用户名: 密码: 验证码:
胃癌腹膜转移相关蛋白Myosin-9促进胃癌的侵袭和转移
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胃癌是消化道常见恶性肿瘤之一,近年来随着早期诊断、胃癌根治术和新辅助放化疗等的发展,其预后有所改善,但其死亡率仍居恶性肿瘤死亡率的前列。影响胃癌预后的因素有很多,其中腹膜转移在胃癌的复发和转移中十分常见。胃癌腹膜转移常合并有顽固性腹水和粘连性肠梗阻等症状,促使患者短期内死亡。因此,如何有效的预测与控制腹膜转移是目前提高进展期胃癌疗效的关键问题之一。
     目前临床上用于胃癌腹膜转移早期诊断的方法主要包括腹腔液细胞学检查和分子标志物检查等。腹腔液细胞学检查是目前胃癌腹膜亚临床转移早期预测的最常用方法和金标准,但是其敏感性较低,因为并非所有浸透浆膜的进展期胃癌均能检测出腹膜脱落癌细胞。目前用于检测的分子标志物指标包括CEA、CA125、E-钙粘素、β1整合素、MMPs、VEGF等,但是目前国内外基础研究尚未找到一种公认的早期预测进展期胃癌腹膜转移的分子标志物。因此如何找到有效的胃癌腹膜转移早期预测的分子标志物,对于提高胃癌腹膜转移的预防和治疗,改善患者的预后具有重要现实意义。近年来开展的蛋白质组学技术为揭示肿瘤转移机制带来了新的希望。
     蛋白质组学(proteomics)及其相关技术是近年来新兴的分子生物学分支,是以基因编码的所有蛋白质组为研究对象,了解蛋白质之间的相互作用与联系,从而揭示蛋白质功能以及基因表达调控机制的一个新的研究领域,其核心技术是以双相凝胶电泳(Two-dimensional polyacry-lamide gel electrophoresis,2-DE)为主的蛋白质分离技术和以质谱(mass spec-trometry, MS)、生物信息学(Bioinformatics)为主的蛋白质鉴定技术。目前已经有许多新的差异蛋白质组分析方法用于实践,其中荧光差异凝胶电泳(difference gel electrophoresis, DIGE)技术由于继承了二维凝胶电泳(two-dimensional electrophoresis,2-DE)的高分辨率,同时又具备高重现性、高灵敏度、高通量和高动态范围等优势,使得DIGE日益受到关注,成为最受欢迎的定量蛋白质组学研究手段之一。DIGE技术通过对用不同的荧光染料对不同的蛋白样品进行标记,在同一块双向凝胶中可同时分离多种蛋白样品,并且每块胶上均引入了内标,内标可以进一步增加可信度,确保结果能反映出真实的生物学差异,避免了系统误差对实验结果的影响。目前,蛋白质组学技术已在多种肿瘤中用于筛选和鉴定同早期诊断、预后以及化疗敏感性等相关的肿瘤标记物。
     综上所述,本课题主要关注的是寻找同胃癌腹膜转移相关的蛋白质,并选择其中一个差异蛋白进行进一步的功能验证和机制的初步研究。实验的第一部分使用2D-DIGE分离结合MALDITOF/TOF质谱对胃癌组织和相应腹膜转移组织的差异表达蛋白质进行筛选鉴定,共鉴定出27种蛋白质。其中在胃癌腹膜转移组织中表达上调的有23个蛋白质,表达下调的有4个蛋白质,这为今后研究奠定了基础。然后利用生物信息学分析发现在上述这些差异蛋白中,Myosin-9蛋白可能在肌动蛋白细胞骨架重组、肌动蛋白纤维运动、血管生成、细胞-细胞间黏附以及蛋白转运等生物过程中发挥重要作用,根据以上结果我们推测Myosin-9可能参与了胃癌的侵袭和转移过程。因此第二和第三部分我们对Myosin-9进行了更深入的研究,结果发现抑制Myosin-9的表达后,细胞的迁移和侵袭能力减弱,而粘附能力增加,裸鼠腹腔播散肿瘤结节形成数目也明显减少。然后进一步检测上皮间质转化(epithelial-mesenchymal transition,EMT)相关标志物发现,抑制Myosin-9的表达后,胃癌细胞EMT过程受到抑制。基于以上结果,我们认为Myosin-9能够促进胃癌细胞的侵袭和转移能力,此过程可能是通过促进胃癌细胞EMT而实现的。
     虽然本实验证实Myosin-9影响了胃癌细胞的侵袭转移能力,但是恶性肿瘤的发生和发展是多种基因和蛋白质相互作用的结果,任何单个基因或蛋白质都很难全面说明肿瘤复杂的生物学行为,且Myosin-9在胃癌中更深层次的机制仍需深入研究。在今后的研究中,我们将对更多前期筛选出的差异蛋白质进行分析,通过研究对比蛋白之间的相互关系来阐明胃癌腹膜转移发生发展的机制。此外,研究对象也将不只限于组织和细胞,胃癌腹膜转移患者的血液、体液均可以进行研究,以期能够找到一种有效的进展期胃癌腹膜转移早期预测的分子标志物,提高临床诊断水平,指导胃癌亚临床转移的合理防治。
     本课题三部分的具体内容如下:
     第一章胃癌腹膜转移相关差异蛋白质组的分离、鉴定与生物信息学分析
     目的:将胃癌组织和相应腹膜转移组织蛋白进行分离,找到差异点并进行鉴定,结合生物信息学技术分析,以寻找潜在的预测指标,并为进一步的功能和机制研究提供理论依据。另外本实验还可验证2D-DIGE技术在胃癌研究中的实用价值。
     方法:以胃癌组织和相应腹膜转移组织为研究对象,将纯化后的蛋白质应用双向荧光差异凝胶电泳(2D-DIGE)进行蛋白质分离,根据DIGE的差异图谱并结合Decyder分析软件进行差异蛋白点分析,差异倍数上调2倍或下调2倍以上的列为差异蛋白点,利用全自动切胶仪Spot picker挖取这些差异蛋白胶粒,然后进行样品胶内酶解,使用ABI4800MALDI TOF/TOF质谱仪进行分析,通过Mascot软件检索Uniprot数据库鉴定蛋白,并结合Western blot进行验证。最后利用String蛋白相互作用数据库对蛋白质问的相互作用进行预测和分析。
     结果:1.根据2D-DIGE的差异图谱并结合Decyder分析软件进行差异蛋白点分析,共找到了32个差异蛋白点,然后通过Mascot软件检索Uniprot数据库鉴定蛋白,去除鉴定结果相同的蛋白及未鉴定出来的蛋白点,共鉴定出27种蛋白质。其中在胃癌腹膜转移组织中表达上调的有23个蛋白质,表达下调的有4个蛋白质。2.通过Uniprot数据库分析提示在上述这些差异蛋白中,Myosin-9蛋白可能在肌动蛋白细胞骨架重组、肌动蛋白纤维运动、血管生成、细胞-细胞间黏附以及蛋白转运等生物过程中发挥重要作用,进一步利用String蛋白相互作用数据库分析发现Myosin-9同ACE, RHOB, RHOA, ACTB, SVIL, CDK5, ACTG1,ROCK2,CALD1和S100A4等蛋白构成相互作用网络。基于以上结果分析,我们选取Myosin-9蛋白进行后续功能研究。3.应用Western blot和免疫组化方法对胃癌组织和相应腹膜转移组织中Myosin-9蛋白的表达水平进行验证,结果显示Myosin-9蛋白在腹膜转移组织中表达增强,与蛋白质组学结果一致。
     第二章Myosin-9在胃癌侵袭转移中的功能研究
     目的:探讨Myosin-9对胃癌细胞侵袭转移能力的影响。
     方法:利用qRT-PCR和western-blot方法分别在mRNA水平和蛋白水平上检测Myosin-9在胃癌细胞株中的表达;合成针对Myosin-9的siRNA,利用慢病毒载体感染细胞株,构建稳定低表达Myosin-9蛋白的细胞系;利用纤维链接蛋白实验检测Myosin-9对胃癌细胞粘附能力的影响,Transwell小室迁移和侵袭实验检测Myosin-9对胃癌细胞迁移和侵袭能力的影响;构建裸鼠腹腔播散种植模型,观察Myosin-9对胃癌细胞腹膜转移能力的影响。
     结果:1.相对于人胎儿胃粘膜细胞株GES-1, Myosin-9在其余3株胃癌细胞株AGS、BGC823和SGC7901中均高表达,其中AGS和BGC-823细胞株都来源于胃癌组织(低分化),SGC7901细胞株来源于淋巴结转移组织(中分化),我们选择AGS和SGC7901进行后续实验。2.通过多次预实验,我们确定了细胞接种密度为50%,MOI值为10,Polybrene为4ug/ml的最佳优化条件,western-blot结果显示慢病毒序列1的干扰效果最佳,按照上述条件我们成功构建了稳定低表达Myosin-9蛋白的细胞系SGC7901-siRNA和AGS-siRNA。3.干扰Myosin-9后,细胞粘附实验结果显示细胞粘附能力增强,细胞迁移和侵袭实验结果显示细胞迁移和侵袭能力减弱,以上各组间差异均有统计学意义,P<0.01。4.干扰Myosin-9后,相对于阴性对照组,干扰组腹腔内肿瘤结节形成数目明显减少,两者间差异有统计学意义,P<0.01。
     第三章Myosin-9在胃癌侵袭和转移中作用机制的初步研究
     目的:探讨Myosin-9在胃癌侵袭和转移中的作用机制。
     方法:稳定沉默Myosin-9表达后,利用western-blot方法检测AGS和SGC7901细胞EMT相关标记物E-cadhern、N-cadhern、vimentin和β-catenin的表达情况。
     结果:相对于阴性对照组和空白对照组,干扰组中E-cadherin表达上调,而N-cadherin、vimentin和β-catenin均表达下调。
     总之,本研究利用基于2D-DIGE分离-MALDI TOF/TOF质谱鉴定-生物信息学分析的差异蛋白质组学技术平台,成功分离并鉴定出胃癌腹膜转移相关的蛋白质,并对其中的一个差异蛋白Myosin-9进行了功能验证和初步的机制研究。
