用户名: 密码: 验证码:
超大容量多波长全光再生与基于OEO的大量程、高精度绝对距离测量技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文包括了两方面的工作:超大容量多波长全光再生技术研究和大量程、高精度绝对距离测量技术研究。
     为了满足目前网络对传输提出的越来越高的要求,超大容量传输技术已经成为当下的研究热点,而相应的全光再生则是必须解决的关键技术之一。本研究结合当前多波长网络的现实,对超大容量多波长全光再生技术开展了研究:
     系统研究方面:先后完成了总容量160Gb/(s4×40Gb/s)、320Gb/(s2×160Gb/s)的3R全光再生系统实验。在此基础上实现了640Gb/s(4×160Gb/s)的全光2R再生系统实验,这是目前已报道的最大容量的全光多波长再生系统实验。
     具体技术研究上:利用了数据泵浦的参量过程实现信号再生,在有效抑制了SBS影响的同时对于“0”和“1”码噪声均有较好的抑制,首次对再生信号进行的“澡盆曲线”测试证明了这点;提出了延时半个码元周期的方案,充分利用了光纤的方向、偏振态及时隙的正交性,有效抑制了信道间的串扰。
     理论方法上:提出了对3R再生系统的新的评价方法,更为全面地反映再生系统的性能,为再生系统在网络中的应用提供了依据。
     测量技术是所有科学、技术的基础。而大量程(百米到公里量级)、高精度的绝对长度测量始终是一个重大的技术挑战。论文应用前期光子微波技术的成果,对此问题开展了工作:
     系统研究:实验完成了等效长度6.2km的绝对距离测量,测量误差小于1.5μm,相对精度为2.5×10-10。这是目前在如此大的量程上达到的最高相对精度。
     在技术思路上:相对于传统的利用提高仪器自身分辨率来改进测量精度的思路,采用了将被测量放大的技术思路。这就可以在仪器本身分辨率不变的情况下,通过增大放大倍数来提高测量的精度,相对降低了对器件指标要求,增强了测量系统对各种干扰的容限。
     从实现原理上:首次提出了采用OEO(光电振荡器)进行测距的测量原理。该原理利用了OEO长谐振腔、高谱纯度和振荡频率高的特点,将被测量的变化放大了105~106倍,从而用普通的测量仪器达到了创记录的测量精度。
     具体技术上:提出采用双谐振腔结构实现了仪器的自校准。一个谐振腔作为稳定腔,另一个谐振腔用于测量。这样通过锁相技术,就能实现仪器自身时延的稳定,保证了测量精度。
     论文在以上两个方面取得的成果,为进一步的研究工作打下了良好的基础。
In this thesis, the research work are carried out mainly on the key technologies in twofields including ultra-large-capacity all optical multiple wavelength regeneration andhigh-precision absolute distance measurements over a long range based on twooptoelectronic oscillators.
     In order to meet the increasing requirements on the current network transmissionrequirements, large-capacity transmission technology has become a hotspot of currentresearch. The corresponding all-optical regeneration is one of the key technologiesthat must be addressed. A study of large capacity multi-wavelength regeneration wascarried out in our research.
     Systems: We have experimentally demonstrated capacity of160Gb/s (4×40Gb/s)and320Gb/s (2×160Gb/s) all-optical3R regeneration. Based on the results above,simultaneous all-optical2R regeneration of capacity of640Gb/s WDM-PDM signalsis achieved. This is the largest capacity all optical regeneration for multiple channelswhich has been reported.
     Technology: The SBS can be suppressed by using degraded data signals as thepump in a FWM process. At the same time amplitude noise on both “0” and “1” levelscan be suppressed simultaneously very well, which is confirmed by bathtub curves.Bidirectional propagation in the fiber and polarization multiplexing are used to relievethe inter-channel interference among the four channels. A0.5bit slot time delaybetween the two co-propagating signals introduced by an optical delay line (ODL) canmitigate the inter-channel interference.
     Theoretical methods: A new evaluation method of3R regeneration system isproposed. Using this method, the performance of regeneration systems can be showedcomprehensively. This new method will provide a basis of how to set regenerationsystems in network.
