is constitutively expressed in all tissues, and the expression level was greatest in stem, followed by stem bark, roots and leaves. In order to understand this gene's function, we transformed it into Arabidopsis thaliana; integration (one insertion site) was confirmed following PCR and southern hybridization. The over-expression of CcCCoAOMT1in these transgenic Arabidopsis thaliana plants resulted in increased plant height and silique length relative to non-transgenic plants. Perhaps the most important finding was that the transgenic Arabidopsis plants contained more lignin (20.44-21.26%) than did control plants (17.56%), clearly suggesting an important role of CcCCoAOMT1gene in lignin biosynthesis. These data are important for the success of efforts to reduce jute lignin content (thereby increasing fiber quality) via CcCCoAOMT1gene inhibition.
     1.5The research on jute transformation using UDP-glucose pyrophosphorylase gene
     Using Agrobacterium mediated transformation of cotyledon of jute, extract DNA from leaves of all transformed plants, after PCR and Southern hybridization detection, select7strains positive plants, we analyzed transgenic plants results showed that compared with the control lines, the transgenic plants exhibt plant higher and more content of phloem fiber cellulose than control. The results provides a new perspective to improve fiber quality of jute with UGPase gene.
     1.6The RNAi and miRNA silence vector construction of CCoAOMT gene and transformation
     The expression result of phloem specific promoter in the tobacco show that compared with35S, phloem specific promoter can drive GUS gene expression in the phloem, and do not express or the level expression is less. Using TCK303vector and PNW55as template plasmid constructed CCoAOMT gene RNA interference vectors and artificial miRNA directional silence vector. Transformated cotyledon of jute using verified vector, at present the result of transformation are detecting, we expected to seclect transgenic plants, provide important materials for next study.
引文
[1]Robeta S Misth. Plant tissue culture, techniques and expriments [M].2006.
    [2]Cecilia Zapata, Metinee Srivatanakul, Sung-Hun Park, Byung-Moo Lee, Maria G. Salas, Roberta H. Smith.Improvements in shoot apex regeneration of two fiber crops:cotton and kenaf [J]. Plant Cell, Tissue and Organ Culture,1999, 56:185-191.
    [3]M Srivatanakul S H, Parkj RSanders, M G Salas, R H Smith, Multiple shoot regeneration of kenaf (Hibiscus cannabinus L.)from a shoot apex culture system [J]. Plant CellReports,2000,19:1165-170.
    [4]R Ayadi, L Hamrouni, M Hanana, S Bouzid, M Trifi, M L Khouj. In vitro propagation andregener-ation of an industrial plant kenaf (Hibiscus cannabinus L.) [J]. Industrial Crops and Products,2010,55-42.
    [5]陈喜文.苎麻组织培养和原生质体培养[J].作物研究,1994,8:85-88.
    [6]颜昌敬,赵庆华.组织培养应用于苎麻快速繁殖[J].上海农业学报,1988,4(增):17-20.
    [7]陈德富,陈喜文.苎麻体细胞胚胎发生研究初报[J].植物学通报,1998,15(3):65-68.
    [8]王克臣,冷超,李明.亚麻离体再生体系的建立及优化[J].安徽农业科学,2010,38(14):7195-7199.
    [9]汪波,彭定祥,孙珍夏等.根癌农杆菌介导苎麻转绿色荧光蛋白(GFP)基因植株再生[J].作物学报,2007,33(10):1606-1610.
    [10]孔华,郭安平,章霄云等.苎麻遗传转化体系的建立[J].分子植物育种,2006,4(2):233-237.
    [11]陈伟,徐立,李志英,李克烈.剑麻的组织培养和快速繁殖[J].热带农业科学,2006,6(26):22-24.
    [12]刘志华,马艳红,曹枫.罗布麻种子组培再生体系研究[J].种子,2010,29(4):5-8.
    [13]Khatun A, Zabun N, Shirin M, Chandan KS, Shana B. An Efficient Protocol for Plant Regeneration from the Cotyledons of Kenaf (Hibiscus cannabinus L.) [J]. Asian J. Biotech,2003,2:86-93.
    [14]陈祥云,李树川.黄麻花粉植株诱导的研究[J].中国麻作,1985,(3):1-4.
    [15]Ali M. Abbas, J. K. Jones, P. D. S. Caligari. Clonal propagation by invitro culture of Corchorus (jute) [J]. Plant Cell, Tissue and Organ Culture,1997,47 (10): 231-238.
    [16]Bharadwaj Pushyami,M. R. Beena, M. K. Sinha,P. B. Kirti. In vitro regeneration and optimization of conditions for Agrobacterium mediated transformation in jute,Corchorus capsularis J [J]. Plant Biochem Biotechnol, 2011,20:39-46.
    [17]KMKHuda, MSR Bhuiyan, MH Kabir, AFMJamal Uddin. In vitro plant regeneration protocol of Tossa Jute (Corchorus olitorius) [J]. International Journal of Integrative Biology,2007,1 (2):96-101.
    [18]T Saha, M Ghosh,S K Sen. Plant regeneration from cotyledonary explants of jute,Corchorus capsularis L [J]. Plant Cell Reports,1999,18:544-548.
    [19]Desvaux M. The cellulosome of Clostridium cellulolyticum. Enzyme and Microbial Technology [J].2005,37(4):373-385.
    [20]Lynd LR, Weimer PJ, van Zyl WH, et al. Microbial cellulose utilization: fundamentals and biotechnology [J]. Microbiol Mol Biol Rev,2002,66(3): 506-577.
    [21]Kimura S, Laosinchai W, Itoh T. Cui XJ, Linder CR, Brown RM. Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant Vigna angulanis [J]. Plant Cell,1999,11:2075-2085.
