用户名: 密码: 验证码:
壳聚糖基金纳米棒的构建及其在肿瘤治疗中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金纳米棒(gold nanorods、GNRs)具有独特的光、电性能,成为材料学家关注的热点,被越来越多地应用于医学成像、生物检测、基因及药物载体和光热治疗等生物医学研究领域,展现出广阔的应用前景。壳聚糖具有良好的生物相容性、低毒性、可降解性、对生物黏膜较强的粘附性及组织相容性,可用于生物医用材料、基因载体及新型药物传递系统的研究中。尤其是壳聚糖作为抗肿瘤药物载体的研究已经非常广泛。
     本文基于GNRs的光热疗以及抗肿瘤药物的化疗,构建了一种毒性低、生物相容性好、适合生物医学领域运用的壳聚糖基金纳米棒杂化材料,实现光热疗-化疗联合治疗肿瘤的目的。主要研究工作如下:
     1.合成了不同PEG取代度、不同PEI取代度的壳聚糖衍生物。首先,以聚乙二醇(PEG2000)与丁二酸酐(SA)为原料,合成了双羧基的聚乙二醇化合物(化合物1),通过1H NMR和13C NMR进行结构表征结果显示,合成产物为化合物1且转化完全。同时,由聚乙烯亚胺(PEI)合成了部分巯基化的PEI(化合物2),反应中投料比增加或反应时间延长均会使巯基化程度加深,合成了三种巯基取代度的化合物2,即PEI-SH2、PEI-SH2.4和PEI-SH2.7。以壳聚糖、化合物1和2为原料,通过NHS/EDC催化法分别合成了壳聚糖-PEG衍生物(化合物3)和壳聚糖-PEG-PEI衍生物(化合物4),并通过1HNMR和FT-IR进行结构表征,分别探讨化合物3和化合物4合成过程中投料比对各步产物取代度的影响,随着化合物1和2投料比例的增加取代度增大,但增大到一定程度时不会再出现明显增大,得到了一系列壳聚糖衍生物。
     2.合成了长径比可控的金纳米棒(GNRs)并进行了表面修饰。通过晶种生长法合成了GNRs,CTAB包裹于GNRs表面,端位相对裸露巯基优先结合于端位。将化合物2与GNRs混合,通过Au-S键2结合于GNRs表面,透射电镜图可见化合物2与GNRs摩尔比较低时,GNRs以端位连接为主,摩尔比较高时出现部分并肩排列情况。化合物4与GNRs混合,混合液被透析处理所得产物(CS-GNRs)结构以并肩排列为主,且化合物4的PEI取代度高、与GNRs摩尔比高时有利于并肩排列组装形式的出现;混合液被静置处理所得CS-GNRs在摩尔比低时,呈现聚合物被包裹于内部,GNRs排列在外的组装结构,摩尔比高时也出现了并肩排列的趋势。综合产物稳定性、生物相容性等方面,静置条件下的并肩结构更适合用于下一步研究。
     3.考察了CS-GNRs用于药物载体研究的性质。以阿霉素(DOX)与化合物4为原料,在NHS/DCC催化下合成了阿霉素-壳聚糖衍生物(DOX-CS,化合物5),参照DOX的浓度-吸光度标准曲线,计算化合物5中DOX取代度为18.4%。通过UV-vis光谱检测表明CS-GNRs的光学稳定性、温度敏感性和激光的稳定性良好,可用于体内外研究。DOX-CS与GNRs偶联产物DOX-CS-GNRs的UV-vis光谱中纵轴吸收峰的位置发生了红移TEM图观察到产物DOX-CS-GNRs为侧面排列的GNRs团簇。
     4.体外评价了DOX-CS-GNRs的细胞毒性、细胞摄取以及光热疗-化疗联合抗肿瘤效果。通过细胞毒性实验证明,GNRs在很低浓度便对细胞表现出了很强的毒性作用。CS-GNRs和DOX-CS-GNRs则表现出了较好的生物相容性,细胞毒性很小。DOX-CS-GNRs与肿瘤细胞共同孵育2h后,通过激光共聚焦显微镜在细胞内观察到红色荧光(DOX的荧光)表明,DOX-CS-GNRs已进入了肿瘤细胞。在近红外激光照射条件下,体外评价CS-GNRs对肿瘤细胞的光热疗杀伤作用,DOX-CS-GNRs对肿瘤细胞光热疗-化疗联合治疗作用,结果显示CS-GNRs对肿瘤细胞具有明显的杀伤抑制效果,而DOX-CS-GNRs的杀伤效果更高。以上结果表明,光热疗-化疗的联合治疗作用要比单纯光热疗的治疗作用更强,具有更理想的治疗效果。
     综上所述,壳聚糖衍生物与金纳米棒通过Au-S键化学键合方式构建具有特定组装结构的壳聚糖基金纳米棒,同时负载抗肿瘤药物阿霉素,其具有良好的生物相容性和肿瘤杀伤作用,通过光热疗-化疗联合治疗方式比单纯的光热疗具有更强的肿瘤杀伤效果。
Gold nanorods(GNRs) have attracted considerable attention for their unique properties in photothermal therapy, biosensing, molecular imaging, and gene or drug delivery for biomedical applications. Chitosan derivatives are widely used in biomedical materials, gene and drug delivery system with biocompatibility, non-toxicity, biodegradability and strong adhesion of biological mucosa. Expecially, chitosan nanoparticles as a carrier of anticancer drugs has been used very extensively.
     In this study, a new hybrid nanomaterials were designed and synthesized based on the conjugates of GNRs and chitosan derivatives with low toxicity and biocompatibility. A synergistic effect of combined photothermo-and chemo-therapy was expected to treat with cancer cells. The main contents of this work are as follows:
     1. The chitosan derivatives were designed and synthesized with different substitution degree of PEG and PEI. First, double carboxy-terminated PEG (compound1) was synthesized by esterification of poly(ethylene) glycol (PEG) and succinic acid anhydride (SA). The structure of1was characterized by1H and13C NMR, and the results show that synthetic product was1and transformation completely. Second, partly thioled polyethylenimine (compound2) was prepared by branched polyethylenimine (PEI) and methyl thioglycolate. The degrees of substitution of the thiol moiety determined by Ellman's method were PEI-SH2、PEI-SH2.4and PEI-SH2.7. A modified version of the NHS/EDC coupling approach was used to synthesize PEG2000-g-chitosan conjugate (compound3) and PEI-PEG-g-chitosan conjugate (compound4). The structures of3and4were characterized by1H and13C NMR and FT-IR spectra. The degrees of substitution of the PEG or PEI moiety were influenced by the molar ratio.
