用户名: 密码: 验证码:
清毒颗粒抑制血管新生防治乳腺癌的药理机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血管新生参与乳腺癌发生发展、浸润、转移和复发。肿瘤血管新生的关键步骤包括血管内皮激活、增殖、迁移与成管。血管内皮生长因子(vascular endothelial growth factor, VEGF)主导肿瘤血管新生。肿瘤缺氧、炎症与凝血参与调节VEGF分泌,通过VEGF受体2(VEGFR2)信号通路诱导血管新生。其中,VEGFR2介导的钙调神经磷酸酶(calcineurin, CaN)/活化T细胞核因子(nuclear factor of activated T cells, NFAT)信号通路在乳腺癌血管新生中起主导作用。
     清毒颗粒由柴胡、郁金、陈皮、牡丹皮、黄芪、甘草、槐花、紫草、莪术、丹参十味中药组成,有疏肝解郁、滋阴凉血、活血散结的功效,中医临床用于治疗乳腺癌。本研究在前期工作的基础上,采用动物、细胞及分子实验,从VEGFR2及肿瘤相关炎症两条途径,探讨清毒颗粒抗乳腺癌血管新生的药效及药理。第一部分清毒颗粒抗裸鼠荷人乳腺癌血管新生的药效
     1.裸鼠荷人乳腺癌模型的复制
     目的:复制裸鼠荷人乳腺癌模型。
     方法:将浓度为1×106~8×106个/200μL(k=0.5)的MCF-7单细胞悬液接种于裸鼠乳房脂肪垫,测量肿瘤体积,回归MCF-7接种的半数有效浓度(EC50)。
     结果:MCF-7的EC50及95%置信区间分别为4.75×106个/200μL和3.50x106-6.30×106个/200μL,相关方程为Y=2.93+0.41/(1+10(26.41-3.96x)),R=0.99。
     结论:成功复制了裸鼠荷人乳腺癌模型。
     2.槲皮素抑制裸鼠荷人乳腺癌的量效
     目的:槲皮素抑制裸鼠荷人乳腺癌肿瘤生长的量效关系。
     方法:荷人乳腺癌裸鼠随机分为8组。槲皮素组以剂量3162.28~3162277.66nmol/kg/d (k=0316)连续灌胃21d。每周2次测量体重与肿瘤体积,回归槲皮素抑制肿瘤生长的量效关系。
     结果:槲皮素抑制肿瘤生长的ED50为45380.0Onmol/kg/d,其95%置信区间为34316.00-60011.00nmol/kg/d,量效方程为Y=9.27+64.41/(1+10(8.88-1.91x)),R=0.99。
     结论:槲皮素抑制乳腺癌生长具有剂量依赖性。
     3.清毒颗粒抑制裸鼠荷人乳腺癌的量效
     目的:清毒颗粒抑制裸鼠荷人乳腺癌肿瘤生长的量效关系。
     方法:荷人乳腺癌裸鼠随机分为8组。槲皮素界定剂量(31.62~31622.78nmol/kg/d,k=0.316)的清毒颗粒连续灌胃21d。每周2次测量体重与肿瘤体积,回归清毒颗粒抑制肿瘤生长的量效关系。
     结果:清毒颗粒抑制肿瘤生长的ED50为1403nmol/kg/d,其95%置信区间为435.90~4518.00nmol/kg/d,量效方程为Y=72.57+70.41/(1+10(0.94x-2.95)),R=0.99。
     结论:清毒颗粒抑制乳腺癌生长具有剂量依赖性,ED50为槲皮素单独给药的约1/40。
     4.清毒颗粒抑制裸鼠荷人乳腺癌血管新生的药效机制
     目的:采用荷人乳腺癌裸鼠,分析清毒颗粒抑制CaN活性抗乳腺癌血管新生的作用。
     方法:荷人乳腺癌裸鼠随机分为7组,模型组、阳性药三苯氧胺(TAM)组和他克莫司(FK506)组、槲皮素(Qu)组、清毒颗粒低(QDL)、中(QDL)、高(QDL)剂量组,给药21d。检测肿瘤体积、肿瘤坏死体积比、癌细胞增殖、血清VEGF含量、肿瘤血管密度和CaN活性,采用免疫组化、实时定量RT-PCR和Western blot法检测肿瘤组织内VEGF、VEGFR2和NFATc3的表达水平。
     结果:清毒颗粒抑制肿瘤生长,抑瘤率分别为20.70%、22.43%、22.27%,促进肿瘤坏死、抑制癌细胞增殖、减少血清VEGF含量、降低血管密度、下调CaN活性。清毒颗粒不同程度地降低VEGF、VEGFR2和NFATc3的原位蛋白表达、基因水平和蛋白含量。
     结论:清毒颗粒下调CaN活性,抑制裸鼠荷人乳腺癌血管新生。
     第二部分清毒颗粒抑制促癌炎症抗乳腺癌血管新生的药理
     1.大鼠眼前房荷人乳腺癌模型的建立
     目的:建立大鼠眼前房荷人乳腺癌模型。
     方法:将梯度密度MCF-7单细胞悬液(2.5×104~8×105个/mL,k=0.5)减压接种于大鼠眼前房,每日观察记录眼球红色强度,d28处死动物。HE染色观察眼前房肿瘤病理特征、形态计量肿瘤体积比,回归细胞接种密度与肿瘤体积比的量效关系;免疫组化染色检测肿瘤组织内vWF与CD4原位表达。
     结果:do-d1o眼球逐渐变红,伴有云雾状血管形成;d1o以后红色逐渐消退。病理观察显示随着细胞接种密度升高,肿瘤体积增加;癌细胞起始生长在睫状体,逐渐占据眼前房,随后破坏玻璃体和晶状体,肿瘤组织内有大量含铁血黄素沉积。MCF-7接种的EC50及95%置信区间分别为5×105个/mL和2.31×105-1.05×106个/mL。随着细胞接种密度升高,内皮vWF阳性表达增加,T淋巴细胞CD4阳性颗粒增多。
     结论:前房红色强度半定量时效与肿瘤体积比定量量效,可建立大鼠眼前房乳腺癌血管新生模型,该模型可用于分析血管新生与肿瘤免疫。
     2.清毒颗粒抑制乳腺癌炎性血管新生的药理机制
     目的:采用眼前房荷人乳腺癌大鼠,探索清毒颗粒抑制炎性血管新生的药理机制。
     方法:眼前房荷人乳腺癌模型大鼠随机分为8组,对照组(接种PBS)、模型组、阳性药三苯氧胺组和FK506组、槲皮素组、清毒颗粒低、中、高剂量组,给药28d。HE染色观察眼前房肿瘤组织,形态计量肿瘤体积比;免疫组化染色显示前房肿瘤组织中vWF,浸润炎性细胞中COX-2、IL-1β、IL-6、STAT3、STAT1、IRF1的细胞定位,形态计量原位阳性表达水平。
     结果:清毒颗粒不同程度抑制眼前房肿瘤生长、降低血管密度、抑制COX-2、IL-1p、IL-6和STAT3表达,上调STAT1和IRF1表达。
     结论:清毒颗粒通过下调促癌炎症信号抗乳腺癌血管新生。
     第三部分清毒颗粒抑制乳腺癌血管新生的药理机制
     1.清毒颗粒抑制乳腺癌诱导血管新生
     目的:分析清毒颗粒对人乳腺癌分泌VEGF的影响。
     方法:以正常、TAM、FK506、Qu、QDL、QDM、QDH含药血清作用于MCF-7细胞,MTT法检测增殖,Elisa法检测培养基上清中VEGF含量,实时定量RT-PCR和Western blot法检测VEGF表达。
     结果:清毒颗粒抑制MCF-7细胞增殖、减少VEGF分泌、降低VEGF基因与蛋白表达。
     结论:清毒颗粒阻抑MCF-7细胞VEGF的恶性循环。
     2.清毒颗粒抑制癌源性内皮血管形成的机制