     The measurement technique is the foundation of all science and technology.High-precision absolute distance measurement over a long range (from severalhundred meters to kilometers) is always a major technical challenge, which is studiedin this thesis based on the formerly achieved results of photonic microwave.
     Systems research: The maximum error is1.5μm at the emulated~6km distance,including the drift error of about1μm in the air path due to the change in environmental conditions. The highest relative measurement precision of2.5×10-10can be achieved in our current system. This is the highest relative accuracy which hasbeen achieved on such a large range.
     Technology: Traditional method tried to improve instrument resolution in orderto make the accuracy of the measurement better. Our scheme takes advantage ofaccumulative magnification theory, which makes the precision of the measureddistance significantly improved under the premise of the same accuracy of theinstrument. This method reduces the requirement on the device and enhances thetolerance of all interference.
     Principle: The principle of distance measurement based on OEO is proposed thefirst time. Utilizing the OEO’s characteristic of long cavity, high spectral purity andhigh resonant frequency, the change of distance is magnified105~106times in anOEO system. In this way, measurement accuracy of the record can be achieved usingordinary equipment.
     Technology: By using two OEOs, self-referencing can be achieved. One OEOserves as stabilization of the cavity length. The other is utilized to measure distance.The common optical path of the two OEOs is stabilized though a phase-locked loop(PLL) and the PZT, which can make sure of the accuracy of the measurement.
     There are some results in this thesis on both all-optical multi-wavelengthregeneration and absolute distance measurement, which are a good foundation forfurther research work.
引文
[1] F P Kapron, D B Keck,Radiation losses in glass optical waveguides[J] Appl. Phys.Lett., Nov1970,17(10):423-425
    [2] http://www.internetworldstat.com/
    [3] http://www.telegeography.com/page_attachments/products/website/research-services/global-internet-geography/0002/4221/telegeography-global-internet.pdf
    [4] David J. Richardson,“Filling the Light Pipe”, SCIENCE,330(15):327,2010
    [5] Akihide Sano, Takayuki Kobayashi,“102.3-Tb/s (224x548-Gb/s) C-andExtended L-band All-Raman Transmission over240km Using PDM-64QAMSingle Carrier FDM with Digital Pilot Tone”,(OFC ‘2012) PDP5C.3
    [6] Antonella Bogoni, Xiaoxia Wu, Scott R. Nuccio, and Alan E. Willner,“640Gb/sAll-optical regenerator based on a periodically poled lithium niobate waveguide,”J. Lightwave Technol.30,1829-1834(2012)
    [7] S. Watanabe, F. Futami, R. Okabe, Y. Takita, S. Ferber, R. Ludwig, C. Schubert,C. Schmidt, and H. G. Weber,"160Gbit/s optical3R-regenerator in a fibertransmission experiment," in Optical Fiber Communication Conference,Technical Digest (Optical Society of America,2003), paper PD16.
    [8]于晋龙,王耀天等.40Gb/s信号全光3R再生实验[J].光学学报,2007,27(5):801-806
    [9]娄采云,杨彦甫,霍力等.40Gb/s信号的全光3R再生[J].光学学报,2005,25(11):1467-1471
    [10]X.S.Yao and L. Maleki,“Optoelectronic microwave oscillator”, J. Opt. Soc.Amer. B,1999,13(8),1725-1735
    [11]Puttock, M. J.1978, Large-Scale Metrology, Ann. CIRP,2711:351-6
    [12]Butler, R.K. Multiwavelength all-optical clock recovery. in Lasers andElectro-Optics Society Annual Meeting,1998. LEOS '98. IEEE.1998.
    [13]Johnson, C.D., K.; Allen, C.; Hui, R.; Peddanarappagari, K.V.; Zhu, B.Multiwavelength all-optical clock recovery. Photonics Technology Letters, IEEE,199911(7): p.895-897.