     2. GNRs were synthesized through seed mediated growth procedure, and the surface was capped by CTAB bilayer while the end faces relatively bare, thus makes the ends much easier to be modified. The2preferentially attached onto the surface of GNRs through Au-S bond. TEM images chearly showed the end-to-end assembly of GNRs when the molar ratio of2and GNRs was low. But with the increae of molar ratios, the side-by-side assembly of GNRs was observed. The chitosan-modified-GNRs nanoparticles (CS-GNRs) were prepared by mixing4and GNRs. The mixture was treated by dialysis and the result was mainly to assemble GNRs into side by side structure. The high degrees of substitution of PEI and high molar ratio of4were suitable for inducing the side by side structure. The CS-GNRs with core-shell structure were prepared by still-setting method when the molar ratio of4and GNRs was low. Chitosan derivatives were wrapped in internal, and GNRs arrayed outside. And the high molar ratio led to side-by-side assembly of GNRs. Therefore, CS-GNRs with side by side structure was more suitable for following research considering the stability and biocompatibility.
     3. The CS-GNRs were used for drug delivery system. Doxorubicin (DOX) conjugated to chitosan derivatives by NHS/EDC coupling approach (compound5). The DOX content of5was calculated by fluorescence detection at480nm according to a standard curve of DOX in DMSO, and the degrees of substitution of DOX was18.4%. The stability of optical, temperture and NIR irradiation of CS-GNRs were detected by UV-vis spectra, and the results showed CS-GNRs can be used for following research. The DOX-CS-GNRs with side-by-side structure was prepared by5and GNRs.
     4. The raw GNRs showed heavy cytotoxic effect on cells even at low concentration. However, the CS-GNRs and DOX-CS-GNRs did not show any cyctotoxic. The confocal image analysis revealed that DOX-CS-GNRs appeared in cells after incubation for2h. CS-GNRs inhibited cancer cells by photothermal effect under near-infrared laser irradiation. A synergistic effect of DOX-CS-GNRs combined photothermo-and chemo-therapy was found at moderate power intensity of NIR irradiation based on the DOX release and the photothermal effect of GNRs.
     In summary, DOX-CS-GNRs was prepared by chitosan derivatives and GNRs through the strong metal sulfur chemical bond between thiols and the surface of GNRs. And the inhibition of DOX-CS-GNRs combined photothermo-and chemo-therapy was more effective than by photothermal therapy alone.
引文
[1]Kumari A.,Yadav S. K.,Yadav S. C. Biodegradable polymeric nanoparticles based drug delivery systems[J]. Colloids and Surfaces B:Biointerfaces,2010,75 (1): 1-18.
    [2]Chen W. R.,Adams R. L.,Carubelli R.,Nordquist R. E. Laser-photosensitizer assisted immunotherapy:A novel modality for cancer treatment[J]. Cancer Letters, 1997,115(1):25-30.
    [3]Rajput M.,Agrawal P. Microspheres in cancer therapy[J]. Indian Journal of Cancer, 2010,47 (4):458.
    [4]Hensing T. A. Clinical evaluation and staging of patients who have lung cancer[J]. Hematology and Oncology Clinics of North America,2005,19 (2):219-236.
    [5]Ting B. P.,Zhang J.,Gao Z.,Ying J. Y. A DNA biosensor based on the detection of doxorubicin-conjugated ag nanoparticle labels using solid-state voltammetry[J]. Biosensors and Bioelectronics,2009,25(2):282-287.
    [6]Sun C.,Lee J. S. H.,Zhang M. Magnetic nanoparticles in mr imaging and drug delivery[J]. Advanced drug delivery reviews,2008,60 (11):1252-1265.
    [7]Yang X.,Zhang Q.,Wang Y.,Chen H.,Zhang H.,Gao F.,Liu L. Self-aggregated nanoparticles from methoxy poly (ethylene glycol)-modified chitosan:Synthesis; characterization; aggregation and methotrexate release in vitro[J]. Colloids and Surfaces B:Biointerfaces,2008,61 (2):125-131.
    [8]Hong J. W.,Park J. H.,Huh K. M.,Chung H.,Kwon I. C.,Jeong S. Y. Pegylated polyethylenimine for in vivo local gene delivery based on lipiodolized emulsion system[J]. Journal of Controlled Release,2004,99 (1):167-176.
    [9]Yasugi K.,Nakamura T.,Nagasaki Y.,Kato M.,Kataoka K. Sugar-installed polymer micelles:Synthesis and micellization of poly (ethylene glycol)-poly (d,1-lactide) block copolymers having sugar groups at the peg chain end[J]. Macromolecules, 1999,32 (24):8024-8032.
    [10]Bae Y.,Nishiyama N.,Kataoka K. In vivo antitumor activity of the folate-conjugated ph-sensitive polymeric micelle selectively releasing adriamycin in the intracellular acidic compartments [J]. Bioconjugate Chemistry,2007,18 (4):1131-1139.
    [11]Koo Y. E. L.,Reddy G R.,Bhojani M.,Schneider R.,Philbert M. A.,Rehemtulla A.,Ross B. D.,Kopelman R. Brain cancer diagnosis and therapy with nanoplatforms[J]. Advanced drug delivery reviews,2006,58 (14):1556-1577.
    [12]Honkanen R. E. Cantharidin, another natural toxin that inhibits the activity of serine/threonine protein phosphatases types 1 and 2A[J]. FEBS letters,1993,330 (3):283-286.
    [13]Wang M.,Feng Q.,Niu X.,Tan R.,She Z. A spheres-in-sphere structure for improving protein-loading poly (lactide-co-glycolide) microspheres[J]. Polymer Degradation and Stability,2010,95(1):6-13.
    [14]Ito A.,Shinkai M.,Honda H.,Kobayashi T. Medical application of functionalized magnetic nanoparticles[J]. Journal of bioscience and bioengineering,2005,100 (1): 1-11.
    [15]Jordan A.,Scholz R.,Maier-Hauff K.,Van Landeghem F. K. H.,Waldoefner N.,Teichgraeber U.,Pinkernelle J.,Bruhn H.,Neumann F.,Thiesen B. The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma[J]. Journal of neuro-oncology,2006,78(1):7-14.
    [16]Sinha V.,Singla A.,Wadhawan S.,Kaushik R.,Kumria R.,Bansal K.,Dhawan S. Chitosan microspheres as a potential carrier for drugs[J]. International Journal of Pharmaceutics,2004,274(1):1-33.
    [17]Gao J.,Gu H.,Xu B. Multifunctional magnetic nanoparticles:Design, synthesis, and biomedical applications[J]. Accounts of chemical research,2009,42 (8): 1097-1107.
    [18]Bangham A.,Standish M.,Watkins J. Diffusion of univalent ions across the lamellae of swollen phospholipids[J]. Journal of molecular biology,1965,13 (1):238-252.