     通过研究,我们得出以下结论:
     1.抑制Myosin-9的表达后,胃癌细胞的迁移和侵袭能力减弱,而粘附能力增强,此外裸鼠腹腔肿瘤播散转移能力下降,提示Myosin-9能够促进胃癌的侵袭和转移。
     2.Myosin-9促进胃癌的侵袭和转移可能是通过促进胃癌细胞EMT过程而发挥作用的,确切的机制仍需进一步研究。
     本研究的创新处在于:
     1.建立了胃癌腹膜转移组织差异蛋白图谱;
     2.证实了胃癌腹膜转移相关蛋白Myosin-9能够促进胃癌的侵袭和转移,并发现Myosin-9表达下调能抑制胃癌细胞EMT过程。
Gastric cancer is the most common malignant tumor of alimentary tract, despite improved prognosis as result of early diagnosis, radical operation and the development of adjuvant therapy, the mortality rate is still ranked among the top of malignant tumor mortality. There are many factors that can affect the prognosis of gastric cancer, in which the peritoneal metastasis are common in recurrence and metastasis of gastric cancer. Peritoneal dissemination usually leads to the terminal stage of advanced GC and diminishes the quality of life by refractory ascites and intestinal obstruction. As a result, how to effectively forecast and control of peritoneal metastasis is one of the key issues on improving the curative effect of advanced gastric cancer currently.
     The current clinical method for early diagnosis of peritoneal metastasis from gastric cancer including detection of peritoneal lavage cytology and molecular marker. Peritoneal lavage cytology detection is the most commonly used method and the gold standard in early prediction of peritoneal subclinical metastasis from gastric cancer, but it lacks high sensitivity, since not all the advanced gastric cancer that soaked serous could be found the exfoliated cancer cells. Currently the molecular markers for the detection are CEA, CA125, E-cadherin, β1-integrin, MMPs and VEGF. However, basic researchers at home and abroad have not yet found an accepted molecular marker for early detection of peritoneal metastasis from advanced gastric cancer. At present, most of the research associated with metastasis so far has been focused on the genetic changes of related molecules or single or few proteins without systematicstudy. But little is known about the key factors to trigger tumorigenic cells to initiatefurther invasion and metastasis facing with so many regulators up to now.
     Proteomics along with its related technologies, an emerging branch of molecular biology in recent years, focuses on studies of the proteome encoded by genes, and makes complete analysis of the composition, expression levels and modification state of the intracellular proteins with dynamic changes, and understands the interactions and associations among proteins, thus revealing protein function and its relationship with laws of the cellular activities as well as regulation mechanisms of gene expression as a new research field. Its core technology is protein separation techniques based on two-dimensional polyacrylamide gel electrophoresis (2-DE) and protein identification technology based on mass spectrometry (MS) and bioinformatics. At present there are many novel differential proteomics analysis methods, among which the difference gel electrophoresis (difference gel electrophoresis, DIGE) technology becomes one of the most popular one, because it's not only have the high-resolution feature, inherited from two-dimensional gel electrophoresis(2-DE), but also have high reproducibility, high sensitivity, high throughput and high dynamic range. DIGE is a method which can label protein samples with different fluorescent dyes before2-D electrophoresis, and can separate up to three different protein samples at the same time in one two-dimensional gel. The application of the internal standard could further increase the credibility of the experiment, and ensure the results could reflect the real biological differences, while avoid influence of systematic errors on experimental results. To date,2D-DIGE technologies have been used to identify novel candidate biomarkers associated with early diagnosis, differential diagnosis, prognosis, and response to chemotherapy in various diseases.