     目的:探讨清毒颗粒影响癌源性内皮血管新生的药理机制。
     方法:(1)分离培养人脐静脉血管内皮细胞(HUVEC);(2)回归VEGF刺激内皮增殖的量效关系;(3)以培养细胞接触性抑制的时效与量效,建立癌细胞-内皮共培养肿瘤血管新生离体模型。MCF-7以102.5~104.5个/mL(k=0.316)5个浓度接种,培养6h、12h、24h、36h、48h、72h、96h、120h、144h、168h、192h、240h、288h、336h后终止;HUVEC以103-105个/mL(k=0.316)5个浓度接种,培养12h、24h、36h、48h、72h、96h、120h、144h、168h后终止;HE染色后对不同浓度各时间点的细胞数目进行计数,回归细胞发生接触性抑制的浓度(y)与时间(x)的关系;(4)以正常、TAM、FK506、Qu、QDL、QDM、QDH含药血清作用于VEGF诱导或MCF-7共培养的内皮,MTT法检测增殖,transwell法分析迁移,Magial基质胶观察成管,检测CaN活性,免疫组化染色检测NFATc3入核,实时定量RT-PCR和Western blot检测NFATc3表达。
     结果:(1)HUVEC检出率>90%;(2)VEGF刺激HUVEC增殖的EC50为15.58ng/mL;(3)终点时程决定MCF-7细胞接种密度的回归方程为y=5.07x2-1949x+185642(R=0.99);终点时程决定HUVEC细胞接种密度的回归方程为y=0.50x2-722.30x+249774(R=0.87);(4)清毒颗粒抑制VEGF诱导或MCF-7共培养的内皮迁移、成管,下调CaN活性,减少NFATc3入核,降低NFATc3的基因与蛋白表达。
     结论:清毒颗粒通过抑制内皮NFAT通路抗乳腺癌血管新生。
Angiogenesis plays a key role in the development, invasion, metastasis, and recurrence of breast cancer. The angiogenic process includes vascular endothelial activation, proliferation, migration and tube formation. Vascular endothelial growth factor (VEGF) plays leading role in tumor angiogenesis. Tumor hypoxia, inflammation and coagulation involve in the regulation of VEGF secretion, and induce angiogenesis via VEGF receptor2(VEGFR2) signaling pathway. The VEGFR2mediated calcineurin (CaN)/nuclear factor of activated T cells (NFAT) pathway plays key roles in angiogenesis of breast cancer.
     Qingdu granules is a Chinese herbal formula for treating breast cancer in clinic. The component herbs of this formula were as follows:Radix bupleuri, Radix curcumae, Dried tangerine Peel, Tree Peony Bark, Radix Astragali, Radix Glycyrrhiza, Flos Sophorae, Radix Lithospermi, Curcuma zedoary, and Radix Salviae Miltiorrhizae. In this study, we applied three methods:animal models, cell experimental models and molecular biological methods to explore the underlying mechanisms of Qingdu granules on angiogenesis of breast cancer.
     Part1Qingdu granules inhibited angiogenesis in nude mice-bearing breast cancer
     1. Replication of nude mice bearing-breast cancer model
     Aim:To replicate a nude mice bearing-breast cancer model.
     Methods:MCF-7cells of1×106~8×106/200μL (k=0.5) were injected to the mammary fat pad of female nude mice. The tumor volumes were measured and the median effect concentration (EC50) of MCF-7cell injection density was calculated.
     Results:EC50of MCF-7cell injection density was4.75×106/200μL and its95%confidence interval (CI95) was3.50×106~6.30×106/200μL. The equation was Y=2.93+0.41/(1+10(26.41-3.96X)),R=0.99.
     Conclusion:The nude mice bearing-breast cancer model was successfully replicated.
     2. Effect of Quercetin on tumor growth in nude mice-bearing breast cancer
     Aim:To observe effect of quercetin on tumor growth of breast cancer-bearing nude mice.
     Methods:Female nude mice-bearing breast cancer were divided into8groups and intragastrically administration daily with quercetin of316.22~3162277.66nmol/kg/d (k=0.316) for21days. The dose effect relationship of quercetin inhibiting tumor growth was analyzed.