    [19]Sharma U. S.,Sharma A.,Chau R. I.,Straubinger R. M. Liposome-mediated therapy of intracranial brain tumors in a rat model [J]. Pharmaceutical research,1997,14 (8):992-998.
    [20]Pissuwan D.,Niidome T.,Cortie M. B. The forthcoming applications of gold nanoparticles in drug and gene delivery systems[J]. Journal of Controlled Release, 2011,149(1):65-71.
    [21]Dreaden E. C.,Alkilany A. M.,Huang X.,Murphy C. J.,El-Sayed M. A. The golden age:Gold nanoparticles for biomedicine[J]. Chem. Soc. Rev.,2011.
    [22]Huang X.Jain P. K.,El-Sayed I. H.,El-Sayed M. A. Gold nanoparticles:Interesting optical properties and recent applications in cancer diagnostics and therapy [J]. Nanomedicine,2007,2 (5):681-693.
    [23]Odegard G,Clancy T.,Gates T. Modeling of the mechanical properties of nanoparticle/polymer composites[J]. Polymer,2005,46 (2):553-562.
    [24]Zhong J.,Wen W. Y.Jones A. A. Enhancement of diffusion in a high-permeability polymer by the addition of nanoparticles[J]. Macromolecules,2003,36 (17): 6430-6432.
    [25]Lu X.,Chao D.,Chen J.,Zhang W.,Wei Y. Preparation and characterization of inorganic/organic hybrid nanocomposites based on au nanoparticles and polypyrrole[J]. Materials letters,2006,60 (23):2851-2854.
    [26]Rao C. N. R.,Kulkarni G U.,Thomas P. J.,Edwards P. P. Metal nanoparticles and their assemblies[J]. Chem. Soc. Rev.,2000,29 (1):27-35.
    [27]Njoki P. N.,Lim I. I. S.,Mott D.,Park H. Y.,Khan B.,Mishra S.,Sujakumar R.,Luo J.,Zhong C. J. Size correlation of optical and spectroscopic properties for gold nanoparticles[J]. The Journal of Physical Chemistry C,2007,111 (40): 14664-14669.
    [28]Orendorff C. J.,Hankins P. L.,Murphy C. J. Ph-triggered assembly of gold nanorods[J]. Langmuir,2005,21(5):2022-2026.
    [29]Sau T. K.,Murphy C. J. Seeded high yield synthesis of short au nanorods in aqueous solution[J]. Langmuir,2004,20 (15):6414-6420.
    [30]Nikoobakht B.,El-Sayed M. A. Preparation and growth mechanism of gold nanorods (nrs) using seed-mediated growth method[J]. Chemistry of Materials, 2003,15 (10):1957-1962.
    [31]Jain P. K.,Lee K. S.,El-Sayed I. H.,El-Sayed M. A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine[J]. The Journal of Physical Chemistry B,2006,110 (14):7238-7248.
    [32]Taton T. A. Preparation of gold nanoparticle-DNA conjugates[J]. Current Protocols in Nucleic Acid Chemistry,2002.
    [33]Orendorff C. J.,Murphy C. J. Quantitation of metal content in the silver-assisted growth of gold nanorods[J]. The Journal of Physical Chemistry B,2006,110 (9): 3990-3994.
    [34]Chiang C. L. Controlled growth of gold nanoparticles in aerosol-ot/sorbitan monooleate/isooctane mixed reverse micelles[J]. Journal of colloid and interface science,2000,230 (1):60-66.
    [35]Knecht M. R.,Garcia-Martinez J. C.,Crooks R. M. Hydrophobic dendrimers as templates for au nanoparticles[J]. Langmuir,2005,21 (25):11981-11986.
    [36]Gomez S.,Philippot K.,Colliere V.,Chaudret B.,Senocq F.,Lecante P. Gold nanoparticles from self-assembledgold (i) amine precursors[J]. Chem. Commun., 2000, (19):1945-1946.
    [37]Xu J.,Li S.,Weng J.,Wang X.,Zhou Z.,Yang K.,Liu M.,Chen X.,Cui Q.,Cao M. Hydrothermal syntheses of gold nanocrystals:From icosahedral to its truncated form[J]. Advanced Functional Materials,2008,18(2):277-284.
    [38]Sanda C. B.,Simion A. Detoxification of gold nanorods by conjugation with thiolated poly(ethylene glycol) and their assessment as sers-active carriers of raman tags.[J]. Nanotechnology,2010,21:235601-235608.
    [39]Qiu Y.,Liu Y.,Wang L.,Xu L.,Bai R.,Ji Y.,Wu X.,Zhao Y.,Li Y.,Chen C. Surface chemistry and aspect ratio mediated cellular uptake of au nanorods[J]. Biomaterials, 2010,31 (30):7606-7619.
    [40]Tong L.,Wei Q.,Wei A.,Cheng J. X. Gold nanorods as contrast agents for biological imaging:Optical properties, surface conjugation and photothermal effects(?)[J]. Photochemistry and photobiology,2009,85 (1):21-32.
    [41]Kosmella S.,Koetz J. Poly (ethyleneimine) as reducing and stabilizing agent for the formation of gold nanoparticles in w/o microemulsions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2006,290 (1):150-156.
    [42]Hu C.,Peng Q.,Chen F.,Zhong Z.,Zhuo R. Low molecular weight polyethylenimine conjugated gold nanoparticles as efficient gene vectors[J]. Bioconjugate Chemistry, 2010,21:836-843.
    [43]Takahashi H.,Niidome Y.,Niidome T.,Kaneko K.,Kawasaki H.,Yamada S. Modification of gold nanorods using phosphatidylcholine to reduce cytotoxicity[J]. Langmuir,2006,22 (1):2-5.
    [44]Duan R.,Zhou X.,Xing D. Electrochemiluminescence biobarcode method based on cysteamine-gold nanoparticle conjugates[J]. Analytical Chemistry,2010,82 (8): 3099-3103.
    [45]Pan B.,Gao F.,Ao L.,Tian H.,He R.,Cui D. Controlled self-assembly of thiol-terminated poly (amidoamine) dendrimer and gold nanoparticles[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2005,259 (1-3):89-94.
    [46]Miranda O. R.,Creran B.,Rotello V. M. Array-based sensing with nanoparticles: "Chemical noses" for sensing biomolecules and cell surfaces[J], Current opinion in chemical biology,2010,14 (6):728-736.
    [47]Albert K. J.J Lewis N. S.,Schauer C. L.,Sotzing G. A.,Stitzel S. E.,Vaid T. P.,Walt D. R. Cross-reactive chemical sensor arrays[J]. Chemical Reviews,2000,100 (7): 2595-2626.
