用户名: 密码: 验证码:
水下冲击波聚焦的数值模拟与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水下冲击波聚焦是一种声能定向技术,已广泛应用于体外冲击波碎石、冲击波治疗等医学领域。本文以液电式声源为基础,结合旋转椭球面反射罩建立了水下冲击波聚焦系统,并以此为研究对象,围绕反射式水下冲击波聚焦系统的聚焦特性、压力场的分布特征以及聚焦后的空化效应等开展了数值模拟和实验研究。
     在水的Mie-Griieisen状态方程的基础上,建立了适合描述水处于拉伸态的亚稳态及空化状态的拉伸-空化模型,并将其引入到动力有限元程序LS-DYNA。该模型克服了水的Mie-Griieisen状态方程本身存在的不足,既能描述水在亚稳态下的拉伸状态,又能描述水的空化状态。
     基于液电式声源及椭球面反射罩建立了水下冲击波聚焦系统,并开展了相关的实验研究,验证了所建立水的拉伸-空化模型的正确性。在此基础上研究了不同物理参数对冲击波聚焦及其空化效应的影响。在水下冲击波聚焦系统上搭建了高速纹影系统,对水下冲击波聚焦及其空化现象进行了实验研究。本文的主要研究内容和结论如下:
     (1)水下冲击波聚焦在焦区附近形成较高强度冲击波的同时还会在焦区附近形成拉伸波,产生负压,此时的水为亚稳态。而由于水存在抗拉极限,因此当初始冲击波强度较强时在焦区附近会出现空化现象;空化气泡半径先增大后减小轴线上最大空化气泡出现在几何焦点之后,焦平面上气泡最大的位置出现在轴线上。
     (2)水下冲击波聚焦过程中,由于反射罩的动力学行为使水中的波系较为复杂,这些波系在轴线上会聚将使水产生空化现象。反射罩长度的增加、初始冲击波强度的增加都会增大几何焦点处的正峰值压力,另外采用密度较大的金属(例如铜)作为反射罩也会实现几何焦点处正峰值压力的增加;空化阈值的增大及空化核数量密度的减小都会增大焦点附近的最大负峰值压力。
     (3)初始冲击波强度的增大、空化阈值的提高、水的黏性系数的降低、水表面张力的减小及水中空化核尺寸的增大都会使得空化气泡的最大半径增大。另外,初始冲击波强度的减小、反射罩长度的增加、空化阈值的提高及水中空化核尺寸的减小都能使空化发生的位置在反射罩轴线上后移。
     (4)材料的非线性会使聚焦波到达时间前移,并且会减小最大负峰值压力。材料的非线性还会使实际焦点发生移动,使最大正峰值压力相对于椭球的第二几何焦点向后移动,最大负峰值压力前移。
     (5)高速纹影技术适用于研究水下冲击波聚焦的过程及其产生的空化效应。通过纹影照片光强分布的变化可以得到相应的冲击波强度的变化,进而得到水下冲击波聚焦过程中波阵面的演化过程。通过对高速纹影图片的分析发现,本文所建立的反射式旋转椭球聚焦系统能够实现水下冲击波聚焦,在焦区附近形成较高能量密度的超压脉冲,但由于反射罩的动力学响应及流体黏性等因素的影响,使冲击波聚焦没有形成理想的“焦点”,而是一带状区域。
     (6)冲击波聚焦过程中,负压是导致空化发生的主要原因,相对于空化气泡云存在的时间,负压的存在时间很短,此时水为拉伸态的亚稳态。空化气泡半径先增大后减小,并且气泡的最大半径越大其存在时间越长,两者基本满足线性。气泡膨胀阶段持续的时间大于塌缩阶段持续的时间。产生的空化气泡内部温度大于20摄氏度。
Underwater shock wave focusing technique is one of the acoustic energydirectional technologies, which has been widely used in the medical field, such asESWL (Extracorporeal Shock Wave Lithotripsy) application and ESWT(Extracorporeal Shock Wave Therapy) application. In this paper, an underwater shockwave focusing system was set up based on an ellipsoidal reflector combined with ahydroelectric sound source located at the first focus of the ellipsoid. In order tounderstand the focusing process of shock wave, numerical simulations andexperimental tests of the peak pressure along the axial position were carried out; thedistributing characteristics and cavitation phenomena of the focusing shock wavewere revealed.
     A tension-cavitation model based on the Mie-Grüeisen EOS (equation of state)of water was developed, which is suitable for describing the metastable state of waterthat is under tension and cavitation. It was introduced into LS-DYNA successfully.The model overcomes the shortcoming of the Mie-Grüeisen EOS in describing thewater under tension and cavitation.