     Results:ED50of quercetin was45380.00nmol/kg/d and its CI95was34316.00-60011.00nmol/kg/d. The equation was Y=9.27+64.41/(1+10(8.88-191X)), R=0.99.
     Conclusion:Quercetin inhibited breast tumor growth with dose dependent tendency.
     3. Effect of Qingdu granules on tumor growth in nude mice-bearing breast cancer
     Aim:To observe effect of Qingdu granules on tumor growth of breast cancer bearing-nude mice.
     Methods:Female nude mice-bearing breast cancer were divided into8groups and intragastrically administration daily with Qingdu granules containing quercetin of31.62~31622.78nmol/kg/d (k=0.316) for21days. Tumor volumes were measured twice a week. The dose effect relationship of Qingdu granules inhibiting tumor growth was analyzed.
     Results:ED50of Qingdu granules was1403nmol/kg/d and its CI95was435.90~4518.00nmol/kg/d. The equation was Y=72.57+70.41/(1+10(0.94x-2.95)), R=0.99.
     Conclusion:Qingdu granules inhibited breast tumor growth with dose dependent tendency, and its ED50is nearly1/40of quercetin used alone.
     4. Pharmacodynamic mechanisms of Qingdu granules on angiogenesis of nude mice-bearing breast cancer
     Aim:To evaluate the effect of Qingdu granules on angiogenesis of breast cancer bearing-nude mice via inhibiting CaN activity.
     Methods:Female nude mice-bearing breast cancer were randomly divided into seven groups, i.e., model, tamoxifen (TAM), tacrolimus (FK506), quercetin(Qu), Qingdu granules with low(QDL), middle(QDM) and high(QDH) dose. Tumor inhibitory ratio, and necrotic or proliferative ratios in tumor tissue were evaluated. Serum VEGF levels, vessel density and calcineurin activity were measured. Expression of VEGF, VEGFR2, and NFATc3were determined with immunohistochemical staining, real time RT-PCR and Western blot.
     Results:Anti-tumor effects of Qingdu granules were shown as decreased tumor volume, the tumor inhibitory ratio in QDL, QDM and QDH was20.70%,22.43%and22.27%, respectively. Qingdu granules promoted tumor necrosis, limited oncocyte proliferation, decreased serum VEGF levels, reduced vessel density and CaN activities. Qingdu granules reduced existed levels, gene levels, and protein amounts of VEGF, VEGFR2and NFATc3.
     Conclusion:Qingdu granules downregulated CaN activities and inhibited angiogenesis of breast cancer.
     Part2Qingdu granules inhibited inflammation induced angiogenesis in rat anterior chamber-bearing breast cancer
     1. Establish of rat anterior chamber-bearing breast cancer model
     Aim:To establish the anterior chamber-bearing breast cancer model in rats.
     Methods:MCF-7cells of2.5×l04~8×105/mL (k=0.5) were injected into the anterior chamber of rats. The red change of eye was daily recorded. All rats were carried euthanasia at d28in each group. The pathological changes of anterior chamber were investigated with HE staining. The tumor volume ratio was morphometried. vWF and CD4expression were measured with immunohistochemical staining.
     Results:d0~d10, the red of eyes become thicker. After d10, the red gradually become thinner. As the elevated of MCF-7injected density, the tumor volume ratios increased, gradually occupied anterior chamber, then destroyed vitreous and lens, and numerous of hemosiderin deposited in tumor tissues. The EC50of MCF-7injected density is5×105/mL with its CI95ranged from2.31×105-1.05×106/mL. As the MCF-7injected density increased, the vWF and CD4positive granules both gradually increased in tumor tissues.
     Conclusion:The established rat anterior chamber-bearing breast cancer model had the features of both angiogenesis and tumor immunity.
     2. Mechanisms of Qingdu granules inhibiting inflammatory angiogenesis of breast cancer
     Aim:To explore the underlying mechanisms of Qingdu granules on inflammatory angiogenesis of anterior chamber-bearing breast cancer in rats.
     Methods:Anterior chamber-bearing breast cancer rats were divided into8groups, i.e., control, model, TAM, FK506, Qu, QDL, QDM and QDH. The animals were intragastrically administration daily for28days. The pathological changes of tumor tissues were investigated with HE staining. The tumor volume ratio was morphometried. Immuhistochemical staining was used for investigated vWF, COX-2, IL-lp, IL-6, STAT3, STAT1, and IRF1cellular location. The existed positive protein levels were analyzed.
     Results:Qingdu granules inhibited tumor growth, decreased vessel density, reduced COX-2, IL-1β, IL-6and STAT3existed levels. Qingdu granules upregulated STAT1and IRF1expression.
     Conclusion:Qingdu granules inhibited angiogenesis via downregulating pro-tumor inflammatory signals.
     Part3Pharmacological mechanism of Qingdu granules inhibiting angiogenesis of breast cancer
     1. The effect of Qingdu granules on breast cancer induced angiogenesis
     Aim:To study the effect of Qingdu granules on VEGF secretion of MCF-7cells.
     Methods:Prepared rat normal, TAM, FK506, Qu, QDL, QDM, QDH contained sera, respectively. MCF-7cells were dealt with drug sera. Cell proliferation was detected with MTT, VEGF secreted by cell was measured with Elisa, and VEGF expression was evaluated with real time RT-PCR and Western blot.
     Results:Qingdu granules inhibited cell proliferation, decreased VEGF secretion, and reduced VEGF expression.
     Conclusion:Qingdu granules inhibited VEGF vicious cycle of MCF-7cells.
     2. The mechanism of Qingdu granules on breast cancer induced endothelia angiogenesis
     Aim:To study the mechanisms of Qingdu granules on angiogenesis of breast cancer.