    [22]Somerville CR. Cellulose synthesis in higher plants [J]. Annu Rev Cell Dev Biol,2006,22:53-78
    [23]Gusakov AV, Sinitsyn AP, Gerasimas VB. A product inhibition study of cellulases from Trichoderma longibrachiatum using dyed cellulose [J]. Journal of Biotechnology,1985,3(3):167-174.
    [24]Sashihara N, Kudo T, Horikoshi K. Molecular cloning and expression of cellulase genes of alkalophilic Bacillus sp. strain N-4 in Escherichia coli [J]. J Bacteriol,1984,158(2):503-506.
    [25]Matthysse AG, Thomas DOL, Whitea L. Mechanismof cellulose synthesis in Agrobacterium tumefaciens [J]. J Bacteriol,1995,177:1076-1081.
    [26]马承铸,顾真荣.醋菌纤维素高产菌株筛选和菌物鉴定[J].上海农业学报,2000,16(3):7882
    [27]Saxena IM, Lin FC, Brown R Mjr.Identification o fa new gene in an operon for cellulose biosynthesis in Acetobacter xylinum [J]. Plant Mol Biol,1991, 16(6):947-954
    [28]Saxena Im, Brown Rmjr, Fevre M, Geremia Ra HB. Multidomain architecture of beta-glycosyl transferases inrphcations for mechanism of action [J]. J Bacteriol, 1995,177(6):1419-1424
    [29]Bessueille L, Sindt N, Guichardant M, Djerbi S, Teeri TT, Bulone V. Plasma membrane microdornains from hybrid aspen cells are involved in cell wall polvsaccharide biosynthesis [J]. Biochem J,2009,420:93-103.
    [30]Kiedaiseh BM, Blanton RL, Haigler CH. Characterization ofa novel cellulose synthesis inhibitor [J]. planta,2003,217(6):922-30.
    [31]Peng LC, Kawagoe Y, Hogan P, Delmer D. Sitosterol-p-glucoside as primer for cellulose synthesis in plants [J]. Science,2002,295:147-150.
    [32]Peng LC, Hocart CH, Redmond JW, Williamson RE. Fractionation of carbohydrates in Arabidopsis root cell walls shows that three radial swelling loci are specifically involved in cellulose production [J]. Planta,2000,211: 406-414.
    [33]Sehrick K, Fujioka S, Takamuto S. A link beteen sterol biosynthesis, the cell wall and cellulose in Arabidopsis [J]. Plant J,2004,38:227-243.
    [34]Wolf udiger Scheible, Markus Pauly. Glycosyltransferases and cell wall biosynthesis:novel players and insights [J]. Current Opinion in Plant Biology, 2004,7:285-295.
    [35]Ostuuga D, De Guzman B, Prigge MJ. REVOLUTA rgulates meristem inidafion at Lateral positions [J]. Planta,2001,213(13):755-768.
    [36]Zhong R, Morrison WH 3rd, Freshour GD, Hahn MG, Ye ZH. Expression of a mutant form of cellulose synthase AtCcsA7 causes dominant negative effect on cellulose biosynthesis [J]. Plant Physiol.2003,132(2):786-95.
    [37]Cano Delgado A, Penfield S, Smith C, Catley M, Bevan M. Reduced cellulose synthesis invokeslignification and defense responses in Arabidopsis thaliana [J]. Plant J,2003,34(3):351-62.
    [38]Wofl f Dieter Reiter. Biosynthesis and properties of the plant cell wall [J]. Curr Opinin Plant Biol,2002,5:536-542.
    [39]Kimura S, Laosinchai W, Itoh T. Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant Vigna angularis [J]. Plant Cell,1999,11(11):2075-2086.
    [40]Lai KeeHim J, Chanzy H, Muller M, Putaux JL, Imai T, Bulone V. In vitro versus in vivo cellulose microfibrils from plant primary wall synthases:structural differences [J]. J Biol Chem,2002,277:36931-36939.
    [41]Somerville C. Cellulose synthesis in higher plants [J]. Annu Rev Cell Dev Biol, 2006,22:53-78.
    [42]Joshi CP, Mansfield SD. The cellulose paradox-simple molecule, complex biosynthesis [J]. Curr Opin Plant Biol,2007,10(3):220-226.
    [43]Aioni K, Delmer DP, Betmman M. Achievement of high rates of in vitro synthesis of 1,4- β glucan:activation by cooperative interaction of the Acetobacter xylinum enzyme system with GTP, polyethylene glycol, and a protein factor [J]. Proc Nail Acad Sci USA,1982,79:6448-6452.
    [44]Delmer D P. Cellulose biosynthesis:exciting times for a difficult field of study [J]. Almu Rev Plant Physiol Plant Mol Biol,1999,50:245-276.
    [45]Kawagoe Y, Delmer DP. pathway and genes ininvolved in cellulose biosynthesis [J]. Genet Eng,1997,19:63-87.
    [46]Kurek I, Kawagoe Y, Jacob wilk D. Diraerizatinn of cotton fiber cellulose syathase camlytic subunits occurs via oxidation of the zinc-binding domains [J]. Proc Nail Acad sci USA,2002,99:11109-1114.
    [47]Li L, Bmwa RM Jr. [beta]-Glucan Synthesis in the Cotton Fiber(Ⅱ+regulation and Kinetic Propreties of [bcta]-Glucan Synthases [J]. Plant Physiol,1993, 101(4):1143-1148.
    [48]HE McFarlane, A Doring.The Cell Biology of Cellulose Synthesis [J]. Annual Review of Plant,2014, annual reviews.
    [49]Fabien Miart, Thierry Desprez, Eric Biot, Halima Morin, Katia Belcram, Herman Hofte, Martine Gonneau, Samantha Vernhettes. Spatio-temporal analysis of cellulose synthesis during cell plate formation in Arabidopsis [J]. The Plant Journal,2014,77(1):71-84.
    [50]Okako Omadjela, Adishesh Narahari, Joanna Strumillo, Hugo Melida, Olga Mazur, Vincent Bulone, Jochen Zimmer. BcsA and BcsB form the catalytically active core of bacterial cellulose synthase sufficient for in vitro cellulose synthesis [J].2013,110(4):17856-17861.