     An underwater shock wave focusing system was set up based on an ellipsoidalreflector combined with a hydroelectric sound source, and then experimental studywas carried out. The consistent simulating results with those of experiments indicatedthat the tension-cavitation model was correct in simulating the shock wave focusingprocess and its induced cavitation phenomena. Based on the tension-cavitation model,numerical simulations of shock wave focusing and its induced cavitation phenomenawere analyzed. An optical arrangement was set up to take high speed photograph inthe experiment. The focusing process of shock wave and cavitation phenomena werecaptured by the camera. The main work can be summarized as follows:
     (1) Intensity shock wave with very high peak pressure can be brought about byshock wave focusing at the second focus of the ellipsoidal reflector, tension wave andnegative pressure can be generated at the sametime; the state of water under tension ismetastable. There is a tensile failure pressure (or cavitation threshold) in water, whenthe negative pressure is lower than the cavitation threshold of water, cavitationphenomena will appear. The radius of bubble increases first and then decreases; in theaxial direction, the biggest cavitation bubble come out around the geometric focus,but at a location further away from the reflector surface; in the focal plane, the biggestcavitation bubble come out at the axes.
     (2) The shock waves during the focusing process are complex due to thedynamic behavior of the reflector; the expansion waves originated at the exit of thereflector concentrating at the axes will generate negative pressure and cavitationphenomena. The peak positive pressure at the second focus will be higher with the increasing of length of the reflector, the increasing of the intensity of shock wave andadopting the reflector of bigger density such as copper. The maximum peak negativepressure will be higher with the increasing of the cavitation threshold and thedecreasing of the concentration of cavitation nuclei.
     (3) The maximum radius of bubble will get bigger with the increasing of theintensity of shock wave, the increasing of the cavitation threshold, the decreasing ofthe surface tension of water, the decreasing of the kinematic viscosity of water and theincreasing of the dimension of cavitation nuclei. The location of the cavitationphenomena coming out will be further away from the reflector with the decreasing ofthe intensity of shock wave, the increasing of length of the reflector, the increasing ofthe cavitation threshold and the decreasing of the dimension of cavitation nuclei.
     (4) The nonlinearity of the material will make the arrival time of the focusingwave earlier and decrease the maximum peak negative pressure, it will also make thefactual focus of shock wave deviate from the geometric focus, make the factual focusof maximum peak positive pressure move further away from the reflector and thefactual focus of maximum peak negative pressure move closer to the reflector,comparing with the linearity of the material.
     (5) The high-speed photography schlieren method can be used to investigateunderwater shock wave focusing and its induced cavitation phenomena. The intensityof shock wave can be obtained by the intensity of light in the schlieren photographs,and then the process of shock wave focusing will be gotten. The experimental resultshave shown that the focusing system set up in this paper can realize shock wavefocusing well and get higher pressure in the focal region; the shock wave focusingcan’t form a perfect dot but a zonal region due to the dynamic behavior of reflectorand the viscosity of water.
     (6) The negative pressure is the main cause of cavitation phenomena inunderwater shock wave focusing process. The lasting time of negative pressure isshorter than that of the cavitation phenomena; the state of water under tension ismetastable.The radius of cavitation bubble first increases and then decreases; there isa linear relationship between the maximum bubble radius and the collapse time; thetime of bubble expanding is longer than the time of bubble decay because the pressureof the surrounding liquid in the expanding period is lower than that in decay periodand the temperature inside the cavitation bubbles is higher than293K.