    [48]Nakashima H.,Furukawa K.,Kashimura Y.,Torimitsu K. Self-assembly of gold nanorods induced by intermolecular interactions of surface-anchored lipids[J]. Langmuir,2008,24 (11):5654-5658.
    [49]Taub N.,Krichevski O.,Markovich G. Growth of gold nanorods on surfaces[J]. The Journal of Physical Chemistry B,2003,107(42):11579-11582.
    [50]Huang X.,Neretina S.,El-Sayed M. A. Gold nanorods:From synthesis and properties to biological and biomedical applications[J]. Advanced Materials,2009, 21 (48):4880-4910.
    [51]Zhong L.,Zhou X.,Bao S.,Shi Y.,Wang Y.,Hong S.,Huang Y.,Wang X.,Xie Z.,Zhang Q. Rational design and sers properties of side-by-side, end-to-end and end-to-side assemblies of au nanorods[J]. Journal of Materials Chemistry,2011,21 (38): 14448-14455.
    [52]DeLong R. K.,Akhtar U.,Sallee M.,Parker B.,Barber S.,Zhang J.,Craig M.,Garrad R.,Hickey A. J.,Engstrom E. Characterization and performance of nucleic acid nanoparticles combined with protamine and gold[J]. Biomaterials,2009,30 (32): 6451-6459.
    [53]Claridge S. A.,Liang H. W.,Basu S. R.,Frechet J. M. J.,Alivisatos A. P. Isolation of discrete nanoparticle-DNA conjugates for plasmonic applications [J]. Nano Letters, 2008,8(4):1202-1206.
    [54]Seeman N. C.,Belcher A. M. Emulating biology:Building nanostructures from the bottom up[J]. Proceedings of the National Academy of Sciences of the United States of America,2002,99 (Suppl 2):6451.
    [55]Qin W. J.,Yung L. Y. L. Nanoparticle carrying a single probe for target DNA detection and single nucleotide discrimination[J]. Biosensors and Bioelectronics, 2009,25 (2):313-319.
    [56]Seeman N. C. Nucleic acid junctions and lattices[J]. Journal of theoretical biology, 1982,99 (2):237-247.
    [57]Chen J.,Seeman N. C. Synthesis from DNA of a molecule with the connectivity of a cube[J]. Nature,1991,350 (6319):631-633.
    [58]Fu T. J.,Seeman N. C. DNA double-crossover molecules[J]. Biochemistry,1993,32 (13):3211-3220.
    [59]Li X.,Yang X.,Qi J.,Seeman N. C. Antiparallel DNA double crossover molecules as components for nanoconstruction[J]. Journal of the American Chemical Society, 1996,118 (26):6131-6140.
    [60]Yin L.,Ding J.,He C.,Cui L.,Tang C.,Yin C. Drug permeability and mucoadhesion properties of thiolated trimethyl chitosan nanoparticles in oral insulin delivery [J]. Biomaterials,2009,30 (29):5691-5700.
    [61]Li Q. L.,Chen Z. Q.,Darvell B. W.,Liu L. K.,Jiang H. B.,Zen Q.,Peng Q.,Ou G M. Chitosan-phosphorylated chitosan polyelectrolyte complex hydrogel as an osteoblast carrier[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials,2007,82 (2):481-486.
    [62]Chen L.,Subirade M. Chitosan/ β-lactoglobulin core-shell nanoparticles as nutraceutical carriers[J]. Biomaterials,2005,26(30):6041-6053.
    [63]Andriyanova N.,Smirnova L.,Semchikov Y. D.,Kir'yanov K.,Zaborshchikova N.,Ur'yash V.,Vostokov N. Synthesis of cyanoethyl chitosan derivatives[J]. Polymer Science Series A,2006,48 (5):483-488.
    [64]Mourya V.,Inamdar N. N. Trimethyl chitosan and its applications in drug delivery[J]. Journal of Materials Science:Materials in Medicine,2009,20 (5): 1057-1079.
    [65]Huang M.,Liu L.,Zhang G.,Yuan G.,Fang Y. Preparation of chitosan derivative with polyethylene glycol side chains for porous structure without specific processing technique[J]. International Journal of biological Macromolecules,2006,38(3): 191-196.
    [66]Masotti A.,Ortaggi G Chitosan micro-and nanospheres:Fabrication and applications for drug and DNA delivery[J]. Mini Reviews in Medicinal Chemistry, 2009,9 (4):463-469.
    [67]Wang Z. H.,Wang Z. Y.,Sun C. S.,Wang C. Y.,Jiang T. Y.,Wang S. L. Trimethylated chitosan-conjugated plga nanoparticles for the delivery of drugs to the brain[J]. Biomaterials,2010,31 (5):908-915.
    [68]No H.,Park N.,Lee S.,Hwang H.,Meyers S. Antibacterial activities of chitosans and chitosan oligomers with different molecular weights on spoilage bacteria isolated from tofu[J]. Journal of food science,2002,67 (4):1511-1514.
    [69]Aspden T. J.,Mason J. D. T.,Jones N. S.,Lowe J.,Skaugrud O.,lllum L. Chitosan as a nasal delivery system:The effect of chitosan solutions on in vitro and in vivo mucociliary transport rates in human turbinates and volunteers[J]. Journal of pharmaceutical sciences,1997,86 (4):509-513.
    [70]Wang Y.,Jiang Q.,Li R.,Liu L.,Zhang Q.,Zhao J. Self-assembled nanoparticles of cholesterol-modified o-carboxymethyl chitosan as a novel carrier for paclitaxel[J]. Nanotechnology,2008,19:145101-145108.
    [71]Chen M.,Liu Y.,Yang W.,Li X.,Liu L.,Zhou Z.,Wang Y.,L1 R.,Zhang Q. Preparation and characterization of self-assembled nanoparticles of 6-o-cholesterol-modified chitosan for drug delivery[J]. Carbohydrate Polymers,2011,84:1244-1251.
    [72]Gupta K.,Jabrail F. H. Glutaraldehyde and glyoxal cross-linked chitosan microspheres for controlled delivery of centchroman[J]. Carbohydrate research, 2006,341 (6):744-756.
    [73]Nakanishi T.,Fukushima S.,Okamoto K.,Suzuki M.,Matsumura Y.,Yokoyama M.,Okano T.,Sakurai Y.,Kataoka K. Development of the polymer micelle carrier system for doxorubicin[J]. Journal of Controlled Release,2001,74 (1-3):295-302.
    [74]Rapoport N. Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery[J]. Progress in Polymer Science,2007,32(8):962-990.
    [75]Pouton C. W.,Seymour L. W. Key issues in non-viral gene delivery [J]. Advanced drug delivery reviews,1998,34(1):3-19.