     Above all, this topic mostly focused on screening and identificating peritoneal metastasis related proteins of gastric cancer, and then selecting one of interesting protein for further functional verification and mechanism of a preliminary study. In the first part of experiment, two-dimensional fluorescence difference gel electropho-resis (2D-DIGE) was employed together with MALDI TOF/TOF mass spectrometry to screen and identify differentially expressed proteins between gastric cancer and corresponding peritoneal metastasis tissues.27differential proteins were identified,23proteins were significantly up-regulated and4were down-regulated in peritoneal metastatic foci. This result laid the foundation for future research. After analysis with Uniprot, Myosin-9was predicted to play important roles in the bioprocesses of actin cytoskeleton reorganization, actin filament-based movement, angiogenesis, cell-cell adhesion, cytokinesis, protein transport and regulation of cell shape. Above of all, we speculated that Myosin-9might be involved in the process of invasion and metastasis of gastric cancer. Hence the second and third parts were carried on to further study. The results showed that RNAi Myosin-9could inhibit the migration and invasion of gastric cancer cell, promote the adhesion of gastric cancer cell, and notably decrease the number of metastatic nodules in the peritoneal cavity of nude mice. Myosin-9promotes the invasion and metastasis of gastric cancer probably by facilitating the EMT process of gastric cancer.
     Although the present study demonstrated that Myosin-9expression impacted invasion and metastasis ability of the gastric carcinoma cells, but the development and progression of malignant tumors were the results of interactions between a variety of genes and proteins and it was difficult to fully explain the complex tumor biological behavior with a single gene. In the future research, we will analyze other differential proteins and contrast the relationships between these proteins, and eventually clarify the potential mechanism of peritoneal metastasis from gastric cancer. Besides, the study will be not only on tissues and cells but also on bold and body fluids of patients with peritoneal metastasis. We are looking forward to find an effective molecular marker to predict the peritoneal metastasis from gastric cancer.
     The specific content of this topic is as follows:
     Part1Isolation, identification and bioinformatics analysis of peritoneal metastasis related proteins of gastric cancer.
     Purpose:To separate proteins in gastric cancer and corresponding peritoneal metastasis tissues, find and identify the differences; combined the technology of bioinformatics analysis, to search for the predictive indicators and ulteriorly provide a theoretical basis for tumor mechanism study. In addition, through this experiment the practical value of2D-DIGE technology in the gastric carcinoma study will be verified.
     Methods:gastric cancer and corresponding peritoneal metastasis tissues served as the subjects,2D-DIGE method was applied to the purified protein for protein separation, According to the analysis of differential protein spots combining different maps of DIGE and Decyder software, we set these which was up-regulated or down-regulated2.0times as differential protein spots. Protein spots of interest were excised by automatic Spot picker, and then the picked spots were carried out with in-gel digestion, followed by using ABI4800MALDI TOF/TOF mass spectrometry. For understanding the relationship among proteins, we use the "String" protein interaction databases.
     Results:(1).According to the analysis of differential protein spots combining different maps of DIGE and Decyder software,32differential protein spots were found. Retrieving SWISSPROT database through the mascot software, getting rid of the same protein within appraisal result and unidentified protein spots,27differential proteins were identified.23proteins were significantly up-regulated and4were down-regulated in peritoneal metastatic foci.(2) After analysis with Uniprot, myosin-9was predicted to play important roles in the bioprocesses of actin cytoskeleton reorganization, actin filament-based movement, angiogenesis, cell-cell adhesion, cytokinesis, protein transport and regulation of cell shape. Furthermore, single protein analysis by the String9.0program indicated that myosin-9was a key functional partner with ACE, RHOB, RHOA, ACTB, SVIL, CDK5, ACTG1, ROCK2, CALD1, and S100A4.Based on the above results, we selected Myosin-9for subsequent function research.(3) Western blot and immunocytochemistry were used to further verify Myosin-9in order to ensure the reliability of the proteome results. The western blot and immunocytochemistry results showed that Myosin-9was higher in peritoneal metastasis tissues, compared to that in gastric cancer tissues. Evidently, western blot results were consistent with proteome analysis.
     Part2Studies on function of Myosin-9in the invasion and metastasis of gastric cancer.
     Purpose:To explore the effects of Myosin-9on invasive and metastatic ability of gastric cancer cells.
     Methods:The expression of Myosin-9mRNA was detected in gastric cancer cells by quantitate real-time PCR. The level of Myosin-9protein was detected by western blot. We transfected the lentivirus RNAi vectors into the gastric cancer cells to silence Myosin-9. Cell adhesion assay was used to analyze the effect of decreased Myosin-9on cell adhesion ability. Transwell assay was used to assess the effect of decreased Myosin-9on cell migration and invasion ability. The animal model with gastric cancer metastasized to peritoneal cavity was used to assess the effect of decreased Myosin-9on peritoneal metastasis ability of gastric cancer.
     Results:(1) Compared with GES-1cells (gastric epithelial cells), enhanced signals were found in AGS and BGC823cells (derived from the primary lesion), especially in SGC7901cells (derived from the metastatic lymph node).Western blot analysis confirmed high Myosin-9protein expression in AGS, BGC823, and SGC7901cells. We choose the AGS and SGC7901for subsequent experiments.(2)After several preliminary experiments, we determined the best optimization conditions:cell inoculation density=50%, MOI=10, Polygrene=4μg/ml. Western blot showed that the lenti-virus sequence1had the best interference effect.(3) RNAi Myosin-9could inhibit the migration and invasion of gastric cancer cell, and promote the adhesion of gastric cancer cell. The distinction between the groups was significantly different (P<0.01).(4) RNAi Myosin-9could notably decrease the number of metastatic nodules in the peritoneal cavity of nude mice. The distinction between the groups was significantly different (P<0.01).
     Part3The preliminary research on the mechanism of Myosin-9in invasion and metastasis of gastric cancer.
     Purpose:To explore to how that Myosin-9was involved in the invasion and metastasis of gastric cancer.
     Methods:The expression of EMT related markers E-cadherin, N-cadherin, vimentin and β-catenin were detected by western blot between interference and negative control groups.
     Results:RNAi Myosin-9could up-regulate the expression of E-cadherin, and down-regulate the expression of N-cadherin, vimentin and3-catenin.
     After all, we have used a technology platform based on difference gel electrophoresis, MALDI TOF/TOF mass spectrometry and bioinformatics analysis to find and identify the proteins associated with peritoneal metastasis from gastric cancer. And then we conducted the initial functional verification and mechanism study of a differential protein.
     After the research, four conclusions are drawn as follows:
     1. RNAi Myosin-9could inhibit the migration and invasion of gastric cancer cell, promote the adhesion of gastric cancer cell, and notably decrease the number of metastatic nodules in the peritoneal cavity of nude mice. These results suggest that Myosin-9can promote the invasion and metastasis of gastric cancer.
     2. Myosin-9promotes the invasion and metastasis of gastric cancer probably by facilitating the EMT process of gastric cancer, the exact mechanisms still needs further study.