    [51]Erin Slabaugh, Jonathan K. Davis, Candace H. Haigler, Yaroslava G. Yingling, Jochen Zimmer. Cellulose synthases:new insights from crystallography and modeling [J].2014,19(2):99-106.
    [52]Richmond T. Higher plant cellulose synthases [J]. Genome Biol.2000:1(4)
    [53]Richmond TA, Somerville CR. The cellulose synthase superfamily [J]. plant Physiol,2000,124:495-498.
    [54]Yin Y, Huang J, Xu Y. The cellulose synthase superfamily in fully sequenced plants and algae [J]. BMC Plant Biol,2009,319:99.
    [55]Lane D R, Wiedemeier A, Peng L. Temperature-sensitive alleles of RSW2 link the KORRIGAN endo-1,4-beta-glucanase to cellulose synthesis and cytokinesis in Arabidopsis [J]. Plant Physiol,2001,126(1):278-288.
    [56]Kimura S, Laosinchai W, Itoh T, Cui X, Linder CR, Brown RM Jr. Immunogold labeling of rosette terminal cellulose synthesizing complexes in the vascular plant Vigna angularis [J]. Plant Cell,11:2075-2085
    [57]Desprez T, Vernhettes S, Fagard M, Refregier G, Desnos T, Aletti E, Py N, Pelletier S, Hofte H. Resistance against herbicide isoxaben and cellulose deficiency caused by distinct mutations in same cellulose synthase isoform CESA6 [J]. Plant Physiol,128:482-490.
    [58]Tanaka K, Murata K, Yamazaki M, Onosato K, Miyao A, Hirochika H. Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall [J]. Plant Physiol,2003,133 (1):73-83.
    [59]Taylor NG, Howells RM, Huttly AK, Vickers K, Turner SR.Interactions among three distinct CesA proteins essential for cellulose synthesis [J]. Proc Natl Acad Sci USA,100:1450-1455
    [60]Taylor NG, Laurie S, Turner SR. Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis [J]. Plant Cell,12:2529-2539
    [61]Taylor NG, Scheible WR, Cutler S, Somerville CR, Turner SR. The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis [J]. Plant Cell,2004,11:769-779.
    [62]Scheible WR, Eshed R, Richmond T, Delmer D, Somerville CR. Modifications of cellulose synthase confer resistance to isoxaben and thiazolidinone herbicides in Arabidopsis Ixrl mutants [J]. Proc Natl Acad Sci USA,2004,98:79-84.
    [63]Smith LG, Oppenheimer D. Spatial control of cell expansion by the plant cytoskeleton [J]. Annu Rev Cell Dev Biol,2005,21:271-295
    [64]Szyjanowicz PMJ, McKinnon Ⅰ, Taylor NG, Gardiner J, Jarvis MC, Turner SR. The irregular xylem 2 mutant is an allele of korrigan that affects the secondary cell wall of Arabidopsis thaliana [J]. Plant J,2004,37:730-740
    [65]Geisler M, Wiiczynska M, Karpinski S. Toward a blueprint for UDP-glucose pyrophosphorylase structure/function properties:homology-modeling analysis [J]. Plant Molecular Biology,2004,56:783-794.
    [66]Leszek A Kleczkowski, Matt Geisler, Iwona Ciereszko. UDP-Glucose Pyrophosphorylase. An old protein with new tricks [J]. Plant Physiology,2004, 134:912-918.
    [67]梁海泳,夏秀英,冯雪松.UGPase和反义4CL基因对转基因烟草纤维素和木质素合成的调控[J].植物生理学通讯,2006,42(6):1067-1072.
    [68]Martz F, Wiiczynska M, Kleczkowski L A. Oligomerization status, with the monomer as active species, defines catalytic efficiency of UDP-glucose pyrophosphorylase [J]. Biochem. J,2002,367:295-300.
    [69]L A Kleczkowski, Francoise Martz, Malgorzata Wilczynska. Factors affecting oligomerization status of UDP-glucose pyrophosphorylase [J]. Phytochemistry, 2005,66:2815-2821.
    [70]Munch-Petersen A, Kalckar HM, Cutolo E. SMITH EE,Uridyl transferases and the formation of uridine triphosphate [J]. Nature.1953,172,1036-1037.
    [71]Qinghua Wang, Xue Zhang,Fuguang Li,Yuxia Hou,Xingliang Liu,Xueyan Zhang.Identification of a UDP-glucose pyrophosphorylase from cotton(Gossypium hirsutum L.) involved in cellulose biosynthesis in Arabidopsis thaliana [J]. Plant Cell Rep,2011,301303-1312.
    [72]Geisler M, Wiiczynska M, Karpinski S. Toward a blueprint for UDP-glucose pyrophosphorylase structure/function properties:homology-modeling analyses [J]. Molecular Biology,2004,56:783-794.
    [73]Iwona Ciereszko, Henrik Johansson, Vaughan Hurry. Phosphate status affects the gene expression, protein content and enzymatic activity of UDP-glucose pyrophosphorylase in wild-type and pho mutants of Arabidopsis [J].Planta,2001,212:598-605.
    [74]Iwona Ciereszko, Leszek A Kleczkowski. Phos phate deficiency-dependent upreguiation of UDP-glucose pyrophosphorylase genes is insensitive to ABA and ethylene status in Arabidopsis leaves [J]. Acta Physiologiae Plantarum,2006, 28(5):387-393.
    [75]Iwona Ciereszko, Henxik Johansson, Leszek A kleczkowski. Sucrose and light regulation of a cold-inducible UDP-glucose pyrophosphorylase gene via a hexokinase-independent and abscisic acid-insensitive pathway in Arabidopsis [J]. Biochem. J,2001,354:67-72.
