用户名: 密码: 验证码:
瘢痕疙瘩自身免疫疾病特征和多聚嘧啶序列结合蛋白为治疗靶点的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     瘢痕疙瘩发病机制尚不清楚,并缺乏切实有效的治疗措施,一直是临床治疗难题。由各种原因导致的炎症反应在诱发瘢痕疙瘩、及其逐渐发展为以细胞外基质过度堆积为特点的纤维化疾病过程中有重要作用,这与很多自身免疫疾病非常类似。自身免疫疾病也是通过启动炎性反应导致组织损伤,长期炎症反应最终导致组织纤维化,例如硬皮病导致的皮肤纤维化。所以我们推测瘢痕疙瘩可能具有自身免疫疾病的相关特征。此外,瘢痕疙瘩具有细胞增殖旺盛和持续浸润生长等肿瘤特征。多聚嘧啶序列结合蛋白(PTB)是广泛表达于多种细胞细胞核的RNA结合蛋白,近年来研究发现PTB在多种肿瘤中的表达升高,并具有促进肿瘤细胞增殖和浸润转移的作用,被认为是肿瘤治疗的潜在靶点。而PTB在瘢痕疙瘩中的表达以及能否作为治疗靶点尚未见报道。
     研究目的:
     1.明确瘢痕疙瘩是否具有自身免疫疾病的相关病理特征,并筛查可能作为实验室诊断指标的自身抗体。
     2.明确PTB在瘢痕疙瘩中的表达及功能,并探讨PTB作为瘢痕疙瘩治疗靶点的可能性。
     研究方法和结果:
     1.瘢痕疙瘩患者自身免疫疾病相关特征的研究
     方法:首先采用间接免疫荧光和线性免疫分析,对28例瘢痕疙瘩患者和28例健康者的血清,进行了常规抗核抗体谱的筛查。同时通过ELISA方法检测血清中抗-hnRNPA2B1(抗—核不均一性核糖核蛋白A2B1)自身抗体滴度和hnRNPA2B1蛋白浓度。另外,采用Western bloting的方法检测了hnRNPA2B1蛋白在瘢痕疙瘩和正常皮肤组织中的表达。最后采用直接免疫荧光和免疫组织化学的方法,分别对瘢痕疙瘩组织内免疫复合物的沉积和免疫细胞浸润情况进行了观察。
     结果:在瘢痕疙瘩患者和健康者中,仅个别血清表现出抗核抗体或者特异性抗核抗体阳性,无统计学意义。瘢痕疙瘩患者血清中抗-hnRNPA2B1滴度显著高于健康者,两组血清中hnRNPA2B1蛋白浓度并无差异。瘢痕疙瘩组织内hnRNPA2B1蛋白含量明显高于正常皮肤。在瘢痕疙瘩组织内可见IgA、IgM、C3和C1q沉积,但正常皮肤内未见免疫复合物的沉积。同时瘢痕疙瘩组织内朗格汉斯细胞、B淋巴细胞、巨噬细胞、T淋巴细胞数量均明显高于正常皮肤。
     2.多聚嘧啶序列结合蛋白(PTB)作为瘢痕疙瘩治疗靶点的研究
     2.1PTB在瘢痕疙瘩组织和细胞中的表达及功能
     方法:首先采用HE染色和天狼星红染色比较了瘢痕疙瘩和正常皮肤组织学和胶原纤维构成的差异;通过Ki-67和增殖细胞核抗原(PCNA)免疫组化染色对组织内细胞增殖进行了评价,并对PTB也进行了免疫组化染色;采用Real time PCR的方法,对PTB和细胞外基质相关基因的表达进行了检测。另外在体外培养了瘢痕疙瘩和正常皮肤成纤维细胞,检测了两种成纤维细胞的PTB和细胞外基质表达。并用RNA干扰技术对瘢痕疙瘩成纤维细胞的PTB进行了敲减,敲减之后分别用Brdu标记和Real time PCR的方法检测了细胞增殖和细胞外基质表达的改变,并对增殖相关基因的选择性剪切进行了研究。
     结果:组织学观察发现瘢痕疙瘩组织内有大量细胞外基质的堆积,细胞密度明显增加,并且从浅层至深层III型胶原纤维相对含量逐渐下降而I型胶原纤维相对含量逐渐升高。瘢痕疙瘩组织内Ki-67和PCNA阳性细胞显著增多,编码细胞外基质的基因COL1A1、COL3A1和FN1表达增加,同时伴随PTB表达升高。体外培养的瘢痕疙瘩成纤维细胞COL1A1和COL3A1表达与正常皮肤成纤维细胞无明显差异,但PTB的表达仍然高于正常皮肤成纤维细胞。采用siRNA(小干扰RNA)将PTB进行敲减后,瘢痕疙瘩成纤维细胞增殖受到抑制,但细胞外基质相关基因的表达未见显著变化;进一步研究发现PTB敲减使三个增殖相关基因(PKM、USP5、RNT4)的选择性剪切均发生了相应改变。
     2.2PTB对TGF-β1(转化生长因子-β1)促进细胞外基质分泌作用的影响
     方法:采用含不同浓度TGF-β1(Ong/ml、5ng/ml、10ng/ml、20ng/ml)的培养基培养成纤维细胞;分别在培养后0、2、6、12、24、48h,对成纤维细胞的PTB和细胞外基质表达进行了检测。同时在TGF-β1培养条件下对PTB进行敲减,敲减后检测细胞外基质分泌情况。
     结果:TGF-β1处理12h后瘢痕疙瘩成纤维细胞的COL1A1、FN1、ACTA2和PTB表达开始升高,并有一定的浓度依赖性;TGF-β1也可以促进正常皮肤成纤维细胞表达上述基因,但升高时间较瘢痕疙瘩成纤维细胞中延迟并升高幅度较低。在TGF-β1培养条件下,对PTB进行敲减可以抑制瘢痕疙瘩成纤维细胞FN1的表达。
     2.3PTB敲减对裸鼠体内瘢痕疙瘩移植物的作用
     方法:为明确PTB是否可以作为瘢痕疙瘩治疗靶点,我们通过将瘢痕疙瘩组织块移植至裸鼠皮下的方法,建立了瘢痕疙瘩动物模型。每周向移植物内注射2次PTBsiRNA或对照siRNA,共注射4周。4周后取材,对移植物称重,进行组织学染色,以及相关基因表达的检测。
     结果:称重发现实验组移植物重量小于对照组;组织学染色显示实验组细胞密度和Ⅲ型胶原纤维含量降低;Real time PCR结果显示实验组PTB的表达水平低于对照组,同时伴随COL3A1和FN1表达降低。
     研究结论:
     1.在瘢痕疙瘩患者血清中首次检测到抗-hnRNPA2Bl自身抗体,瘢痕疙瘩组织中有免疫复合物的沉积,以及以CD20+B淋巴细胞为主的大量免疫细胞浸润,这些均提示瘢痕疙瘩具有自身免疫疾病的相关病理特征。
     2.PTB在瘢痕疙瘩组织和成纤维细胞内表达增高。将PTB敲减后,在普通培养条件下可以改变增殖相关基因的选择性剪切并抑制成纤维细胞增殖,在TGF-β1培养条件下可以抑制FN1表达;在裸鼠体内瘢痕疙瘩移植物中敲减PTB后,移植物显著萎缩,并伴随COL3A1和FN1表达的降低。这些研究结果表明PTB可能通过调控细胞增殖和细胞外基质表达,参与了瘢痕疙瘩形成,并可以作为瘢痕疙瘩治疗靶点。
Background:
     The pathogenesis of keloid remains unclear, its high recurrence rate despite a variety of treatments makes keloid one of the major unsolved clinical challenges in wound healing. The pathology of keloid is characterized by excessive extracellular matrix deposition and a great number of infiltrated immune cells, so keloid could been regarded as a fibrotic skin disease. Meanwhile, in autoimmune diseases, triggering of the inflammation response can lead to tissue injury and subsequent organ fibrosis. When the skin is involved in autoimmune disease, skin fibrosis such as that seen in scleroderma can occur. In this study, we propose that keloids possess features of autoimmune disease and verified this hypothesis.
