用户名: 密码: 验证码:
全身成像三维量化评估二尖瓣反流体积与实时三维超声心动图及常规超声心动图的对比研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[背景]二尖瓣反流(mitral regurgitation, MR)是常见的瓣膜疾患,如果不施加干预,最终可进展为不可逆转的心力衰竭,导致很高的死亡率,因此及时诊断并准确评估MR的严重程度,对于患者的临床治疗决策尤为重要;但是常规超声心动图评估MR的严重程度仍旧充满挑战。二尖瓣反流体积是评估MR严重程度的重要指标,近来有研究以核磁共振测量的二尖瓣反流体积为标准,发现实时三维超声心动图(real-time3-dimensional echocardiography, RT3DE)测量二尖瓣有效反流口面积(effective regurgitant orifice area, EROA)乘以MR速度时间积分(velocity time integral,VTI)得出的二尖瓣反流体积与其相关性良好,且一致性分析未见两种方法有明显差异。随着超声探头技术及软件技术的进展,全身成像三维量化(General Imaging3-dimensional Quantification, GI3DQ)使得直接测量二尖瓣反流体积成为可能。
     [目的]①以RT3DE测量的EROA乘以MR-VTI计算的二尖瓣反流体积作为标准,探讨GI3DQ直接测量二尖瓣反流束体积,用以评估二尖瓣反流体积的可行性和准确性;②同常规超声心动图方法:近端血流等速面(proximal isovelocity surface area,PISA)法及多普勒法测量的二尖瓣反流体积作比较,旨在为临床上评估二尖瓣反流体积寻找一种更为可靠简便的方法。
     [方法]①入选93例不同程度的MR患者,其中功能性二尖瓣反流患者61例,器质性二尖瓣脱垂患者32例;根据二尖瓣反流血流束方向,又将患者分为中心性反流41例,偏心性反流52例。②RT3DE测量EROA:在心尖四腔切面采集二尖瓣反流实时三维彩色血流图像,在二尖瓣反流束最大时停帧,调整三维图像上横断切面,使其垂直于二尖瓣反流束,然后自心尖向心底平移切割,直至显示最小二尖瓣反流束横截面,在该横截面的en face切面上手动勾画二尖瓣反流束彩色多普勒信号边缘,得到EROA,然后乘以MR-VTI得出二尖瓣反流体积。③GI3DQ直接测量二尖瓣反流束体积:进入GI3DQ插件,选择实时三维二尖瓣反流血流图像,在反流束最大时停帧,从二尖瓣反流起点到二尖瓣反流终点连线,将二尖瓣反流束分为15等份等厚度薄切片平面,在每一切片的横截面上手动勾画二尖瓣反流束彩色多普勒信号边缘,勾画完15个横截面后,二尖瓣反流束体积计算值将出现在结果中。④PISA法评估二尖瓣反流体积:在心尖四腔切面,将近端血流汇聚区用ZOOM模式局部放大;在20-40cm/s范围内调节Nyquist极限速度,以尽量获取半球形的近端血流等速面形态;冻结图像后,应用回放功能逐帧查看,选择收缩中期最满意的半球形近端血流等速面;测量第一层血流混叠区边缘距反流口的轴向距离得到PISA半径,应用公式:EROA=(2π×r2×Va)/PkVreg得出EROA,式中r指P工SA半径,Va指Nyquist极限速度,PkVreg指连续多普勒测量的MR峰值速度;二尖瓣反流体积由EROA乘以连续多普勒测量的MR-VTI得到。⑤多普勒法评估二尖瓣反流体积:二尖瓣前向血流体积由二尖瓣环前向血流速度时间积分乘以二尖瓣环横截面积得到;主动脉前向血流体积由左室流出道前向血流速度时间积分乘以左室流出道横截面积得到。脉冲多普勒测量前向血流速度时间积分时,取样容积分别放置于二尖瓣环水平和紧邻主动脉瓣下左室流出道水平;左室流出道直径在紧邻主动脉瓣下测量,假设左室流出道为规则的圆形,应用公式π r2/4求出左室流出道横截面积,式中r为左室流出道直径。二尖瓣环直径分别在四腔心切面和两腔心切面测量,由于二尖瓣环几何形态的特殊性,分别假设其为规则的圆形,应用公式πa2/4求出二尖瓣环横截面积,式中a指四腔心切面二尖瓣环直径;假设其为椭圆形,应用公式πab/4求出二尖瓣环横截面积,式中a指四腔心切面二尖瓣环直径,b指两腔心切面二尖瓣环直径;二尖瓣前向血流体积减去主动脉前向血流体积即为二尖瓣反流体积。
     [结果]1.G13DQ测量的二尖瓣反流体积与参考方法RT3DE计算的二尖瓣反流体积结果比较。
     在所有二尖瓣反流患者中,GI3DQ测量的二尖瓣反流体积与参考方法RT3DE计算的二尖瓣反流体积相关性良好:r=0.921,p<0.0001,但是一致性分析发现,与RT3DE计算的二尖瓣反流体积比较,GI3DQ法存在低估,平均低估约6.07ml。在功能性二尖瓣反流组中,GI3DQ测量的二尖瓣反流体积与参考方法RT3DE计算的二尖瓣反流体积相关性更好:r=0.948,p<0.0001,但一致性分析发现,GI3DQ测量二尖瓣反流体积依然存在低估,平均低估约3.18ml。在器质性二尖瓣脱垂组中,两种方法的相关性为:r=0.911,p<0.001,一致性分析发现,GI3DQ在测量这组二尖瓣反流体积时存在严重低估,平均低估约11.56ml;该组分析结果类似于偏心性二尖瓣反流组中两种方法的比较结果:r=0.914,p<0.0001,平均低估约10.55ml。在中心性二尖瓣反流组中,GI3DQ与RT3DE在测量二尖瓣反流体积时的相关性最好:r=0.956,p<0.0001,虽然一致性分析显示GI3DQ存在轻微低估,平均低估约0.38ml,但无统计学意义(p=0.1114>0.05)。
     2.PISA法计算的二尖瓣反流体积与参考方法RT3DE计算的二尖瓣反流体积结果比较。
     在所有二尖瓣反流患者中,PISA法计算的二尖瓣反流体积与参考方法RT3DE计算的二尖瓣反流体积相关性良好:r=0.911,p<0.0001,但是一致性分析发现,与RT3DE计算的二尖瓣反流体积比较,PISA法在总体人群存在低估,平均低估约4.64ml。在偏心性二尖瓣反流组中,两种方法的相关性为:r=0.871,p<0.001,一致性分析发现,PISA法在测量该组二尖瓣反流体积时存在明显低估,平均低估约7.58ml。在中心性二尖瓣反流组中,PISA法与RT3DE在评估二尖瓣反流体积时的相关性最好:r=0.964,p<0.0001,虽然一致性分析显示PISA法在该组人群存在轻度低估,平均低估约0.92ml,但无统计学意义(p=0.5062>0.05)。
     3.多普勒法计算的二尖瓣反流体积与参考方法RT3DE计算的二尖瓣反流体积结果比较。
     ①假设二尖瓣环几何形态为圆形:在所有二尖瓣反流患者、偏心性二尖瓣反流组及中心性二尖瓣反流组,多普勒法计算的二尖瓣反流体积与参考方法RT3DE计算的二尖瓣反流体积相关性较好,分别为:r=0.813, r=0.759, r=0.725;p值均小于0.0001;一致性分析发现,与RT3DE计算的二尖瓣反流体积比较,多普勒法在这三组人群存在不同程度的高估,平均高估分别约9.82ml、12.79ml、6.06ml:p值均小于0.05。
     ②假设二尖瓣环几何形态为椭圆形:在所有二尖瓣反流患者、偏心性二尖瓣反流组及中心性二尖瓣反流组,多普勒法计算的二尖瓣反流体积与参考方法RT3DE计算的二尖瓣反流体积相关性良好,分别为:r=0.906,r=0.889,r=0.844;p值均小于0.0001;一致性分析发现,与RT3DE计算的二尖瓣反流体积比较,多普勒法在这三组人群均存在轻微的高估,平均高估分别约1.34ml、1.64ml、0.96ml;但未见有明显统计学意义(p值均大于0.05)。
     4.G13DQ法测量的二尖瓣反流体积与PISA法及多普勒法计算的二尖瓣反流体积结果比较。
     ①G13DQ与PISA法:在所有二尖瓣反流患者、偏心性二尖瓣反流组及中心性二尖瓣反流组,配对t检验结果显示,两种方法的测量结果均未见明显差异,p值均大于0.05;一致性分析显示,在前两组人群,GI3DQ较PISA法测量结果存在低估,分别平均低估约1.43ml、2.97m1、但无统计学意义(p>0.05)。在中心性二尖瓣反流组,一致性分析显示,GI3DQ较PISA法测量结果轻微高估约0.54ml,但无统计学意义(p=0.0587>0.05)。
     ②GI3DQ与多普勒法(椭圆形模型):在所有二尖瓣反流患者及偏心性二尖瓣反流组,配对t检验结果显示,两种方法的测量结果有明显差异,p值均小于0.0001;一致性分析显示,在这两组人群,GI3DQ较多普勒法测量结果存在明显低估,分别低估约12.19ml。12.19ml,p值均小于0.0001。在中心性二尖瓣反流组,配对t检结果显示,两组方法的测量结果未见明显差异,p=0.3649>0.05;一致性分析显示,GI3DQ较多普勒法测量结果轻微低估约1.34ml,但无统计学意义(p=0.0564>0.05)。
     [结论]GI3DQ量化评估二尖瓣反流体积是可行的,且与RT3DE法测量的二尖瓣反流体积相比,二者相关性良好。应用GI3DQ法评估中心性二尖瓣反流体积是准确可行的,在与RT3DE法、PISA法及多普勒法的测量结果比较中,未发现这几种方法有明显差异。
Background Mitral regurgitation (MR) is common valvular lesion that ultimately progresses to irreversible heart failure with high morbidity and mortality. Consequently, timely diagnosis and accurate assessment of severity of MR are of significant importance for appropriate decision making and timing of surgical intervention. Mitral regurgitant volume (MRvol) is a useful and important index of the severity of MR, but MRvol measurement remains challenging. MRvol calculation using effective regurgitant orifice area (EROA) by real-time3-dimensional color Doppler echocardiography multiplied by the velocity time integral of the mitral regurgitant jet on the continuous-wave Doppler has been recently documented as an accurate method. With the development of probe technology and software, General Imaging3-dimensional Quantification (GI3DQ) allows direct measurement of MRvol.
     Objectives The aim of this study was to evaluate feasibility and accuracy of GI3DQ method for quantification of MRvol comparison with MRvol using EROA by real-time3-dimensional (3D) color Doppler echocardiography multiplied by the velocity time integral of the mitral regurgitant jet on the continuous-wave Doppler.