引文
[1] Ch. Chaussy, F. Eisenberger, K. Wanner, et al. The use of shock waves for thedestruction of renal calculi without direct contact[J]. Urol Res,1976,4:175
    [2] Ch. Chaussy, W. Brendel, E. Schmiedt. Extracoporeally induced destruction ofkidney stones by shock waves[J]. Lancet,1980:1265-1268
    [3] Ch. Chaussy, E. Schmiedt, D. Jocham, et al. First clinical experience withextracorporeally induced destruction of kidney stones by shock waves[J]. J Urol1982,27:417–20
    [4] Ch. Chaussy, E. Schmiedt, D. Jocham, et al. Extracorporeal shock-wavelithotripsy (ESWL) for treatment of urolithiasis[J]. SPECIAL ISSUE TOUROLOGY,1984,23(5):59-66
    [5] A. Atala, G. S. Steinbock. Extracorporeal shock-wave lithotripsy of renalcalculi[J]. THE AMERICAN JOURNAL OF SURGERY,1989,157:350-358
    [6] D. Jocham, B. Liedl, Ch. Chaussy, et al. Preliminary clinical experience with theHM-4bath-free Dornier lithotripter[J]. World J Urol.,1987,5:208-212
    [7] J. E. Lingeman. Extracorporeal shock wave lithotripsy: Development,Instrumentation, and Current Status[J]. UROLITHIASIS,1997,24(1):185-211
    [8] J. J. Rassweiler, G. G. Tailly, Ch. Chaussy. Progress in lithotriptor technology[J].EAU Update Series,2005,3:17-36
    [9] V. D. Valchanou, P. Michailov. High energy shock waves in the treatment ofdelayed and nonunion of fractures[J]. International Orthopaedics (SICOT),1991,15:181-184
    [10] S. McClure, T. Weinberger. Extracorporeal shock wave therapy: Clinicalapplications and regulation[J]. clinicail Techniques in Equine Practice,2003,2(4):358-367
    [11]G. K. Chow, S. B. Streem. Extracorporeal lithotripsy update on technology[J]. UROLITHIASIS,2000,27(2):315-322
    [12]S. McClure, C. Dorfmuuller. Extracorporeal shock wave therapy:Theory and equipment[J]. Clinical Techniques in Equine Practice,2003,2(4):348-357
    [13]W. Marks, A. Jackiewicz, Z. Witkowski, et al. Extracorporeal shock-wave therapy (ESWT) with a new-generation pneumatic device in the treatment of heel pain A double blind randomised controlled trial[J]. Acta Orthop. Belg.,2008,74:98-101
    [14]T. Hasebe, Y. Takenaga, H. Kakimoto, et al. High strain rate forming using an underwater shock wave focusing technique[J]. Journal of Materials Processing Technology,1999,85:194-197
    [15]孙鹏,刘平香.水下定向声能技术在水声对抗中的应用研究[J].舰船科学技术,2007,29(3):65-67
    [16]王振宇,刘平香,盖京波等.水下定向冲击波对圆柱壳体破坏的仿真研究[J].系统仿真学报,2009,21(15):4854-4858
    [17]G. J. Argyros. Management of primary blast injury[J]. Toxicology,1997,121:105-115
    [18]G. B. Dor, O. Igra, T. Elperin. Handbook of shock waves, Volume2:Shock wave interactions and propagateion[M]. Academic Press., San Diego,2001:415-440
    [19]D. M. Wilbert. A comparative review of extracorporeal shock wave generation[J]. BJU International,2002,90:507-511
    [20]Y. Tomita, T. Obara, K. Takayama, et al. Cavitation phenomena in extracorporeal microexplosion lithotripsy [J]. Shock Waves,1994,3:149-157
    [21]J. Tavakkoli, A. Birer, A Arjzhev, et al. A piezocomposite shock wave generator with electronic focusing capability application for producing cavitation-induced lesions in rabbit liver[J]. Ultrasound in Med.&Biol,1997,23(1):107-115
    [22]D. Cathignol, J. Tavakkoli, A. Birer, et al. Comparison between the effects of cavitation induced by two different pressure-time shock waveform pulses [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,1998,45(3):788-799
    [23]I. Chilibon, M. Wevers, J.-P. Lafaut, et al. Cavitation role in extracorporeal shock wave lithotripsy [J]. Journal of optoelectronics and advanced materials.2006,8(1):235-237
    [24]M. Delius. Medical applications and bioeffects of extracorporeal shock waves[J]. Shock Waves,1994,4:55-72