     The innovation of this study:
     1. Establishment of peritoneal metastasis of gastric cancer tissue protein finger prints.
     2. Confirmed Myosin-9's role in invasion and metastasis of gastric cancer, and found that inhibition of Myosin-9could restrain the EMT process of gastric cancer.
引文
[1]Yoo CH,Noh SH,Shin DW,et al.Recurrence following curative resection for gastric carcinoma,Br J Sruy,2000,87:236-242.
    [2]Nishimura S,Chung YS,YashiroM,et al.Role of alpha 2 beta 1 and alpha 3 beta 1 integrin in the peritoneal implantation of scirrhous gastric carcinoma. Br J Cancer,1996,74:1406.
    [3]Kiyasu Y,Kaneshima S,Koga S.Morphogenesis of peritoneal metastasis in human gastric cancer.Cancer Res,1981;41:1236-1239.
    [4]朱正纲.充分重视胃癌腹膜转移的预防、诊断与治疗J Surg Concepts Prat, 2003; 8:16-17.
    [5]丸山圭一.日本晚期胃癌外科治疗效果分析.中国现代普通外科进展,2008;11:185-187.
    [6]戴冬秋。胃癌腹膜转移研究之策略.世界华人消化杂志,2005;13(9):1049-1051.
    [7]徐惠绵,王剑锋,王振宁.CEA mRNA, CEA蛋白及细胞学检测胃癌腹腔液中游离癌细胞的初步评价.中华肿瘤杂志,2000;22:45-47.
    [8]Nishimura S,Chung YS,Yashiro M,et al.CD44H plays an important role in peritoneal dissemination of scirhous gastric cancer cells.Jpn J Cancer Res,1996; 87:1235-1244.
    [9]戴冬秋,陈俊青,徐惠绵等.E-钙黏附素及α-链接素的表达与胃癌生物学行为及淋巴结转移规律的关系.中华肿瘤杂志,2001;23:35-38.
    [10]杨军,戴冬秋.胃癌原发灶与转移灶E-钙黏附素mRNA表达水平的比较研究.中华肿瘤杂志,2005;27:25-28.
    [11]Matsuoka T,Yashiro M,Nishimura S,et al. Increased expression of alpha2betal-integrin in the peritoneal dissemination of human gastric carcinoma.Int J Mol Med,2000; 5:21-25.
    [12]Yonemura Y,Endou Y,Fujita H,et al.Role of MMP-7 in the formation of peritoneal dissemination in gastric cancer.Gastric Cancer,2000:3:63-70.
    [13]Fondevila C,Metges JP,Fuster J,et al.p53 and VEGF expression are independent predictors of recurrence and survival following curative resection gastric cancer. Br J Cancer,2004; 90:206-215.
    [14]Maeda K,Chung YS,Ogawa Y,et al.Prognostic value of vascular endothelial growth factor expression in gastric carcinoma.Cancer,1996;77:858-863.
    [15]Wang ZN,Xu HM,Jiang L,et al.Expression of survivn mRNA in peritoneal fluid from patients with gastric carcinoma. Chin Med J(Engl),2004;117:1210-1217.
    [16]Shimomura K,Sakakura C,Takemura M,et al.Combination of L-3-phosphoserine phosphatase and CEA using real-time RT-PCR improves accuracy in detection of peritoneal micrometastasis of gastric cancer.Anticancer Res,2004;24:1113-1120.
    [17]Sakakura C,Takeasemura M,Hagiwara A,et al.Overexpression of dopa decarboxylase in peritoneal dissemination of gastric cancer and its potential as novel marker for the detection of peritoneal micrometastases with real-time RT-PCR.Br J Cancer,2004;90:665-671.
    [18]Mori K,Aoyagi K,Ueda T,et al.Highly specific marker genes for etectingminimal gastric cancer cells in cytology negative peritoneal washings.Biochem Biophys Res Commun,2004;313:931-937.
    [19]Miyagawa K,Sakakura C,Kin S,et al.Overexpression of Reg IV in peritoneal dissemination of gastric cancer.Gan To Kagaku Ryoho,2004; 31:1909-1911.
    [20]徐晓恩,姜英华,施前.肿瘤蛋白质组学:过去、现在和将来.癌症,2008,27:1009-1017.
    [21]Sun W, Xing B, Sun Y, et al.Proteome analysis of hepatocellular carcinoma by two-dimensional difference gel electrophoresis:novel protein markers in Hepatocellular carcinoma tissues. Mol Cell Proteomics,2007,6(10):1798-1808.
    [22]Hu S, Li Y, Liu G, et al. A protein chip approach for high-throughput Antigen identification and characterization. Proteomics,2007,7(13):2151-2161.
    [23]Melle C, Ernst G, Scheibner O, et al.Identification of specific protein markers in microdissected hepatocellular carcinoma. J Proteome Res,2007,6(1):306-315.
    [24]Paradis V, Degos F, Dargere D, et al. Identification of a new marker of hepato-cellular carcinoma by serum protein profiling of patients with chronic liver diseases. Hepatology,2005,41(1):40-47.
    [25]Steel LF, Shumpert D, Trotter M, et al. Astrategy for the comparative analysis of serum proteomes for the discovery of biomarkers for hepatocellular carcinoma. Proteomics,2003,3(5):601-609.
    [26]Tannapfel A, Anhalt K, Husermann P, et al. Identification of novel proteins associated with hepatocellular carcinomas using protein microarrays. J Pathol, 2003,201 (2):238-249.
    [27]Goncalves A, Charafe-Jauffret E, Bertucci F, et al. Protein profiling of human breast tumor cells identifies novel biomarkers associated with molecular subtypes. Mol Cell Proteomics,2008:M700487-MCP700200.
    [28]Alexander H, Stegner AL, Wagner Mann C, et al. Proteomic analysis to identify breast cancer biomarkers in nipple aspirate fluid. Clin Cancer Res,2004, 10(22):7500-7510.
    [29]Pucci-Minafral, Cancemi P, Albanese NN, et al. New protein clustering of breast cancer tissue proteomics using actin content as a cellularityiIndicator. J Proteome Res,2008,7(4):1412-1418.
    [30]Liang X, Zhao J, Hajivandi M, et al.Quantification of membrane and membrane-bound proteins in normal and malignant breast cancer cells isolated from thesame patient with primary breast carcinoma. J Proteome Res,2006,5 (10):2632-2641.
    [31]Hsu PI, Chen CH, Hsieh CS, et al.{alpha} 1-antitrypsin frecursor in gastric juice is a novel biomarker for gastric cancer and ulcer. Clin Cancer Res,2007, 13(3):876-883.
    [32]Lee K, Kye M, Jang JS, et al.Proteomic analysis revealed a strong association of a high level of alphal-antitrypsiningastric juice with gastric cancer. Proteomics, 2004,6(11):3466-3476.
    [33]Melle C, Ernst G, Schimmel B, et al. Characterization of pepsinogen C as a potential biomarker for gastric cancer using a histo-proteomic approach. JProteome Res,2005,4(5):1799-1804.