    [14]Xiang Zhou, H.H.M.S., Lu Chao, T. H. Cheng, and Peida Ye, A PerformanceAnalysis of All-Optical Clock Extraction Circuit Based on Stimulated BrillouinScattering. JOURNAL OF LIGHTWAVE TECHNOLOGY,2000.18(10): p.1453-1466.
    [15]V. Mikhailov, P.B., All-optical multi wavelength clock recovery using integratedsemiconductor amplifier array module. ELECTRONICS LETTERS2001.37(4):p.232-234.
    [16]Kuksenkov, D.V.L., S.; Sauer, M.; Nolan, D.A;. Nonlinear fibre devicesoperating on multiple WDM channels. in31st European Conference on OpticalCommunication,2005. ECOC2005..2005.
    [17]Xiang Zhou, C.L., Ping Shum, Hossam H. M. Shalaby, T. H. Cheng, and PeidaYe, A Performance Analysis of an All-Optical Clock Extraction Circuit Based onFabry–Perot Filter. JOURNAL OF LIGHTWAVE TECHNOLOGY,2001.19(5): p.603-613.
    [18]Ciaramella;, Double-stage cross-gain modulation in SOAs: an effective techniquefor WDM multicasting. Photonics Technology Letters,2006.18(1): p.181-183.
    [19]Yoo;, Demonstration of an optical-label switching router with multicast andcontention resolution at mixed data rates. Photonics Technology Letters,2006.18(2): p.307-309.
    [20]Reading-Picopoulos, D.W., F.; Chai, Y.J.; Penty, R.V.; White, I.H.;.10Gb/s and40Gb/s WDM multi-casting using a hybrid integrated Mach-Zehnderinterferometer. in Optical Fiber Communication Conference,2006and the2006National Fiber Optic Engineers Conference.2006.
    [21]Chung, H.S.I., R.; Nishimura, K.; Usami, M.;, All-optical multi-wavelengthconversion of10Gbit/s NRZ/RZ signals based on SOA-MZI for WDMmulticasting. Electronics Letters,2005.41(7): p.432-433.
    [22]Politi, C.K., D.; O'Mahony, M.J.;, Waveband converters based on four-wavemixing in SOAs. Journal of Lightwave Technology,2006.24(3): p.1203-1217.
    [23]Shu, K.K.C.a.C., All-optical wavelength conversion with multicasting at6×10Gbit/s using electroabsorption modulator. ELECTRONICS LETTERS,2003.39(19)
    [24]Sakamoto, T.W., K.K.Y.; Uesaka, K.; Marhic, M.E.; Kazovsky, L.G.;. Tunablewavelength converter using cross-gain modulation in fiber optical parametricamplifier. in Optical Fiber Communication Conference and Exhibit,2002. OFC2002.2002.
    [25]Blumenthal; All-optical160-Gb/s phase reconstructing wavelength conversionusing cross-phase modulation (XPM) in dispersion-shifted fiber. PhotonicsTechnology Letters,2004.16(11): p.2520-2522.
    [26]Richardson, Four-wave mixing based10-Gb/s tunable wavelength conversionusing a holey fiber with a high SBS threshold. PHOTONICS TECHNOLOGYLETTERS,2003.15(3): p.440-442.
    [27]Beáta Zsigri, C.P., Martin Dybendal Nielsen, and Palle Jeppesen,, Demonstrationof Broadcast, Transmission, and Wavelength Conversion Functionalities UsingPhotonic Crystal Fibers. PHOTONICS TECHNOLOGY LETTERS,2006.18(21):p.2290-2292.
    [28]Yan Wang, C.Y., Ting Luo, Lianshan Yan, Zhongqi Pan, and Alan E. Willner,,Tunable All-Optical Wavelength Conversion and Wavelength Multicasting UsingOrthogonally Polarized Fiber FWM. JOURNAL OF LIGHTWAVETECHNOLOGY,2005.23(10): p.3331-3338.
    [29]Carsten Langrock, S.K., John E. McGeehan, A. E. Willner, and M. M. Fejer,All-Optical Signal Processing Using χ (2) Nonlinearities in Guided-WaveDevices. JOURNAL OF LIGHTWAVE TECHNOLOGY,2006.24(7): p.2579-2592.