    [25]K. Kohrma, J. J. Rassweiler, M. Manning, et al. The clinical introduction of a third generation lithotripter:Modulith SL20[J]. The journal of urology,1995,153:1379-1383
    [26]P. Sunka, V. Babicky, V. Babicky, et al. Generation of two successive shock waves focused to a common focal point[J]. IEEE TRANSACTIONS ON PLASMA SCIENCE,2006,34(4):1382-1385
    [27]Sunka Pavel. Pulse electrical discharges in water and their applications[J]. Physics Of Plasmas,2001,8(5):2587-2594
    [28]G. Touya, T. Reess, L. Pecastaing, et al. Development of subsonic electrical discharges in water and measurements of the associated pressure waves[J]. Journal of physics D:APPLIED PHYSICS,2006,39:5236-5244
    [29]F. Higashino. CCW model for shock wave focusing[C]. Intl Workshop on Shock Wave Focusing,1989, Japan:207-216
    [30]A. J. Coleman, M. J. Choi, J. E. Saunders. Theoretical predictions of the acoustic pressure generated by a shock wave lithotripter[J]. Ultrasound in Med.&Biol.,1991,17(3):245-255
    [31]M. F. Hamilton. Transient axial solution for the reflection of a spherical wave from a concave ellipsoidal mirror[J]. J Acoust Soc Am.,1993,93(3):1256-1266
    [32]N. Apazidis. Focusing of weak shock waves in confined axisymmetric chambers[J]. Shock Waves,1994,3:201-212
    [33]T. Christopher. Modeling the Dornier HM-3lithotripter[J]. J Acoust Soc Am.,1994,96(5):3088-3095
    [34]M. A. Averkiou, R. O. Cleveland. Modeling of an electrohydraulic lithotripter with the KZK equation[J]. J Acout Soc Am.,1999,106(1):102-112
    [35]Y. F. Zhou, P. Zhou. The effect of reflector geometry on the acoustic field and bubble dynamics produced by an electrohydraulic shock wave lithotripter[J]. J Acout Soc Am.,2006,119(6):3625-3636
    [36]J. E. Cates, B. Sturtevant. Shock wave focusing using geometrical shock dynamics[J]. Phys. Fluids,1997,9(10):3058-3068
    [37]王鸿樟,于洪斌,黄平.连续球面波在凹椭球面上反射的聚焦声场[J].上海交通大学学报,1996,30(1):65-69
    [38]王鸿樟,钱盛友.球面脉冲波在凹椭球面上反射的聚焦声场[J].上海交通大学学报,1996,30(5):110-114
    [39]B. Sturtevant, V.A. Kulkarny. The focusing of weak shock waves[J]. J. Fluid Mech,1976,73(4):651-671
    [40]G.Gustafsson. Experiments on shock-wave focusing in an elliptical cavity[J]. J. Appl. Phys.,1987,61(11):5193-5195
    [41]K. Kolacek, V. Babicky, J. Preinhaelter, et al. Pressure distribution measurements at the shock wave focus in water by schlieren photography [J]. J. Phys. D:Appl. Phys.,1988,21:463-469
    [42]H.M. Muller. Experimental Investigations on Focusing of Weak Spherical Shocks Waves in Water by Shallow Ellipsoidal Reflectors [J]. Acustica,1987,64:85-93
    [43]M. Sommerfeld, H. M. Muller. Experimental and numerical studies of shock wave focusing in water[J]. Experiments in Fluids,1988,6:209-216
    [44]H. M. Muller. Focusing of shock waves in water by different ellipsoidal reflectors[C].17th international symposium on shock waves and shock tubes, Pennsylvania, USA,1990:143-148
    [45]K. Takayama. High pressure generation by shock wave focusing in a confined ellipsoidal cavity[C]. Intl Workshop on Shock Wave Focusing, Japan,1989:217-226
    [46]A. J. Coleman, J. E. Saunder, M. J. Choi. An experimental shock wave generator for lithotripsy studies[J]. Phys Med Biol.,1989,34(11):1733-1742
    [47]K. Isuzugawa, M. Horiuchi, Y. Okumura. Focusing of shock waves in water and its observation by the Schlieren Method[C].19th Intl Congress on High-Speed Photography and Photonics, Cambridge, England,1990:1003-1010
    [48]M. R. Bailey, D. T. Blackstock, R. O. Cleveland, et al. Comparison of electrohydraulic lithotripters with rigid and pressure-release ellipsoidal reflectors. I. Acoustic fields[J]. J Acout Soc Am.,1998,104(4):2517-2524
    [49]G. N. Sankin, Y. F. Zhou, P. Zhou. Focusing of shock waves induced by optical breakdown in water[J]. J Acout Soc Am.,2008,123(5):4071-4081