     Methods1) Ninety-three patients were included,61with functional MR and32with mitral valve prolapse (MVP). The MR was also divided into central MR (n=41) and eccentric MR (n=52).2) EROA by real-time3-dimensional color Doppler echocardiography. To measure EROA, the3D color Doppler datasets were manually cropped by an image plane that was perpendicularly oriented to the jet direction and the cropping plane was then moved along the jet direction as far as the smallest cross-sectional area. The EROA was measured by manual planimetry of the color Doppler signal, tilting the image in an "en face" view and selecting the systolic frame with the most relevant lesion size;the MRvol was calculated as EROA multiplied by the MR time-velocity integral. The MRvol derived from EROA by real-time3D color Doppler echocardiography was used as reference method.3) Direct measurement Of MRvol By GI3DQ. In QLAB workstation, we entered the analysis plug-in of GI3DQ and clicked the initial position and the terminal position of the mitral regurgitant jet to display15slices in the systolic frame with the most relevant lesion size. For each slice in the volume, select one end slice of the regurgitant jet contour and draw along the boundary of the regurgitant jet. The same procedure was performed one after the other until the last slice. Pressed Enter to end the measurement and the MRvol calculation appeared in the results.4) MRvol by PISA. The proximal isovelocity surface of the mitral regurgitant jet was visualized in an image from the apical4-chamber view, using a zoom mode. The position of the transducer was modified to minimize the angle between the centerline of the PISA and the ultrasound beam. We optimized the appearance of the PISA by shifting the color Doppler aliasing velocity from20to40cm/s. For each cardiac cycle, the frame with the largest flow convergence region was selected as coinciding with maximal regurgitant flow. The maximal velocity of the regurgitant jet was determined by continuous-wave Doppler. Effective regurgitant orifice area was calculated by the PISA method as (2×π×r2×Vr)/Vmax, where r is the isovelocity radius measured as the maximal radial distance between the first aliasing contour and the center of the regurgitant orifice at mid-systole, Vr is the aliasing velocity, and Vmax is the maximal velocity of the regurgitant jet. Two-dimensional PISA MRvol was calculated as2D PISA-derived EROA multiplied by the MR time-velocity integral.4)MRvol by Doppler method. Mitral inflow and aortic outflow were calculated as the time-velocity integral of the mitral or aortic inflow multiplied by the cross-sectional area of the mitral annulus (estimates of mitral annulus cross-sectional area were obtained as circular:πa2/4as well as biplane elliptical:πab/4) or aortic annulus(πr2/4),where a is the mitral annular dimension in the four-chamber view,b is the mitral annular dimension in the apical two-chamber view, and r is the left ventricular outflow tract diameter in the parasternal long-axis view(1cm proximal to the aortic annulus). Mitral Rvol was calculated as the difference between mitral and aortic forward stroke volumes.
     Results.1. MRvol by the GI3DQ Method Compared with RT3DE Method
     In all cases, MRvol measured by GI3DQ was well correlated with MRvol measured by3D color Doppler echocardiography (r=0.921), but with a significant difference between these techniques (mean difference=-6.07ml). Functional MRvol measured by GI3DQ showed better excellent correlation with MRvol measured by3D color Doppler echocardiography (r=0.948) with a lower underestimation (mean difference=-3.18ml). The correlation of MVP MRvol measured by GI3DQ and by3D color Doppler echocardiography was also good(r=0.911), but with a severe underestimation (mean difference=-11.56ml), similar to the result of the eccentric MR (r=0.914, mean difference=-10.55ml). Central MR provided the best correlation and agreement of GI3DQ estimates with3D color Doppler echocardiography (r=0.956, mean difference=-0.38ml).
     2. MRvol by the PISA Method Compared with RT3DE Method
     In all cases, MRvol measured by PISA was well correlated with MRvol measured by3D color Doppler echocardiography (r=0.911, p<0.001), but with a difference between these techniques (mean difference=-4.64ml). In eccentric MR group, the correlation of MRvol measured by PISA and by3D color Doppler echocardiography was:r=0.871,but with a severe underestimation (mean difference=-7.58ml).Central MR group provided the best correlation and agreement of PISA estimates with3D color Doppler echocardiography(r=0.964, mean difference=-0.92ml).
     3. MRvol by the Doppler Methods Compared with RT3DE Method
     ①Estimates of mitral annulus cross-sectional area as circular.In all cases,eccentric MR group and central MR group, the correlation of MRvol measured by Doppler method and by3D color Doppler echocardiography was respectively:0.813;0.759;0.725. However, the Bland-Altman analysis demonstrated varying degrees of overestimation between these techniques: mean difference (Doppler-RT3DE),respectively,9.82ml;12.79ml;6.06ml (all p values were less than0.05).
     ②Estimates of mitral annulus cross-sectional area as biplane elliptical.In all cases, eccentric MR group and central MR group, MRvol measured by Doppler method was well correlated with MRvol measured by3D color Doppler echocardiography (r=0.906;0.889;0.844; all p values were less than0.0001) in these three groups and the Bland-Altman analysis demonstrated a slight overestimation between these techniques, mean difference (Doppler-RT3DE)=1.34ml;1.64ml;0.96ml,but no statistical meanings.