    [76]Akademisk avhandling. Gene regulation of UDP-glucose synthesis and metabolism in plants [D], Umea Universitet, thesis of master degree,2003: 30-31.
    [77]Cong Zhang, Jing Xing,, Liang Song, Hongchuan Xin, Sen Lin, Lishu Xing, Xuebing Li. Aqueous-phase hydrodeoxygenation of lignin monomer eugenol:Influence of Si/Al ratio of HZSM-5 on catalytic performances [J].2014, http://dx.doi.Org/10.1016/j.cattod.2014.01.021
    [78]Ross Whetten and Ron Sederoff. Lignin Biosynthesis [J]. The Plant Cell,1995, 7:1001-1013.
    [79]Hans Onnerud, Limi ng Zhang, Goran Gellerstedt, et al.Poly merization of Monolignols by Redox Shuttle-Mediated Enzymatic Oxidation:A New Model. In Lignin Biosynthesis [J]. Plant Cell,2002,14 (8):1953-1962.
    [80]Zhangying Hao, Debra Mohnen. A review of xylan and lignin biosynthesis: Foundation for studying Arabidopsis irregular xylem mutants with pleiotropic phenotypes [J]. Critical RCritical Reviews in Biochemistry and Molecular Biology 2014, http://informahealthcare.com/doi/abs/10.3109/10409238.2014.889651
    [81]Boer jan W, Ralph J, Baucher M.Lignin biosynthesis [J]. Annu Rev Plant Biol,2003,54 (9):519-546.
    [82]Campbell MM, Sederoff RR.Variation in lignin content and composition mechanisms of control and implications for the genetic improvement of plants [J]. Plant Physiol,1996,110 (1):3-13.
    [83]Humphreys JM, Hemme MR, Chappie C. New routes for lignin biosynthesis defined by biochemical characterization of recombinant ferulate-5-hydroxylase, a multifunctional cytochrome P450-dependent monooxygenase [J]. Proc Natl Acad Sci USA,1999, 96:10045-10050.
    [84]Osakabe K, Tsao CC, Li L. Coniferyl aldehyde 5-hydroxylation and methylation direct syringyl lignin biosynthesis in angiosperms [J]. Proc Natl Acad Sci USA, 1999,96:5955-8960.
    [85]Kuhn 1 T, Koch U,Heller W.Elicitor induced S-adenosyl-L-methionine:caffeoyl CoA 3-0-methyltransferase from carrot cell suspension cultures [J]. Plant Sci, 1989,60:21-25.
    [86]Xiaoyu Li; Wenjuan Chen; Yang Zhao; Yan Xiang; Haiyang Jiang; Suwen Zhu; Beijiu Cheng. Downregulation of caffeoyl-CoA O-methyltransferase (CCoAOMT) by RNA interference leads to reduced lignin production in maize straw. Genet. Mol. Biol [J].2013,36
    [87]Chen C, Meyermans H, Burggraeve B. Cell-specific and conditional expression of caffeoyl-coenzyme A-3-0-methyltransferase in poplar [J]. Plant Physiol,2000,123(3):853-868.
    [88]Armin Wagner, Yuki Tobimatsu, Lorelle Phillips, Heather Flint, Kirk Torr, Lloyd Donaldson, Lana Pears, John Ralph [J]. The Plant Journal,2011,67(1):119-129.
    [89]Qin-Mei Wang, Li Wang. An evolutionary view of plant tissue culture: somaclonal variation and selection [J]. Plant Cell Reports, 2012,31(9):1535-1547.
    [90]Kaoru Sugimoto, Elliot M. Meyerowitz. Regeneration in Arabidopsis Tissue Culture [J]. Plant Organogenesis Methods in Molecular Biology,2013,959: 265-275.
    [91]Tirthartha Chattopadhyay Sheuli Roy Adinpunya Mitra Mrinal K. Maiti. Development of a transgenic hairy root system in jute (L.) with reporter gene through mediated co-transformation [J]. Plant Cell Reports,2011,30 (4): 485-493.
    [92]Pushyami Bharadwaj, M. R. Beena, M. K. Sinha, P. B. Kirti. Studies on Explant Regeneration and Protoplast Culture from Hypocotyl Segments of Jute, Corchorus capsularis L [J]. Journal of Plant Studies,2013,2(1):27-35.
    [93]Kenichi Tsuda, Yiping Qi, Le V. Nguyen, Gerit Bethke, Yayoi Tsuda, Jane Glazebrook, Fumiaki Katagiri. An efficient Agrobacterium-mediated transient transformation of Arabidopsis [J]. The Plant Journal,2012,694):713-719.
    [94]Abu Ashfaqur Sajib, Md Shahidul Islam, Md Shamim Reza,Arpita Bhowmik, Layla Fatema, Haseena Khan. Tissue culture independent transformation for Corchorus Olitorius [J]. Plant Cell Tiss Organ Cult,2008,95:333-340.
    [95]秦先超.红麻高效再生体系优化及双价抗虫基因遗传转化的初步研究[D].福建农林大学硕士学位论文,2012.
    [96]Jing Li Yang, Chen Guang Zhou, Bo Zhao, Chun Lian JinTeng Zhang and Cheng Hao Li. Rapid direct adventitious shoot organogenesis and plant regeneration from mature seed explants of Phellodendron amurense Rupr [J]. Journal of Medicinal Plants Research,2011,5(18):4560-4565.
    [97]Xiongfeng Ma, Chunming Yu, Shouwei Tang, Yanzhou Wang, Aiguo Zhu, Siyuan Zhu, Benhe Gong, Heping Xiong. High Frequency Adventitious Shoot Induction and Plant Regeneration from Hypocotyl of Ramie [Boehmeria nivea (L.) Gaud]via Agrobacterium tumefaciens [J]. Plant Cell, Tissue and Organ Culture (PCTOC),2010,100(2):165-174.