    [34]Ebert MP, Kruger S, Fogeron ML,et al. Overexpression of cathepsin B in gastric cancer identified by proteome analysis. Proteomics,2005,5(6):1693-1704.
    [35]Zhang J, Kang B, Tan X, et al. Comparative analysis of the protein profiles from primary gastric tumors and their adjacent regions:MAWBP could be a new protein candidate involved in gastric cancer. J Proteome Res,2007,6 (11):4423-4432.
    [36]Chen YR, Juan HF, Huang HC, et al. Quantitative proteomic and genomicprofiling reveals metastasis-related protein expression patterns in gastriccancer cells. J Proteome Res,2006,5(10):2727-2742.
    [37]LeeCH, LumJ H, CheungBP, et al. Identificationof the heterogeneous nuclearribonucleoprotein A2/Blas the antigen for the gastrointestinal cancer specific monoclonal antibody MG7.Proteomics,2005,5(4):1160-1166.
    [38]Liu Y, Chen Q, Zhan J T. Tumor suppressor gene 14-3-3sigma is downregulated whereas the proto-oncogene translation elongation factor 1data is up-regulated in non-small cell lung cancers as identified by proteomic profiling. J Proteome Res,2004,3(4):728-735.
    [39]Chen J, Kahne T, Rocken C, et al. Proteome analysis of gastric cancer metastasis by two-dimensional gel electrophoresis and matrix assisted laser desorption/ionization-mass spectrometry for identification of metastasis-related proteins. J Proteome Res,2004,3 (5):1009-1016.
    [40]Chen G, Gharib TG, Thomas DG,et al. Proteomic analysis of eIF-5A in lung adenocarcinomas. Proteomics,2003,3(4):496-504.
    [41]Leman ES, Schoen RE, Magheli A,et al. Evaluation of colon cancer specific antigen 2 as a potential serum marker for colorectal cancer. Clin Cancer Res, 2008,14(5):1349-1354.
    [42]Brunagel G, Vietmeier BN, Bauer AJ, et al. Identification of nuclear matrixprotein alterations associated with human colon cancer. Cancer Res,2002, 62(8):2437-2442.
    [43]Leman ES, Schoen RE, Weissfeld JL, et al. Initial analyses of colon cancer-specific antigen (CCSA)-3 and CCSA-4 as colorectal cancer-associated serum markers. Cancer Res,2007,67(12):5600-5605.
    [44]Kim H, Kang HJ, You KT, et al. Suppression of human selenium-binding protein 1 is a late event in colorectal carcinogenesis and is associated with poor survival. Proteomics,2006,6(11):3466-3476.
    [45]Pei H, Zhu H, Zeng S, et al.Proteome analysis and tissue microarray for profiling protein markers associated with lymph node metastasis in colorectal cancer. J Proteome Res,2007,6(7):2495-2501.
    [46]Fu L, Qin YR, Xie D, et al.Identification of alpha-actinin4 and 67kDa laminin receptor as stage-specific markers in esophageal cancer via proteomic approaches. Cancer,2007,110(12):2672-2681.
    [47]Zhao J, Chang AC, Li C, et al.Comparative proteomics analysis of barrett metaplasia and esophageal adenocarcinoma using two-dimensional liquid mass mapping. Mol Cell Proteomics,2007,6(6):987-999.
    [48]Alban A, David SO, Bjorkesten L, et al. A novel experimental design for comparative two-dimensional gel analysis:two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics,2003; 3: 36-44.
    [49]Amersham Biosciences Ettan DIGE User manual, http://www. amershambio-sciences.com.
    [50]Li Z, Zhan W, Wang Z, et al.Inhibition of PRL-3 gene expression in gastric cancer cell line SGC7901 via microRNA suppressed reduces peritoneal metastasis.Biochem Biophys Res Commun,2006; 348(1):229-237.
    [51]Lv ZD, Na D, Liu FN et al.Induction of gastric cancer cell adhesion through transforming growth factor-betal-mediated peritoneal fibrosis.J Exp Clin Cancer Res,2010; (Oct 29),139.
    [52]Toiyama Y, Yasuda H, Saigusa S,et al.Co-expression of hepatocyte growth factor and c-Met predicts peritoneal dissemination established by autocrine hepatocyte growth factor/c-Met signaling in gastric cancer.Int J Cancer,2012; 130(12):2912-2921.
    [53]Zieker D, Konigsrainer I, Traub F,et al.PGK1 a potential marker for peritoneal dissemination in gastric cancer.Cell Physiol Biochem,2008; 21(5-6):429-436.
    [54]Zhang J, Zhang DL, Jiao XL, et al.S100A4 regulates migration and invasion in hepatocellular carcinoma HepG2 cells via NF-κB-dependent MMP-9 signal.Eur Rev Med Pharmacol Sci.2013; 17(17):2372-2382.
    [55]Zucchini C, Manara MC, Pinca RS, et al.CD99 suppresses osteosarcoma cell migration through inhibition of ROCK2 activity.Oncogene,2013.152. [Epub ahead of print]
    [1]全国肿瘤统计中心,《2012年中国肿瘤登记年报》。
    [2]Odronitz F, Kollrnar M.Drawing the tree of eukaryotic life based on the analysis of 2,269 manually annotated myosins from 328 species. Genome Biol.2007, 8(9):R196.
    [3]Somlyo AP, Somlyo AV.Ca2+ sensitivity of smooth muscle and nonmuscle myosin Ⅱ:modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev,2003,83(4):1325-1358.
    [4]Bresnick AR.Molecular mechanisms of nonmuscle myosin-Ⅱ regulation. Curr Opin Cell Biol,1999, 11(1):26-33.
    [5]Strzelecka-Golaszewska H, Piwowar U. Polymorphism of myosin in muscle andnonmuscle cells (author's transl). Postepy Biochem,1980,26(4):517-557.
    [6]Clarke M,Spudich JA. Nonmuscle contractile proteins:the role of actin andmyosin in cell motility and shape determination. Annu Rev Biochem,1977, 46:797-822.
    [7]Jana SS, Kawamoto S,Adelstein RS.A specific isoform of nonmuscle myosinⅡ-C is required for cytokinesis in a tumor cell line. J Biol Chem,2006, 281(34):24662-24670.
    [8]BetapudiV, Licate LS, Egelhoff TT. Distinct roles of nonmuscle myosin Ⅱ isoforms in the regulation of MDA-MB-231 breast cancer cell spreading and migration. Cancer Res,2006,66(9):4725-4733.
    [9]Sellers JR, Goodson HV.Motor proteins 2:myosin.ProteinProfile,1995,2(12): 1323-1423.
    [10]Golomb E,Ma X,Jana SS,et al.Identification and characterization of nonmuscle myosin Ⅱ-C,a new member of the myosin Ⅱ family.J Biol Chem,2004,279(4):2800-2808.