     Methods:(1) Isolated and cultured human umbilical vein endothelial cells (HUVEC).(2) The dose effect relationship of VEGF stimulating HUVEC proliferation was analyzed.(3) To establish MCF-7and endothelia cocultured angiogenic model in vitro. MCF-7cells were cultured with concentrations of102.5~104.5/mL (k=0.316) for6h,12h,24h,36h,48h,72h,96h,120h,144h,168h,192h,240h,288h,336h, respectively. HUVEC cells were cultured with concentrations of103~105/mL (k=0.316) for12h,24h,36h,48h,72h,96h,120h,144h,168h, respectively. Using HE staining to counts cell numbers of each concentration and time. The concentration(y) and time (x) for cell contact inhibition was regressed.(4)The VEGF induced or MCF-7cocultured HUVEC cells were dealt with normal, TAM, FK506, Qu, QDL, QDM, QDH drug sera. HUVEC proliferation was detected with MTT, the migration was analyzed by transwell, and tube formation was evaluated with Magial matrix. CaN activity was measured. NFATc3entering into nucleus was investigated by immunohistochemical staining. NFATc3expression was determined with real time RT-PCR and Western blot.
     Results:(1) Identified HUVEC>90%.(2) The EC50of VEGF was15.58ng/mL.
     (3) The MCF-7equation was y=5.07x2-1949x+185642(R=0.99). The HUVEC equation was y=0.50x2-722.30x+249774(R=0.87).(4) Qingdu granules inhibited VEGF induced HUVEC proliferation, inhibited VEGF or MCF-7induced HUVEC migration, tube formation, downregulated CaN activities, decreased the ratio NFATc3nuclear translocation, and reduced NFATc3expression with dose dependent tendency.
     Conclusion:The anti-angiogenic mechanisms of Qingdu granules involved in inhibiting of NFAT signal pathway.
引文
[1]Desantis C, Ma J, Bryan L, et al.Breast cancer statistics,2013[J].CA Cancer J Clin, 2014,64(1):52-62.
    [2]郑莹,吴春晓,张敏璐.乳腺癌在中国的流行状况和疾病特征[J].中国癌症杂志,2013,23(8):561-569.
    [3]Schneider BP, Miller KD.Angiogenesis of breast cancer[J].J Clin Oncol,2005, 23(8):1782-1790.
    [4]Tomita M, Kami K. Cancer. Systems biology, metabolomics, and cancer metabolism[J]. Science,2012,336(6084):990-991.
    [5]PP Li. Could we use clinical benefit to evaluate the effects of Chinese medicine on the tratment of cancer[J]? Chin J Integr Med,2010,16(1):9-10.
    [6]Hoeben A, Landuyt B, Highley MS, et al. Vascular endothelial growth factor and angiogenesis [J].Pharmacol Rev,2004,56(4):549-580.
    [7]Mancini M, Toker A. NFAT proteins:emerging roles in cancer progression[J]. Nat Rev Cancer,2009,9(11):810-820.
    [8]Siamakpour-Reihani S, Caster J, Bandhu ND, et al. The role of calcineurin/NFAT in SFRP2 induced angiogenesis-a rationale for breast cancer treatment with the calcineurin inhibitor tacrolimus[J]. PLoS One,2011,6(6):e20412.
    [9]Muller MR, Rao A. NFAT, immunity and cancer:a transcription factor comes of age [J]. Nat Rev Immunol,2010,10(9):645-656.
    [10]Naldini A, Carraro F. Role of inflammatory mediators in angiogenesis[J]. Curr Drug Targets Inflamm Allergy,2005,4(l):3-8.
    [11]孙红,薛冬,高非,等.中药舒肝凉血方改善乳腺癌患者潮热的临床研究[J].中国中西医结合杂志,2009,29(1):30-33.
    [12]Zhang Y, Li PP. Shu-Gan-Liang-Xue Decoction, a Chinese herbal formula, down-regulates the expression of steroid sulfatase genes in human breast carcinoma MCF-7 cells[J]. J Ethnopharmacol,2010,127(3):620-624.
    [13]Zhang Y, Li PP. Evaluation of estrogenic potential of Shu-Gan-Liang-Xue Decoction by dual-luciferase reporter based bioluminescent measurements in vitro[J]. J Ethnopharmacol,2009,126(2):345-349.
    [14]吴彩霞,李萍萍.舒肝凉血方联合三苯氧胺对雌激素依赖性乳腺癌的抑瘤作用[J].中国实验方剂学杂志,2008,14(8):31-34.
    [15]Chirumbolo S. Quercetin in cancer prevention and therapy[J]. Integr Cancer Ther, 2013,12(2):97-102.
    [16]Chen JC, Chang NW, Chung JG, et al. Saikosaponin-A induces apoptotic mechanism in human breast MDA-MB-231 and MCF-7 cancer cells[J]. Am J Chin Med,2003,31(3):363-77.
    [17]Zhu J, Luo C, Wang P, et al. Saikosaponin A mediates the inflammatory response by inhibiting the MAPK and NF-κB pathways in LPS-stimulated RAW 264.7 cells[J]. Exp Ther Med,2013,5(5):1345-1350.
    [18]Lu Q, Zhang P, Zhang X, et al. Experimental study of the anti-cancer mechanism of tanshinone IIA against human breast cancer[J]. Int J Mol Med,2009,24(6):773-780.
    [19]Fan GW, Gao XM, Wang H, et al. The anti-inflammatory activities of Tanshinone IIA, an active component of TCM, are mediated by estrogen receptor activation and inhibition of iNOS [J]. J Steroid Biochem Mol Biol,2009;113(3-5):275-280.
    [20]Lei H, Luo J, Tong L, et al. Quercetin binds to calcineurin at a similar region to cyclosporin A and tacrolimus[J]. Food Chemistry,2011,27(3):1169-117.
    [1]Rygaard J, Povlsen CO. Heterotransplantation of a human malignant tumour to "Nude" mice[J]. Acta Pathol Microbiol Scand,1969,77(4):758-760.
    [2]Heppner GH, Miller FR, Shekhar PM. Nontransgenic models of breast cancer[J]. Breast Cancer Res,2000,2(5):331-334.
    [3]Lacroix M, Leclercq G. Relevance of breast cancer cell lines as models for breast tumours:an update[J]. Breast Research and Treatment,2004,83(3):249-289.
    [4]甄林林,武正炎,范萍,等.人乳腺癌裸鼠移植模型的建立.南京医科大学学报[J].2001,21(6):509-510.