     4. MRvol by GI3DQ Method Compared with PISA and Doppler Methods
     ①GI3DQ and PISA method. In all cases, eccentric MR group and central MR group, the t test revealed that there was no significant difference in the measurement of MRvol between these methods in these three groups. In the former two groups, the Bland-Altman analysis demonstrated a slight underestimation between these techniques, mean difference (GI3DQ-PISA), respectively,1.43ml;2.97ml; but no statistical meanings. In the central group, the Bland-Altman analysis demonstrated a slight overestimation between these techniques, mean difference (GI3DQ-PISA)=0.54, p=0.0587>0.05.
     ②GI3DQ and Doppler method (biplane elliptical).In all cases and eccentric MR group, the t test revealed that there was significant difference in the measurement of MRvol between these methods in these two groups and the Bland-Altman analysis demonstrated a significant underestimation between these techniques,mean difference(GI3DQ-Doppler), respectively,7.41ml;12.19ml.In central group, the t test revealed that there was no significant difference in the measurement of MRvol between these methods and the Bland-Altman analysis demonstrated a slight underestimation between these techniques, mean difference(GI3DQ-PISA)=1.34, p=0.0564>0.05.
     Conclusion Quantification of MRvol with GI3DQ was feasible and correlated well with MRvol by3D color Doppler echocardiography. Quantification of central MRvol with GI3DQ was accurate as compared with MRvol by3D color Doppler echocardiography.
引文
1. Chirillo F, Salvador L, Cavallini C. Medical and surgical treatment of chronic mitral regurgitation. Cardiovasc Med (Hagerstown).2006;7:96-107.
    2. Ling LH, Enriquez-Sarano M, Seward JB, Tajik AJ, Schaff HV, Bailey KR, et al. Clinical outcome of mitral regurgitation due to flail leaflet. N Engl J Med 1996:335:1417-23.
    3. Avierinos JF, Gersh BJ, Melton LJ 3rd, Bailey KR, Shub C, Nishimura RA, et al. Natural history of asymptomatic mitral valve prolapse in the community. Circulation 2002;106:1355-61.
    4. Grigioni F, Enriquez-Sarano M, Zehr KJ, Bailey KR, Tajik AJ. Ischemic mitral regurgitation:long-term outcome and prognostic implications with quantitative Doppler assessment. Circulation 2001 ",103:1759-64.
    5. Bursi F, Enriquez-Sarano M, Nkomo VT, Jacobsen SJ, Weston SA, Meverden RA, et al. Heart failure and death after myocardial infarction in the community:the emerging role of mitral regurgitation. Circulation 2005:111:295-301.
    6. Grigioni F, Detaint D, Avierinos JF, Scott C, Tajik J, Enriquez-Sarano M. Contribution of ischemic mitral regurgitation to congestive heart failure after myocardial infarction. J Am Coll Cardiol 2005:45:260-7.
    7. Enriquez-Sarano M. Timing of mitral valve surgery. Heart 2002;87:79-85.
    8. Enriquez-Sarano M, Avierinos JF, Messika-Zeitoun D, Detaint D, Capps M, Nkomo V, et al. Quantitative determinants of the outcome of asymptomatic mitral regurgitation. N Engl J Med 2005:352:875-83.
    9. Rosenhek R, Rader F, Klaar U, Gabriel H, Krejc M, Kalbeck D, et al. Outcome of watchful waiting in asymptomatic severe mitral regurgitation. Circulation 2006:113:2238-44.
    10. Zoghbi WA, Enriquez-Sarano M, Foster E, Grayburn PA, Kraft CD, Levine RA, et al. Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr 2003;16:777-802.
    11. Lancellotti P, Moura L, Pierard LA, Agricola E, Popescu BA, Tribouilloy C, et al. European Association of Echocardiography recommendations for the assessment of valvular regurgitation, part 2:mitral and tricuspid regurgitation (native disease). Eur J Echocardiogr 2010;11:307-32.
    12. Enriquez-Sarano M, Miller FA Jr, Hayes SN, Bailey KR, Tajik AJ, Seward JB. Effective mitral regurgitant orifice area:clinical use and pitfalls of the proximal isovelocity surface area method. J Am Coll Cardiol 1995:25:703-9.
    13. Pu M, Vandervoort PM, Greenberg NL, Powell KA, Griffin BP, Thomas JD. Impact of wall constraint on velocity distribution in proximal flow convergence zone:implications for color Doppler quantification of mitral regurgitation. J Am Coll Cardiol 1996;27:706-13.
    14. Giesler M, Stein M, Grossmann G, Hombach V. Influence of the orifice inlet angle on the velocity profile across a flow convergence region by color Doppler in vitro. Echocardiography 2000;17:419-28.
    15. Marsan NA, Westenberg JJ, Ypenburg C, Delgado V, van Bommel RJ, Roes SD, et al. Quantification of functional mitral regurgitation by real time 3D echocardiography:comparison with 3D velocity-encoded cardiac magnetic resonance. JACC Cardiovasc Imaging 2009;2:1245-52.
    16. Marsan NA, Westenberg JJ, Roes SD, van Bommel RJ, Delgado V, van der Geest RJ, et al. Three-dimensional echocardiography for the preoperative assessment of patients with left ventricular aneurysm. Ann Thorac Surg 2011:91:113-21.
    17. Buck T, Plicht B, Kahlert P, Schenk IM, Hunold P, Erbel R. Effect of dynamic flow rate and orifice area on mitral regurgitant stroke volume quantification using the proximal isovelocity surface area method. J Am Coll Cardiol 2008:52:767-78.
    18. Stewart RA, Raffel OC, Kerr AJ, Gabriel R, Zeng I, Young AA, et al. Pilot study to assess the influence of beta-blockade on mitral regurgitant volume and left ventricular work in degenerative mitral valve disease. Circulation 2008:118:1041-6.
    19. Gillam LD. Is it time to update the definition of functional mitral regurgitation?:structural changes in the mitral leaflets with left ventricular dysfunction. Circulation 2008;118:797-9.
    20. Levine RA, Stathogiannis E, Newell JB, Harrigan P, Weyman AE. Reconsideration of echocardiographic standards for mitral valve prolapse: lack association between leaflet displacement isolated to the four chamber view and independent echocardiographic evidence of abnormality. J Am Coll Cardiol 1988:11:1010-9.
    21. Hall SA, Brickner ME, Willett DL, Irani WN, Afridi I, Grayburn PA. Assessment of Mitral Regurgitation Severity by Doppler Color Flow Mapping of the Vena Contracta. Circulation 1997;95:636-42.
    22. de Agustin JA, Marcos-Alberca P, Fernandez-Golfin C, Gonpalves A, Feltes G, Nunez-Gil IJ, et al. Direct measurement of proximal isovelocity surface area by single-beat three-dimensional color Doppler echocardiography in mitral regurgitation:a validation study. J Am Soc Echocardiogr 2012;25:815-23.
    23. Kahlert P, Plicht B, Schenk IM, Janosi RA, Erbel R, Buck T. Direct assessment of size and shape of noncircular vena contracta area in functional versus organic mitral regurgitation using real-time three-dimensional echocardiography. J Am Soc Echocardiogr 2008;21:912-21.
    24. Enriquez-Sarano M, Tajik AJ, Bailey KR, Seward JB. Color flow imaging compared with quantitative Doppler assessment of severity of mitral regurgitation:influence of eccentricity of jet and mechanism of regurgitation. J Am Coll Cardiol 1993:21:1211-9.
    25. Grayburn PA, Weissman NJ, Zamorano JL. Quantitation of mitral regurgitation. Circulation 2012;126:2005-17.
    26. Chao K, Moises VA, Shandas R, Elkadi T, Sahn DJ, Weintraub R. Influence of the Coanda effect on color Doppler jet area and color encoding. In vitro studies using color Doppler flow mapping. Circulation 1992;85:333-41.