    [50]雷开卓,李宁,黄建国,等.椭球反射罩聚焦特性实验研究[J].西北工业大学学报,2010,28(1):102-106
    [51]K. Takayama, K. Saito, T. Obara, et al. Underwater shock wave focusing in an ellipsoidal cavity[C].17th international symposium on shock waves and shock tubes, Pennsylvania, USA,1990:137-142
    [52]I. Sakamoto, F. Higashino, R. Holl. Focusing of reflected shock waves analyzed by means of geometrical shock dynamics[J]. JSME International Journal:Series B,1993,36(4):560-566
    [53]K. M. Fagnan, R. J. LeVeque, et al. High-resolution Finite Volume Methods for Extracorporeal Shock Wave Therapy [C]. Proceedings from the11th International Conference on Hyperbolic Problems, Lyon, France,2006:503-510
    [54]陈景秋.激波聚焦问题的CCW数值解[J].重庆大学学报.1992,15(2):27-31
    [55]陈景秋,赵万星,曾忠ESWL实际焦点位置的理论和数值分析[J].中国生物医学工程学报,2004,23(3):247-251
    [56]李宁,雷开卓,黄建国,等.水下冲击波聚焦声场非线性建模与分析[J].系统仿真学报,2011,23(1):61-64
    [57]J. P. Franc, J. M. Michel. Fundamentals of cavitation[M]. Kluwer Academic Publishers, Dordrecht,2004
    [58]L. A. Crum. Tensile strength of water[J]. Nature,1979,278:148-149
    [59]S.W.J. Brown, P.R. Williams. The tensile behaviour of elastic liquids under dynamic stressing[J]. J. Non-Newtonian Fluid Mech.2000,90:1-11
    [60]J. C. Fisher. The fracture of liquids[J]. J. Appl. Phys.,1948,19:1062-1067
    [61]A. D. Alvarenga, M. Grimsditch, R. J. Bodnar. Elastic properties of water under negative pressures[J]. J. Chem. Phys.,1993,98(11):8392-8396
    [62]R.E. APFEL. Acoustic cavitation series:part four Acoustic cavitation inception[J]. ULTRASONICS,1984,167-173
    [63]P. R. Williams, P. M. Williams, S. W. J. Brown. Tensile properties of liquid mercury under pulsed dynamic stressing[J]. J. Phys. D:Appl. Phys.,1998,31:1923-1926
    [64]C. Xiao, D. M. Heyes. Cavitation in stretched liquids[J]. Proc. R. Soc. Lond. A,2002,458:889-910
    [65]S. A. Sedgewick, D. H. Trevena. Limiting negative pressure of water under dynamic stressing[J]. J. Phys. D:Appl. Phys.,1976,9:1983-1990
    [66]D. H. Trevena. Cavitation and the generation of tension in liquids[J]. J. Phys. D: Appl. Phys.,1984,17:2139-2164
    [67]J. I. Iloreta, Yufeng Zhou, G. N. Sankin, et al. Assessment of shock wave lithotripters via cavitation potential[J]. Phys Fluids,2007,19(8):086101-1-086101-16
    [68]A. J. Coleman, J. E. Saunders, L. A. Crum, et al. Acoustic cavitation generated by an extracorporeal shockwave lithotripter[J]. Ultrasound in Med.&Biol.,1987,13(2):69-76
    [69]M. R. Bailey, Y. A. Pishchalnikov, O. A. Sapozhnikov, et al. Cavitation detection during shock-wave lithotripsy[J]. Ultrasound in Med.&Biol.,2005,31(9):1245-1256
    [70]黄继汤.空化与空蚀的原理及应用[M].北京:清华大学出版社.1991
    [71]Trilling, Leon. The collapse and rebound of a gas bubble[J]. Journal of Applied Physics,1952,23(1):14-17
    [72]C.-D. Ohl, T. Kurz, R. Geisler, et al. Bubble dynamics, shock waves and sonoluminescence[J]. Phil. Trans. R. Soc. Lond. A,1999,357:269-294
    [73]B. Li-xin, X. Wei-lin, T. Zhong, et al. A high-speed photographic study of ultrasonic cavitation near rigid boundary[J]. Journal of Hydrodynamics,2008,20(5):637-644
    [74]Y. A. Pishchalnikov, O. A. Sapozhnikov, M. R. Bailey, et al. Cavitation bubble cluster activity in the breakage of kidney stones by lithotripter shockwaves [J]. J. Endourol,2003,17(7):435-446
    [75]M. R. Bailey, R. O. Cleveland, T. Colonius, et al. Cavitation in shock wave lithotripsy:the critical role of bubble activity in stone breakage and kidney trauma[C]. IEEE Ultrasonics Symposium,2003
    [76]Y. A. Pishchalnikov, O. A. Sapozhnikov, M. R. Bailey, et al. Cavitation selectively reduces the negative-pressure phase of lithotripter shock pulses[J]. Acoustics Research Letters Online,2005,6(4):280-286