    [1]Russo M, Spagnuolo C, Tedesco I, et al. The flavonoid quercetin in disease prevention and therapy:facts and fancies[J]. Biochem Pharmacol,2012,83(1):6-15.
    [2]Chirumbolo S. Quercetin in cancer prevention and therapy[J]. Integr Cancer Ther, 2013,12(2):97-102.
    [3]Choi JA, Kim JY, Lee JY, et al. Induction of cell cycle arrest and apoptosis in human breast cancer cells by quercetin [J]. Int J Oncol,2001;19(4):837-844.
    [4]Duo J, Ying GG, Wang GW, et al. Quercetin inhibits human breast cancer cell proliferation and induces apoptosis via Bcl-2 and Bax regulation[J]. Mol Med Rep, 2012,5(6):1453-1456.
    [5]Oh SJ, Kim O, Lee JS, et al. Inhibition of angiogenesis by quercetin in tamoxifen-resistant breast cancer cells[J]. Food Chem Toxicol,2010;48(11):3227-3234.
    [1]池慧珍,林胜友.中医中药在乳腺癌化疗中的研究进展[J].陕西中医学院学报,2009,32(2):70-73.
    [2]孙红,薛冬,高非,等.中药舒肝凉血方改善乳腺癌患者潮热的临床研究[J].中国中西医结合杂志,2009,29(1):30-33.
    [3]Zhang Y, Li PP. Shu-Gan-Liang-Xue Decoction, a Chinese herbal formula, down-regulates the expression of steroid sulfatase genes in human breast carcinoma MCF-7 cells[J]. J Ethnopharmacol,2010,127(3):620-624.
    [4]鲍福军.舒肝凉血方治疗乳腺癌肿瘤术后潮热盗汗28例的疗效观察[J].医学信息,2011,7:3407-3408.
    [5]郑里翔,林栋美,刘红宁.滋阴经方经TGF-p途径抑制小鼠自发乳腺癌生长的机理[J].中成药,2011,33(10):1793.
    [6]郑里翔,刘红宁,乔玉丹.六味地黄丸对自发乳腺癌小鼠瘤块中血管内皮生长因子和周期蛋白D3基因表达的影响[J].中国实验方剂学杂志,2010,16(11):117.
    [1]Belugali NN, Salimath BP. Crosstalk between VEGF and novel angiogenic protein regulates tumor angiogenesis and contributes to aggressiveness of breast carcinoma[J]. Cell Signal,2013,25(1):277-294.
    [2]Schneider BP, Miller KD. Angiogenesis of breast cancer[J]. J Clin Oncol, 2005,23(8):1782-1790.
    [3]Mancini M, Toker A. NFAT proteins:emerging roles in cancer progression[J]. Nat Rev Cancer,2009,9(11):810-820.
    [4]马向涛,余力伟,付静.钙调神经磷酸酶A与B在乳腺癌组织中的表达[J].肿瘤,2008,28(2):146-149.
    [5]Muller MR, Rao A. NFAT, immunity and cancer:a transcription factor comes of age[J]. Nat Rev Immunol,2010,10(9):645-656.
    [6]Siamakpour-Reihani S, Caster J, Bandhu ND, et al. The role of calcineurin/NFAT in SFRP2 induced angiogenesis-a rationale for breast cancer treatment with the calcineurin inhibitor tacrolimus[J]. PLoS One,2011,6(6):e20412.
    [7]H Lei, J Luo, L Tong, et al. Quercetin binds to calcineurin at a similar region to cyclosporin A and tacrolimus[J]. Food Chemistry,2011,127(3):1169-1174.
    [8]Chirumbolo S. Quercetin in cancer prevention and therapy[J]. Integr Cancer Ther, 2013,12(2):97-102.
    [9]Oh SJ, Kim O, Lee JS, et al. Inhibition of angiogenesis by quercetin in tamoxifen-resistant breast cancer cells[J]. Food Chem Toxicol,2010,48(11):3227-3234.
    [10]Blumenthal DK, Takio K, Hansen RS, et al. Dephosphorylation of cAMP-dependent protein kinase regulatory subunit (type II) by calmodulin-dependent protein phosphatase. Determinants of substrate specificity[J]. J Biol Chem,1986, 261(18):8140-8145.
    [11]郑莹,吴春晓,张敏璐.乳腺癌在中国的流行状况和疾病特征[J].中国癌症杂志,2013,23(8):561-569.
    [12]Desantis C, Ma J, Bryan L, et al. Breast cancer statistics,2013[J]. CA Cancer J Clin,2014,64(1):52-62.
    [13]李佩文,邹丽琰.乳腺癌综合诊疗学[M].中国中医药出版社,1999:8-13.
    [14]郁仁存.郁仁存中西医结合肿瘤学[M].中国协和医科大学出版社,2008:227-238.
    [15]孙红,薛冬,高非,等.中药舒肝凉血方改善乳腺癌患者潮热的临床研究[J].中国中西医结合杂志,2009,29(1):30-33.
    [16]鲍福军.舒肝凉血方治疗乳腺癌肿瘤术后潮热盗汗28例的疗效观察[J].医学信息,2011,7:3047-3048.
    [17]徐静,臧东静,白洁.滋阴清火法治疗乳腺癌术后伴焦虑患者的临床观察[J].世界中西医结合杂志,2012,7(9):794-796.
    [18]尚广彬,曾莉萍,赵益,等.二至丸对诱发性乳腺癌组织中VEGF和MMP-9表达的影响[J].中国实验方剂学杂志,2013,19(13):270-273.
    [19]陈朝霞,赵京霞,李萍,等.凉血活血胶囊含药血清对鸡胚绒毛尿囊膜血管新生的影响[J].北京中医药,2010,29(4):305-308.
    [20]马珊,马俊飞,彭华,等.凉血活血中药含药血清对人脐静脉内皮细胞增殖的影响[J].昆明医科大学学报,2012,(11):38-41.
    [21]付雪松,李萍萍.舒肝凉血方对MCF-7和T47D细胞增殖及硫酸酯酶活性和表达的影响[J].中国实验方剂学杂志,2011,17(14):144-147.