    27. Shiota T, Sinclair B, Ishii M, Zhou X, Ge S, Teien DE, et al. Three-dimensional reconstruction of color Doppler flow convergence regions and regurgitant jets:an in vitro quantitative study. J Am Coll Cardiol 1996;27:1511-8.
    28. Sugeng L, Weinert L, Lang RM. Real-time 3-dimensional color Doppler flow of mitral and tricuspid regurgitation:feasibility and initial quantitative comparison with 2-dimensional methods. J Am Soc Echocardiogr 2007:20:1050-7.
    29. Bargiggia GS, Tronconi L, Sahn DJ, Recusani F, Raisaro A, De Servi S, et al. A new method for quantitation of mitral regurgitation based on color flow Doppler imaging of flow convergence proximal to regurgitant orifice. Circulation 1991;84:1481-9.
    30. Simpson IA, Shiota T, Gharib M, Sahn DJ. Current status of flow convergence for clinical applications:is it a leaning tower of "PISA"? J Am Coll Cardiol 1996;27:504-9.
    31. Matsumura Y, Fukuda S, Tran H, Greenberg NL, Agler DA, Wada N, et al. Geometry of the proximal isovelocity surface area in mitral regurgitation by 3 dimensional color Doppler echocardiography:difference between functional mitral regurgitation and prolapse regurgitation. Am Heart J 2008:155:231-8.
    32. Chandra S, Salgo IS, Sugeng L, Weinert L, Settlemier SH, Mor-Avi V, et al. A three-dimensional insight into the complexity of flow convergence in mitral regurgitation:adjunctive benefit of anatomic regurgitant orifice area. Am J Physiol Heart Circ Physiol.2011;301:H1015-24.
    33. Matsumura Y, Saracino G, Sugioka K, Tran H, Greenberg NL, Wada N, et al. Determination of regurgitant orifice area with the use of a new three-dimensional flow convergence geometric assumption in functional mitral regurgitation. J Am Soc Echocardiogr 2008;21:1251-6.
    34. Zeng X, Levine RA, Hua L, Morris EL, Rang Y, Flaherty M, et al. Diagnostic value of vena contracta area in the quantification of mitral regurgitation severity by color Doppler 3D echocardiography. Circ Cardiovasc Imaging 2011:4:506-13.
    35. Pu M, Vandervoort PM, Griffin BP, Leung DY, Stewart WJ, Cosgrove DM 3rd, et al. Quantification of mitral regurgitation by the proximal convergence method using transesophageal echocardiography:clinical validation of a geometric correction for proximal flow constraint. Circulation 1995:92:2169-77.
    36. Yosefy C, Levine RA, Sol is J, Vaturi M, Handschumacher MD, Hung J. Proximal Flow Convergence Region as Assessed by Real-time 3-Dimensional Echocardiography:Challenging the Hemispheric Assumption. J Am Soc Echocardiogr 2007:20:389-96.
    37. Enriquez-Sarano M, Bailey K, Seward J, Tajik A, Krohn M, Mays J. Quantitative Doppler assessment of valvular regurgitation. Circulation. 1993:87:841-848.
    38. Quinones MA, Otto CM, Stoddard M, Waggoner A, Zoghbi WA. Recommendations for quantification of Doppler echocardiography:a report from the Doppler Quantification Task Force of the Nomenclature and Standards Committee of the American Society of Echocardiography. J Am Soc Echocardiogr 2002:15:167-84.
    39. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al. Recommendations for chamber quantification:A report from the American Society of Echocardiography's Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with
    the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 2005:18:1440-63.
    40.王新房,谢明星,邓又斌,吕清,王浩,王静,等。超声心动图学,第四版。北京:人民卫生出版社,2008:85-6.
    41. Levine RA, Handschumacher MD, Sanfilippo AJ, Hagege AA, Harrigan P, Marshall JE, et al. Three-dimensional echocardiographic reconstruction of the mitral valve, with implications for the diagnosis of mitral valve prolapse. Circulation 1989:80:589-98.
    42. Daimon M, Saracino G, Gillinov AM, Koyama Y, Fukuda S, Kwan J, et al. Local dysfunction and asymmetrical deformation of mitral annular geometry in ischemic mitral regurgitation:a novel computerized 3D echocardiographic analysis. Echocardiography 2008:25:414-23.
    43. Alharthi MS, Mookadam F, Tajik AJ. Echocardiographic quantitation of mitral regurgitation. Expert Rev Cardiovasc Ther.2008:6:1151-60.
    44. Lancellotti P, Tribouilloy C, Hagendorff A, Moura L, Popescu BA, Agricola E, et al. European Association of Echocardiography recommendations for the assessment of valvular regurgitation. Part 1:aortic and pulmonary regurgitation (native valve disease). Eur J Echocardiogr 2010:11:223-44.
    45. Delabays A, Sugeng L, Pandian NG, Hsu TL, Ho SJ, Chen CH, et al. Dynamic three-dimensional echocardiographic assessment of intracardiac blood flow jets. Am J Cardiol 1995:76:1053-8.
    46. De Simone R, Glombitza G, Vahl CF, Albers J, Meinzer HP, Hagl S. Three-dimensional color Doppler:a new approach for quantitative assessment of mitral regurgitant jets. J Am Soc Echocardiogr 1999:12:173-85.
    47. De Simone R, Glombitza G, Vahl CF, Albers J, Meinzer HP, Hagl S. Three-dimensional color Doppler:a clinical study in patients with mitral regurgitation. J Am Coll Cardiol 1999; 33:1646-54.
    48. Sugeng L, Spencer KT, Mor-Avi V, DeCara JM, Bednarz JE, Weinert L, et al. Dynamic three-dimensional color flow Doppler:an improved technique for the assessment of mitral regurgitation. Echocardiography 2003:20:265-73.
    49. Mori Y, Rusk RA, Jones M, Li XN, Irvine T, Zetts AD, et al. A new dynamic three-dimensional digital color doppler method for quantification of pulmonary regurgitation:validation study in an animal model. J Am Coll Cardiol 2002; 40:1179-1185.
    50. Rusk RA, Li XN, Mori Y, Irvine T, Jones M, Zetts AD, et al. Direct quantification of transmitral flow volume with dynamic 3-dimensional digital color Doppler:a validation study in an animal model. J Am Soc Echocardiogr 2002;15:55-62.
    51. Sugeng L, Chandra S, Lang RM. Three-dimensional echocardiography for assessment of mitral valve regurgitation. Curr Opin Cardiol 2009;24:420-5.
    52.袁莉,谢明星,王新房,吕清,卢晓芳,贺林,方凌云等。实时三维彩色多普勒超声评价偏心性二尖瓣反流量的初步探讨。临床超声医学杂志,2005,3:165-169.
    53.唐红,陈娇。实时三维彩色超声心动图评价二尖瓣偏心反流的可行性研究。临床超声医学杂志,2007,1:12-14.
    1. Selzer A, Katayama F. Mitral regurgitation:clinical patterns, pathophysiology and natural history. Medicine (Baltimore) 1972:51:337-366.
    2. Howard A, Cooper, MD, Bernard J, Gersh, MB, ChB, DPhil, et al. Treatment of chronic mitral regurgitation. Am Heart J 1998; 135:925-936.
    3. Chirillo F, Salvador L, Cavallini C. Medical and surgical treatment of chronic mitral regurgitation. J Cardiovasc Med (Hagerstown) 2006;7: 96-107.
    4. Alharthi MS, Mookadam F, Tajik AJ. Echocardiographic quantitation of mitral regurgitation. Expert Rev Cardiovasc Ther 2008;6:1151-60.
    5. Ling LH, Enriquez-Sarano M, Seward JB, Tajik AJ, Schaff HV, Bailey KR, et al. Clinical outcome of mitral regurgitation due to flail leaflet. N Engl J Med 1996:335:1417-23.