    [77]L. Rayleigh. On the pressure developed in a liquid during the collapse of a spherical cavity[J]. Philosophical Magazine,1917,34(200):94-98
    [78]M. S. Plesset. The dynamics of cavitation bubbles [J]. J. Appl.Mech.,16:227-282
    [79]F. R. Gilmore. The collapse and growth of a spherical bubble in a viscous compressible liquid[R]. Calif. Inst. of Tech. Hydrodynamics Lab. Rep. No.26-4
    [80]A. Konno, H. Yamaguchi, H. Kato, et al. On the collapsing behavior of cavitation bubble clusters[C]. Fourth International Symposium on Cavitation, USA,2001
    [81]K. Jochle, J. Debus, W. J. Lorenz, et al. A new method of quantitative cavitation assessment in the field of a lithotripter [J]. Ultrasound in Med.&Biol.,1996,22(3):329-338
    [82]P. Huber, K. Jochle, J. Debusz, et al. Influence of shock wave pressure amplitude and pulse repetition frequency on the lifespan, size and number of transient cavities in the field of an electromagnetic lithotripter [J]. Phys. Med. Biol.,1998,43:3113-3128
    [83]M. R. Bailey, D. T. Blackstock, R. O. Cleveland, et al. Comparison of electrohydraulic lithotripters with rigid and pressure-release ellipsoidal reflectors. Ⅱ. Cavitation fields[J]. J. Acoust. Soc. Am.,1999,106(2):1149-1160
    [84]R. O. Cleveland, O. A. Sapozhnikov, M. R. Bailey, et al. A dual passive cavitation detector for localized detection of lithotripsy-induced cavitation in vitro[J]. J. Acoust. Soc. Am.,2000,107(3):1745-1758
    [85]D. L. Sokolov, M. R. Bailey, L. A. Crum, et al. Use of a dual-pulse lithotripter to generate a localized and intensified cavitation field[J]. J. Acoust. Soc. Am.,2001,110(3):1685-1695
    [86]O. A. Sapozhnikov, V. A. Khokhlova, M. R. Bailey, et al. Effect of overpressure and pulse repetition frequency on cavitation in shock wave lithotripsy[J]. J. Acoust. Soc. Am.,2002,112(3), Pt.1:1183-1195
    [87]M. R. Bailey, Y. A. Pishchalnikov, O. A. Sapozhnikov, et al. Cavitation detection during shock-wave lithotripsy[J]. Ultrasound in Med.&Biol.,2005,31(9):1245-1256
    [88]M. Arora, C. D. Ohl, M. Liebler. Characterization and modification of cavitation pattern in shock wave lithotripsy[C]. Journal of Physics:Conference Series1,2004:155-160
    [89]M. Arora, L. Junge, C. D. Ohl. Cavitation cluster dynamics in shock-wave lithotripsy:Part1. Free field[J]. Ultrasound in Med.&Biol.,2005,31(6):827-839
    [90]J. M. Buick, J. A. Cosgrove, H. Eizenhofer, et al. Characterization of the bubble cluster and velocity field in the focal region of a lithotripter[J]. New Journal of Physics9,2007,240:1-16
    [91]陈景秋,王宗笠.冲击波聚焦粉碎人体结石过程中的空化现象的数值模拟[J].中国生物医学工程学报,2001,20(1):53-55
    [92]陈景秋,邓艇,田祖安ESWL中的空化效应[J].重庆大学学报(自然科学版),2007,30(8):128-133
    [93]C. C. Church. A theoretical study of cavitation generated by an extracorporeal shock wave lithotripter[J]. J. Acoust. Soc. Am.,1989,86(1):215-227
    [94]韦春霞ESWL粉碎结石的力学机理研究ESWL冲击波聚焦及空化现象的数值模拟[D].重庆:重庆大学,2010
    [1]K. Davitt, E. Rolley, F. Caupin, et al. Equation of state of water under negative pressure[J]. THE JOURNAL OF CHEMICAL PHYSICS,2010,133:174507-1-8
    [2]P. G. Debenedetti. Supercooled and glassy water[J]. J. Phys.:Condens Matter,2003,15:R1669-R1726
    [3]http://www.physicalgeography.net/fundamentals/8a.html
    [4]J. P. Franc, J. M. Michel. Fundamentals of cavitation[M]. Kluwer Academic Publishers, Dordrecht,2004
    [5]The international association for the properties of water and steam. Revised release on the IAPWS industrial formulation1997for the thermodynamic properties of water and steam,2007
    [6]W. Wagner, J. R. Cooper, A. Dittmann, et al. The IAPWS industrial formulation1997for the thermodynamic properties of water and steam[J]. Journal of Engineering for Gas Turbines and Power,2000,122:150-182
    [7]S. Balibar, F. Caupin. Metastable liquids[J]. J. Phys.:Condens Matter,2003,15: S75-S82