    [22]吴彩霞,李萍萍.舒肝凉血方联合三苯氧胺对雌激素依赖性乳腺癌的抑瘤作用[J].中国实验方剂学杂志,2008,14(8):31-34.
    [23]Urruticoechea A, Smith IE, Dowsett M. Proliferation marker Ki-67 in early breast cancer[J]. J Clin Oncol,2005,23(28):7212-7220.
    [24]Yoeli-Lerner M, Yiu GK, Rabinovitz I, et al. Akt blocks breast cancer cell motility and invasion through the transcription factor NFAT[J]. Mol Cell.2005,20(4): 539-550.
    [25]Miiller MR, Rao A. Linking calcineurin activity to leukemogenesis[J]. Nat Med, 2007,13(6):669-71.
    [26]Armesilla AL, Lorenzo E, Gomez del Arco P, et al. Vascular endothelial growth factor activates nuclear factor of activated T cells in human endothelial cells:a role for tissue factor gene expression[J]. Mol Cell Biol,1999,19(3):2032-2043.
    [27]Greenhough A, Smartt HJ, Moore AE, et al. The COX-2/PGE2 pathway:key roles in the hallmarks of cancer and adaptation to the tumour microenvironment[J]. Carcinogenesis,2009,30(3):377-386.
    [28]Wang D, DuBois RN. Cyclooxygenase 2-derived prostaglandin E2 regulates the angiogenic switch[J]. Proc Natl Acad Sci U S A,2004,101(2):415-416.
    [29]Williams JP, McKenna MA, Thames AM 3rd, et al. Effects of cyclosporine on osteoclast activity:inhibition of calcineurin activity with minimal effects on bone resorption and acid transport activity[J]. J Bone Miner Res,2003,18(3):451-457.
    [30]Mukai H, Kuno T, Chang CD, et al. FKBP12-FK506 complex inhibits phosphatase activity of two mammalian isoforms of calcineurin irrespective of their substrates or activation mechanisms[J]. J Biochem,1993,113(3):292-298.
    [31]Wang H, Zhou CL, Lei H, et al. Inhibition of calcineurin by quercetin in vitro and in Jurkat cells[J]. J Biochem,2010,147(2):185-190.
    [32]Wong VK, Zhou H, Cheung SS, et al. Mechanistic study of saikosaponin-d (Ssd) on suppression of murine T lymphocyte activation[J]. J Cell Biochem,2009,107(2): 303-315.
    [33]王照华,李永胜,杨乐,等.丹参酮对肥大心肌细胞中电生理特征和钙调神经磷酸酶活性的作用[J].现代中西医结合杂志,2011,20(32):4060-4063.
    [34]Linsalata M, Orlando A, Messa C, et al. Quercetin inhibits human DLD-1 colon cancer cell growth and polyamine biosynthesis[J]. Anticancer Res,2010,30(9): 3501-3507.
    [35]Pratheeshkumar P, Budhraja A, Son YO, et al. Quercetin inhibits angiogenesis mediated human prostate tumor growth by targeting VEGFR-2 regulated AKT/mTOR/P70S6K signaling pathways[J]. PLoS One,2012,7(10):e47516.
    [36]Duo J, Ying GG, Wang GW, et al. Quercetin inhibits human breast cancer cell proliferation and induces apoptosis via Bcl-2 and Bax regulation[J]. Mol Med Rep, 2012,5(6):1453-1456.
    [37]Seo HS, Choi HS, Choi HS, et al. Phytoestrogens induce apoptosis via extrinsic pathway, inhibiting nuclear factor-kappaB signaling in HER2-overexpressing breast cancer cells[J]. Anticancer Res,2011,31(10):3301-3313.
    [38]Bos R, Zhong H, Hanrahan CF, et al. Levels of hypoxia-inducible factor-1 alpha during breast carcinogenesis[J]. J Natl Cancer Inst,2001,93(4):309-314.
    [39]Bos R, van Diest PJ, de Jong JS, et al. Hypoxia-inducible factor-1 alpha is associated with angiogenesis, and expression of bFGF, PDGF-BB, and EGFR in invasive breast cancer[J]. Histopathology,2005,46(1):31-36.
    [40]Wong CC, Gilkes DM, Zhang H, et al. Hypoxia-inducible factor 1 is a master regulator of breast cancer metastatic niche formation[J]. Proc Natl Acad Sci U S A, 2011,108(39):16369-16374.
    [41]李世正,李昆,张俊华,等.槲皮素增强乳腺癌细胞化疗敏感度的研究[J].肿瘤防治研究,2012,39(4):381-384.
    [42]李世正,李昆,张俊华,等.姜黄素调控乳腺癌细胞增殖与转移机制研究[J].医药导报,2013,32(5):561-564.
    [1]Streilein JW.Ocular immune privilege:therapeutic opportunities from an experiment of nature[J]. Nat Rev Immunol,2003,3(11):879-889.
    [2]Folkman J, Merler E, Abernathy C, et al. Isolation of a tumor factor responsible for angiogenesis[J]. J Exp Med,1971,133(2):275-288.
    [3]Cao R, Lim S, Ji H, et al. Mouse corneal lymphangiogenesis model[J]. Nat Protoc, 2011,6(6):817-826.
    [4]Girol AP, Mimura KK, Drewes CC, et al. Anti-inflammatory mechanisms of the annexin Al protein and its mimetic peptide Ac2-26 in models of ocular inflammation in vivo and in vitro[J]. J Immunol,2013,190(11):5689-5701.
    [5]Li H, Niederkorn JY, Sadegh L, et al. Epigenetic regulation of CXCR4 expression by the ocular microenvironment[J]. Invest Ophthalmol Vis Sci,2013,54(1):234-243.
    [6]Yu CR, Kim SH, Mahdi RM, et al. SOCS3 deletion in T lymphocytes suppresses development of chronic ocular inflammation via upregulation of CTLA-4 and expansion of regulatory T cells[J]. J Immunol,2013,191(10):5036-5043.