    [98]Wang B, Peng DX, Liu LJ, Sun ZX, Zhang N, Gao SM An efficient adventitious shoot regeneration system for ramie (Boehmeria nivea Gaud) using thidiazuron [J]. Botanical Studies,2007a,48:173-180.
    [99]Chabane, D., Bouguedoura, N., & Assani, A.. Importance of protoplast culture in the genetic improvement of date palm (Phoenix dactylifera L.) [J]. Acta Horticulturae,882:IV international Date Palm Conference.2010.
    [100]R Ayadi, L Hamrouni, M. Hanana, S. Bouzid, M. Trifi,M.L. Khouja. In vitro propagation and regeneration of an industrial plant kenaf (Hibiscus cannabinus L.) [J]. Industrial Crops and Products,2011,33(2):474-480.
    [101]Janaki S. Mudunkothge, Beth A. Krizek. The GUS Reporter System in Flower Development Studies[J]. Methods in Molecular Biology,2014,1110:295-304.
    [102]Jia Zhou, Lei Zhang, Xiang Li, Yuwei Chang, Qun Gu,Xin Lu, Zhen Zhu, Guowang Xu. Metabolic profiling of transgenic rice progeny using gas chromatography-mass spectrometry:the effects of gene insertion[J]. tissue culture and breeding, Metabolomics,2012,8(4):529-539.
    [103]刘康.棉花纤维发育的蛋白质组学研究[D].博士学位论文,南京农业大学,2006.
    [104]Supartana P, Shimizu T, Shioiri H, Nogawa M, Nozue M, Kojima M Development of simple and efficient in planta transformation method for rice (Oryza sativa L.) using Agrobacterium tumefaciens [J]. J Biosci Bioeng,2005, 100(4):391-397.
    [105]连玲.福建师范大学硕士学位论文.甘蔗尿昔二磷酸葡萄糖焦磷酸化酶基因的克隆及其表达[D].2009.
    [106]Daran JM, Dallies N, Thines-Sempoux D. Paquet V, Francois J. Genetic and biochemical characterization of the UGP1 gene encoding the UDP-glucose pyrophosphorylase from Saccharomyces cerevisiae [J]. JBiochem,1995,233:520-530.
    [107]Eimert K, Villand P, Kilian A, Kleczkowski LA.Cloning and characterization of several cDNAs for UDP-glucose pyrophosphorylase from barley (Hordeum vulgare) tissues [J]. Gene,1996,170:227-232.
    [108]Spychalla JP, Scheffler BE, Sowokinos JR, Bevan MW. Cloning, antisense RNA inhibition and the coordinated expression of UDP-glucose pyrophosphorylase with starch biosynthetic genes in potato tubers [J]. Plant Physiol,1994,144:444-453.
    [109]Katsube T, Kazuta Y, Tanizawa K, Fukui T. Expression in Escherichia coli of UDP-glucose pyrophosphorylase cDNA from potato tuber and functional assessment of the five lysyl residues located at the substrate-binding site [J]. Biochemistry,1991,308456-8661.
    [110]Pua EC, Lim SSW, Liu JZ. Expression of a UDP-glucose pyrophosphorylase cDNA during fruit ripening of banana (Musa acuminata) [J]. Aust J Plant Physiol, 2000,27:1151-1159.
    [111]Wu XJ, Du M, Weng YQ, Liu D, Hu ZB.UGPase of Astragalus membranaceus: cDNA clone, analyzing and expressing in Escherichia coli. Bot Sin,2002, 44:689-693.
    [112]Eimert K, Villand P, Kilian A, Kleczkowski LA.Cloning and characterization of several cDNAs for UDP-glucose pyrophosphorylase from barley (Hordeum vulgare) tissues [J]. Gene,1996,170:227-232.
    [113]Abe T, Niiyama H, Sasahara T. Cloning of cDNA for UDPglucose pyrophosphorylase and the expression of mRNA in rice endosperm [J]. Theor Appl Genet,2002,105:216-221.
    [114]Dai N, Petreikov M, Portnoy V, Katzir N, Pharr DM, Schaffer AA. Cloning and expression analysis of a UDP-galactose/glucose pyrophosphorylase from Melon fruit provides evidence for the major metabolic pathway of galactose metabolism in raffinose oligosaccharide metabolizing plants [J]. Plant Physiol, 2006,142:294-304.
    [115]Meng M, Geisler M, Johansson H, Mellerowicz EJ, Karpinski S, Kleczkowski LA. Differential tissue/organ-dependent expression of two sucrose and cold-responsive genes for UDPglucose pyrophosphorylase in Populus [J]. Gene,2007,389:186-195.
    [116]Weng CJ, Deng JY, Lin DG, Jeang CL.Cloning, expression and characterization of UDP-glucose pyrophosphorylase from shoots of Bambusa oldhamii [J]. J Biochem,2009,26:1131-1135.
    [117]Leszek A. Kleczkowski, Daniel Decker, Malgorzata Wilczynska. UDP-Sugar Pyrophosphorylase:A New Old Mechanism for Sugar Activation [J]. Plant Physiology,2011,156 (1):3-10.
    [118]Lian Ling, Ye BingYing, Chen RuKai, Xie HuaAn, Zhang JianFu, Chen YouQiang. Transformation of UDP-glucose pyrophosphorylase gene (UGPase) fromSaccharum officinarum into Arabidopsis thaliana and analysis of physiological characteristics of transgenic plants [J]. Journal of Agricultural Biotechnology,2012,20(5):481-488.
    [119]Simona Pafundo, Mariolina Gulli,Nelson Marmiroli. Comparison of DNA Extraction Methods and Development of Duplex PCR and Real-Time PCR To Detect Tomato, Carrot, and Celery in Food [J]. J. Agric. Food Chem,2011,59 (19):10414-10424.
    [120]Lara D. Shepherd, Todd G B. McLay. Two micro-scale protocols for the isolation of DNA from polysaccharide-rich plant tissue [J]. Journal of Plant Research,2011,124(2):311-314.