    [76]Song Y. K.,Liu D. Free liposomes enhance the transfection activity of DNA/lipid complexes in vivo by intravenous administration[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes,1998,1372(1):141-150.
    [77]Liu F.,Huang L. Development of non-viral vectors for systemic gene delivery [J]. Journal of Controlled Release,2002,78(1):259-266.
    [78]Garnett M. C. Gene-delivery systems using cationic polymers[J]. Critical reviews in therapeutic drug carrier systems,1999,16(2):147.
    [79]De Smedt S. C.,Demeester J.,Hennink W. E. Cationic polymer based gene delivery systems[J]. Pharmaceutical research,2000,17(2):113-126.
    [80]Jiang H. L.,Kwon J. T.,Kim E. M.,Kim Y. K.,Arote R.,Jere D. Jeong H. J.Jang M. K.,Nah J. W.,Xu C. X. Galactosylated poly (ethylene glycol)-chitosan-graft-polyethylenimine as a gene carrier for hepatocyte-targeting[J]. Journal of Controlled Release,2008,131(2):150-157.
    [81]Huang X.,El-Sayed M. A. Gold nanoparticles:Optical properties and implementations in cancer diagnosis and photothermal therapy [J]. Journal of advanced research,2010,1 (1):13-28.
    [82]Ghosh P.,Han G,De M.,Kim C. K.,Rotello V. M. Gold nanoparticles in delivery applications[J]. Advanced drug delivery reviews,2008,60(11):1307-1315.
    [83]Cai H.,Zhu N.Jiang Y.,He P.,Fang Y. Cu@ au alloy nanoparticle as oligonucleotides labels for electrochemical stripping detection of DNA hybridization[J]. Biosensors and Bioelectronics,2003,18(11):1311-1319.
    [84]Huang X.,El-Sayed I. H.,Qian W.,El-Sayed M. A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods[J]. Journal of the American Chemical Society,2006,128(6):2115-2120.
    [85]Zhou X.,Zhang X.,Yu X.,Zha X.,Fu Q.,Liu B.,Wang X.,Chen Y.,Shan Y. The effect of conjugation to gold nanoparticles on the ability of low molecular weight chitosan to transfer DNA vaccine[J]. Biomaterials,2008,29(1):111-117.
    [86]Saini V.,Martyshkin D. V.,Mirov S. B.,Perez A.,Perkins G,Ellisman M. H.,Towner V. D.,Wu H.,Pereboeva L.,Borovjagin A. An adenoviral platform for selective self-assembly and targeted delivery of nanoparticles[J]. Small,2008,4 (2):262-269.
    [87]Dixit V.,Van den Bossche J.,Sherman D. M.,Thompson D. H.,Andres R. P. Synthesis and grafting of thioctic acid-peg-folate conjugates onto au nanoparticles for selective targeting of folate receptor-positive tumor cells[J]. Bioconjugate Chemistry,2006,17(3):603-609.
    [88]Kim J.-Y.,Choi W. I.,Kim Y. H.,Tae G,Lee S.-Y.,Kim K.,Kwon I. C. In-vivo tumor targeting of pluronic-based nano-carriers[J]. Journal of Controlled Release,2010, 147(1):109-117.
    [89]Ma M.,Chen H.,Chen Y.,Wang X.,Chen F.,Cui X.,Shi J. Au capped magnetic core/mesoporous silica shell nanoparticles for combined photothermo-/chemo-therapy and multimodal imaging[J]. Biomaterials,2012,33 (3):989-998.
    [90]Chithrani D. B.,Dunne M.,Stewart J.,Allen C.,Jaffray D. A. Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier[J]. Nanomedicine:Nanotechnology, Biology and Medicine,2010,6(1):161-169.
    [91]Huang X.Jain P. K.,El-Sayed I. H.El-Sayed M. A. Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles[J]. Photochemistry and photobiology,2006,82(2):412-417.
    [92]Prabaharan M.,Grailer J. J.,Pilla S.,Steeber D.A.,Gong S.Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery[J]. Biomaterials,2009,30 (30):6065-6075.
    [93]Li Z.,Huang P.,Zhang X.,Lin J.,Yang S.,Liu B.,Gao F.,Xi P.,Ren Q.,Cui D. Rgd-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy[J]. Molecular Pharmaceutics,2009,7(1):94-104.
    [94]Yang P. H.,Sun X.,Chiu J. F.,Sun H.,He Q. Y. Transferrin-mediated gold nanoparticle cellular uptake[J]. Bioconjugate Chemistry,2005,16(3):494-496.
    [95]Hogg J. C.,Chu F.,Utokaparch S.,Woods R.,Elliott W. M.,Buzatu L.,Cherniack R. M.,Rogers R. M.,Sciurba F. C.,Coxson H. O. The nature of small-airway obstruction in chronic obstructive pulmonary disease[J]. New England Journal of Medicine,2004,350 (26):2645-2653.
    [96]Choi R.,Yang J.,Choi J.,Lim E. K.,Kim E.,Suh J. S.,Huh Y. M.,Haam S. Thiolated dextran-coated gold nanorods for photothermal ablation of inflammatory macrophages[J]. Langmuir,2010,26(22):17520-17527.
    [97]Takemoto M.,Kuroda M.,Urano M.,Nishimura Y.,Kawasaki S.,Kato H.,Okumura Y.,Akaki S.,Kanazawa S.,Asaumi J. The effect of various chemotherapeutic agents given with mild hyperthermia on different types of tumours[J].International journal of hyperthermia,2003,19(2):193-203.
    [98]You J.,Shao R.,Wei X.,Gupta S.,Li C. Near-infrared light triggers release of paclitaxel from biodegradable microspheres:Photothermal effect and enhanced antitumor activity [J]. Small,2010,6(9):1022-1031.
    [99]Choi W. I.,Kim J.-Y.,Kang C.,Byeon C. C.,Kim Y. H.,Tae G Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers[J].ACS Nano,2011,5(3):1995-2003.
    [100]Kuo T. R.,Hovhannisyan V. A.,Chao Y. C.,Chao S. L.,Chiang S. J.,Lin S. J.,Dong C. Y.,Chen C. C. Multiple release kinetics of targeted drug from gold nanorod embedded polyelectrolyte conjugates induced by near-infrared laser irradiation[J]. Journal of the American Chemical Society,2010,132:14163-14171.
    [101]Guo R.,Zhang L.,Qian H.,Li R.,Jiang X.,Liu B. Multifunctional nanocarriers for cell imaging, drug delivery, and near-ir photothermal therapy[J]. Langmuir,2010, 26 (8):5428-5434.
    [102]Jang B.,Park J. Y.,Tung C. H.,Kim I. H.,Choi Y. Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo[J]. ACS Nano,2011,5 (2):1086-1094.