    [7]Yang Y, Yee D. IGF-I regulates redox status in breast cancer cells by activating the amino acid transport molecule xC [J]. Cancer Res,2014,74(8):2295-2305.
    [8]Clemente M, Perez-Alenza MD, Illera JC, et al. Histological, immunohistological, and ultrastructural description of vasculogenic mimicry in canine mammary cancer[J]. Vet Pathol,2010,47(2):265-274.
    [9]Siemerink MJ, Klaassen I, Van Noorden CJ, et al. Endothelial tip cells in ocular angiogenesis:potential target for anti-angiogenesis therapy[J]. J Histochem Cytochem, 2013,61(2):101-115.
    [10]Mikalsen LT, Dhakal HP, Bruland OS, et al. Quantification of angiogenesis in breast cancer by automated vessel identification in CD34 immunohistochemical sections[J]. Anticancer Res,2011,31(12):4053-4060.
    [11]You JJ, Yang CH, Huang JS, et al. Fractalkine, a CX3C chemokine, as a mediator of ocular angiogenesis[J]. Invest Ophthalmol Vis Sci,2007,48(11):5290-5298.
    [12]Zhu Y, Li F, Vadakkan TJ, et al. Three-dimensional vasculature reconstruction of tumour microenvironment via local clustering and classification[J]. Interface Focus, 2013,3(4):20130015.
    [13]Kubota Y, Takubo K, Shimizu T, et al. M-CSF inhibition selectively targets pathological angiogenesis and lymphangiogenesis[J]. J Exp Med,2009,206(5):1089-1102.
    [14]Ruan Q, Han S, Jiang WG, et al. alphaB-crystallin, an effector of unfolded protein response, confers anti-VEGF resistance to breast cancer via maintenance of intracrine VEGF in endothelial cells[J]. Mol Cancer Res 2011,9(12):1632-1643.
    [15]Sato Y. The vasohibin family:a novel family for angiogenesis regulation[J]. J Biochem,2013,153(1):5-11.
    [16]He M, Mangiameli DP, Kachala S, et al. Expression signature developed from a complex series of mouse models accurately predicts human breast cancer survival [J]. Clin Cancer Res,2010,16(1):249-259.
    [1]Liu Q, Tan Q, Zheng Y, et al. Blockade of fas signaling in breast cancer cells suppresses tumor growth and metastasis via disruption of fas signaling-initiated cancer-related inflammation [J]. J Biol Chem,2014,289(16):11522-11535.
    [2]Hirko KA, Soliman AS, Banerjee M, et al. A comparison of criteria to identify inflammatory breast cancer cases from medical records and the Surveillance, Epidemiology and End Results data base,2007-2009[J]. Breast J,2014,20(2):185-191.
    [3]Lewis CE, Leek R, Harris A, et al. Cytokine regulation of angiogenesis in breast cancer:the role of tumor-associated macrophages[J]. J Leukoc Biol,1995,57(5):747-751.
    [4]Lu H, Ouyang W, Huang C. Inflammation, a key event in cancer development[J]. Mol Cancer Res,2006,4(4):221-233.
    [5]Naldini A, Carraro F. Role of inflammatory mediators in angiogenesis [J]. Curr Drug Targets Inflamm Allergy,2005,4(1):3-8.
    [6]Xiao X, Shi D, Liu L, et al. Quercetin suppresses cyclooxygenase-2 expression and angiogenesis through inactivation of P300 signaling[J]. PLoS One,2011,6(8): e22934.
    [7]Gizzo S, Di Gangi S, Bertocco A, et al. Levonorgestrel intrauterine system in adjuvant tamoxifen treatment:balance of breast risks and endometrial benefits-systematic review of literature [J]. Reprod Sci,2014,21(4):423-431.
    [8]Siamakpour-Reihani S, Caster J, Bandhu ND, et al. The role of calcineurin/NFAT in SFRP2 induced angiogenesis-a rationale for breast cancer treatment with the calcineurin inhibitor tacrolimus[J]. PLoS One,2011,6(6):e20412.
    [9]Singh B, Berry JA, Shoher A, et al. COX-2 overexpression increases motility and invasion of breast cancer cells[J]. Int J Oncol,2005,26(5):1393-1399.
    [10]康华峰,王西京,刘小旭,等.三苯氧胺联合塞来昔布预防大鼠乳腺癌发生的实验研究[J].癌症,2006,25(11):1346-1350.
    [11]de Pascual-Teresa S, Johnston KL, DuPont MS, et al. Quercetin metabolites downregulate cyclooxygenase-2 transcription in human lymphocytes ex vivo but not in vivo[J]. J Nutr,2004,134(3):552-557.
    [12]瞿秋红,付翠敏,韦立蓓,等.姜黄素对人宫颈癌SiHa细胞株增殖、凋亡和COX-2表达的影响[J].中国妇幼保健,2009,24(12)1683-1685.
    [13]周利红,王炎,范忠泽,等.丹参酮ⅡA调节COX-2对人结肠癌HCT-116细胞VEGF表达的影响[J].世界华人消化杂志,2011,19(15):1561-1567.
    [14]骆殊,沈洪,朱学军,等.黄芪、莪术配伍方对胃癌cox-2、pparγ及转移相关因子表达的影响[J].药学与临床研究,2009,17(1):14-17.
    [15]Voronov E, Shouval DS, Krelin Y, et al. IL-1 is required for tumor invasiveness and angiogenesis[J]. Proc Natl Acad Sci U S A,2003,100(5):2645-2650.
    [16]Lewis AM, Varghese S, Xu H, et al. Interleukin-1 and cancer progression:the emerging role of interleukin-1 receptor antagonist as a novel therapeutic agent in cancer treatment J]. J Transl Med,2006,4:48.
    [17]Voronov E, Carmi Y, Apte RN. Role of IL-1-mediated inflammation in tumor angiogenesis[J]. Adv Exp Med Biol,2007,601:265-270.
    [18]Lindahl G, Saarinen N, Abrahamsson A, et al. Tamoxifen, flaxseed, and the lignan enterolactone increase stroma and cancer cell-derived IL-1Ra and decrease tumor angiogenesis in estrogen-dependent breast cancer[J]. Cancer Res,2011,71(1): 51-60.