     Keloids behave like tumors as they grow beyond the boundaries of the original wound margin, invade the surrounding normal tissue, do not regress spontaneously, have a rich vascular supply and recur despite treatments. Polypyrimidine tract binding protein(PTB) is a57-kDa RNA binding protein and express in nucleus of various cells. Recently, a great number of studies have found PTB increased in a few of tumors and PTB can promote tumor cells proliferation and metastasis. Therefore, PTB was regarded as a therapeutic target for tumor. We think PTB is also a therapeutic target for keloid.
     Objectives:
     1. To verify whether keloid is a fibrotic disease mediated by autoimmune response, and attempt to find a laboratory indication for the diagnosis of keloid.
     2. To explore the role of PTB in keloid and confirm whether PTB be a potential molecular therapeutic target for keloid.
     Methods and Results:
     1. Study on keloid patients have some features of autoimmune disease
     Methods:Routine anti-nuclear antibody profile was detected in sera from28keloid patients and28healthy controls, using indirect immunofluorescence and line immunoassay. The anti-hnRNPA2B1autoantibody and hnRNPA2B1protein concentration in sera were evaluated by ELISA, while western bloting was used to examine hnRNPA2B1protein expression in keloid and normal tissues. Immune complex deposits in keloid and normal skin were evaluated by direct immunofluorescence. Lastly, immune cell infiltration in keloid tissue was detected with immunohistochemical staining.
     Results:A very small number of patients or healthy controls were positive for ANA or a specific ANA, which did not reach statistical significance. Anti-hnRNPA2Bl levels in sera from keloid patients and hnRNPA2B1protein in keloid tissues were elevated, while IgA, IgM, C3and Clq deposits were found in keloid tissues but not normal skin. The number of Langerhans cells, macrophages, B lymphocytes and T lymphocytes were increased in keloids compared to normal skin.
     2. Study on polypyrimidine tract binding protein(PTB) as a therapeutic target for keloid
     2.1The expression and function of PTB in keloid tissue and fibroblast
     Methods:The histology of keloid and normal skin was observed using HE staining and sirius red staining. Immunohistochemistry for Ki-67and PCNA was performed to determine cell proliferation, while immunohistochemistry for PTB was also done. The mRNA of PTB and some genes coding extracellular matrix was detected by real time PCR. Fibroblasts isolated from keloid and normal skin were cultured in normal culture condition and PTB expression as well as extracellular matrix synthesis were valuated. PTB was knockdown using siRNA, cell proliferation and extracelluar matrix synthesis were determined following PTB knockdown.
     Results:Histologically, there were excessive extracellular matrix and infiltrated cells in keloid and different tissue layers presented different histological features. In keloid tissue, the number of Ki-67and PCNA positive cells was increased and the expression of COL1A1, COL3A1and FN1was upregulated, which were accompanied by PTB increasing. In fibroblasts from keloid tissues, the expression of PTB, FN1and ACTA2were upregulated, but not COL1A1and COL3A1. In normal culture condition, PTB knockdown suppressed cell proliferation and changed the alternative splicing of some gene related to cell proliferation, however, extracellular matrix expression was not influenced.
     2.2The influence of PTB on TGF-β1promoting the expression of genes coding extracellular matrix
     Methods:To simulate keloid microenvironment, fibroblasts were cultured in medium containing a different concentration of TGF-β1(Ong/ml,5ng/ml,10ng/ml,20ng/ml). At0,2,6,12,24,48h following TGF-β1treatment, the expression of PTB and extracellular matrix was determined. In the condition of TGF-β1, PTB was also knockdown and extracellular matrix was detected following PTB knockdown.
     Results:In fibroblasts from keloid tissues, TGF-β1promoted PTB, COL1A1, FN1and ACTA2expression, as well as the function of TGF-β1was concentration and time dependent. In fibroblasts from normal skin, TGF-β1promoted PTB, COL1A1, FN1and ACTA2expression, however which was not obvious as that in fibroblasts from keloid tissues. In TGF-β1culture condition, PTB knockdown suppressed FN1expression.
     2.3The influence of PTB knockdown on transplanted keloid
     Methods:To confirm whether PTB is a potential therapeutic target for keloid, we transplanted keloid tissues into nude mice to establish an animal model for keloid. PTB siRNA and control siRNA were injected into transplants, twice a week, for four weeks. After four weeks, transplants were harvested and weighed. The histology of transplants was observed, while PTB and extracelluar matrix expression were valuated.
     Results:The weight of transplants from PTB siRNA group was less than control siRNA group. Histologically, there was less cells and III type collagen fibres in transplants from PTB siRNA group. Real time PCR results show PTB, COL3A1and FN1expression were downregulated in PTB siRNA group.
     Conclusion:
     1. The anti-hnRNPA2Bl titer was firstly found elevated in sera from keloid patients, with immune complex deposits and CD20+B lymphocyte based on immune cell infiltration detected in keloid tissues. These findings suggest that keloid is a fibrotic skin disease mediated by autoimmune responses.
     2. PTB increased in tissues and fibroblasts from keloid. PTB knockdown suppressed fibroblasts proliferation in normal culture condition and downregulated FN1expression in TGF-β1culture condition. In keloid transplanted nude mice model, PTB knockdown suppressed COL3A1and FN1expression and accelerated transplants regression. These results suggest PTB may involve in keloid development and been a potential therapeutic target for keloids.
引文
[1]Verhaegen PD, van Zuijlen PP, Pennings NM, et al. Differences in collagen architecture between keloid, hypertrophic scar, normotrophic scar, and normal skin:An objective histopathological analysis. Wound Repair Regen 2009;17(5):649-56.
    [2]Kisseleva T, Brenner DA. Mechanisms of fibrogenesis. Exp Biol Med (Maywood) 2008;233(2):109-22.
    [3]Stramer BM, Mori R, Martin P. The inflammation-fibrosis link? A Jekyll and Hyde role for blood cells during wound repair. J Invest Dermatol 2007;127(5):1009-17.
    [4]Detlefsen S, Brasen JH, Zamboni G, et al. Deposition of complement C3c, immunoglobulin (Ig)G4 and IgG at the basement membrane of pancreatic ducts and acini in autoimmune pancreatitis. Histopathology 2010;57(6):825-35.
    [5]Peterson LS, Nelson AM, Su WP. Classification of morphea (localized scleroderma). Mayo Clin Proc 1995;70(11):1068-76.
    [6]Denton CP, Black CM, Abraham DJ. Mechanisms and consequences of fibrosis in systemic sclerosis. Nat Clin Pract Rheumatol 2006;2(3):134-44.