    [30]Torounidis, T.A., P., Broadband Single-Pumped Fiber-Optic ParametricAmplifiers. Photonics Technology Letters,2007.19(9): p.650-652.
    [31]Kylemark, P.R., J.; Radic, S.; McKinstrie, C. J.; Karlsson, M.; Andrekson, P. A.;,Noise in Orthogonally Pumped Fiber-Optical Parametric Amplifiers. PhotonicsTechnology Letters,2007.19,(2): p.88-90.
    [32] Kylemark, P.R., J.; Myslivets, Y.; Alic, N.; Radic, S.; Andrekson, P. A.; Karlsson,M.;, Impact of Pump Phase-Modulation on the Bit-Error Rate in Fiber-OpticalParametric-Amplifier-Based Systems. Photonics Technology Letters,2007.19(2):p.79–81
    [33]Olivier Leclerc, Bruno Lavigne, Elodie Balmefrezol, Patrick Brindel, LaurentPierre, Delphine Rouvillain, and Frederic Seguineau.“Optical Regeneration at40Gb/s and Beyond”, JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL.21,NO.11, NOVEMBER2003, p2779-2790
    [34]Nan Chi, B.C., and Palle Jeppesen,2R Regeneration Based onDispersion-Imbalanced Loop Mirror and Its Applications in WDM Systems.JOURNAL OF LIGHTWAVE TECHNOLOGY2002.20(10): p.1809-1817.
    [35] M. Vasilyev, T. I. Lakoba, and P. G. Patki,“Multi-Wavelength All-OpticalRegeneration” OFC/NFOEC2008, OWK3,
    [36] Pallavi G. Patki and Michael Vasilyev.“All-optical regeneration of multi-wavelengthsignals” IEEE/LEOS Winter Topicals Meeting Series,2009, WC2.3
    [37] F. Parmigiani, P. Vorreau, L. Provost, K. Mukasa, M. Takahashi, M. Tadakuma, P.Petropoulos,D. J. Richardson, W. Freude, and J. Leuthold.“2R Regeneration of Two130Gbit/s Channels Within a Single Fiber”, OFC/NFOEC2009, JThA56
    [38] L. Provost et al.,“Investigation of Four-Wavelength Regenerator Using Polarization-andDirection-Multiplexing”, Photon. Technol. Lett., vol.20, pp.1676-1678,2008.
    [39] N. S. Mohd Shah and M. Matsumoto,“All-optical regeneration of time-interleavedmulti-wavelength signals based on higher-order four-wave mixing”,LEOSST '09.IEEE/LEOS,TuC4.4,pp103-104
    [40] Stylianos Sygletos, Paola Frascella, Fatima C. Garcia Gunning, Andrew D. Ellis,“Multi-Wavelength Regeneration of Phase Encoded Signals Based on Phase SensitiveAmplifiers”, ICTON2012, We.B1.4
    [41] Ju Wang, Jinlong Yu, Jun Luo,40-Gb/s2-Channel all-optical3R regeneration usingdata-pumped fiber parametric amplification based on HNLF,ACP,2010/12/8-12/12,
    [42]于晋龙,罗俊,韩丙辰,郭精忠,吴波,王菊,张晓媛,杨恩泽,基于光纤光参量放大的异步双波长全光再生技术研究,物理学报,09期, pp6138-6144,2010
    [43] Luo, Jun, Yu, Jinlong, Han, Bingchen, Wu, Bo, Wang, Ju, Wang, Wenrui, Hu, Hao,Yang, Enze,Simultaneous, Dual-Channel Retiming and Reshaping Using TwoIndependent Phase Clocks in Fiber-Optic Parametric Amplification,IEEE PhotonicsTechnology Letters,22(11), pp760-762,2010
    [44]王菊,于晋龙,罗俊,基于信号抽运的光纤光参量放大的全光3R再生系统,物理学报,60(9), pp215-220,2011
    [45] Ju Wang, Jinlong Yu, Tianhui Meng, Wang Miao,Bin Sun, Wenrui Wang, and EnzeYang, Simultaneous3R Regeneration of4x40-Gbit/s WDM Signals in a Single Fiber,IEEE Photonics Journal, Vol.4, No.5, October2012, pp1816-1822