    [121]Ling Meng Dr, Lewis Feldman. A rapid TRIzol-based two-step method for DNA-free RNA extraction from Arabidopsissiliques and dry seeds [J]. Biotechnology Journal,2010,5(2):183-186.
    [122]Clough SJ, Bent AF. Floral-dip:a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J]. Plant Journal,1998,16:735-743.
    [123]Huntley SK, Ellis D, Gilbert M, Chapple C, Mansfield SD.Significant increases in pulping efficiency in C4H-F5H-transformed poplars; improved chemical savings and reduced environmental toxins [J]. J Agric Food Chem,2003,51: 6178-6183.
    [124]Updegraff DM. Semi-micro determination of cellulose in biological materials [J]. Anal Biochem.1969,32:420-424.
    [125]Jun Wang, Jing-shu Huang, Xin-yan Hao, Yan-ping Feng, Ya-Jun Cai, Li-qin Sun. miRNAs expression profile in bast of ramie elongation phase and cell wall thickening and end wall dissolving phase [J]. Molecular Biology Reports,2014, 41(2):901-907.
    [126]Aidy Ali, Z. R. Shaker, A. Khalina, S. M. Sapuan. Development of Anti-Ballistic Board from Ramie Fiber [J]. Polymer-Plastics Technology and Engineering,2011,50(6):622-634.
    [127]Raju Ghosh, Sujay Paul, Subrata Kumar Ghosh, Anirban Roy. An improved method of DNA isolation suitable for PCR-based detection of begomoviruses from jute and other mucilaginous plants [J]. Journal of Virological Methods, 2009,159(1):34-39.
    [128]Matt Geisler, Malgorzata Wilczynska, Stanislaw Karpinski, Leszek A. Kleczkowski. Toward a blueprint for UDP-glucose pyrophosphorylase structure/function properties:homology-modeling analyses [J]. Plant Molecular Biology,2004,56(5):783-794.
    [129]Hun Kim, Jongkeun Choi, True Kim, Neratur K. Lokanath, Sung Chul Ha, Se Won Suh, Hye-Yeon Hwang, Kyeong Kyu Kim. Structural basis for the reaction mechanism of UDP-glucose pyrophosphorylase [J]. Molecules and Cells, 2010,29(4):397-405.
    [130]T Abe,H Niiyama,T Sasahara.Cloning of cDNA for UDP-glucose pyrophosphorylase and the expression of mRNA in rice endosperm [J]. Theoretical and Applied Genetics,2002,105(2-3):216-221.
    [131]Meng Meng, Matt Geisler, Henrik Johansson, Ewa J. Mellerowicz, Stanislaw Karpinski, Leszek A. Kleczkowski. Differential tissue/organ-dependent expression of two sucrose- and cold-responsive genes for UDP-glucose pyrophosphorylase inPopulus [J].2007,389(2):186-195.
    [132]梁海泳,夏秀英,高晓蓉,苏乔.反义4CL与UGPase双价基因在烟草中 的转化及表达分析[J].植物学通报,2007,24(4):459-464.
    [133]Heather D. Coleman, Dave D. Ellis, Margarita Gilbert, Shawn D. Mansfield. Up-regulation of sucrose synthase and UDP-glucose pyrophosphorylase impacts plant growth and metabolism [J]. Plant Biotechnology Journal,2006, 4(1):87-101.
    [134]Alex Y. Borovkov, Phillip E. Mcclean, Joseph R. Sowokinos, Susan H. Ruud, Gary A. Secor. Effect of Expression of UDP-Glucose Pyrophosphorylase Ribozyme and Antisense RNAs on the Enzyme Activity and Carbohydrate Composition of Field-Grown Transgenic Potato Plants [J]. Journal of Plant Physiology,1995,147(6):644-652.
    [135]Susan J. Carlson, Prem S. Chourey, Tim Helentjaris, Rupali Datta. Gene expression studies on developing kernels of maize sucrose synthase (SuSy) mutants show evidence for a third SuSy gene [J]. Plant Molecular Biology, 2002,49(1):15-29.
    [136]熊和平.类作物育种学[M].中国农业科学技术出版社,2009.
    [137]Ruiqin Zhoriga, W. Herbert Morrison Ⅲ, Jonathan Negrel, ZhengHua Ye. Dual Methylation Pathways in Lignin Biosynthesis [J]. The Plant Cell December, 1998,10(12):2033-2045.
    [138]Xu Li, Jing-Ke Weng, Clint Chapple. Improvement of biomass through lignin modification [J]. The Plant Journal,2008,54(4):569-581.
    [139]Z. H. Ye. Association of Caffeoyl Coenzyme A 3-O-Methyltransferase Expression with Lignifying Tissues in Several Dicot Plants [J]. Plant Physiology December,1997,115(4):1341-1350.
    [140]Chloe Zubieta, Parvathi Kota, Jean-Luc Ferrer, Richard A. Dixon, Joseph P. Noel. Structural Basis for the Modulation of Lignin Monomer Methylation by Caffeic Acid/5-Hydroxyferulic Acid 3/5-O-Methyltransferase [J]. The Plant Cell,2002,14 (6):1265-1277.
    [141]Guido Schramm, Iris BruchhausThomas Roeder. A simple and reliable 5'-RACE approach [J]. Nucleic Acids Research,2008,28(22):96.
    [142]Cheng, S., Fockler, C., Barnes, W. M. & Higuchi, R. Effective amplification of long targets from cloned inserts and human genomic DNA [J]. Proc. Natl. Acad. Sci. USA,1994,91:5695-5699.
    [143]Borson, N. D., Salo, W. L. & Drewes, L. R. A lock-docking oligo(dT) primer for 5'and 3'RACE PCR [J]. PCR Methods Applic,1992,2:144-148.