    [11]Zhan L, Rosenberg A,Bergami KC,et al.Deregulation of scribble promotes mammary tumorigenesis and reveals a role for cell polarity in carcinoma.Cell, 2008; 135(5):865-878.
    [12]Mseka T, Bamburg JR,Cramer LP. ADF/cofilin family proteins control formation of oriented actin-filament bundles in the cell body to trigger fibroblast polarization.J Cell Sci.2007,120(Pt 24):4332-4344.
    [13]Yam PT,Wilson CA,Ji L,et al. Actin-myosin network reorganization breaks symmetry at the cell rear to spontaneously initiate polarized cell motility. J Cell Biol.2007,178(7):1207-1221.
    [14]Vicente-Manzanares M,Zareno J, Whitmore L, et al.Regulation of protrusion, adhesion dynamics, and polarity by myosins ⅡA and ⅡB in migrating cells. J Cell Biol,2007,176(5):573-580.
    [15]Lauffenburger DA,Horwitz AF.Cell migration:a physical integrated molecular process.Cell.1996;84(3):359-369.
    [16]Vicente-Manzanares M,Koach MA,Whitmore L,et al. Segregation and activation of myosin ⅡB creates a rear in migrating cells.J Cell Biol.2008;183(3):543-554.
    [17]Zaidel-Bar R,Ballestrem C,Kam Z,et al.Early molecular events in the assembly of matrix adhesions at the leading edge of migrating cells.J Cell Sci.2003;116(Pt22):4605-4613.
    [18]Yamazaki D,Kurisu S,Takenawa T.Regulation of cancer cell motility through actin reorganization.Cancer Sci.2005,96(7):379-386.
    [19]Even-Ram S,Doyle AD,Conti MA,et al.Myosin ⅡA regulates cell motility and actomyosin-microtubule crosstalk.Nat Cell Biol.2007,9(3):299-309.
    [20]牛纪晓,叶丽亚,娄晋宁.细胞粘附分子在肿瘤转移中的作用.中日友好医院学报,2006:20(2):110-112.
    [21]Conti MA, Even-Ram S,Liu C,etal.Defeets in cell adhesion and the visceral endoderm following ablation of nonmusele myosin heavy chain Ⅱ-A in mice. J Biol Chem.2004,279(40):41263-41266.
    [22]Paez D,Labonte MJ,Bohanes P,et al.Cancer dormancy:a model of early dissemination and late cancer recurrence. Clin Cancer Res,2012; 18(3):645-653.
    [23]Liu D,Zhang L,Sehn Z,et al. Clinicopathological significance of NMIIA overexpression in human gastric cancer.Int J Mol Sci,2012;13(11):15291-15304.
    [24]梁艳,李涛,周克元.慢病毒载体在RNA干扰中的应用进展.国际检验医学杂志,2010,31(11):1282-1284.
    [25]Kaur P, Nagaraja G M, Asea A. Combined lentiviral and RNAi technologies for the delivery and permanent silencing of the hsp25 gene. Methods Mol Biol, 2011,787:121-136.
    [26]ShidaD,Fang X,Kordula T,et al.Cross-talk between LPAI and epidermal growth factor receptors mediates up-regulation of sphingosine kinasel to promote gastric cancer cell motility and invasion.Cancer Res,2008,68:6569-6577.
    [27]Yasumoto K,Koizumi K,Kawashima A,et al.Role of the CXCL12/CXCR4 axis in peritoneal carcinomatosis of gastric cancer.Cancer Res,2006,66:2181-2187.
    [28]Rao JS.Molecular mechanisms of glioma invasiveness:the role of Proteases. Nat Rev Caneer,2003,3:489-501.
    [29]Yongjie Zhang, Xia Zhang, Xi Wang, et al.Inhibition of LDH-A by lentivirus mediated small interfering RNA suppresses intestinal-type gastric cancer turnorigenicity through the downregulation of Oct4. Cancer Letters; 2012; 321(1):45-54.
    [30]Wei Xie, Qin Feng, Yahui Su, et al. Transcriptional Regulation of PES1 Expression by c-Jun in Colon Cancer. PLoS ONE; 2012; 7(7):e42253.
    [31]Wei Yang, Ting Sun, Jianping Cao,et al. Downregulation of miR-210 expression inhibits proliferation, induces apoptosis and enhances radiosensitivity in hypoxic human hepatoma cells in vitro. Experimental Cell Research; 2012; 318(8):944-954.
    [32]An DS,Qin FX,Auyeung VC,et al. Optimization and functional effects of stable short hairpin RNA expression in primary human lymphocytes via lentiviral vectors.MolTher,2006,14(4):494-504.
    [33]Dulyaninova NG, House RP, Betapudi V, et al. Myosin-IIA heavy-chain phosphorylation regulates the motility of MDA-MB-231 carcinoma cells.Mol Biol Cell,2007;18(8):3144-3155.
    [34]Betapudi V, Licate LS, Egelhoff TT. Distinct role of nonmuscle myosin Ⅱ isoforms in the regulation of MDA-MB-231 breast cancer cell spreading and migration.Cancer Res,2006; 66(9):4725-4733.
    [35]Yam PT, Wilson CA, Ji L, et al. Actin-myosin nerwork reorganization breaks symmetry at the cell rear to spontaneously initate polarized cell motility.J Cell Biol.2007,178(7):1207-1221.
    [36]Gupton SL, Waterman-Storer CM. Spatiotemporal feedback between actomysoin and focal-adhesion systems optimizes rapid cell migration.Cell.2006,125(7):
    1361-1374.
    [37]Vicente-Manzanares M, Koach MA,Whitmore L,et al. Segregation and activation of myosin IIB creates a rear in migrating cells.J Cell Biol.2008,183(3):543-554.
    [38]Cai Y, Biais N, Giannone G, et al. Nonmuscle myosin ⅡA-dependent force inhibits cell spreading and drives F-actin flow.BioPhys J.2006,91(10):3907-3920.
    [39]Liang S, He L, Zhao X,et al.MicroRNA let-7f inhibits tumor invasion and metastasis by targeting MYH9 in human gastric cancer.PLoS One.2011; 6(4): e18409.
    [40]Li ZH, Bresnick AR. The S100A4 metastasis factor regulates cellular motility via a direct interaction with myosin-IIA.Cancer Res.2006,66(10):5173-5180.
    [41]古贺成昌.再发胃癌。治疗.临床外科,1984,39(11):1567.
    [42]罗奋,蔡端.人胃癌细胞裸鼠腹腔内转移动物模型的建立.复旦学报,2004;31(5):492-495.
    [43]Kimata M,Otani Y,Kubota T,et al. Matrix metalloproteinase inhibitor,marimastat, decreases peritoneal spread of gastric carcinoma in nude mice. Jpn J Cancer Res, 2002,93(7):834.
    [1]Wang HY,Zhang JY,Cui JT,et al. Expression status of S100A14 and S100A4 correlates with metastatic potential and clinical outcome in colorectal cancer after surgety.Oncol Rep.2010,23(1):45-52.