    [46]颜子恒,于晋龙,王菊,基于数据抽运的光纤光参量放大的4×40Gb/s多波长全光3R再生实验研究,中国激光,38(10), pp112-116,2011
    [47] Ju Wang, Hua Ji, Hao Hu, Hans Christian Hansen Mulvad, Michael Galili, EvaristPalushani, Jinlong Yu, Palle Jeppesen, Leif Katsuo Oxenl we,Simultaneousregeneration of two160Gbit/s WDM channels in a single highly nonlinear fiber,OptExpress21(3):2862-2868(2013)
    [48] Ju Wang, Hua Ji, Hao Hu, Jinlong Yu, H. C. H. Mulvad, M. Galili, E. Palushani, P.Jeppesen, Wenrui wang, L. Oxenl. Simultaneous Regeneration of4×160Gb/s WDM andPDM channlesn in a single highly nolinear fiber. OFC2013, OW4C.7
    [49] Xiujun Lun, Y.H., Jun Sui, Xiaomin Ren. All-optical Regeneration in WDM Networks.ICCT20032003.
    [50]田丰沣,武保剑,周恒,邱昆,基于简并四波混频的偏振复用全光整形研究,光电子,2012,Vol2No.1,pp1-7
    [51]张婧,潘炜,闫连山,罗斌,基于光纤自相位调制多波长全光再生的色散管理优化,物理学报,2010, Vol.59, Issue (10):7002-7007
    [52] Tomkos, A.T., J. Leuthold, A.D. Ellis, D. Bimberg, P. Petropoulos, D. Simeonidou, S.Tsadka, P. Monteiro, Transparent Ring Interconnection using Multi-WavelengthProcessing Switches. ICTON2006,2006.
    [53] http://cordis.europa.eu/fetch?CALLER=IST_UNIFIEDSRCH&ACTION=D&DOC=6&CAT=PROJ&QUERY=1179714615153&RCN=80708.
    [54] Carsten Langrock, S.K., John E. McGeehan, A. E. Willner, and M. M. Fejer, All-OpticalSignal Processing Using χ(2) Nonlinearities in Guided-Wave Devices. JOURNAL OFLIGHTWAVE TECHNOLOGY,2006.24(7): p.2579-2592.
    [55] T. Oiwa, T. Shioda, Y. Tanaka, and M. Takeda,“Accuracy of distance measurementbased on two-photon absorption of Si-photodetector,” in CLEO2007, pp.1-2.
    [56] W. T. Estler,“High-accuracy displacement interferometry in air,” Applied Optics, vol.24, no.6, pp.808-815,1985.
    [57] J. A. Stone, A. Stejskal, and L. Howard,“Absolute interferometry with a670-nmexternal cavity diode laser,” Applied Optics, vol.38, no.28, pp.5981-5994,1999.
    [58] M. Fridlund,“Future space missions to search for terrestrial planets,” Space Sci. Rev.,vol.135, pp.355-369,2008.
    [59] D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T.Cundiff,“Carrier-envelope phase control of femtosecond mode-locked lasers and directoptical frequency synthesis,” Science, vol.288, no.5466, pp.635-639,2000.
    [60] P. Balling, P. Kren, P. Masika, and V. D. Berg,“Femtosecond frequency comb baseddistance measurement in air,” Optics Express, vol.17, no.11, pp.9300-9313,2009.
    [61] O. P. Lay, S. Dubovitsky, R. D. Peters, J. P. Burger, S.-W. Ahn, W. H. Steier, H. R.Fetterman, and Y. Chang,“MSTAR: a submicrometer absolute metrology system,”Optics Letters, vol.28, no.11, pp.890-892,2003.
    [62] S. Azouigui, T. Badr, J.-P. Wallerand, M. Himbert, J.-A. Salgado, J.-P. Senelaer, F.Kwasnik, and P. Juncar,“Transportable Distance Measurement System for Long-RangeApplications,” IEEE Transctions on Instrumentation and Measurement, vol.60, no.7, pp.2678-2683,2011.