    [8]V. P. Skripov. Metastable Liquids[M]. John Wiley&Sons, New York,1974
    [9]Q. Zheng, D. J. Durben. Liquids at Large Negative Pressures:Water at the Homogeneous Nucleation Limit[J]. Science,1991,254(5033):829-832
    [10]库尔.水下爆炸[M].罗耀杰,译.北京:国防工业出版社,1960
    [11]T. Saito, M. Marumoto, H. Yamashita, et al. Experimental and numerical studies of underwater shock wave attenuation[J]. Shock Waves,2003,13:139-148
    [12]方斌,朱锡,张振华,等.水下爆炸冲击波数值模拟中的参数影响[J].哈尔滨工程大学学报,2005,26(4):419-424
    [13]R. J. Speedy. Stability-limit conjecture. An interpretation of the properties of water[J]. The Journal of Physical Chemistry,1982,86(6):982-991
    [14]H. N. V. Temperley. The behaviour of water under hydrostatic tension:Ⅲ[C]. Proceedings of the Physical Society,1947,59(2):199-208
    [15]C. Xiao, D. M. Heyes. Cavitation in stretched liquids[J]. Proc. R. Soc. Lond. A, 2002,458:889-910
    [16]汪志诚.热力学·统计物理[M].北京:高等教育出版社(第三版),2003
    [17]L. A. Crum. Tensile strength of water[J]. Nature,1979,278:148-149
    [18]S.W.J. Brown, P.R. Williams. The tensile behaviour of elastic liquids under dynamic stressing [J]. J. Non-Newtonian Fluid Mech,2000,90:1-11
    [19]J. C. Fisher. The fracture of liquids[J]. J. Appl. Phys.,1948,19:1062-1067
    [20]A. D. Alvarenga, M. Grimsditch, R. J. Bodnar, et al. Elastic properties of water under negative pressures[J]. J. Chem. Phys.,1993,98(11):8392-8396
    [21]R. E. APFEL. Acoustic cavitation series:part four Acoustic cavitation inception[J]. ULTRASONICS,1984,167-173
    [22]P. R. Williams, P. M. Williams, S. W. J. Brown. Tensile properties of liquid mercury under pulsed dynamic stressing[J]. J. Phys. D:Appl. Phys.,1998,31:1923-1926
    [23]S. A. Sedgewick, D. H. Trevena. Limiting negative pressure of water under dynamic stressing[J]. J. Phys. D:Appl. Phys.,1976,9:1983-1990
    [24]D. H. Trevena. Cavitation and the generation of tension in liquids[J]. J. Phys. D: Appl. Phys.,1984,17:2139-2164
    [25]M. Tanguay. Computation of bubbly cavitating flow in shock wave lithotripsy[D]. California Institute of Technology,2004
    [26]E. Johnsena and T. Coloniusb. Shock-induced collapse of a gas bubble in Shockwave lithotripsy[J]. J. Acoust. Soc. Am.,2008,124(4):2011-2020
    [27]L. Rayleigh. On the pressure developed in a liquid during the collapse of a spherical cavity[J]. Philosophical Magazine,1917,34(200):94-98
    [28]LS-DYNA Keyword User's Manual version971. Livermore Software Technology Corporation,2007
    [29]Ansys/Ls-dyna算法基础与使用方法Ansys/Ls-dyna中国技术支持中心,1998
    [30]杜功焕,朱哲民,龚秀芬.声学基础[M].南京:南京大学出版社,2001
    [31]J. M. Brett. Numerical modelling of shock wave and pressure pulse generation by underwater explosions[R]. ADA352831,1998
    [1]J. O. Hallquiust. LS-Dyna Theoretical Manual. Livermore Software Technology Corporation,2006
    [2]张乐乐,谭南林,焦风川.^NSYS辅助分析应用基础教程[M].北京:清华大学出版社、北京交通大学出版社,2006
    [3]LS-DYNA Keyword User's Manual version971. Livermore Software Technology Corporation,2007
    [4]V. K. Kedrinskii. Kirkwood-Bethe Approximation for an underwater explosion with cylindrical symmetry[J]. Combustion, Explosion, and Shock Waves.1972,8(1):94-100
    [5]解广润.电水锤效应[M].上海:上海科学技术出版社.1962
    [6]T. R. Gibbs, A. Popolato. LASL Explosive Property Data. University Of California Press, Berkeley-Los Angeles-London,1980
    [7]C. L. Mader, J. N. Johnson, L. C. Sharon, Los Alamos Explosives Performance Data. University Of California Press, Berkeley-Los Angeles-London,1980
    [8]B. M. Dobratz, P. C. Crawford. LINL Explosives Handbook, Properties of Chemical Explosive and Explosive Simulations. UCRL-52997,1981
    [9]J. Y. R. Liew, H. Chen. Explosion and fire analysis of steel frames using fiber element approach[J]. Journal Structural Engineering, ASCE,2004,130(7):991-1000