    [7]Butler PD, Longaker MT, Yang GP. Current progress in keloid research and treatment. J Am Coll Surg 2008;206(4):731-41.
    [8]Huo AP, Lin KC, Chou CT. Predictive and prognostic value of antinuclear antibodies and rheumatoid factor in primary Sjogren's syndrome. Int J Rheum Dis 2010;13(l):39-47.
    [9]Pisetsky DS. Antinuclear antibodies in healthy people:the tip of autoimmunity's iceberg? Arthritis Res Ther 2011;13(2):109.
    [10]Mayadas TN, Tsokos GC, Tsuboi N. Mechanisms of immune complex-mediated neutrophil recruitment and tissue injury. Circulation 2009;120(20):2012-24.
    [11]McCarty SM, Syed F, Bayat A. Influence of the human leukocyte antigen complex on the development of cutaneous fibrosis:an immunogenetic perspective. Acta Derm Venereol 2010;90(6):563-74.
    [12]Mukherjee A, Saha KC. Delayed type hypersensitivity reaction to cutaneous antigen in keloid. Indian J Dermatol 1982;27(4):125-30.
    [13]Janssen de Limpens AM, Cormane RH. Studies on the immunologic aspects of keloids and hypertrophic scars. Arch Dermatol Res 1982;274(3-4):259-66.
    [14]Seifert O, Mrowietz U. Keloid scarring:bench and bedside, Arch Dermatol Res 2009;301(4):259-72.
    [15]Yagi KI, Dafalla AA, Osman AA. Does an immune reaction to sebum in wounds cause keloid scars? Beneficial effect of desensitisation. Br J Plast Surg 1979;32(3):223-5.
    [16]Janssen de Limpens AM, Cormane RH. Keloids and hypertrophic scars-immunological aspects. Aesthetic Plast Surg 1982;6(3):149-52.
    [17]Dreyfuss G, Matunis MJ, Pinol-Roma S, et al. hnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem 1993;62:289-321.
    [18]Dangli A, Guialis A, Vretou E, et al. Autoantibodies to the core proteins of hnRNPs. FEBS Lett 1988;231(1):118-24.
    [19]Caporali R, Bugatti S, Bruschi E, et al. Autoantibodies to heterogeneous nuclear ribonucleoproteins. Autoimmunity 2005;38(1):25-32.
    [20]Hassfeld W, Steiner G, Hartmuth K, et al. Demonstration of a new antinuclear antibody (anti-RA33) that is highly specific for rheumatoid arthritis. Arthritis Rheum 1989;32(12):1515-20.
    [21]Siapka S, Patrinou-Georgoula M, Vlachoyiannopoulos PG, et al. Multiple specificities of autoantibodies against hnRNP A/B proteins in systemic rheumatic diseases and hnRNP L as an associated novel autoantigen. Autoimmunity 2007;40(3):223-33.
    [22]Marin GG, Cardiel MH, Cornejo H, et al. Prevalence of antinuclear antibodies in 3 groups of healthy individuals:blood donors, hospital personnel, and relatives of patients with autoimmune diseases. J Clin Rheumatol 2009;15(7):325-9.
    [23]De Rycke L, Baeten D, Kruithof E, et al. The effect of TNFalpha blockade on the antinuclear antibody profile in patients with chronic arthritis:biological and clinical implications. Lupus 2005;14(12):931-7.
    [24]Neri R, Tavoni A, Cristofani R, et al. Antinuclear antibody profile in Italian patients with connective tissue diseases. Lupus 1992;1(4):221-7.
    [25]Guevara-Gutierrez E, Yinh-Lao J, Garcia-Gutierrez P, et al. Frequency of antinuclear antibodies in mestizo Mexican children with morphea. Clin Rheumatol 2010;29(9):1055-9.
    [26]Lim PL, Zouali M. Pathogenic autoantibodies:emerging insights into tissue injury. Immunol Lett 2006;103(1):17-26.
    [27]Nathan C. Neutrophils and immunity:challenges and opportunities. Nat Rev Immunol 2006;6(3):173-82.
    [28]Kobayashi SD, Voyich JM, Buhl CL, et al. Global changes in gene expression by human polymorphonuclear leukocytes during receptor-mediated phagocytosis:cell fate is regulated at the level of gene expression. Proc Natl Acad Sci U S A 2002;99(10):6901-6.
    [29]Preisz K, Sardy M, Horvath A, et al. Immunoglobulin, complement and epidermal transglutaminase deposition in the cutaneous vessels in dermatitis herpetiformis. J Eur Acad Dermatol Venereol 2005;19(1):74-9.
    [30]Solans-Laque R, Perez-Bocanegra C, Salud-Salvia A, et al. Clinical significance of antinuclear antibodies in malignant diseases:association with rheumatic and connective tissue paraneoplastic syndromes. Lupus 2004;13(3):159-64.
    [31]Bagabir R, Byers RJ, Chaudhry IH, et al. Site-specific immunophenotyping of keloid disease demonstrates immune upregulation and the presence of lymphoid aggregates. Br J Dermatol 2012;167(5):1053-66.
    [32]Shaker SA, Ayuob NN, Hajrah NH. Cell talk:a phenomenon observed in the keloid scar by immunohistochemical study. Appl Immunohistochem Mol Morphol 2011; 19(2):153-9.
    [33]Onodera M, Ueno M, Ito O, et al. Factor XⅢa-positive dermal dendritic cells in keloids and hypertrophic and mature scars. Pathol Int 2007;57(6):337-42.
    [34]Boyce DE, Ciampolini J, Ruge F, et al. Inflammatory-cell subpopulations in keloid scars. Br J Plast Surg 2001;54(6):511-6.
    [35]Mahdavian Delavary B, van der Veer WM, van Egmond M, et al. Macrophages in skin injury and repair. Immunobiology 2011;216(7):753-62.
    [36]Chizzolini C. T cells, B cells, and polarized immune response in the pathogenesis of fibrosis and systemic sclerosis. Curr Opin Rheumatol 2008;20(6):707-12.
    [37]Chujo S, Shirasaki F, Kondo-Miyazaki M, et al. Role of connective tissue growth factor and its interaction with basic fibroblast growth factor and macrophage chemoattractant protein-1 in skin fibrosis. J Cell Physiol 2009;220(1):189-95.
    [38]Pistorio AL, Ehrlich HP. Modulatory effects of connexin-43 expression on gap junction intercellular communications with mast cells and fibroblasts. J Cell Biochem 2011; 112(5):1441-9.
    [39]Moyer KE, Saggers GC, Ehrlich HP. Mast cells promote fibroblast populated collagen lattice contraction through gap junction intercellular communication. Wound Repair Regen 2004;12(3):269-75.
    [40]Lim IJ, Phan TT, Bay BH, et al. Fibroblasts cocultured with keloid keratinocytes:normal fibroblasts secrete collagen in a keloidlike manner. Am J Physiol Cell Physiol 2002;283(1):C212-22.
    [41]Wang X, Liu Y, Deng Z, et al. Inhibition of dermal fibrosis in self-assembled skin equivalents by undifferentiated keratinocytes. J Dermatol Sci 2009;53(2):103-11.
    [42]Chavez-Munoz C, Hartwell R, Jalili RB, et al. SPARC/SFN interaction, suppresses type I collagen in dermal fibroblasts. J Cell Biochem 2012;113(8):2622-32.