    [63] K. Minoshima, and H. Matsumoto,“High-accuracy measurement of240-m distance in anoptical tunnel by use of a compact femtosecond laser,” Applied Optics, vol.39, no.30,pp.5512-5517,2000.
    [64] N. Chanthawong, S. Takahashi, K. Takamasu, and H. Matsumoto,“Absolute distancemeasurement using high-frequency repetition modes of a mode-locked fiber laser,” inOSA/FiO/LS2010, pp. JTuA52.
    [65] J. Ye,“Absolute measurement of a long, arbitrary distance to less than an optical fringe,”Optics Letters, vol.29, no.10, pp.1153-1155,2004.
    [66] J. Thiel, T. Pfeifer, and M. Hartmann,“Interferometric measurement of absolutedistances of up to40m,” Measurement, vol.16, no.1, pp.1-6,1995.
    [67] I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury,“Rapid and preciseabsolute distance measurements at long range,” Nature Photonics, vol.3, pp.351-356,2009.
    [68] D. Wei, S. Takahashi, K. Takamasu, and H. Matsumoto,“Analysis of the temporalcoherence function of a femtosecond optical frequency comb,” Optics Express, vol.17,no.9, pp.7011-7018,2009.
    [69] J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim,“Time-of-flight measurement withfemtosecond light pulses,” Nature Photonics, vol.4, pp.716-720,2010.
    [70] M. Cui, M. G. Zeitouny, N. Bhattacharya, S.A. van den Berg, and H. P. Urbach,“NewLaser System for Distance Metrology-High Accuracy Long Distance Measurementswith a Frequency Comb Laser,” in Photonics and Optoelectronic (SOPO)2010, pp.1-3.
    [71] N. Schuhler, Y. Salvadé, S. Lévêque, R. D ndliker, and R. Holzwarth,“Frequency-comb-referenced two-wavelength source for absolute distancemeasurement,” Optics Letters, vol.31, no.21, pp.3101-3103,2006.
    [72] I. Fujima, S. Iwasaki, and K. Seta,“High-resolution distance meter using opticalintensity modulation at28GHz,” Meas. Sci.&Technol., vol.9, no.7, pp.1049-1052,1988.
    [73] Y. Salvadé, N. Schuhler, S. Lévêque, and S. L. Floch,“High-accuracy absolute distancemeasurement using frequency comb referenced multiwavelength source,” Applied Optics,vol.47, no.14, pp.2715-2720,2008.
    [74] K. Minoshima,“High-precision absolute length metrology using fiber-based opticalfrequency combs,” in Electromagnetics in Advanced Applications (ICEAA)2010,pp.800-802.
    [75] J. Schwider, and L. Zhou,“Dispersive interferometric profilometer,” Optics Letters, vol.19, no.13, pp.995-997,1994.
    [76] K.-N. Joo, and S.-W. Kim,“Absolute distance measurement by dispersive interferometryusing a femtosecond pulse laser,” Optics Express, vol.14, no.13, pp.5954-5960,2006.
    [77] M. Cui, M. G. Zeitouny, N. Bhattacharya, S.A. van den Berg, and H. P. Urbach,“Longdistance measurement with femtosecond pulses using a dispersive interferometer” OpticsExpress, vol.19, no.7, pp.6549-6562,2011.
    [78]周小珊,李岩.相位激光测距与外差干涉相结合的绝对距离测量研究[J].应用光学,2010,31(6):1013-1017.
    [79]晁志霞,殷纯永,徐毅,等.可调合成波长链绝对距离干涉测量[J].计量学报,2002,23(2):161-164.
    [80]杨天博,郭宏,李达成.一种基于光学倍乘原理的绝对距离干涉测量系统[J].光学技术,2006,32(1):39-42.
    [81]钟明,叶声华,段发阶,等.大量程光纤测距技术的研究[J].仪器仪表学报,2002,23(3):531-532.