    [103]Kievit F. M.,Veiseh O.J Fang C.,Bhattarai N.,Lee D.,Ellenbogen R. G,Zhang M. Chlorotoxin labeled magnetic nanovectors for targeted gene delivery to glioma[J]. ACS Nano,2010,4(8):4587-4594.
    [104]Boca S. C.,Potara M.,Gabudean A.-M.,Juhem A.,Baldeck P. L.,Astilean S. Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly effective photothermal transducers for in vitro cancer cell therapy[J]. Cancer Letters,2011,311:131-140.
    [105]Wei Q.,Ji J.,Shen J. Synthesis of near-infrared responsive gold nanorod/pnipaam core/shell nanohybrids via surface initiated atrp for smart drug delivery [J]. Macromolecular Rapid Communications,2008,29(8):645-650.
    [106]Hauck T. S.,Ghazani A. A.,Chan W. C. W. Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells[J].Small, 2008,4(1):153-159.
    [1]Kumari A.,Yadav S. K.,Yadav S. C. Biodegradable polymeric nanoparticles based drug delivery systems[J]. Colloids and Surfaces B:Biointerfaces,2010,75(1): 1-18.
    [2]Yin L.,Ding J.,He C.,Cui L.,Tang C.,Yin C.Drug permeability and mucoadhesion properties of thiolated trimethyl chitosan nanoparticles in oral insulin delivery[J]. Biomaterials,2009,30 (29):5691-5700.
    [3]Li Q. L.,Chen Z. Q.,Darvell B. W.,Liu L. K.,Jiang H. B.,Zen Q.,Peng Q.,Ou G M. Chitosan-phosphorylated chitosan polyelectrolyte complex hydrogel as an osteoblast carrier [J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials,2007,82 (2):481-486.
    [4]Chen L.,Subirade M. Chitosan/β-lactoglobulin core-shell nanoparticles as nutraceutical carriers[J]. Biomaterials,2005,26 (30):6041-6053.
    [5]Andriyanova N.,Smirnova L.,Semchikov Y. D.,Kir'yanov K.,Zaborshchikova N.,Ur'yash V.,Vostokov N. Synthesis of cyanoethyl chitosan derivatives[J]. Polymer Science Series A,2006,48 (5):483-488.
    [6]Mourya V.,Inamdar N. N. Trimethyl chitosan and its applications in drug delivery[J]. Journal of Materials Science:Materials in Medicine,2009,20 (5): 1057-1079.
    [7]Huang M.,Liu L.,Zhang G.,Yuan G.,Fang Y. Preparation of chitosan derivative with polyethylene glycol side chains for porous structure without specific processing technique [J]. International Journal of biological Macromolecules,2006,38 (3): 191-196.
    [8]Masotti A.,Ortaggi G. Chitosan micro-and nanospheres:Fabrication and applications for drug and DNA delivery[J]. Mini Reviews in Medicinal Chemistry, 2009,9 (4):463-469.
    [9]Wang Z. H.,Wang Z. Y.,Sun C. S.,Wang C. Y.Jiang T. Y.,Wang S. L. Trimethylated chitosan-conjugated plga nanoparticles for the delivery of drugs to the brain[J]. Biomaterials,2010,31 (5):908-915.
    [10]No H.,Park N.,Lee S.,Hwang H.,Meyers S. Antibacterial activities of chitosans and chitosan oligomers with different molecular weights on spoilage bacteria isolated from tofu[J]. Journal of food science,2002,67 (4):1511-1514.
    [11]Dixit V.,Van den Bossche J.,Sherman D. M.,Thompson D. H.,Andres R. P. Synthesis and grafting of thioctic acid-peg-folate conjugates onto au nanoparticles for selective targeting of folate receptor-positive tumor cells[J]. Bioconjugate Chemistry,2006,17 (3):603-609.
    [12]Kim J.-Y.,Choi W. I.,Kim Y. H.,Tae G.,Lee S.-Y.,Kim K.,Kwon I. C. In-vivo tumor targeting of pluronic-based nano-carriers[J]. Journal of Controlled Release,2010, 147(1):109-117.
    [13]Hu C.,Peng Q.,Chen F.,Zhong Z.,Zhuo R. Low molecular weight polyethylenimine conjugated gold nanoparticles as efficient gene vectors[J]. Bioconjugate Chemistry, 2010,21:836-843.
    [14]Casettari L.,Vllasaliu D.,Mantovani G,Howdle S. M.,Stolnik S.Illum L. Effect of pegylation on the toxicity and permeability enhancement of chitosan[J]. Biomacromolecules,2010,11(11):2854-2865.
    [15]Suzuki S.,Watanabe S.,Masuko T.,Hashimoto Y. Preparation of long-circulating immunoliposomes containing adriamycin by a novel method to coat immunoliposomes with poly (ethylene glycol)[J]. Biochimica et Biophysica Acta (BBA)-General Subjects,1995,1245 (1):9-16.
    [16]Liu L.,Xu X.,Guo S.,Han W. Synthesis and self-assembly of chitosan-based copolymer with a pair of hydrophobic/hydrophilic grafts of polycaprolactone and poly (ethylene glycol)[J]. Carbohydrate Polymers,2009,75(3):401-407.
    [17]Pan B.,Gao F.,Ao L.,Tian H.,He R.,Cui D. Controlled self-assembly of thiol-terminated poly (amidoamine) dendrimer and gold nanoparticles[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2005,259 (1-3):89-94.
    [18]Eyer P.,Worek F.,Kiderlen D.,Sinko G.,Stuglin A.,Simeon-Rudolf V.,Reiner E. Molar absorption coefficients for the reduced ellman reagent:Reassessmen[J]. Analytical biochemistry,2003,312 (2):224-227.
    [19]Ellman G L. Tissue sulfhydryl groups[J]. Archives of biochemistry and biophysics, 1959,82 (1):70-77.
    [20]von Harpe A.,Petersen H.,Li Y.,Kissel T. Characterization of commercially available and synthesized polyethylenimines for gene delivery[J]. Journal of Controlled Release,2000,69 (2):309-322.
    [21]Aktas Y.,Yemisci M.,Andrieux K.,Gursoy R. N.,Alonso M. J.,Fernandez-Megia E.,Novoa-Carballal R.,Quinoa E.,Riguera R.,Sargon M. F. Development and brain delivery of chitosan-peg nanoparticles functionalized with the monoclonal antibody OX26[J]. Bioconjugate Chemistry,2005,16 (6):1503-1511.
    [22]Prego C.,Torres D.Fernandez-Megia E.,Novoa-Carballal R.,Quinoa E.,Alonso M. Chitosan-peg nanocapsules as new carriers for oral peptide delivery:Effect of chitosan pegylation degree[J]. Journal of Controlled Release,2006,111(3): 299-308.