    [43]Ghaffari A, Kilani RT, Ghahary A. Keratinocyte-conditioned media regulate collagen expression in dermal fibroblasts. J Invest Dermatol 2009;129(2):340-7.
    [44]Benoist C, Mathis D. A revival of the B cell paradigm for rheumatoid arthritis pathogenesis? Arthritis Res 2000;2(2):90-4.
    [45]Leandro MJ. B-cell subpopulations in humans and their differential susceptibility to depletion with anti-CD20 monoclonal antibodies. Arthritis Res Ther 2013;15 Suppl 1:S3.
    [46]Bluml S, McKeever K, Ettinger R, et al. B-cell targeted therapeutics in clinical development. Arthritis Res Ther 2013; 15 Suppl 1:S4.
    [47]Appleton I, Brown NJ, Willoughby DA. Apoptosis, necrosis, and proliferation:possible implications in the etiology of keloids. Am J Pathol 1996; 149(5):1441-7.
    [48]Zhang Q, Yamaza T, Kelly AP, et al. Tumor-like stem cells derived from human keloid are governed by the inflammatory niche driven by IL-17/IL-6 axis. PLoS One 2009;4(11):e7798.
    [49]Meenakshi J, Jayaraman V, Ramakrishnan KM, et al. Ultrastructural differentiation of abnormal scars. Ann Burns Fire Disasters 2005;18(2):83-8.
    [50]Lim CP, Phan TT, Lim IJ, et al. Stat3 contributes to keloid pathogenesis via promoting collagen production, cell proliferation and migration. Oncogene 2006;25(39):5416-25.
    [51]Syed F, Bagabir RA, Paus R, et al. Ex vivo evaluation of antifibrotic compounds in skin scarring: EGCG and silencing of PAI-1 independently inhibit growth and induce keloid shrinkage. Lab Invest 2013;93(8):946-60.
    [52]Bagabir R, Syed F, Paus R, et al. Long-term organ culture of keloid disease tissue. Exp Dermatol 2012;21(5):376-81.
    [53]Wang J, Pederson T. A 62,000 molecular weight spliceosome protein crosslinks to the intron polypyrimidine tract. Nucleic acids research 1990;18(20):5995-6001.
    [54]Xue Y, Ouyang K, Huang J, et al. Direct conversion of fibroblasts to neurons by reprogramming PTB-regulated microRNA circuits. Cell 2013;152(1-2):82-96.
    [55]Makeyev EV, Zhang J, Carrasco MA, et al. The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 2007;27(3):435-48.
    [56]Boutz PL, Chawla G, Stoilov P, et al. MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development. Genes Dev 2007;21(1):71-84.
    [57]Shibayama M, Ohno S, Osaka T, et al. Polypyrimidine tract-binding protein is essential for early mouse development and embryonic stem cell proliferation. FEBS J 2009;276(22):6658-68.
    [58]王文平,王佑民.PTB与胰岛素基因表达和分泌的研究发展.安徽医学2007;28(4):378-9.
    [59]Lin S, Wang MJ, Tseng KY. Polypyrimidine tract-binding protein induces p19(Ink4d) expression and inhibits the proliferation of H1299 cells. PLoS One 2013;8(3):e58227.
    [60]He X, Pool M, Darcy KM, et al. Knockdown of polypyrimidine tract-binding protein suppresses ovarian tumor cell growth and invasiveness in vitro. Oncogene 2007;26(34):4961-8.
    [61]Cho S, Kim JH, Back SH, et al. Polypyrimidine tract-binding protein enhances the internal ribosomal entry site-dependent translation of p27Kip1 mRNA and modulates transition from G1 to S phase. Mol Cell Biol 2005;25(4):1283-97.
    [62]Wang C, Norton JT, Ghosh S, et al. Polypyrimidine tract-binding protein (PTB) differentially affects malignancy in a cell line-dependent manner. J Biol Chem 2008;283(29):20277-87.
    [63]袁榴娣,丁洁,李震.肺癌巾肿瘤抑制基因CEACAM1的选择性拼接与PTB的过表达有关.肿瘤防治研究2006;33(5):320-3.
    [64]Arslan AD, He X, Wang M, et al. A high-throughput assay to identify small-molecule modulators of alternative pre-mRNA splicing. J Biomol Screen 2013; 18(2):180-90.
    [65]Chipev CC, Simman R, Hatch G, et al. Myofibroblast phenotype and apoptosis in keloid and palmar fibroblasts in vitro. Cell Death Differ 2000;7(2):166-76.
    [66]McAnulty RJ. Fibroblasts and myofibroblasts:their source, function and role in disease. Int J Biochem Cell Biol 2007;39(4):666-71.
    [67]Desmouliere A. Factors influencing myofibroblast differentiation during wound healing and fibrosis. Cell Biol Int 1995;19(5):471-6.
    [68]Phan TT, Lim IJ, Aalami O, et al. Smad3 signalling plays an important role in keloid pathogenesis via epithelial-mesenchymal interactions. J Pathol 2005;207(2):232-42.
    [69]McCoy BJ, Galdun J, Cohen IK. Effects of density and cellular aging on collagen synthesis and growth kinetics in keloid and normal skin fibroblasts. In Vitro 1982;18(1):79-86.
    [70]Ma S, Fang RH, Chang WP. Heterogeneity in radiosensitivity of human diploid fibroblasts from keloids and normal skins. Cell Biol Int 1996;20(4):289-92.
    [71]Hayakawa T, Hashimoto Y, Myokei Y, et al. Changes in type of collagen during the development of human post-burn hypertrophic scars. Clin Chim Acta 1979;93(1):119-25.
    [72]Weber L, Meigel WN, Spier W. Collagen polymorphism in pathologic human scars. Arch Dermatol Res 1978;261(1):63-71.
    [73]Niessen FB, Spauwen PH, Schalkwijk J, et al. On the nature of hypertrophic scars and keloids:a review. Plast Reconstr Surg 1999; 104(5):1435-58.
    [74]Friedman DW, Boyd CD, Mackenzie JW, et al. Regulation of collagen gene expression in keloids and hypertrophic scars. J Surg Res 1993;55(2):214-22.
    [75]Uitto J, Perejda AJ, Abergel RP, et al. Altered steady-state ratio of type Ⅰ/Ⅲ procollagen mRNAs correlates with selectively increased type I procollagen biosynthesis in cultured keloid fibroblasts. Proc Natl Acad Sci U S A 1985;82(17):5935-9.
    [76]Diegelmann RF, Rothkopf LC, Cohen IK. Measurement of collagen biosynthesis during wound healing. J Surg Res 1975;19(4):239-43.
    [77]Horslev-Petersen K, Kim KY, Pedersen LR, et al. Serum aminoterminal type Ⅲ procollagen peptide. Relation to biosynthesis of collagen type Ⅲ in experimentally induced granulation tissue in rats. APMIS 1988;96(9):793-804.
    [78]Liu Y, Yang D, Xiao Z, et al. miRNA expression profiles in keloid tissue and corresponding normal skin tissue. Aesthetic Plast Surg 2012;36(1):193-201.
    [79]Kashiyama K, Mitsutake N, Matsuse M, et al. miR-196a downregulation increases the expression of type I and III collagens in keloid fibroblasts. J Invest Dermatol 2012; 132(6):1597-604.
    [80]Fred RG, Bang-Berthelsen CH, Mandrup-Poulsen T, et al. High glucose suppresses human islet insulin biosynthesis by inducing miR-133a leading to decreased polypyrimidine tract binding protein-expression. PLoS One 2010;5(5):e10843.