    [82]梁晶,龙兴武,张斌.一种新型多波长绝对距离干涉测量系统的研究[J].光学技术,2008,34(5):681-686.
    [83]邵宏伟,方占军,王强,等.新型长距离无导轨激光干涉仪[J].计量学报,2007,28(2):110-113.
    [84]许艳,周维虎,刘德明,等.基于飞秒激光器光学频率梳的绝对距离测量[J].光电工程,2011,38(8):79-83.
    [85] G. P. Agrawal著,贾东方,余震虹等译,“非线性光纤光学原理及应用”,电子工业出版社,2002
    [86] Li, Y.; Li, G.,2R regeneration and simultaneous wavelength conversion using a fiberparametric amplifier and a semiconductor optical amplifier, OFC.2003. pp:349-350
    [87] C. Yu, T. Luo, B. Zhang, Z. Pan, M. Adler, Y. Wang, J.E. McGeehan, and A.E. Willner,“Wavelength-Shift-Free3R Regenerator for40-Gbit/s RZ System by Optical ParametricAmplification in Fiber,” IEEE Photonics Technology Letters, vol.18, pp.2569-2571,2006.
    [88]X. Zhou, C. Lu, A performance analysis of an all-optical clock extraction circuitbased on Fabry-Perot filter[J], Photonics Technology Letters,2001,19:603-613
    [89]王耀天,“全光3R再生系统理论分析和实验研究”,博士论文,天津大学,2006
    [90]X. Steve Yao and Lute Malelu,“Optoelectronic Oscillator for Pholtonic Svstems”,IEEE JOURNAL OF QUANTUM ELECTRONICS,1996,32(7):1141-1149
    [91]X. Steve Yao and Lute Maleki,“Converting light into spectrally pure microwaveoscillation”, OPTICS LETTERS,1996,21(7):483-485
    [92]江阳,“光电振荡器与参量放大的性能及应用研究”,博士论文,天津大学,2008
    [93]X. Steve Yao and Lute Maleki,“Multiloop Optoelectronic Oscillator”,IEEE J.QUANTUM ELECTRONICS,2000,36(1),79-84
    [94]Hidemi Tsuchida, and Maoki Suzuki,“40-Gb/s Optical Clock Recovery Usingan Injection-Locked Optoelectronic Oscillator” IEEE Photonics technologyletters,2005,17(1):211-213
    [95]D. Eliyahu, K. Sariri, J. Taylor, and L. Maleki,“Opto-electronic oscillator withimproved phase noise and frequency stability,” in Proc. SPIE, Photonics West,2003, vol.4998,139-147
    [96]X. Steve Yao and Lute Maleki,“Multiloop Optoelectronic Oscillator”,IEEE J.QUANTUM ELECTRONICS,2000,36(1),79-84
    [97]Dmitry Strekalov, David Aveline, Nan Yu, Robert Thompson, Andrey B. Matsko,“Stabilizing an Optoelectronic Microwave Oscillator With Photonic Filters”JOURNAL OF LIGHTWAVE TECHNOLOGY, DECEMBER2003,21(12):3052-3061
    [98]F. Quinlan, S. Gee, S. Ozharar, P. J. Delfyett,“Optical frequency selfstabilization in a coupled optoelectronic oscillator”, Frequency ControlSymposium,2007Joint with the21st European Frequency and Time Forum.IEEE International, May292007-June12007Page(s):1023–1027
    [99]K. P. Birch, and M. J. Downs,“An Updated Edlén Equation for the RefractiveIndex of Air,” Metrologia, vol.30, no.3, pp.155-162,1993.
    [100] K. Minoshima, K. Arai, and H. Inaba,“High-accuracy self-correction ofrefractive index of air using two-color interferometry of optical frequencycombs,” Optics Express, vol.19, no.27, pp.26095-26105,2011.
    [101] E. Shafir, M. Shtilman, E. Naor, and G. Berkovic,“Thermally independentfibre optic absolute distance measurement system based on white lightinterferometry,” IET Optoelectronics, vol.5, no.2, pp.68-71,2011.