    [10]H. Chen, J. Y. R. Liew. Explosion and fire analysis of steel frames using mixed element approach[J]. Journal of Engineering Mechanics, ASCE,2005,131(6):606-616
    [11]张振华,朱锡,白雪飞.水下爆炸冲击波的数值模拟研究[J].爆炸与冲击,2004,24(2):182-188
    [12]方斌,朱锡,张振华,等.水下爆炸冲击波数值模拟中的参数影响[J].哈尔滨工业大学学报,2005,26(4):419-424
    [13]K. Davitt, E. Rolley, F. Caupin, et al. Equation of state of water under negative pressure[J]. THE JOURNAL OF CHEMICAL PHYSICS,2010,133:174507-1-8
    [14]J. P. Franc, J. M. Michel. Fundamentals of cavitation[M]. Kluwer Academic Publishers, Dordrecht,2004
    [15]L. Xinpei, P. Yuan, L. Kefu, et al. Spark model of pulsed discharge in water[J]. Journal of Applied Physics,2002,91(1):24-31
    [16]H. N. V. Temperley, D. H. Trevenag, Metastable effects associated with the reflection of a pressure pulse at the free surface of water[J].J. Phys. D:Appl. Phys.,1979,12:1887-1894
    [17]Y. A. Pishchalnikov, O. A. Sapozhnikov, M. R. Bailey, et al. Cavitation selectively reduces the negative-pressure phase of lithotripter shock pulses [J]. Acoustics Research Letters Online,2005,6(4):280-286
    [18]S.W. J. Brown, P. R. Williams, The tensile behaviour of elastic liquids under dynamic stressing[J]. J. Non-Newtonian Fluid Mech.,2000,90:1-11
    [19]L. Rayleigh. On the pressure developed in a liquid during the collapse of a spherical cavity [J]. Philosophical Magazine.1917,34(200):94-98
    [1]张永祥,陈景秋,韦春霞,等.球面压电陶瓷型ESWL的冲击波聚焦点对球心的偏移[J].中国生物医学工程学报,2007,26(2):247-251
    [2]P. Huber, K. Jochle, J. Debusz, et al. Influence of shock wave pressure amplitude and pulse repetition frequency on the lifespan, size and number of transient cavities in the field of an electromagnetic lithotripter[J]. Phys. Med. Biol.,1998,43:3113-3128
    [3]陈景秋,赵万星,曾忠ESWL实际焦点位置的理论和数值分析[J].中国生物医学工程学报,2004,23(3):247-251
    [4]W. Jun, L. Jingbo, D. Yixin. Experimental and numerical study on the flight and penetration properties of explosively-formed projectile [J]. International Journal of Impact Engineering,2007,34:1147-1162
    [5]蔡一鸣,李慧中,梁霄鹏,等.7039铝合金靶板侵彻过程中的组织特征及数值模拟[J].中国有色金属学报,2011,21(5):975-980
    [6]J. S. Hua, J. Lou. Numerical simulation of bubble rising in viscous liquid[J]. J Comput Phys,2007,222(2):769-795
    [7]黄继汤,陈嘉范,丁彤,等.表面张力对单空泡运动特性的影响[J].水利学报,1996,12:1-7
    [8]朱坤,沃恒洲,徐玉福,等.流体物性对空化气泡溃灭过程影响研究[J].合肥工业大学学报(自然科学版),2011,34(9):1295-1312
    [1]解广润.电水锤效应[M].上海:上海科学技术出版社,1962
    [2]L. E. Kinsler, A. R. Frey, A. R. Coppens, et al. Fundamentals of Acoustics[M]. John Wiley&Sons Inc.,2000
    [3]Model138A05Underwater ICP(?) Blast Pressure Sensor Installation and Operating Manual. PCB Piezotronics INC.,1991
    [4]Calibration certificate. User manual of PCB sensors. PCB Piezotronics INC,1991
    [5]Model482A21ICP(?) Sensor Signal Conditioner Installation and Operating Manual. PCB Piezotronics INC.,1991
    [6]H. N. V. Temperley, D. H. Trevenag. Metastable effects associated with the reflection of a pressure pulse at the free surface of water[J]. J. Phys. D:Appl. Phys,1979,12:1887-1894
    [1]G. S. Settles. Schlieren and shadowgraph techniques:Visualizing phenomena in transparent media[M]. Springer,2006
    [2]P. Krehl, S. Engemann. August Toepler-The first who visualized shock waves [J]. Shock Waves,1995,5:1-18
    [3]范洁川.近代流动显示技术[M].北京:国防工业出版社,2002:47-69
    [4]H. N. V. Temperley, D. H. Trevenag, Metastable effects associated with the reflection of a pressure pulse at the free surface of water[J]. J. Phys. D:Appl. Phys.,1979,12:1887-1894
    [5]L. Rayleigh. On the pressure developed in a liquid during the collapse of a spherical cavity [J]. Philosophical Magazine,1917,34(200):94-98
    [6]陈敏恒,丛德滋,放图南,等.化工原理(第三版)[M].北京:化学工业出版社,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700