    [81]Kang K, Peng X, Zhang X, et al. MicroRNA-124 suppresses the transactivation of nuclear factor of activated T cells by targeting multiple genes and inhibits the proliferation of pulmonary artery smooth muscle cells. J Biol Chem 2013.
    [82]Izaguirre DI, Zhu W, Hai T, et al. PTBP1-dependent regulation of USP5 alternative RNA splicing plays a role in glioblastoma tumorigenesis. Mol Carcinog 2012;51(11):895-906.
    [83]冯延,徐瑜,胡义德.恶性肿瘤细胞能量代谢特点及研究进展.中华肺部疾病杂志2013;6(3):64-8.
    [84]Chen M, Zhang J, Manley JL. Turning on a fuel switch of cancer:hnRNP proteins regulate alternative splicing of pyruvate kinase mRNA. Cancer Res 2010;70(22):8977-80.
    [85]David CJ, Chen M, Assanah M, et al. HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature 2010;463(7279):364-8.
    [86]Cheung HC, Hai T, Zhu W, et al. Splicing factors PTBP1 and PTBP2 promote proliferation and migration of glioma cell lines. Brain 2009;132(Pt 8):2277-88.
    [87]Schiller M, Javelaud D, Mauviel A. TGF-beta-induced SMAD signaling and gene regulation: consequences for extracellular matrix remodeling and wound healing. J Dermatol Sci 2004;35(2):83-92.
    [88]Verrecchia F, Mauviel A. Transforming growth factor-beta and fibrosis. World J Gastroenterol 2007;13(22):3056-62.
    [89]Pohlers D, Brenmoehl J, Loffler I, et al. TGF-beta and fibrosis in different organs-molecular pathway imprints. Biochim Biophys Acta 2009;1792(8):746-56.
    [90]Ala-Kokko L, Rintala A, Savolainen ER. Collagen gene expression in keloids:analysis of collagen metabolism and type Ⅰ, Ⅲ, Ⅳ, and Ⅴ procollagen mRNAs in keloid tissue and keloid fibroblast cultures. J Invest Dermatol 1987;89(3):238-44.
    [91]Duong HS, Zhang QZ, Le AD, et al. Elevated prolidase activity in keloids:correlation with type Ⅰ collagen turnover. Br J Dermatol 2006;154(5):820-8.
    [92]Chin GS, Liu W, Peled Z, et al. Differential expression of transforming growth factor-beta receptors Ⅰ and Ⅱ and activation of Smad 3 in keloid fibroblasts. Plast Reconstr Surg 2001;108(2):423-9.
    [93]Tsujita-Kyutoku M, Uehara N, Matsuoka Y, et al. Comparison of transforming growth factor-beta/Smad signaling between normal dermal fibroblasts and fibroblasts derived from central and peripheral areas of keloid lesions. In Vivo 2005;19(6):959-63.
    [94]Hallgren O, Malmstrom J, Malmstrom L, et al. Splicosomal and serine and arginine-rich splicing factors as targets for TGF-beta. Fibrogenesis Tissue Repair 2012;5(1):6.
    [95]Pagani F, Zagato L, Vergani C, et al. Tissue-specific splicing pattern of fibronectin messenger RNA precursor during development and aging in rat. J Cell Biol 1991;113(5):1223-9.
    [96]Brenmoehl J, Lang M, Hausmann M, et al. Evidence for a differential expression of fibronectin splice forms ED-A and ED-B in Crohn's disease (CD) mucosa. Int J Colorectal Dis 2007;22(6):611-23.
    [97]薛爱民,赵子琴,沈忆文,et al人体皮肤切创纤维连接蛋白EDA、EDB的表达与损伤时问关系的研究.2003.
    [98]Romberger DJ. Fibronectin. Int J Biochem Cell Biol 1997;29(7):939-43.
    [99]White ES, Baralle FE, Muro AF. New insights into form and function of fibronectin splice variants. J Pathol 2008;216(1):1-14.
    [100]Muro AF, Moretti FA, Moore BB, et al. An essential role for fibronectin extra type Ⅲ domain A in pulmonary fibrosis. Am J Respir Crit Care Med 2008;177(6):638-45.
    [101]Peltonen J, Hsiao LL, Jaakkola S, et al. Activation of collagen gene expression in keloids: co-localization of type Ⅰ and Ⅳ collagen and transforming growth factor-beta 1 mRNA. J Invest Dermatol 1991;97(2):240-8.
    [102]Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998;391(6669):806-11.
    [103]Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001;411(6836):494-8.
    [104]Fitzgerald K, Frank-Kamenetsky M, Shulga-Morskaya S, et al. Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers:a randomised, single-blind, placebo-controlled, phase 1 trial. Lancet 2014;383(9911):60-8.
    [105]Coelho T, Adams D, Silva A, et al. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N Engl J Med 2013;369(9):819-29.
    [106]孙青,傅广波,庄海军,et al化学修饰小干扰RNA研究进展.河南外科学杂志2012;18(6):71-3.
    [107]Golzio M, Mazzolini L, Paganin-Gioanni A, et al. Targeted gene silencing into solid tumors with electrically mediated siRNA delivery. Methods Mol Biol 2009;555:15-27.
    [108]Rettig GR, Behlke MA. Progress toward in vivo use of siRNAs-II. Mol Ther2012;20(3):483-512.
    [109]张晓静,葛银林,侯琳, et al. KDR为靶的si RNA抑制乳腺癌细胞增殖的体内外研究.细胞与分子免疫学杂志2008;24(1):58-61.
    [110]Jonson AL, Rogers LM, Ramakrishnan S, et al. Gene silencing with siRNA targeting E6/E7 as a therapeutic intervention in a mouse model of cervical cancer. Gynecol Oncol 2008; 111(2):356-64.
    [111]Singhal SS, Awasthi YC, Awasthi S. Regression of melanoma in a murine model by RLIP76 depletion. Cancer Res 2006;66(4):2354-60.
    [112]Abrams MT, Koser ML, Seitzer J, et al. Evaluation of efficacy, biodistribution, and inflammation for a potent siRNA nanoparticle:effect of dexamethasone co-treatment. Mol Ther 2010;18(l):171-80.
    [113]Liu X, Madhankumar AB, Slagle-Webb B, et al. Heavy chain ferritin siRNA delivered by cationic liposomes increases sensitivity of cancer cells to chemotherapeutic agents. Cancer Res 2011;71(6):2240-9.
    [114]Dharmapuri S, Peruzzi D, Marra E, et al. Intratumor RNA interference of cell cycle genes slows down tumor progression. Gene Ther 2011;18(7):727-33.
    [115]郭佳佳,王建军,徐根兴siRNA的体内递送及药物代谢动力学特性.药学与临床研究2010;18(4):363-5.
    [116]Suo WH, Zhang N, Wu PP, et al. Anti-tumour effects of small interfering RNA targeting anion exchanger I in experimental gastric cancer. Br J Pharmacol 2012;165(1):135-47.
    [117]Louw L. Keloids in rural black South Africans. Part 1:general overview and essential fatty acid hypotheses for keloid formation and prevention. Prostaglandins Leukot Essent Fatty Acids 2000;63(5):237-45.
    [118]Yedomon GH, Adegbidi H, Atadokpede F, et al. [Keloids on dark skin:a consecutive series of 456 cases]. Med Sante Trop 2012;22(3):287-91.