    [2]Wang YY, Ye ZY, Zhao ZS,et al. High-level expression of S100A4 correlates with lymph node metastasis and poor prognosis in patients with gastric cancer.Ann Surg Oncol.2010,17(1):89-97.
    [3]Tabata T,Tsukamoto N,Fooladi AA,et al. RNA interference targeting against S100A4 suppresses cell growth and motility and induces apoptosis in human pancreatic cancer cells.Biochem Biophys Res Comun.2009,390(3):475-480.
    [4]Ismail NI,Kaur G,Hashim H,et al. S100A4 overexpression porves to be independent marker for breast cancer progression.Cancer Cell Int.2008,8:12.
    [5]Li ZH,Spektor A,Varlamova O,et al. Mtsl regulates the assembly of nonmuscle myosin-IIA.Biochemistry-us.2003,42(48):14258-14266.
    [6]Cohen C,Parry DA. A conserved C-terminal assembly region in paramyosin and myosin rods.J Struct Biol.1998,122(1-2):180-187.
    [7]Ismail TM,Fernig DG,Rudland PS,et al. The basic Cterrninal amino acids of calcium-binding protein S100A4 promote metastasis.Carcinogenesis.2008,29 (12):2259-2266.
    [8]Du M, Wang G, Ismail TM,et al. S100P dissociates myosin ⅡA filaments and focal adhesion sites to reduce cell adhesion and enhance cell migration. J Biol Chem.2012,287(19):15330-15344.
    [9]Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2002; 2:442-454.
    [10]王宏刚,黄晓丹,季国忠.EMT的信号通路及microRNA在肿瘤中的研究进展.世界华人消化杂志,2010,18(34):3672-3678.
    [11]Greenburg G, Hay ED. Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells. J Cell Biol,1982, 95(1):333-339.
    [12]Shook D, Keller R.Mechanisms, mechanics and function of epithelial meschymal transitions in early development. Mech Dev.2003; 120:1351-83.
    [13]Moreno-Bueno G, Portillo F, Cano A. Transcriptional regulation of cell polarity in EMT and cancer. Oncogene.2008; 27:6958-69.
    [14]Huber MA, Kraut N,Beug H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol.2005; 17:548-558.
    [15]Bates RC, Mercurio AM. The epithelial-mesenchymal transition (EMT) and colorectal cancer progression. Cancer Biol Then 2005; 4:365-370.
    [16]Thuault S, Valcourt U, Petersen M, et al. Transforming growth factor-p employs HMGA2 to elicit epithelial-mesenchymal transition. J Cell Biol,2006,174(2): 175-183.
    [17]Thuault S, Tan EJ, Peinado H, et al. HMGA2 and Smads coregulate SNAIL1 expression during induction of epithelialto-mesenchymal transition. J Biol Chem,2008,283(48):33437-33446.
    [18]Gonzaleo-Moreno O,Lecand J,Green JE,et al. VEGF elicits epithelial mesenchymal transition (EMT) in prostate intraepithelial neoplasia (PIN)-like cells via an autocrine loop.Exp Cell Res,2010,316(4):554-567.
    [19]Yang J, Mani SA, Donaher JL, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell,2004,117(7):927-939.
    [20]Guaita S, Puig I, Franci C, et al. Snail induction of epithelial to mesenchymal transition in tumor cells is accompanied by MUC1 repression and ZEB1 expression. J Biol Chem,2002,277(42):39209-39216.
    [21]Del Barrio MG, Nieto MA. Overexpression of Snail family members highlights their ability to promote chick neural crest formation. Development,2002, 129(7):1583-1593.
    [22]Paterson EL, Kazenwadel J, Bert AG, et al. Down-regulatation of the miRNA-200 family at the invasive front of colorectal cancers with degraded basement membrane indicates EMT is involved in cancer progression.Neoplasis.2013,2; 15(2):180-191.
    [23]Cho KB,Cho MK,Lee WY,et al. Overexpression of c-myc induces epithelial mesenchymal transition in mammary epithelial cells. Cancer Lett,2010,1(13):1-10.
    [24]Mercado-Pimentel ME, Runyan RB. Multiple transforming growth factor-beta isoforms and receptors function during epithelial-mesenchymal cell transfor-mation in the embryonic heart. Cells Tissues Organs2007; 185: 146-156.
    [25]Derynck R, Zhang YE. Smad-dependent and Smad independent pathways in TGF-beta family signalling. Nature2003; 425:577-584.
    [26]Deckers M, van Dinther M, Buijs J,et al.The tumor suppressor Smad4 is required for transforming growth factor beta-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. Cancer Res2006; 66: 2202-2209.
    [27]Watanabe Y, Itoh S, Goto T, et al. TMEPAI, a transmembrane TGF beta-inducible protein, sequesters Smad proteins from active participation in TGF-beta signaling. Mol Cell2010; 37:123-134.
    [28]Cho HJ, Baek KE, Saika S,et al. Snail is required for transforming growth factor-beta-induced epithelial-mesenchymal transition by activating PI3 kinase/Akt signal pathway. Biochem Biophys Res Commun2007; 353:337-343.
    [29]Vincent T, Neve EP, Johnson JR, et al.A SNAIL1-SMAD3/4 transcriptional repressor complex promotes TGF-beta mediated epithelial-mesenchymal transition. Nat Cell Biol 2009; 11:943-950.
    [30]Secker GA, Shortt AJ, Sampson E, et al.TGF beta stimulated re-epithelialisation is regulated by CTGF and Ras/MEK/ERK signalling. Exp Cell Res2008; 314: 131-142.
    [31]Huelsken J, Behrens J. The Wnt signalling pathway. J Cell Sci2002; 115: 3977-3978.
    [32]Xu J, Lamouille S, Derynck R. TGF-beta-induced epithelial to mesenchymal transition. Cell Res2009; 19:156-172.
    [33]Veenendaal LM, Kranenburg O, Smakman N, et al. Differential Notch and TGF beta signaling in primary colorectal tumors and their corresponding metastases. Cell Oncol 2008; 30:1-11.
    [34]Feldmann G, Dhara S, FendrichV,et al.Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases:a new paradigm for combination therapy in solid cancers. Cancer Res2007; 67:2187-2196.
    [35]Yan W, Fu Y, Tian D,et al. PI3 kinase/Akt signaling mediates epithelial mesenchymal transition in hypoxic hepatocellular carcinoma cells. Biochem Biophys Res Commun2009; 382:631-636.
    [36]Strippoli R, Benedicto I, Perez Lozano ML,et al. Epithelial-tomesenchymal transition of peritoneal mesothelial cells is regulated by an ERK/NF-kappaB/ Snaill pathway. Dis Model Mech2008; 1:264-274.
    [37]Liang Q,Li L,Zhang J,et al.CDK5 is essential for TGF-β induced epithelial-mesenchymal transition and breast cancer progression.Sci Rep.2014,11;4:3800.