    [144]Lita A Freeman. Cloning Full-Length Transcripts and Transcript Variants Using 5'and 3'RACE [J]. Methods in Molecular Biology.2013,1027:3-17.
    [145]Wout B, Joh N R, Marie B. Lignin biosynthesis [J]. Annual Review of Plant Biology,2003,54,519-546.
    [146]J.L.Ferrer, M.B. Austin, C. Stewart Jr., J.P. Noel. Structure and function of enzymes involved in the biosynthesis of phenylpropanoids [J]. Plant Physiology and Biochemistry,2008,46(3):356-370.
    [147]Marina Lucia Diaz, Ingrid Garbus, Viviana Echenique. Allele-specific expression of a weeping lovegrass gene from the lignin biosynthetic pathway, caffeoyl-coenzyme A 3-O-methyltransferase [J]. Molecular Breeding,2010, 26(2):627-637.
    [148]Li X P, Gao Zh M, Peng Zh H, Yue Y D. Cloning and characterization of CCoAOMT gene from Bambu saoldhamii [J]. Molecular Plant Breeding,2008, 6:587-592.
    [149]Zhao H Y, Wei J H, Zhang J Y, Liu H R, Wang T, Song Y R. Lignin biosynthesis by suppression of two O-methyltransferases [J]. Chinese Science Bulletin,2002,47:1092-1095.
    [150]Yang Li, Jia Jiang, Man-Li Du, Lan Li, Xiu-Lan Wang, Xue-Bao Li. A Cotton Gene Encoding MYB-Like Transcription Factor is Specifically Expressed in Pollen and is Involved in Regulation of Late Anther/Pollen Development [J]. Plant and Cell Physiology,2013,54(6):893-906.
    [151]Huayan Zhao, Qingxi Sheng, Shiyou Lu, Tai Wang, Yanru Song. Characterization of three riceCCoAOMTgenes [J]. Chinese Science Bulletin, 2004,49(15):1602-1606.
    [152]Zhong R, Morrison, WH 3rd, Himmelsbach DS, Poole FL 2nd, Ye ZH. Essential role of caffeoyl coenzyme A O-methyltransferase in lignin biosynthesis in woody poplar plants [J]. Plant Physiol,2000,124:563-578.
    [153]Joseph R. Ecker, Ronald W. Davis.Inhibition of gene expression in plant cells by expression of antisense RNA [J]. PANS,1998,83(15):5372-5376.
    [154]张晓辉,邹哲,张余洋,李汉霞,叶志彪.从反义RNA到人工miRNA的植物基因沉默技术革新[J].自然科学进展,2009,19(10):1029-1036.
    [155]Sarker R H, AlAmin G M, Hoque M I. In vitro regeneration in three varieties of white jute (Corchorus capsularis L.) [J]. Plant Tissue Cult Biotechnol,2007,17: 11-18.
    [156]Pelmer D P. Cellulose biosynmesis:exciting times for a difficult field of study [J]. Annu Rev Plant Physiol Plnat Mol Biol,1999,50:245-276
    [157]Pear J R, Kawagoe Y, Schreckengot W E. Higher plants contain homologs of the bacterial cesA genes encoding the catalytic subunit of cellulose Synthetase [J]. Proc Nad Acad Sci USA,1996,93:12637-12642
    [158]许雷,刘一星,方连玉.大青杨纤维素合成酶PuCesA6基因cDNA的克隆及序列分析[J].西南林业大学学报,2012,32(5):26-32.
    [159]Fagarda M, Desnosa T, Despreza T, Goubeta F, Refregiera G, Mouillea G, McCannb M, Rayona C, Vernhettesa S, Hoftea H. Procustel encode a cellulose Synthetase required for normal cell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis [J]. Plant Cell,2000,12:2409-2423
    [160]蒋杰,揭雨成,周清明,周精华,朱守晶,邢虎成,钟英丽.苎麻纤维素合成酶基因BnCesAl全长cDNA的克隆与表达分析[J].植物遗传资源学报,2012,13(5):851-857.
    [161]Brown R M, Saxena I M. Cellulose biosynthsis. a model for understanding the assembly of biopolymers [J]. Plant Physiol Biochem,2000,38:57-67.
    [162]Chu Z, Chen H, Zhang Y, Zhang Z, Zheng N, Yin B, Yan H, Zhu L, Zhao X, Yuan M, Zhang X, Xie Q. Knock out of the AtCESA2 gene affects microtubule orientation and causes abnonnal cell expansion in Arabidopsis [J]. Plant Physiol, 2007,143:213-224.
    [163]邓雪柯,殷建华,曹毅.3种5'RACE技术的比较与优化[J].成都医学院学报,2007,2(1):20-26.
    [164]Martinez-Trujillo M, Limones-Briones V, Cabrera-Ponce J L, Estrella L H. Improving transformation efficiency of Arabidopsis thaliana by modifying the floral dip method [J]. Plant Mol Biol Rep,2004,22:63-70.
    [165]Updegraff D M. Semi-micro determination of cellulose in biological materials [J].Anal Biochem,1969,32:420-424.
    [166]Doblin M S, Kurek I, Jacob Wild D, Delmer D P. CeUulose biosynthesis in plants from genes to rosettes [J]. Plnat Cell Physiol,2002,43:1407-1420
    [167]邰付菊,李学宝.植物纤维素生物合成及其相关酶类[J].细胞生物学杂志,2004,26:490-494.
    [168]Zhong R, MorrisonW H, Freshour G D, HahnM G,Ye Z H. Expression of a mutant form of cellulose synthase AtCesA7 causes dominant negative effect on cellulose biosynthesis [J]. Plant Physiol,2003,132:789-795.
    [169]Tumer S R, somerville C R. collapsed xylem phenotype of Arabidopsis identifies mutants dencient in cellulose deposition in the secondary cell wall [J]. Plant Cell,1997,9:689-701.