    [23]Hirai A.,Odani H.,Nakajima A. Determination of degree of deacetylation of chitosan by 1H NMR spectroscopy[J]. Polymer Bulletin,1991,26(1):87-94.
    [1]Huang X.,Jain P. K.,El-Sayed I. H.,El-Sayed M. A. Gold nanoparticles:Interesting optical properties and recent applications in cancer diagnostics and therapy[J]. Nanomedicine,2007,2(5):681-693.
    [2]Pissuwan D.,Niidome T.,Cortie M. B. The forthcoming applications of gold nanoparticles in drug and gene delivery systems[J]. Journal of Controlled Release, 2011,149(1):65-71.
    [3]Dreaden E. C.,Alkilany A. M.,Huang X.,Murphy C. J.,El-Sayed M. A. The golden age:Gold nanoparticles for biomedicine[J]. Chem. Soc. Rev.,2011.
    [4]Hauck T. S.,Ghazani A. A.,Chan W. C. W. Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells[J]. Small, 2008,4(1):153-159.
    [5]Duan R.,Zhou X.,Xing D. Electrochemiluminescence biobarcode method based on cysteamine-gold nanoparticle conjugates[J]. Analytical Chemistry,2010,82(8): 3099-3103.
    [6]Miranda O.R.,Creran B.,Rotello V. M. Array-based sensing with nanoparticles: "Chemical noses" for sensing biomolecules and cell surfaces[J]. Current opinion in chemical biology,2010,14 (6):728-736.
    [7]Albert K. J.,Lewis N. S.,Schauer C. L.,Sotzing G A.,Stitzel S. E.,Vaid T. P.,Walt D. R. Cross-reactive chemical sensor arrays[J]. Chemical Reviews,2000,100 (7): 2595-2626.
    [8]Huang X.,Neretina S.,El-Sayed M. A. Gold nanorods:From synthesis and properties to biological and biomedical applications[J]. Advanced Materials,2009, 21 (48):4880-4910.
    [9]Orendorff C. J.,Hankins P. L.,Murphy C. J. Ph-triggered assembly of gold nanorods[J]. Langmuir,2005,21 (5):2022-2026.
    [10]Sau T. K.,Murphy C. J. Seeded high yield synthesis of short au nanorods in aqueous solution[J]. Langmuir,2004,20(15):6414-6420.
    [11]Kuo T. R.,Hovhannisyan V. A.,Chao Y. C.,Chao S. L.,Chiang S. J.,Lin S. J.J,Dong C. Y.,Chen C. C. Multiple release kinetics of targeted drug from gold nanorod embedded polyelectrolyte conjugates induced by near-infrared laser irradiation[J]. Journal of the American Chemical Society,2010,132:14163-14171.
    [12]Liao H.,Hafner J. H. Gold nanorod bioconjugates[J]. Chemistry of Materials,2005, 17 (18):4636-4641.
    [13]You J.,Zhang G.,Li C. Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release[J]. ACS Nano,2010,4 (2):1033-1041.
    [14]Pan B.,Gao F.,Ao L.,Tian H.,He R.,Cui D. Controlled self-assembly of thiol-terminated poly (amidoamine) dendrimer and gold nanoparticles[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2005,259 (1-3):89-94.
    [15]Huang X.,El-Sayed I. H.,Qian W.,El-Sayed M. A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods[J]. Journal of the American Chemical Society,2006,128 (6):2115-2120.
    [16]Jain P. K.,Lee K. S.,El-Sayed I. H.,El-Sayed M. A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine[J]. The Journal of Physical Chemistry B,2006,110 (14):7238-7248.
    [17]Taton T. A. Preparation of gold nanoparticle-DNA conjugates[J]. Current Protocols in Nucleic Acid Chemistry,2002.
    [18]Orendorff C. J.,Murphy C. J. Quantitation of metal content in the silver-assisted growth of gold nanorods[J]. The Journal of Physical Chemistry B,2006,110(9): 3990-3994.
    [19]Huang H.,Liu X.,Hu T.,Chu P. K. Ultra-sensitive detection of cysteine by gold nanorod assembly[J]. Biosensors and Bioelectronics,2010,25(9):2078-2083.
    [1]Dixit V.,Van den Bossche J.,Sherman D. M.,Thompson D. H.,Andres R. P. Synthesis and grafting of thioctic acid-peg-folate conjugates onto au nanoparticles for selective targeting of folate receptor-positive tumor cells[J]. Bioconjugate Chemistry,2006,17 (3):603-609.
    [2]Kim J.-Y.,Choi W. I.,Kim Y. H.,Tae G,Lee S.-Y.,Kim K.,Kwon I. C. In-vivo tumor targeting of pluronic-based nano-carriers[J]. Journal of Controlled Release,2010, 147(1):109-117.
    [3]Ghosh P.,Han G.,De M.,Kim C. K.,Rotello V. M. Gold nanoparticles in delivery applications[J]. Advanced drug delivery reviews,2008,60 (11):1307-1315.
    [4]Pissuwan D.,Niidome T.,Cortie M. B. The forthcoming applications of gold nanoparticles in drug and gene delivery systems[J]. Journal of Controlled Release, 2011,149(1):65-71.
    [5]Nakanishi T.,Fukushima S.,Okamoto K.,Suzuki M.,Matsumura Y.,Yokoyama M.,Okano T.,Sakurai Y.,Kataoka K. Development of the polymer micelle carrier system for doxorubicin[J]. Journal of Controlled Release,2001,74 (1-3):295-302.
    [6]Rapoport N. Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery[J]. Progress in Polymer Science,2007,32 (8):962-990.
    [7]Cao N.,Feng S.-S. Doxorubicin conjugated to d-α-tocopheryl polyethylene glycol 1000 succinate (tpgs):Conjugation chemistry, characterization, in vitro and in vivo evaluation[J]. Biomaterials,2008,29(28):3856-3865.
    [8]Zhang L.,Zhu S.,Qian L.,Pei Y.,Qiu Y.,Jiang Y. Rgd-modified peg-pamam-dox conjugates:In vitro and in vivo studies for glioma[J]. European Journal of Pharmaceutics and Biopharmaceutics,2011,79(2):232-240.
    [9]Khunawattanakul W.,Puttipipatkhachorn S.,Rades T.,Pongjanyakul T. Chitosan-magnesium aluminum silicate composite dispersions:Characterization of rheology, flocculate size and zeta potential[J]. International Journal of Pharmaceutics,2008,351(1-2):227-235.
    [10]Lee E. S.,Na K.,Bae Y. H. Polymeric micelle for tumor ph and folate-mediated targeting[J]. Journal of Controlled Release,2003,91(1-2):103-113.