    6. Avierinos JF, Gersh BJ, Melton LJ 3rd, Bailey KR, Shub C, Nishimura RA, et al. Natural history of asymptomatic mitral valve prolapse in the community. Circulation 2002:106:1355-61.
    7. Grigioni F, Enriquez-Sarano M, Zehr KJ, Bailey KR, Tajik AJ. Ischemic mitral regurgitation:long-term outcome and prognostic implications with quantitative Doppler assessment. Circulation 2001:103:1759-64.
    8. Bursi F, Enriquez-Sarano M, Nkomo VT, Jacobsen SJ, Weston SA, Meverden RA, et al. Heart failure and death after myocardial infarction in the community:the emerging role of mitral regurgitation. Circulation 2005:111:295-301.
    9. Grigioni F, Detaint D, Avierinos JF, Scott C, Tajik J, Enriquez-Sarano M. Contribution of ischemic mitral regurgitation to congestive heart failure after myocardial infarction. J Am Coll Cardiol 2005:45:260-7.
    10. Enriquez-Sarano M. Timing of mitral valve surgery. Heart 2002:87:79-85.
    11. Enriquez-Sarano M, Avierinos JF, Messika-Zeitoun D, Detaint D, Capps M, Nkomo V, et al. Quantitative determinants of the outcome of asymptomatic mitral regurgitation. N Engl J Med 2005:352:875-83.
    12. Rosenhek R, Rader F, Klaar U, Gabriel H, Krejc M, Kalbeck D, et al. Outcome of watchful waiting in asymptomatic severe mitral regurgitation. Circulation 2006;113:2238-44.
    13. Zoghbi WA, Enriquez-Sarano M, Foster E, Grayburn PA, Kraft CD, Levine RA, et al. Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr 2003;16:777-802.
    14. Mazur W, Nagueh SF. Echocardiographic evaluation of mitral regurgitation. Curr Opin Cardiol 2001;16:246-50.
    15. Borgenhagen DM, Serur JR, Gorlin R, Adams D, Sonnenblick EH. The effects of left ventricular load and contractility on mitral regurgitant orifice size and flow in the dog. Circulation 1977;56:106-13.
    16. Chaliki HP, Nishimura RA, Enriquez-Sarano M, Reeder GS. A simplified, practical approach to assessment of severity of mitral regurgitation by Doppler color flow imaging with proximal convergence:validation with concomitant cardiac catheterization. Mayo Clin Proc 1998;73:929-35.
    17. Yoshida K, Yoshikawa J, Shakudo M, Akasaka T, Jyo Y, Takao S, et al. Color Doppler evaluation of valvular regurgitation in normal subjects. Circulation 1988;78:840-7.
    18. Grayburn PA, Weissman NJ, Zamorano JL. Quantitation of mitral regurgitation. Circulation 2012;126:2005-17.
    19. Chen C, Thomas JD, Anconina J, Harrigan P, Mueller L, Picard MH, et al. Impact of impinging wall jet on color Doppler quantification of mitral regurgitation. Circulation 1991;84:712-720.
    20. Lancellottti P. Moura L, Pierard L, Agricola E, Popescu BA, Tribouilloy C, Hagendorff A, Monin J-L, Badano L, Zamorano JL. European Association of Echocardiography recommendations for the assessment of valvular regurgitation, part 2:mitral and tricuspid regurgitation (native disease). Eur J Echocardiogr 2010;11:307-332.
    21. Sahn DJ. Instrumentation and physical factors related to visualization of stenotic and regurgitant jets by Doppler color flow mapping. J Am Coll Cardiol 1988:12:1354-1365.
    22. Helmcke F, Nanda NC, Hsiung MC, Soto B, Adey CK, Goyal RG, Gatewood RP Jr. Color Doppler assessment of mitral regurgitation with orthogonal planes. Circulation 1987;75:175-183.
    23. Enriquez-Sarano M, Tajik AJ, Bailey KR, Seward JB. Color flow imaging compared with quantitative Doppler assessment of severity of mitral regurgitation:influence of eccentricity of jet and mechanism of regurgitation. J Am Coll Cardiol 1993;21:1211-1219.
    24. Chao K, Moises VA, Shandas R, Elkadi T, Sahn DJ, Weintraub R. Influence of the Coanda effect on color Doppler jet area and color encoding. In vitro studies using color Doppler flow mapping. Circulation 1992;85:333-41.
    25. Paszczuk A, Wiegers SE. Quantitative assessment of mitral insufficiency: its advantages and disadvantages. Heart Fail Rev 2006;11:205-17.
    26. Fehske W, Omran H, Manz M, Ko" hler J, Hagendorff A, Lu" deritz B. Color-coded Doppler imaging of the vena contracta as a basis for quantification of pure mitral regurgitation. Am J Cardiol 1994;73:268-74.
    27. Baumgartner H, Schima H, Kuhn P. Value and limitations of proximal jet dimensions for the quantitation of valvular regurgitation:an in vitro study using Doppler flow imaging. J Am Soc Echocardiogr 1991;4:57-66.
    28. Kizilbash AM, Willett DL, Brickner ME, Heinle SK, Grayburn PA. Effects of afterload reduction on vena contracta width in mitral regurgitation. J Am Coll Cardiol 1998:32:427-31.
    29. Lancellotti P, Tribouilloy C, Hagendorff A, Moura L, Popescu BA, Agricola E et al. on behalf of the European Association of Echocardiography. European Association of Echocardiography recommendations for the assessment of valvular regurgitation. Part 1:aortic and pulmonary regurgitation (native valve disease). Eur J Echocardiogr 2010;11:223-44.
    30. Matsumura Y, Fukuda S, Tran H, Greenberg NL, Agler DA, Wada N et al. Geometry of the proximal isovelocity surface area in mitral regurgitation by 3-dimensional color Doppler echocardiography:difference between functional mitral regurgitation and prolapse regurgitation. Am Heart J 2008:155:231-8.
    31. Song JM, Kim MJ, Kim YJ, Kang SH, Kim JJ, Kang DH et al. Three-dimensional characteristics of functional mitral regurgitation in patients with severe left ventricular dysfunction:a real-time three-dimensional colour Doppler echocardiography study. Heart 2008;94:590-6.
    32. Fehske W, Omran H, Manz M, Kohler J, Hagendorff A, Luderitz B. Color-coded Doppler imaging of the vena contracta as a basis for quantification of pure mitral regurgitation. Am J Cardiol 1994;73:268-74.
    33. Hall SA, Brickner ME, Willett DL, Irani WN, Afridi I, Grayburn PA. Assessment of mitral regurgitation severity by Doppler color flow mapping of the vena contracta. Circulation 1997;95:636-42.
    34. Heinle SK, Hall SA, Brickner ME, Willett DL, Grayburn PA. Comparison of vena contracta width by multiplane transesophageal echocardiography with quantitative Doppler assessment of mitral regurgitation. Am J Cardiol 1998;81:175-9.
    35. Tribouilloy C, Shen WF, Quere JP, Rey JL, Choquet D, Dufosse H, et al. Assessment of severity of mitral regurgitation by measuring regurgitant jet width at its origin with transesophageal Doppler color flow imaging. Circulation 1992;85:1248-53.
    36. Mele D, Vandervoort P, Palacios I, Rivera JM, Dinsmore RE, Schwammenthal E, et al. Proximal jet size by Doppler color flow mapping predicts severity of mitral regurgitation:clinical studies. Circulation 1995;91:746-54.
    37. Hyodo E, Iwata S, Tugcu A, Arai K, Shimada K, Muro T, et al. Direct measurement of multiple vena contracta areas for assessing the severity of mitral regurgitation using 3D TEE. JACC Cardiovasc Imaging 2012;5:669-76.
    38. Khanna D, Vengala S, Miller AP, Nanda NC, Lloyd SG, Ahmed S et al. Quantification of mitral regurgitation by live three-dimensional transthoracic echocardiographic measurements of vena contracta area. Echocardiography 2004;21:737-43.