    [119]Bran GM, Goessler UR, Hormann K, et al. Keloids:current concepts of pathogenesis (review). Int J Mol Med 2009;24(3):283-93.
    [120]Alhady SM, Sivanantharajah K. Keloids in various races. A review of 175 cases. Plast Reconstr Surg 1969;44(6):564-6.
    [121]Yang YC, Cheng YW, Lai CS, et al. Prevalence of childhood acne, ephelides, warts, atopic dermatitis, psoriasis, alopecia areata and keloid in Kaohsiung County, Taiwan:a community-based clinical survey. J Eur Acad Dermatol Venereol 2007;21(5):643-9.
    [122]Materazzi S, Pellerito S, Di Serio C, et al. Analysis of protease-activated receptor-1 and-2 in human scar formation. J Pathol 2007;212(4):440-9.
    [123]Knapp TR, Daniels RJ, Kaplan EN. Pathologic scar formation. Morphologic and biochemical correlates. Am J Pathol 1977;86(1):47-70.
    [124]Santucci M, Borgognoni L, Reali UM, et al. Keloids and hypertrophic scars of Caucasians show distinctive morphologic and immunophenotypic profiles. Virchows Arch 2001;438(5):457-63.
    [125]Di Cesare PE, Cheung DT, Perelman N, et al. Alteration of collagen composition and cross-linking in keloid tissues. Matrix 1990; 10(3):172-8.
    [126]Craig RD. Collagen biosynthesis in normal human skin, normal and hypertrophic scar and keloid. Eur J Clin Invest 1975;5(1):69-74.
    [127]Abergel RP, Pizzurro D, Meeker CA, et al. Biochemical composition of the connective tissue in keloids and analysis of collagen metabolism in keloid fibroblast cultures. J Invest Dermatol 1985;84(5):384-90.
    [128]Igarashi A, Nashiro K, Kikuchi K, et al. Connective tissue growth factor gene expression in tissue sections from localized scleroderma, keloid, and other fibrotic skin disorders. J Invest Dermatol 1996;106(4):729-33.
    [129]Haisa M, Okochi H, Grotendorst GR. Elevated levels of PDGF alpha receptors in keloid fibroblasts contribute to an enhanced response to PDGF. J Invest Dermatol 1994;103(4):560-3.
    [130]Liao W-T, Yu H-S, Arbiser JL, et al. Enhanced MCP-1 release by keloid CD14+cells augments fibroblast proliferation:role of MCP-1 and Akt pathway in keloids. Experimental Dermatology 2010;19(8):e142-e50.
    [131]Russell SB, Trupin KM, Rodriguez-Eaton S, et al. Reduced growth-factor requirement of keloid-derived fibroblasts may account for tumor growth. Proc Natl Acad Sci U S A 1988;85(2):587-91.
    [132]Santibanez JF, Quintanilla M, Bernabeu C. TGF-beta/TGF-beta receptor system and its role in physiological and pathological conditions. Clin Sci (Lond) 2011; 121 (6):233-51.
    [133]Roberts AB, Sporn MB, Assoian RK, et al. Transforming growth factor type beta:rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci U S A 1986;83(12):4167-71.
    [134]Wipff PJ, Rifkin DB, Meister JJ, et al. Myofibroblast contraction activates latent TGF-betal from the extracellular matrix. J Cell Biol 2007; 179(6):1311-23.
    [135]Rosenbloom J, Castro SV, Jimenez SA. Narrative review:fibrotic diseases:cellular and molecular mechanisms and novel therapies. Ann Intern Med 2010;152(3):159-66.
    [136]Shah M, Foreman DM, Ferguson MW. Neutralisation of TGF-beta 1 and TGF-beta 2 or exogenous addition of TGF-beta 3 to cutaneous rat wounds reduces scarring. J Cell Sci 1995; 108 (Pt 3):985-1002.
    [137]Fujiwara M, Muragaki Y, Ooshima A. Keloid-derived fibroblasts show increased secretion of factors involved in collagen turnover and depend on matrix metalloproteinase for migration. Br J Dermatol 2005;153(2):295-300.
    [138]Zhang GY, Yu Q, Cheng T, et al. Role of caveolin-1 in the pathogenesis of tissue fibrosis by keloid-derived fibroblasts in vitro. Br J Dermatol 2011;164(3):623-7.
    [139]Larson BJ, Longaker MT, Lorenz HP. Scarless fetal wound healing:a basic science review. Plast Reconstr Surg 2010;126(4):1172-80.
    [140]Krummel TM, Michna BA, Thomas BL, et al. Transforming growth factor beta (TGF-beta) induces fibrosis in a fetal wound model. J Pediatr Surg 1988;23(7):647-52.
    [141]Lin RY, Sullivan KM, Argenta PA, et al. Exogenous transforming growth factor-beta amplifies its own expression and induces scar formation in a model of human fetal skin repair. Ann Surg 1995;222(2):146-54.
    [142]Abreu JG, Ketpura NI, Reversade B, et al. Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-beta. Nat Cell Biol 2002;4(8):599-604.
    [143]Tomasek JJ, Gabbiani G, Hinz B, et al. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nature reviews. Molecular cell biology 2002;3(5):349-63.
    [144]Hinz B. Formation and function of the myofibroblast during tissue repair. J Invest Dermatol 2007;127(3):526-37.
    [145]Mori L, Bellini A, Stacey MA, et al. Fibrocytes contribute to the myofibroblast population in wounded skin and originate from the bone marrow. Exp Cell Res 2005;304(1):81-90.
    [146]Direkze NC, Forbes SJ, Brittan M, et al. Multiple organ engraftment by bone-marrow-derived myofibroblasts and fibroblasts in bone-marrow-transplanted mice. Stem Cells 2003;21(5):514-20.
    [147]Kisseleva T, Cong M, Paik Y, et al. Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc Natl Acad Sci U S A 2012;109(24):9448-53.
    [148]Chambers RC, Leoni P, Kaminski N, et al. Global expression profiling of fibroblast responses to transforming growth factor-betal reveals the induction of inhibitor of differentiation-1 and provides evidence of smooth muscle cell phenotypic switching. Am J Pathol 2003;162(2):533-46.
    [149]Higashi K, Inagaki Y, Fujimori K, et al. Interferon-gamma interferes with transforming growth factor-beta signaling through direct interaction of YB-1 with Smad3. J Biol Chem 2003;278(44):43470-9.
    [150]刘晓,王建,卢光跨.细胞生长因子与创伤愈合.现代生物医学进展2008;8(9):1753-5.
    [151]Niessen FB, Schalkwijk J, Vos H, et al. Hypertrophic scar formation is associated with an increased number of epidermal Langerhans cells. J Pathol 2004;202(1):121-9.
    [152]Messadi DV, Doung HS, Zhang Q, et al. Activation of NFkappaB signal pathways in keloid fibroblasts. Arch Dermatol Res 2004;296(3):125-33.
    [153]Iqbal SA, Syed F, McGrouther DA, et al. Differential distribution of haematopoietic and nonhaematopoietic progenitor cells in intralesional and extralesional keloid:do keloid scars provide a niche for nonhaematopoietic mesenchymal stem cells? Br J Dermatol 2010; 162(6):1377-83.
    [154]Moon JH, Kwak SS, Park G, et al. Isolation and characterization of multipotent human keloid-derived mesenchymal-like stem cells. Stem Cells Dev 2008; 17(4):713-24.