    [38]Zhao Z, Rivkees SA. Rho-associated kinases play a role in endocardial cell differentiation and migration.Dev Biol.2004,1; 275(1):183-191.
    [39]Hutchison N,Hendry BM,Sharpe CC.Rho isoforms have distinct and specific functions in the process of epithelial to mesenchymal transition in renal proximal tubular cells.Cell Signal.2009,12;21(10):1522-1531.
    [40]Yu J, Ebert MPA, Miehlke S, et al. a-catenin expression is decreased in human gastric cancers and in the gastric mucosa of frist degree relatives. Gut,2000, 46(5):639-644.
    [41]Shewan AM, Maddugoda M, Kraemer A, et al.Myosin 2 is a key Rho kinase target necessary for the local concentration of E-cadherin at cell-cell contacts. Mol Biol Cell.2005,16(10):4531-4542.
    [42]Li Q,Sarna SK. Nuclear myosin Ⅱ regulates the assembly of preinitiation complex for ICAM-1 gene transcription.Gastroenterology.2009,9;137 (3):1051-1060.
    [43]Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function. Cell.2004; 116:281-297.
    [44]Liang S, He L, Zhao X, et al. MicroRNA let-7f inhibits tumor invasion and metastasis by targeting MYH9 in human gastric cancer. PLoS One.2011 Apr 18; 6(4):e18409.
    [1]Maehara Y, Hasuda S, Koga T, et al. Postoperative outcome and sites of recurrence in patients following curative resection of gastric cancer. Br J Surge 2000,8(7):353-357.
    [2]Lawrance RJ, Loizidou M, Cooper AJ, et al. Importance of the omentum in the development of intra-abdominal metastases. Br J Surg 1991,78:117-119.
    [3]Dullens HF, Rademakers LH, Doffemont M, et al. Involvement of the omental lymphoid organ in the induction of peritoneal immunity against tumor cells. Invasion Metastasis 1993,13:267-276.
    [5]朱正纲.充分重视胃癌腹膜转移的预防、诊断与治疗.J Surg Concepts Prat,2003;8:16-17.
    [6]Sugarbaker PH, Averbaeh AM. Km kenberg syndrome as a natural manifestation of tumor cell entrapment. Can er Treat Res,1996,82:163-191.
    [7]Tanaka T, Kumagai K, Shimizu K, et a 1. Perito eal metastas is in gastric cancer with particular reference to lymphatic advancement:extranodal invasion is a significant risk factor for peritoneal metastasis. J Surg Onco,2000,75 (3):165-171.
    [8]SK Halder, G Anumanthan, R Maddula, et al. Oncogenic of a novel WD-Domian protein STRAP in human carcinogenesis. Cancer Res,2006,66(12):6156-6166.
    [9]Sherbet GV, Lakshmi MS. SIOOA4(MTSI)caleium binding protein in cancer growth, invasion and metastasis. AnticancerRes.1998:18(4A):2415-2421.
    [10]Hagiwara A, Takahashi T, Sawai K, et al. Milky spots as the implantation site for malignant cells in peritoneal dissemination in mice. Cancer Res,1993,53: 687-692.
    [11]Scott A. Gerber, Viktoriya Y,et al.Preferential attachment of peritoneal tumor metastases to omental immune aggregates and possible role of a unique vascular microenvironment in metastatic survival and growth. Lord American Journal of Pathology.2006,16(9):1739-1752
    [12]王荣朝,张岩松。胃癌腹膜转移的基础研究及其应用的新进展.中国普通外科杂志,2008,4;17(4):385-387.
    [13]Yonemura Y,Endou Y,Fujita H,et al.Role of MMP-7 in the formation of peritoneal dissemination in gastric cancer.Gastric Cancer,2000;3:63-70.
    [14]Fondevila C,Metges JP,Fuster J,et al.p53 and VEGF expression are indepent predictors of recurrence and survival following curarive resection gastric cancer.Br J Cancer,2004;90:206-215.
    [15]Sakakura C,Takemura M,Hagiwara A,et al.Overexpression of dopa decarboxylase in peritoneal dissemination of gastric cancer and its potential as a novel marker for the detection of peritoneal micrometastases with real-time RT-PCR.Br J Cancer,2004;90:665-671.
    [16]Mori K,Aoyagi K,Ueda T,et al.Highly specific marker genes for detecting minimal gastric cancer cells in cytology negative peritoneal washings.Biochem Biophys Res Commun,2004;313:931-937.
    [17]Miyagawa K,Sakakura C,Kin S,et al.Overexpression of Reg Ⅳ in peritoneal dissemination of gastric cancer.Gan To Kagaku Ryoho,2004;31:1909-1911.
    [18]杨军,戴冬秋.胃癌原发灶与转移灶E-钙粘附素mRNA表达水平的比较研究.中华肿瘤杂志,2005;27:25-28.
    [19]Fujimura T, Kinami S, Ninomiya I, et al. Diagnostic laparoscopy,serum CA125, and peritoneal metastasis in gastric cancer. Endoscopy,2002,34(7): 569-574.
    [20]张贤坤,朱万坤,韩晓鹏等.胃癌腹膜转移的诊断及防治.中国肿瘤临床,2008,35(15):895-899.
    [21]Glehen O, Mithieux F, Osinsky D,et al.Surgery combined with peritonectomy procedures and intraperitoneal chemohyperthermia in abdominal cancers with peritoneal carcinomatosis:a phase Ⅱ study. J Clin Oncol 2003;21:799-806.
    [22]朱正纲,汤睿,燕敏,等.术中腹腔内温热化疗对进展期胃癌的临床疗效研究。中华胃肠外科杂志,2006,9(1):26-30.
    [23]Tsujitani S,FukudaK, SaitoH, et al. The administration of hypotonic intraperitoneal cisplatin during operation as a treatment for the peritoneal dissemination of gastric cancer.Surgery,2002,131:S98-104.
    [24]Hamazoe R.Experimental studies on continuous hyperthermic peritoneal perfusion in the treatment for peritoneal metastasis of cancer.Nihon Geka Gakkai Zasshi.1983,12; 84(11):1117-1129.
    [25]Yu W, Whang I. Chung HY, et al.Indications for early postoperative intraperito-neal chemotherapy of advanced gastric cancer:results of a prospective randomiz-ed trial.World J Surg,2001,25:985-990.
    [26]Newman E, Marcus SG, Potmesil M, et al. Neoadjuvant chemotherapy with cpt-11 and cisplatin downstages locally advanced gastric cancer. J Gastrointest Surg,2002,6(2):212-223.
    [27]Sako A, Kitayama J, Koyama H, et al.Transduction of soluble Flt-1 gene to peritoneal mesothelial cells caneffectively suppress peritoneal metastasis of gastric cancer. Cancer Res,2004,64:3624-3628.
    [28]Tanaka H, Yashiro M, Sunami T, et al. ICAM-2 gene therapy for peritoneal dissemination of scirrhous gastric carcinoma. Clin Cancer Res,2004,10(14): 4885-4892.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700