    39. Kahlert P, Plicht B, Schenk IM, Janosi RA, Erbel R, Buck T. Direct assessment of size and shape of noncircular vena contracta area in functional versus organic mitral regurgitation using real-time three-dimensional echocardiography. J Am Soc Echocardiogr 2008;21:912-21.
    40. Yosefy C, Hung J, Chua S, Vaturi M, Ton-Nu TT, Handschumacher MD et al. Direct measurement of vena contracta area by real-time 3-dimensional echocardiography for assessing severity of mitral regurgitation. Am J Cardiol 2009:104:978-83.
    41. Enriquez-Sarano M, Seward JB, Bailey KR, Tajik AJ. Effective regurgitant orifice area:a noninvasive Doppler development of an old hemodynamic concept. J Am Coll Cardiol 1994;23:443-51.
    42. Bargiggia GS, Tronconi L, Sahn DJ, Recusani F, Raisaro A, De Servi S, et al. A new method for quantitation of mitral regurgitation based on color flow Doppler imaging of flow convergence proximal to regurgitant orifice. Circulation 1991:84:1481-9.
    43. Utsunomiya T, Doshi R, Patel D, Mehta K, Nguyen D, Henry WL, et al. Calculation of volume flow rate by the proximal isovelocity surface area method:simplified approach using color Doppler zero baseline shift. J Am Coll Cardiol 1993;22:277-82.
    44. Pu M, Vandervoort PM, Griffin BP, Leung DY, Stewart WJ, Cosgrove DM 3rd, et al. Quantification of mitral regurgitation by the proximal convergence method using transesophageal echocardiography:clinical validation of a geometric correction for proximal flow constraint. Circulation 1995:92:2169-77.
    45. Enriquez-Sarano M, Avierinos JF, Messika-Zeitoun D, Detaint D, Capps M, Nkomo V et al. Quantitative determinants of the outcome of asymptomatic mitral regurgitation. N Engl J Med 2005:352:875-83.
    46. Schwammenthal E, Chen C, Benning F, Block M, Breithardt G, Levine RA. Dynamics of mitral regurgitant flow and orifice area:physiologic application of the proximal flow convergence method; clinical data and experimental testing. Circulation 1994;90:307-22.
    47. Enriquez-Sarano M, Miller FA Jr, Hayes SN, Bailey KR, Tajik AJ, Seward JB. Effective mitral regurgitant orifice area:clinical use and pitfalls of the proximal isovelocity surface area method. J Am Coll Cardiol 1995:25:703-9.
    48. Pu M, Prior DL, Fan X, Asher CR, Vasquez C, Griff in BP, et al. Calculation of mitral regurgitant orifice area with use of a simplified proximal convergence method:initial clinical application. J Am Soc Echocardiogr 2001:14:180-5.
    49. Lancellotti P, Troisfontaines P, Toussaint AC, Pie'rard LA. Prognostic importance of exercise-induced changes in mitral regurgitation in patients with chronic ischemic left ventricular dysfunction. Circulation 2003:108:1713-7.
    50. Schwammenthal E, Chen C, Giesler M, Sagie A, Guerrero JL, Vazquez de Prada JA, et al. New method for accurate calculation of regurgitant flow rate based on analysis of Doppler color flow maps of the proximal flow field: validation in a canine model of mitral regurgitation with initial application in patients. J Am Coll Cardiol 1996;27:161-72.
    51. Mele D, Schwammenthal E, Torp H, Nesta F, Pedini I, Vandervoort P, et al. A semiautomated objective technique for applying the proximal isovelocity surface area method to quantitate mitral regurgitation: clinical studies with the digital flow map. Am Heart J 2001;141:653-60.
    52. Simpson IA, Shiota T, Gharib M, Sahn DJ. Current status of flow convergence for clinical applications:is it a leaning tower of "PISA"? J Am Coll Cardiol 1996:27:504-9.
    53.王新房,谢明星,邓又斌,吕清,王浩,王静,等。超声心动图学,第四版。北京:人民卫生出版社,2008:85-6,231,313-316.
    54. Buck T, Plicht B, Kahlert P, Schenk IM, Hunold P, Erbel R. Effect of dynamic flow rate and orifice area on mitral regurgitant stroke volume quantification using the proximal isovelocity surface area method. J Am Coll Cardiol 2008;52:767-78.
    55. Matsumura Y, Fukuda S, Tran H, Greenberg NL, Agler DA, Wada N, et al. Geometry of the proximal isovelocity surface area in mitral regurgitation by 3 dimensional color Doppler echocardiography:difference between functional mitral regurgitation and prolapse regurgitation. Am Heart J 2008:155:231-8.
    56. Chandra S, Salgo IS, Sugeng L, Weinert L, Settlemier SH, Mor-Avi V, et al. A three-dimensional insight into the complexity of flow convergence in mitral regurgitation:adjunctive benefit of anatomic regurgitant orifice area. Am J Physiol Heart Circ Physiol.2011;301:H1015-24.
    57. de Agustin JA, Marcos-Alberca P, Fernandez-Golf in C, Goncalves A, Feltes G, Nunez-Gil IJ, et al. Direct measurement of proximal isovelocity surface area by single-beat three-dimensional color Doppler echocardiography in mitral regurgitation:a validation study. J Am Soc Echocardiogr 2012:25:815-23.
    58. Kahlert P, Plicht B, Schenk IM, Janosi RA, Erbel R, Buck T. Direct assessment of size and shape of noncircular vena contracta area in functional versus organic mitral regurgitation using real-time three-dimensional echocardiography. J Am Soc Echocardiogr 2008;21:912-21.
    59. Matsumura Y, Saracino G, Sugioka K, Tran H, Greenberg NL, Wada N, et al. Determination of regurgitant orifice area with the use of a new three-dimensional flow convergence geometric assumption in functional mitral regurgitation. J Am Soc Echocardiogr 2008;21:1251-6.
    60. Zeng X, Levine RA, Hua L, Morris EL, Kang Y, Flaherty M, et al. Diagnostic value of vena contracta area in the quantification of mitral regurgitation severity by color Doppler 3D echocardiography. Circ Cardiovasc Imaging 2011:4:506-13.
    61. Pu M, Vandervoort PM, Griffin BP, Leung DY, Stewart WJ, Cosgrove DM 3rd, et al. Quantification of mitral regurgitation by the proximal convergence method using transesophageal echocardiography:clinical validation of a geometric correction for proximal flow constraint. Circulation 1995:92:2169-77.
    62. Yosefy C, Levine RA, Sol is J, Vaturi M, Handschumacher MD, Hung J. Proximal Flow Convergence Region as Assessed by Real-time 3-Dimensional Echocardiography:Challenging the Hemispheric Assumption. J Am Soc Echocardiogr 2007:20:389-96.
    63. Lewis JF, Kuo LC, Nelson JG, Limacher MC, Quin-ones MA. Pulsed Doppler echocardiographic determination of stroke volume and cardiac output: clinical validation of two new methods using the apical window. Circulation 1984:70:425-31.
    64. Quinones MA, Otto CM, Stoddard M, Waggoner A, Zoghbi WA. Recommendations for quantification of Doppler echocardiography:a report from the Doppler Quantification Task Force of the Nomenclature and Standards Committee of the American Society of Echocardiography. J Am Soc Echocardiogr. 2002:15:167-184.
    65. Rokey R, Sterling LL, Zoghbi WA, Sartori MP, Limacher MC, Kuo LC, et al. Determination of regurgitant fraction in isolated mitral or aortic regurgitation by pulsed Doppler two-dimensional echocardiography. J Am Coll Cardiol 1986:7:1273-8.
    66. Enriquez-Sarano M, Bailey KR, Seward JB, Tajik AJ, Krohn MJ, Mays JM. Quantitative Doppler assessment of valvular regurgitation. Circulation 1993:87:841-8.
    67. Enriquez-Sarano M, Seward JB, Bailey KR, Tajik AJ. Effective regurgitant orifice area:a noninvasive Doppler development of an old hemodynamic concept. J Am Coll Cardiol 1994:23:443-51.