    [155]Ross R, Everett NB, Tyler R. Wound healing and collagen formation. Ⅳ. The origin of the wound fibroblast studied in parabiosis. J Cell Biol 1970;44(3):645-54.
    [156]Akino K, Akita S, Yakabe A, et al. Human mesenchymal stem cells may be involved in keloid pathogenesis. Int J Dermatol 2008;47(11):1112-7.
    [157]Nakamura M, Tokura Y. Epithelial-mesenchymal transition in the skin. J Dermatol Sci 2011;61(1):7-13.
    [158]Thiery JP, Acloque H, Huang RY, et al. Epithelial-mesenchymal transitions in development and disease. Cell 2009;139(5):871-90.
    [159]Sipos F, Galamb O. Epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions in the colon. World J Gastroenterol 2012;18(7):601-8.
    [160]Jinnin M. Mechanisms of skin fibrosis in systemic sclerosis. J Dermatol 2010;37(1):11-25.
    [161]Carew RM, Wang B, Kantharidis P. The role of EMT in renal fibrosis. Cell Tissue Res 2012;347(1):103-16.
    [162]Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 2003;112(12):1776-84.
    [163]Hugo HJ, Kokkinos MI, Blick T, et al. Defining the E-cadherin repressor interactome in epithelial-mesenchymal transition:the PMC42 model as a case study. Cells Tissues Organs 2011; 193(1-2):23-40.
    [164]Koefinger P, Wels C, Joshi S, et al. The cadherin switch in melanoma instigated by HGF is mediated through epithelial-mesenchymal transition regulators. Pigment Cell Melanoma Res 2011;24(2):382-5.
    [165]Nagaharu K, Zhang X, Yoshida T, et al. Tenascin C induces epithelial-mesenchymal transition-like change accompanied by SRC activation and focal adhesion kinase phosphorylation in human breast cancer cells. Am J Pathol 2011;178(2):754-63.
    [166]Kim KK, Kugler MC, Wolters PJ, et al. Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc Natl Acad Sci U S A 2006;103(35):13180-5.
    [167]Mani SA, Guo W, Liao MJ, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008;133(4):704-15.
    [168]Battula VL, Evans KW, Hollier BG, et al. Epithelial-mesenchymal transition-derived cells exhibit multilineage differentiation potential similar to mesenchymal stem cells. Stem Cells 2010;28(8):1435-45.
    [169]Lim CP, Phan TT, Lim IJ, et al. Cytokine profiling and Stat3 phosphorylation in epithelial-mesenchymal interactions between keloid keratinocytes and fibroblasts. J Invest Dermatol 2009; 129(4):851-61.
    [170]Shephard P, Martin G, Smola-Hess S, et al. Myofibroblast differentiation is induced in keratinocyte-fibroblast co-cultures and is antagonistically regulated by endogenous transforming growth factor-beta and interleukin-1. Am J Pathol 2004;164(6):2055-66.
    [171]Suetake T, Sasai S, Zhen YX, et al. Functional analyses of the stratum corneum in scars. Sequential studies after injury and comparison among keloids, hypertrophic scars, and atrophic scars. Arch Dermatol 1996;132(12):1453-8.
    [172]On the anatomy and physiology of the skin. Ⅲ. The elasticity of the cutis By Professor K. Langer Presented at the meeting of 27th November 1861. Br J Plast Surg 1978;31 (3):185-99.
    [173]Agha R, Ogawa R, Pietramaggiori G, et al. A review of the role of mechanical forces in cutaneous wound healing. J Surg Res 2011;171(2):700-8.
    [174]焦虎,范金财.机械应力对皮肤生物力学改变及促细胞增殖机制的研究进展.中国美容医学2010;26(4):313-6.
    [175]Webb K, Hitchcock RW, Smeal RM, et al. Cyclic strain increases fibroblast proliferation, matrix accumulation, and elastic modulus of fibroblast-seeded polyurethane constructs. J Biomech 2006;39(6):1136-44.
    [176]Peacock EE, Jr., Madden JW, Trier WC. Biologic basis for the treatment of keloids and hypertrophic scars. South Med J 1970;63(7):755-60.
    [177]Curtis AS, Seehar GM. The control of cell division by tension or diffusion. Nature 1978;274(5666):52-3.
    [178]Calnan JS, Copenhagen HJ. Autotransplantation of keloid in man. Br J Surg 1967;54(5):330-5.
    [179]Nagasao T, Aramaki-Hattori N, Shimizu Y, et al. Transformation of keloids is determined by stress occurrence patterns on peri-keloid regions in response to body movement. Med Hypotheses 2013;81(1):136-41.
    [180]Aarabi S, Bhatt KA, Shi Y, et al. Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis. FASEB J 2007;21(12):3250-61.
    [181]Wang Z, Fong KD, Phan TT, et al. Increased transcriptional response to mechanical strain in keloid fibroblasts due to increased focal adhesion complex formation. J Cell Physiol 2006;206(2):510-7.
    [182]Suarez E, Syed F, Alonso-Rasgado T, et al. Up-regulation of tension-related proteins in keloids: knockdown of Hsp27, alpha2betal-integrin, and PAI-2 shows convincing reduction of extracellular matrix production. Plast Reconstr Surg 2013;131(2):158e-73e.
    [183]Lu WS, Zuo XB, Wang ZX, et al. Association of HLA haplotype with keloids in Chinese Hans. Burns 2011;37(5):794-9.
    [184]Ashcroft KJ, Syed F, Arscott G, et al. Assessment of the influence of HLA class I and class II loci on the prevalence of keloid disease in Jamaican Afro-Caribbeans. Tissue Antigens 2011;78(5):390-6.
    [185]Brown JJ, Ollier WE, Thomson W, et al. Positive association of HLA-DRB1*15 with keloid disease in Caucasians. Int J Immunogenet 2008;35(4-5):303-7.
    [186]师明磊,赵志虎.表观遗传、环境与疾病.中国医药生物技术2013;8(5):362-6.
    [187]梁前进.表观遗传学——理论·方法·研究进展(2].生物学通报2007;42(11):11-2.
    [188]郭熔,邱洁.表观遗传学和niRNA国际儿科学杂志2008;35(5):485-7.
    [189]廖爱军,童汪霞.组蛋白乙酰化的研究进展.肿瘤基础与临床2008;21(6):544-7.
    [190]陈健康,汪秀伟.组蛋白乙酰化与肿瘤的相关研究.国际检验医学杂志2011;32(10):1100-1.
    [191]Russell SB, Russell JD, Trupin KM, et al. Epigenetically altered wound healing in keloid fibroblasts. J Invest Dermatol 2010;130(10):2489-96.
    [192]Diao JS, Xia WS, Yi CG, et al. Trichostatin A inhibits collagen synthesis and induces apoptosis in keloid fibroblasts. Arch Dermatol Res 2011;303(8):573-80.
    [193]Furtado F, Hochman B, Farber PL, et al. Psychological stress as a risk factor for postoperative keloid recurrence. J Psychosom Res 2012;72(4):282-7.
    [194]Louw L, Engelbrecht AM, Cloete F, et al. Impairment in the fatty acid composition of keloids. Adv Exp Med Biol 1997;400B:905-10.
    [195]Berman B, Bieley HC. Adjunct therapies to surgical management of keloids. Dermatol Surg 1996;22(2):126-30.