    [170]Taylor N G, Scheible W R, Cutler S, Somerville C R, Thmer S R. The irregular xylem 3 locus of Arabidopsis encodes a cellulose Synthetase catalytic subunits are required for secondary cell wall synthesis [J]. Plnat Cell,1999,11: 769-779.
    [171]Desprez T, Juraniec M, Crowell E F, Jouy H, Pochylova Z, Parcy F, Hofte H, Gonneau M, Vernhettes S. Organization of cellulose Synthetase complexes involved in primary cell wall synthesis in Arabidopsis thaliana [J]. Thierry Desprez,2007,39:15572-15577
    [172]韩笑.病原菌侵染与拟南芥纤维素合成酶基因表达分析[D].华中农业大学硕士学位论文,2010.pp 45-48.
    [173]Lane D, Wiedemeier A, Peng L, Hofte H, Hocart H, Birch R, BaskinT, Arioli T, Burn J, Betzner A, Williamson R E. Temperature-sensitive alleles of rsw2 link the KORRIGAN endo 1,4-glucanase to cellulose synthesis and cytokinesis in Arabidopsis [J]. Plant Physiol,2001,126:278-288.
    [174]Arioli T, Peng L, Betzner A S, Burn J, Wittke W, Herth W, Camilleri C, Hofte H, Plazinski J, Birch R, Cork A, Glover J, Redmond J, Williamson R E. Molecular analysis of cellulose biosynthesis in Arabidopsis [J]. Science,1998,279: 717-720.
    [175]Todd A, Richmond, Chris R, Somerville. The cellulose Synthetase superfamily [J]. Plant Physiol,2000,124:495-498.
    [176]Fujita M, Himmelspach R, Ward J, Whittington A, Hasenbein N, Liu C, Truong T T, Galway M E, Mansfield S D, Hocart C H, Wasteneys G O. The anisotropyl D604N Mutation in the Arabidopsis cellulose Synthetase catalytic domain reduces cell wall crystallinity and the velocity of cellulose Synthetase complexes [J]. Plant Physiol,2013,162:74-85.
    [177]Lin X, Kaul S, Rounsley S, Shea T P, Benito M I, Town C D, Fujii C Y, Mason T, Bowman C L. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana [J]. Nature,1999,402:761-768.
    [178]O'Brien Brent A. Functional analysis of the cellulose synthase gene family in maize:From bioinformatics to assessments at whole-plant, tissue, cell, and protoplast levels. UNIVERSITY OF FLORIDA [D]. Dissertation.2011.
    [179]Rachel A. Burton, Gang Ma, Ute Baumann, Andrew J. Harvey, Neil J. Shirley, Jillian Taylor, Filomena Pettolino, Antony Bacic, Mary Beatty, Carl R. Simmons, Kanwarpal S. Dhugga, J. Antoni Rafalski, Scott V. Tingey, Geoffrey B. Fincher. A Customized Gene Expression Microarray Reveals That the Brittle Stem Phenotype fs2 of Barley Is Attributable to a Retroelement in the HvCesA4Cellulose Synthase Gene [J]. Plant Physiology,2010,153(4): 1716-1728.
    [180]D. V. Galinousky, N. V. Anisimova, A. P. Raiski, V. N. Leontiev, V. V. Titok, L. V. Khotyleva. Cellulose synthase genes that control the fiber formation of flax (Linum usitatissimum L.) [J]. Russian Journal of Genetics,2014,50(1):20-27.
    [181]Marielis E Rivera-Ruiz, Jose F Rodriguez-Quinones, Pearl Akamine Jose R Rodriguez-Medina. Post-transcriptional regulation in the myol Δ mutant of Saccharomyces cerevisiae [J]. BMC Genomics,2010,11:690.
    [182]李波,倪志勇,王娟,吕萌,范玲.木质素生物合成关键酶咖啡酸-O-甲基转移酶基N (COMT)的研究进展[J].分子植物育种,2010,(1):17-124.
    [183]Antoine Harfouche, Richard Meilan, Arie Altman.Tree genetic engineering and applications to sustainable forestry and biomass production[J]. Trends in Biotechnology,2011,29(1):9-17.
    [184]袁正强,贾燕涛,吴家和,田颖川.三个韧皮部特异性启动子在转基因烟草中表达的比较研究[J].农韭生物技术学报,2002,10(1):6-9.
    [185]于文静,王玉富,邱财生,都冬梅,薛召东.韧皮部特异性启动子研究概况[J].中国麻业科学,2010,32(2):116-122.
    [186]Lesley S. Benyon, Ed Stover, Kim D. Bowman, Randall Niedz, Robert G. Shatters Jr., Janice Zale, William Belknap.GUS expression driven by constitutive and phloem-specific promoters in citrus hybrid US-802 [J]. In Vitro Cellular & Developmental Biology-Plant,2013,49(3):255-265.
    [187]Stacy D. Singer Jean-Michel Hily Kerik D. Cox. The-promoter from directs expression of the-reporter gene in phloem tissue and in response to wounding in transgenic plants[J]. Planta,2011,234(3):623-637.
    [188]Thomas B Hansen,Erik D Wiklund, Jesper B Bramsen, Sune B Villadsen, Aaron L Statham,Susan J Clark, J(?)rgen Kjems. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA [J]. The EMBO Journal,2011,30(21):4414-4422.
    [189]Gaurav Sabloka, Alvaro L. Perez-Quinterob, Mehedi Hassanc, Tatiana V. Tatarinovac, Camilo Lopezb. Artificial microRNAs (amiRNAs) engineering-On how microRNA-based silencing methods have affected current plant silencing research [J]. Biochemical and Biophysical Research Communications,2011, 40(3):315-319.
    [190]Hong Yan, Xuan Deng, Yinglong Cao, Junyan Huang, Lixin Ma, Bin Zhao. A novel approach for the construction of plant amiRNA expression vectors [J]. Journal of Biotechnology,2011,15(1):9-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700