    68. Dujardin KS, Enriquez-Sarano M, Bailey KR, Nishimura RA, Seward JB, Tajik AJ. Grading of mitral regurgitation by quantitative Doppler echocardiography:calibration by left ventricular angiography in routine clinical practice. Circulation 1997:96:3409-15.
    69. Kizilbash AM, Hundley WG, Willett DL, Franco F, Peshock RM, Grayburn PA. Comparison of quantitative Doppler with magnetic resonance imaging for assessment of the severity of mitral regurgitation. Am J Cardiol 1998:81:792-5.
    70. Tribouilloy C, Shen WF, Leborgne L, Trojette F, Rey JL, Lesbre JP. Comparative value of Doppler echocardiography and cardiac catheterization for management decision-making in patients with left sided valvular regurgitation. Eur Heart J 1996:17:272-80.
    71. Levine RA, Handschumacher MD, Sanfilippo AJ, Hagege AA, Harrigan P, Marshall JE, et al. Three-dimensional echocardiographic reconstruction of the mitral valve, with implications for the diagnosis of mitral valve prolapse. Circulation 1989:80:589-98.
    72. Daimon M, Saracino G, Gillinov AM, Koyama Y, Fukuda S, Kwan J, et al. Local dysfunction and asymmetrical deformation of mitral annular geometry in ischemic mitral regurgitation:a novel computerized 3D echocardiographic analysis. Echocardiography 2008:25:414-23.
    73. Thomas L, Foster E, Schiller NB. Peak mitral inflow velocity predicts mitral regurgitation severity. J AmColl Cardiol 1998:31:174-9.
    74. Tribouilloy C, Shen WF, Rey JL, Adam MC, Lesbre JP. Mitral to aortic velocitytime integral ratio. A non-geometric pulsed-Doppler regurgitant index in isolated pure mitral regurgitation. Eur Heart J 1994:15:1335-9.
    75. Enriquez-Sarano M, Dujardin KS, Tribouilloy CM, Seward JB, Yoganathan AP, Bailey KR et al. Determinants of pulmonary venous flow reversal in mitral regurgitation and its usefulness in determining the severity of regurgitation. Am J Cardiol 1999:83:535-41.
    76. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al. Recommendations for chamber quantification:A report from the American Society of Echocardiography's Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 2005:18:1440-63.
    77. Heinle SK, Hall SA, Brickner ME, Willett DL, Grayburn PA. Comparison of vena contracta width by multiplane transesophageal echocardiography with quantitative Doppler assessment of mitral regurgitation. Am J Cardiol 1998 15:81:175-9.
    1. Nkomo VT, Gardin JM, Skelton TN, Gottdiener JS, Scott CG, Enriquez-Sarano M. Burden of valvular heart diseases:a population based study. Lancet 2006:368:1005-11.
    2. Avierinos JF, Gersh BJ, Melton LJ III, et al. Natural history of asymptomatic mitral valve prolapse in the community. Circulation 2002:106:1355-61.
    3. Enriquez-Sarano M, Avierinos JF, Messika-Zeitoun D, et al. Quantitative determinants of the outcome of asymptomatic mitral regurgitation. N Engl J Med 2005:352:875-83.
    4. Tribouilloy CM, Enriquez-Sarano M, Schaff HV, et al. Impact of preoperative symptoms on survival after surgical correction of organic mitral regurgitation:rationale for optimizing surgical indications. Circulation 1999:99:400-5.
    5. Bonow RO, Carabello BA, Chatterjee K, et al. ACC/AHA 2006 guidelines for the management of patients with valvular heart disease:a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing Committee to Revise the 1998 guidelines for the management of patients with valvular heart disease) developed in collaboration with the Society of Cardiovascular Anesthesiologists endorsed by the Society for Cardiovascular Angiography and Interventions and the Society of Thoracic Surgeons. J Am Coll Cardiol 2006;48:el-148.
    6. Delabays A, Sugeng L, Pandian NG, et al. Dynamic three-dimensional echocardiographic assessment of intracardiac blood flow jets. Am J Cardiol 1995; 76:1053-1058.
    7. DeSimone R, Glombitza G, Vahl CF, et al. Three-dimensional color Doppler: a new approach for quantitative assessment of mitral regurgitant jets. J Am Soc Echocardiogr 1999; 12:173-185.
    8. DeSimone R, Glombitza G, Vahl CF, et al. Three-dimensional color Doppler: a clinical study in patients with mitral regurgitation. J Am Coll Cardiol 1999; 33:1646-1654.
    9. Sugeng L, Chandra S, Lang RM. Three-dimensional echocardiography for assessment of mitral valve regurgitation. Curr Opin Cardiol 2009;24:420-5.
    10. Thavendiranathan P, Phelan D, Thomas JD, Flamm SD, Marwick TH. Quantitative assessment of mitral regurgitation:validation of new methods. J Am Coll Cardiol.2012 16;60:1470-83.
    11. Tribouilloy C, Shen WF, Quere JP, et al. Assessment of severity of mitral regurgitation by measuring regurgitant jet width at its origin with transesophageal Doppler color flow imaging. Circulation 1992; 85:1248-53.
    12. Kahlert P, Plicht B, Schenk IM, Janosi RA, Erbel R, Buck T. Direct assessment of size and shape of noncircular vena contracta area in functional versus organic mitral regurgitation using real-time threedimensional echocardiography. J Am Soc Echocardiogr 2008;21:912-21.
    13. Marsan NA, Westenberg JJ, Ypenburg C, et al. Quantification of functional mitral regurgitation by real-time 3D-echocardiography:comparison with 3D-velocity-encoded cardiac magnetic resonance. JACC Cardiovasc Imaging 2009:2:1245-52.
    14. Mele D, Vandervoort P, Palacios I, et al. Proximal jet size by Doppler color flow mapping predicts severity of mitral regurgitation. Clinical studies. Circulation 1995;91:746-54.
    15. Zeng X, Levine RA, Hua L, et al. Diagnostic value of vena contracta area in the quantification of mitral regurgitation severity by color Doppler 3D-echocardiography. Circ Cardiovasc Imaging 2011:4:506-13.
    16. Iwakura K, Ito H, Kawano S, et al. Comparison of orifice area by transthoracic three-dimensional Doppler echocardiography versus proximal isovelocity surface area (PISA) method for assessment of mitral regurgitation. Am J Cardiol 2006:97:1630-7.
    17. Shanks M, Siebelink HM, Delgado V, et al. Quantitative assessment of mitral regurgitation:comparison between three-dimensional transesophageal echocardiography and magnetic resonance imaging. Circ Cardiovasc Imaging 2010:3:694-700.
    18. Yosefy C, Hung J, Chua S, et al. Direct measurement of vena contracta area by real-time 3-dimensional echocardiography for assessing severity of mitral regurgitation. Am J Cardiol 2009:104:978-83.
    19. Little SH, Pirat B, Kumar R, et al. Three-dimensional color Doppler echocardiography for direct measurement of vena contracta area in mitral regurgitation:in vitro validation and clinical experience. J Am Coll Cardiol Img 2008:1:695-704.
    20. Khanna D, Vengala S, Miller AP, et al. Quantification of mitral regurgitation by live three-dimensional transthoracic echocardiographic measurements of vena contracta area. Echocardiography 2004; 21:737-43.
    21. Marsan NA, Westenberg JJ, Roes SD, et al. Three-dimensional echocardiography for the preoperative assessment of patients with left ventricular aneurysm. Ann Thorac Surg 2011;91:113-21.
    22. Buck T, Plicht B, Kahlert P, Schenk IM, Hunold P, Erbel R. Effect of dynamic flow rate and orifice area on mitral regurgitant stroke volume quantification using the proximal isovelocity surface area method. J Am Coll Cardiol 2008;52:767-78.