    [102] L. Zeng, K. Seta, H. Matsumoto, and S. Iwashaki,“Length measurement by atwo-colour interferometer using two close wavelengths to reduce errors caused byair turbulence,” Meas. Sci. Technol., vol.10, no.7, pp.587-591,1999.
    [103] H. Matsumoto, and T. Honda,“High-accuracy length-measuringinterferometer using the two-colour method of compensating for the refractiveindex of air,” Meas. Sci. Technol., vol.3, no.11, pp.1084-1086,1992.
    [104] K. Meiners-Hagen, and A. Abou-Zeid,“Refractive index determination inlength measurement by two-colour interferometry,” Meas. Sci. Technol., vol.19.No.8, pp.084004,2008.
    [105] K. B. Earnshaw, and E. N. Hernandez,“Two-Laser OpticalDistance-Measuring Instrument that Corrects for the Atmospheric Index ofRefraction,” Applied Optics, vol.11, no.4, pp.749-754,1972.
    [106] James B. Abshire,“Pulsed multiwavelength laser ranging system formeasuring atmospheric delay,” Applied Optics, vol.19, no.20, pp.3436-3440,1980.
    [107] G. B nsch, and E. Potulski,“Measurement of the refractive index of air andcomparison with modified Edlén’s formulae,” Metrologia, vol.35, no.2, pp.133-139,1998.
    [108] Philip E. Ciddor,“Refractive index of air: new equations for the visible andnear infrared,” Applied Optics, vol.35, no.9, pp.1566-1573,1996.
    [109]. Yamaoka, K. Minoshima, and H. Matsumoto,“Direct measurement of thegroup refractive index of air with interferometry between adjacent femtosecondpulses,” Applied Optics, vol.41, no.21, pp.4318–4324,2002.
    [110] A. N. Golubev, and A. M. Chekhovsky,“Three-color optical range finding,”Applied Optics, vol.33, no.31, pp.7511-7517,1994.
    [111] H. Matsumoto, Y. Zhu, S. Iwasaki, and T. O’ishi,“Measurement of thechanges in air refractive index and distance by means of a two-colorinterferometer,” Applied Optics, vol.31, no.22, pp.4522-4526,1992.
    [112] J.-P. Pique,“Pulsed frequency shifted feedback laser for accurate longdistance measurements: Beat order determination,” Optics Communications, vol.286, pp.233-238,2013.
    [113] M. Norgia, A. Magnani, A. Pesatori, and P. di Milano,“Absolute DistanceMeasurement System Using a Coherent Optical Sensor,” Optics Express, vol.20,no.5, pp.5658-5682,2012.
    [114] M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, and H. P.Urbach,“Long distance measurement with femtosecond pulses using a dispersiveinterferometer,” Optics Express, vol.19, no.7, pp.6549-6562,2011.
    [115] X. Wang, S. Takahashi, K. Takamasu, and H. Matsumoto,“Space positionmeasurement using long-path heterodyne interferometer with optical frequencycomb,” Optics Express, vol.20, no.3, pp.2725-2732,2012.
    [116] D.-H. Phung, C. Alexandre, and M. Lintz,“Two-mode interferencemeasurement for nanometer accuracy absolute ranging,” Optics Letters, vol.38,no.3, pp.281-283,2013.
    [117] K. Minoshima, K. Arai, and H. Inaba,“High-accuracy self-correction ofrefractive index of air using two-color interferometry of optical frequencycombs,” Optics Express, vol.19, no.27, pp.26095-20105,2011.
    [118] C. Yu et al.,“Wavelength-shift-free3R Regenerator for40-Gbit/s RZSystem by Optical Parametric Amplification in Fiber,” Photon. Technol.Lett., vol.18, pp.2569-2571,(2006).
    [119] C. Peucheret et al.,“Amplitude Regeneration of RZ-DPSK Signals inSingle-Pump Fiber-Optic Parametric Amplifiers,” Photon. Technol. Lett., vol.21, pp.872-874,(2009).
    [120] M. Takahashi et al.,“SBS Suppression Techniques in Highly NonlinearFibers,” IEEE Photonics Society2010, paper TuC3.1,(2010).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700