    [11]Adams D. J. The impact of tumor physiology on camptothecin-based drug development[J]. Current Medicinal Chemistry-Anti-Cancer Agents,2005,5(1): 1-13.
    [12]Hubbell J. A. Enhancing drug function[J]. Science,2003,300 (5619):595-596.
    [13]Sanda C. B.,Simion A. Detoxification of gold nanorods by conjugation with thiolated poly(ethylene glycol) and their assessment as sers-active carriers of raman tags.[J]. Nanotechnology,2010,21:235601-235608.
    [14]Choi W. I.,Kim J.-Y.,Kang C.,Byeon C. C.,Kim Y. H.,Tae G Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers[J].ACS Nano,2011,5(3):1995-2003.
    [15]Duan R.,Zhou X.,Xing D. Electrochemiluminescence biobarcode method based on cysteamine-gold nanoparticle conjugates[J]. Analytical Chemistry,2010,82(8): 3099-3103.
    [16]Kuo T. R.,Hovhannisyan V. A.,Chao Y. C.,Chao S. L.,Chiang S. J.,Lin S. J.,Dong C. Y.,Chen C. C. Multiple release kinetics of targeted drug from gold nanorod embedded polyelectrolyte conjugates induced by near-infrared laser irradiation[J]. Journal of the American Chemical Society,2010,132:14163-14171.
    [17]Liao H.,Hafner J. H. Gold nanorod bioconjugates[J]. Chemistry of Materials,2005, 17(18):4636-4641.
    [18]You J.,Zhang G,Li C. Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release[J]. ACS Nano,2010,4 (2):1033-1041.
    [19]Pan B.,Gao F.,Ao L.,Tian H.,He R.,Cui D. Controlled self-assembly of thiol-terminated poly (amidoamine) dendrimer and gold nanoparticles[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2005,259(1-3):89-94.
    [20]Wei C.,Srivastava D.,Cho K. Thermal expansion and diffusion coefficients of carbon nanotube-polymer composites[J]. Nano Letters,2002,2 (6):647-650.
    [21]Rao Y. Q.,Blanton T. N. Polymer nanocomposites with a low thermal expansion coefficient[J]. Macromolecules,2008,41(3):935-941.
    [1]Nakanishi T.,Fukushima S.,Okamoto K.,Suzuki M.,Matsumura Y.,Yokoyama M.,Okano T.,Sakurai Y.,Kataoka K. Development of the polymer micelle carrier system for doxorubicin[J]. Journal of Controlled Release,2001,74 (1-3):295-302.
    [2]Chen W. R.,Adams R. L.,Carubelli R.,Nordquist R. E. Laser-photosensitizer assisted immunotherapy:A novel modality for cancer treatment[J]. Cancer Letters, 1997,115 (1):25-30.
    [3]Takemoto M.,Kuroda M.,Urano M.,Nishimura Y.,Kawasaki S.,Kato H.,Okumura Y.,Akaki S.,Kanazawa S.,Asaumi J. The effect of various chemotherapeutic agents given with mild hyperthermia on different types of tumours[J]. International journal of hyperthermia,2003,19 (2):193-203.
    [4]You J.,Shao R.,Wei X.,Gupta S.,Li C. Near-infrared light triggers release of paclitaxel from biodegradable microspheres:Photothermal effect and enhanced antitumor activity[J]. Small,2010,6(9):1022-1031.
    [5]Choi W. I.,Kim J.-Y.,Kang C.,Byeon C. C.,Kim Y. H.,Tae G. Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers[J].ACS Nano,2011,5(3):1995-2003.
    [6]Pissuwan D.,Niidome T.,Cortie M. B. The forthcoming applications of gold nanoparticles in drug and gene delivery systems[J].Journal of Controlled Release, 2011,149(1):65-71.
    [7]Kuo T. R.,Hovhannisyan V. A.,Chao Y. C.,Chao S. L.,Chiang S. J.,Lin S. J.,Dong C. Y.,Chen C. C. Multiple release kinetics of targeted drug from gold nanorod embedded polyelectrolyte conjugates induced by near-infrared laser irradiation[J]. Journal of the American Chemical Society,2010,132:14163-14171.
    [8]Huang X.,El-Sayed I. H.,Qian W.,El-Sayed M. A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods[J]. Journal of the American Chemical Society,2006,128(6):2115-2120.
    [9]Ma M.,Chen H.,Chen Y.,Wang X.,Chen F.,Cui X.,Shi J. Au capped magnetic core/mesoporous silica shell nanoparticles for combined photothermo-/chemo-therapy and multimodal imaging[J].Biomaterials,2012,33 (3):989-998.
    [10]Guo R.,Zhang L.,Qian H.,Li R.,Jiang X.,Liu B.Multifunctional nanocarriers for cell imaging, drug delivery, and near-ir photothermal therapy[J]. Langmuir,2010, 26(8):5428-5434.
    [11]Li Z.,Huang P.,Zhang X.,Lin J.,Yang S.,Liu B.,Gao F.,Xi P.,Ren Q.,Cui D. Rgd-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy[J]. Molecular Pharmaceutics,2009,7(1):94-104.
    [12]Li L.,Gao F.,Tang H.,Bai Y.,Li R.,Li X.,Liu L.,Wang Y.,Zhang Q. Self-assembled nanoparticles of cholesterol-conjugated carboxymethyl curdlan as a novel carrier of epirubicin[J]. Nanotechnology,2010,21:265601-265611.
    [13]Wang Y.,Jiang Q.,Li R.,Liu L.,Zhang Q.,Zhao J. Self-assembled nanoparticles of cholesterol-modified o-carboxymethyl chitosan as a novel carrier for paclitaxel[J]. Nanotechnology,2008,19:145101-145108.
    [14]Chen M.,Liu Y.,Yang W.,Li X.,Liu L.,Zhou Z.,Wang Y.,Li R.,Zhang Q. Preparation and characterization of self-assembled nanoparticles of 6-o-cholesterol-modified chitosan for drug delivery[J]. Carbohydrate Polymers,2011,84:1244-1251.
    [15]Qiu Y.,Liu Y.,Wang L.,Xu L.,Bai R.,Ji Y.,Wu X.,Zhao Y.,Li Y.,Chen C. Surface chemistry and aspect ratio mediated cellular uptake of au nanorods[J]. Biomaterials, 2010,31 (30):7606-7619.
    [16]Cao N.,Feng S.-S. Doxorubicin conjugated to d-a-tocopheryl polyethylene glycol 1000 succinate (tpgs):Conjugation chemistry, characterization, in vitro and in vivo evaluation[J]. Biomaterials,2008,29(28):3856-3865.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700