    23. Hung J, Otsuji Y, Handschumacher MD, Schwammenthal E, Levine RA. Mechanism of dynamic regurgitant orifice area variation in functional mitral regurgitation:physiologic insights from the proximal flow convergence technique. J Am Coll Cardiol 1999:33:538-45.
    24. Yoganathan AP, Cape EG, Sung HW, Williams FP, Jimoh A. Review of hydrodynamic principles for the cardiologist:applications to the study of blood flow and jets by imaging techniques. J Am Coll Cardiol 1988;12:1344-53.
    25. Yosefy C, Levine RA, Sol is J, Vaturi M, Handschumacher MD, Hung J. Proximal flow convergence region as assessed by real-time 3-dimensional echocardiography:challenging the hemispheric assumption. J Am Soc Echocardiogr 2007:20:389-96.
    26. Plicht B, Kahlert P, Goldwasser R, et al. Direct quantification of mitral regurgitant flow volume by real-time three-dimensional echocardiography using dealiasing of color Doppler flow at the vena contracta. J Am Soc Echocardiogr 2008;21:1337-46.
    27. Sitges M, Jones M, Shiota T, et al. Real-time three-dimensional color doppler evaluation of the flow convergence zone for quantification of mitral regurgitation:Validation experimental animal study and initial clinical experience. J Am Soc Echocardiogr 2003;16:38-45.
    28. Matsumura Y, Fukuda S, Tran H, et al. Geometry of the proximal isovelocity surface area in mitral regurgitation by 3-dimensional color Doppler echocardiography:difference between functional mitral regurgitation and prolapse regurgitation. Am Heart J 2008;155:231-8.
    29. Matsumura Y, Saracino G, Sugioka K, et al. Determination of regurgitant orifice area with the use of a new three-dimensional flow convergence geometric assumption in functional mitral regurgitation. J Am Soc Echocardiogr 2008:21:1251-6.
    30. Altiok E, Hamada S, van Hall S, et al. Comparison of direct planimetry of mitral valve regurgitation orifice area by threedimensional transesophageal echocardiography to effective regurgitant orifice area obtained by proximal flow convergence method and vena contracta area determined by color Doppler echocardiography. Am J Cardiol 2011; 107:452-8.
    31. de Agustin JA, Marcos-Alberca P, Fernandez-Golf in C, Goncalves A, Feltes G, Nunez-Gil IJ, et al. Direct measurement of proximal isovelocity surface area by single-beat three-dimensional color Doppler echocardiography in mitral regurgitation:a validation study. J Am Soc Echocardiogr. 2012:25:815-23.
    32. Little SH, Igo SR, Pirat B, et al. In vitro validation of real-time three-dimensional color Doppler echocardiography for direct measurement of proximal isovelocity surface area in mitral regurgitation. Am J Cardiol 2007:99:1440-7.
    33. Thavendiranathan P, Liu S, Datta S, et al. Automated 3d-quantification of mitral regurgitation by real-time volume color flow doppler:comparison with cardiac magnetic resonance imaging. J Am Soc Echocardiogr 2011;24:B3.
    34. Grady L, Datta S, Kutter 0, et al. Regurgitation quantification using 3D-PISA in volume echocardiography. Med Image Comput Comput Assist Interv 2011:14:512-9.
    35. Schwammenthal E, Chen C, Benning F, Block M, Breithardt G, Levine RA. Dynamics of mitral regurgitant flow and orifice area. Physiologic application of the proximal flow convergence method:clinical data and experimental testing. Circulation 1994:90:307-22.
    36. Breburda CS, Griffin BP, Pu M, Rodriguez L, Cosgrove DM III, Thomas JD. Three-dimensional echocardiographic planimetry of maximal regurgitant orifice area in myxomatous mitral regurgitation:intraoperative comparison with proximal flow convergence. J Am Coll Cardiol 1998:32:432-7.
    37. Lange A, Palka P, Donnelly J, Burstow D. Quantification of mitral regurgitation orifice area by 3-dimensional echocardiography:comparison with effective regurgitant orifice area by PISA method and proximal regurgitant jet diameter. Int J Cardiol 2002:86:87-98.
    38. Hamada S, Altiok E, Frick M, Almalla M, Becker M, Marx N, et al. Comparison of accuracy of mitral valve regurgitation volume determined by three-dimensional transesophageal echocardiography versus cardiac magnetic resonance imaging. Am J Cardiol 2012 1;110:1015-20.
    39. Chandra S, Salgo IS, Sugeng L, et al. A three-dimensional insight into the complexity of flow convergence in mitral regurgitation:adjunctive benefit of anatomic regurgitant orifice area. Am J Physiol Heart Circ Physiol 2011;301:H1015-24.
    40. Thavendiranathan P, Liu S, Datta S, et al. Automated quantification of mitral inflow and aortic outflow stroke volumes by threedimensional real-time volume color-flow Doppler transthoracic echocardiography: comparison with pulsed-wave Doppler and cardiac magnetic resonance imaging. J Am Soc Echocardiogr 2012;25:56-65.
    41. Lodato JA, Weinert L, Baumann R, et al. Use of 3-dimensional color Doppler echocardiography to measure stroke volume in human beings:comparison with thermodilution. J Am Soc Echocardiogr 2007;20:103-12.
    42. Ge S, Bu L, Zhang H, et al. A real-time 3-dimensional digital Doppler method for measurement of flow rate and volume through mitral valve in children:a validation study compared with magnetic resonance imaging. J Am Soc Echocardiogr 2005;18:1-7.
    43. Lu X, Nadvoretskiy V, Klas B, et al. Measurement of volumetric flow by real-time 3-dimensional doppler echocardiography in children. J Am Soc Echocardiogr 2007:20:915-20.
    44. Matthews F, Largiader T, Rhomberg P, van der Loo B, Schmid ER, Jenni R. A novel operator-independent algorithm for cardiac output measurements based on three-dimensional transoesophageal colour Doppler echocardiography. Eur J Echocardiogr 2010;11:432-7.
    45. Pemberton J, Jerosch-Herold M, Li X, et al. Accuracy of real-time, three-dimensional Doppler echocardiography for stroke volume estimation compared with phase-encoded MRI:an in vivo study. Heart 2008;94:1212-3.
    46. Pemberton J, Li X, Kenny A, Davies CH, Minette MS, Sahn DJ. Real-time 3-dimensional Doppler echocardiography for the assessment of stroke volume: an in vivo human study compared with standard 2-dimensional echocardiography. J Am Soc Echocardiogr 2005;18:1030-6.
    47. De Simone R, Glombitza G, Vahl CF, Albers J, Meinzer HP, Hagl S. Three-dimensional color Doppler:a new approach for quantitative assessment of mitral regurgitant jets. J Am Soc Echocardiogr 1999;12:173-85.
    48. De Simone R, Glombitza G, Vahl CF, Albers J, Meinzer HP, Hagl S. Three-dimensional color Doppler:a clinical study in patients with mitral regurgitation. J Am Coll Cardiol 1999; 33:1646-54.
    49. Sugeng L, Spencer KT, Mor-Avi V, DeCara JM, Bednarz JE, Weinert L, et al. Dynamic three-dimensional color flow Doppler:an improved technique for the assessment of mitral regurgitation. Echocardiography 2003:20:265-73.
    50. Sugeng L, Chandra S, Lang RM. Three-dimensional echocardiography for assessment of mitral valve regurgitation. Curr Opin Cardiol 2009;24:420-5.
    51. Sugeng L, Weinert L, Lang RM. Real-time 3-dimensional color Doppler flow of mitral and tricuspid regurgitation:feasibility and initial quantitative comparison with 2-dimensional methods. J Am Soc Echocardiogr 2007:20:1050-7.
    52.袁莉,谢明星,王新房,吕清,卢晓芳,贺林,方凌云等。实时三维彩色多普勒超声评价偏心性二尖瓣反流量的初步探讨。临床超声医学杂志,2005,3:165-169.
    53.唐红,陈娇。实时三维彩色超声心动图评价二尖瓣偏心反流的可行性研究。临床超声医学杂志,2007,1:12-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700