    [196]Kelly AP. Medical and surgical therapies for keloids. Dermatol Ther 2004; 17(2):212-8.
    [197]Roques C, Teot L. The use of corticosteroids to treat keloids:a review. Int J Low Extrem Wounds 2008;7(3):137-45.
    [198]Mustoe TA, Cooter RD, Gold MH, et al. International clinical recommendations on scar management. Plast Reconstr Surg 2002; 110(2):560-71.
    [199]Williams CC, De Groote S. Clinical inquiry:What treatment is best for hypertrophic scars and keloids? J Fam Pract 2011;60(12):757-8.
    [200]Borgognoni L. Biological effects of silicone gel sheeting. Wound Repair Regen 2002; 10(2):118-21.
    [201]Berman B, Perez OA, Konda S, et al. A review of the biologic effects, clinical efficacy, and safety of silicone elastomer sheeting for hypertrophic and keloid scar treatment and management. Dermatol Surg 2007;33(11):1291-302; discussion 302-3.
    [202]Mustoe TA. Evolution of silicone therapy and mechanism of action in scar management. Aesthetic Plast Surg 2008;32(1):82-92.
    [203]Sawada Y, Sone K. Hydration and occlusion treatment for hypertrophic scars and keloids. Br J Plast Surg 1992;45(8):599-603.
    [204]Sawada Y, Sone K. Treatment of scars and keloids with a cream containing silicone oil. Br J Plast Surg 1990;43(6):683-8.
    [205]Palmieri B, Gozzi G, Palmieri G. Vitamin E added silicone gel sheets for treatment of hypertrophic scars and keloids. Int J Dermatol 1995;34(7):506-9.
    [206]Sawada Y, Hatayama I, Sone K. Release of Ofloxacin from silicone gel sheet. Br J Plast Surg 1993;46(7):576-9.
    [207]Perkins K, Davey RB, Wallis KA. Silicone gel:a new treatment for burn scars and contractures. Burns Incl Therm Inj 1983;9(3):201-4.
    [208]O'Brien L, Jones DJ. Silicone gel sheeting for preventing and treating hypertrophic and keloid scars. Cochrane Database Syst Rev 2013;9:CD003826.
    [209]Ogawa R, Miyashita T, Hyakusoku H, et al. Postoperative radiation protocol for keloids and hypertrophic scars:statistical analysis of 370 sites followed for over 18 months. Ann Plast Surg 2007;59(6):688-91.
    [210]Malaker K, Vijayraghavan K, Hodson I, et al. Retrospective analysis of treatment of unresectable keloids with primary radiation over 25 years. Clin Oncol (R Coll Radiol) 2004;16(4):290-8.
    [211]Castro DJ, Abergel RP, Meeker C, et al. Effects of the Nd:YAG laser on DNA synthesis and collagen production in human skin fibroblast cultures. Ann Plast Surg 1983;11(3):214-22.
    [212]Apfelberg DB, Maser MR, Lash H, et al. Preliminary results of argon and carbon dioxide laser treatment of keloid scars. Lasers Surg Med 1984;4(3):283-90.
    [213]Alster TS, Tanzi EL. Hypertrophic scars and keloids:etiology and management. Am J Clin Dermatol 2003;4(4):235-43.
    [214]Bouzari N, Davis SC, Nouri K. Laser treatment of keloids and hypertrophic scars. Int J Dermatol 2007;46(1):80-8.
    [215]Leventhal D, Furr M, Reiter D. Treatment of keloids and hypertrophic scars:a meta-analysis and review of the literature. Arch Facial Plast Surg 2006;8(6):362-8.
    [216]Jin R, Huang X, Li H, et al. Laser therapy for prevention and treatment of pathologic excessive scars. Plast Reconstr Surg 2013;132(6):1747-58.
    [217]Anzarut A, Olson J, Singh P, et al. The effectiveness of pressure garment therapy for the prevention of abnormal scarring after burn injury:a meta-analysis. J Plast Reconstr Aesthet Surg 2009;62(1):77-84.
    [218]Zouboulis CC, Blume U, Buttner P, et al. Outcomes of cryosurgery in keloids and hypertrophic scars. A prospective consecutive trial of case series. Arch Dermatol 1993;129(9):1146-51.
    [219]Panabiere-Castaings MH. Retinoic acid in the treatment of keloids. J Dermatol Surg Oncol 1988;14(11):1275-6.
    [220]Larrabee WF, Jr., East CA, Jaffe HS, et al. Intralesional interferon gamma treatment for keloids and hypertrophic scars. Arch Otolaryngol Head Neck Surg 1990; 116(10):1159-62.
    [221]Koc E, Arca E, Surucu B, et al. An open, randomized, controlled, comparative study of the combined effect of intralesional triamcinolone acetonide and onion extract gel and intralesional triamcinolone acetonide alone in the treatment of hypertrophic scars and keloids. Dermatol Surg 2008;34(11):1507-14.
    [222]Darougheh A, Asilian A, Shariati F. Intralesional triamcinolone alone or in combination with 5-fluorouracil for the treatment of keloid and hypertrophic scars. Clin Exp Dermatol 2009;34(2):219-23.
    [223]Shetlar MR, Shetlar CL, Hendricks L, et al. The use of athymic nude mice for the study of human keloids. Proc Soc Exp Biol Med 1985;179(4):549-52.
    [224]Kischer CW, Pindur J, Shetlar MR, et al. Implants of hypertrophic scars and keloids into the nude (athymic) mouse:viability and morphology. J Trauma 1989;29(5):672-7.
    [225]徐斌,刘振中,朱桂英,et al.保留表皮的瘢痕疙瘩裸鼠模型的建立及观察.组织工程与重建外科杂志;3(3):162-4.
    [226]Polo M, Kim YJ, Kucukcelebi A, et al. An in vivo model of human proliferative scar. J Surg Res 1998;74(2):187-95.
    [227]Waki EY, Crumley RL, Jakowatz JG. Effects of pharmacologic agents on human keloids implanted in athymic mice. A pilot study. Arch Otolaryngol Head Neck Surg 1991; 117(10):1177-81.
    [228]倪云志,郭树忠.瘢痕动物模型的研究进展.中国美容医学2005;14(3):377-9.
    [229]余谦,张刚.瘢痕疙瘩实验模型的建立及研究进展.医学综述2008;14(17):2564-6.
    [230]Morris DE, Wu L, Zhao LL, et al. Acute and chronic animal models for excessive dermal scarring: quantitative studies. Plast Reconstr Surg 1997;100(3):674-81.
    [231]Kim I, Mogford JE, Witschi C, et al. Inhibition of prolyl 4-hydroxylase reduces scar hypertrophy in a rabbit model of cutaneous scarring. Wound Repair Regen 2003; 11(5):368-72.
    [232]Reid RR, Mogford JE, Butt R, et al. Inhibition of procollagen C-proteinase reduces scar hypertrophy in a rabbit model of cutaneous scarring. Wound Repair Regen 2006;14(2):138-41.
    [233]Zhu KQ, Engrav LH, Gibran NS, et al. The female, red Duroc pig as an animal model of hypertrophic scarring and the potential role of the cones of skin. Burns 2003;29(7):649-64.
    [234]Wang J, Ding J, Jiao H, et al. Human hypertrophic scar-like nude mouse model:characterization of the molecular and cellular biology of the scar process. Wound Repair Regen 2011;19(2):274-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700