    [19]Choe JY, Lee SJ, Park SH, et al. Tacrolimus (FK506) inhibits interleukin-1β-induced angiopoietin-1, Tie-2 receptor, and vascular endothelial growth factor through down-regulation of JNK and p38 pathway in human rheumatoid fibroblast-like synoviocytes [J]. Joint Bone Spine,2012,79(2):137-143.
    [20]Cho SY, Park SJ, Kwon MJ, et al. Quercetin suppresses proinflammatory cytokines production through MAP kinases and NF-kappaB pathway in lipopolysaccharide- stimulated macrophage[J]. Mol Cell Biochem,2003,243(1-2): 153-160.
    [21]潘华新,王培训,周联,等.清热、活血类中药有效成分对THP-1巨噬泡沫细胞形成及分泌IL-1p、TNF-α的影响[J].现代中西医结合杂志,2009,18(35):4325-4327.
    [22]Knupfer H, Preiss R. Significance of interleukin-6 (IL-6) in breast cancer[J]. Breast Cancer Res Treat,2007,102(2):129-135.
    [23]Michaud-Levesque J, Bousquet-Gagnon N, Beliveau R. Quercetin abrogates IL-6/STAT3 signaling and inhibits glioblastoma cell line growth and migration[J]. Exp Cell Res,2012,318(8):925-935.
    [24]汤欣,韩凤娟,李威,等.莪术醇对人卵巢癌SKOV3细胞株JAK2/STAT3信号通路影响的研究[J].中国妇产科临床杂志,2013,14(1):43-46.
    [25]郑旭锐,樊英华,韦永红,等.姜黄素对肝星状细胞JAK-STAT3信号通路的影响[J].陕西中医,2013,34(9):1255-1257.
    [26]Battle TE, Lynch RA, Frank DA. Signal transducer and activator of transcription 1 activation in endothelial cells is a negative regulator of angiogenesis[J]. Cancer Res, 2006,66(7):3649-3657.
    [27]Bouker KB, Skaar TC, Riggins RB, et al. Interferon regulatory factor-1 (IRF-1) exhibits tumor suppressor activities in breast cancer associated with caspase activation and induction of apoptosis[J]. Carcinogenesis,2005,26(9):1527-1535.
    [28]Pantschenko AG, Pushkar I, Anderson KH, et al. The interleukin-1 family of cytokines and receptors in human breast cancer:implications for tumor progression [J]. Int J Oncol,2003,23(2):269-284.
    [29]Dethlefsen C, H0jfeldt G, Hojman P. The role of intratumoral and systemic IL-6 in breast cancer[J]. Breast Cancer Res Treat,2013,138(3):657-664.
    [1]Byrne GJ, McDowell G, Agarawal R, et al. Serum vascular endothelial growth factor in breast cancer[J]. Anticancer Res,2007,27(5B):3481-3487.
    [2]Gasparini G Prognostic value of vascular endothelial growth factor in breast cancer [J]. Oncologist,2000,5 (Suppl 1):37-44.
    [3]Buzdar AU. Endocrine therapy in the treatment of metastatic breast cancer[J]. Semin Oncol,2001,28:291-304.
    [4]Garvin S, Nilsson UW, Dabrosin C. Effects of oestradiol and tamoxifen on VEGF, soluble VEGFR-1, and VEGFR-2 in breast cancer and endothelial cells[J]. Br J Cancer,2005,93(9):1005-10.
    [5]王琦,吴业卿,李程鹏,等.免疫抑制剂FK506对乳腺肿瘤细胞株的体外作用[J].浙江理工大学学报,2010,5:818-823.
    [6]Russo M, Spagnuolo C, Tedesco I, et al. The flavonoid quercetin in disease prevention and therapy:facts and fancies[J]. Biochem Pharmacol,2012,83(1):6-15.
    [7]Oh SJ, Kim O, Lee JS, et al. Inhibition of angiogenesis by quercetin in tamoxifen-resistant breast cancer cells[J].Food Chem Toxicol,2010,48(11):3227-3234.
    [8]王建杰,罗文哲,苗智,等.丹皮酚诱导人MCF-7细胞凋亡的机制[J].中国老年学杂志,2012,32:4953-4954.
    [9]陈菊英,刘朝纯,曾智,等.紫草素通过PI3K/Akt通路促进人乳腺癌MCF-7细胞自噬[J].中国药理学通,2013,29(2):194-198.
    [10]何静,刘安文,蔡婧,等.姜黄素对乳腺癌细胞VEGF-C表达及增殖、侵袭性的影响[J].肿瘤防治研究,2011,38(10):1109-1112.
    [1]Folkman J. Tumor angiogenesis:therapeutic implications [J]. N Engl J Med,1971, 285:1182-1186.
    [2]Weis SM, Cheresh DA. Tumor angiogenesis:molecular pathways and therapeutic targets[J]. Nat Med,2011,17(11):1359-1370.
    [3]Mancini M, Toker A. NFAT proteins:emerging roles in cancer progression[J].Nat Rev Cancer,2009,9(11):810-820.
    [4]Nilsson UW, Dabrosin C. Anti-angiogenic effects of tamoxifen in breast cancer by decreased secretion and reduced nuclear accumulation of angiogenin[J]. Cancer Research,2009,69(2 Supplement):1033.
    [5]Williams JP, McKenna MA, Thames AM, et al. Effects of cyclosporine on osteoclast activity:inhibition of calcineurin activity with minimal effects on bone resorption and acid transport activity[J]. J Bone Miner Res,2003,18(3):451-457.
    [6]Siamakpour-Reihani S, Caster J, Bandhu ND et al. The role of calcineurin/NFAT in SFRP2 induced angiogenesis-a rationale for breast cancer treatment with the calcineurin inhibitor tacrolimus[J]. PLoS One,2011,6(6):e20412.
    [7]Pratheesbkumar P, Budhraja A, Son YO, et al. Quercetin inhibits angiogenesis mediated human prostate tumor growth by targeting VEGFR-2 regulated AKT/mTOR/P70S6K signaling pathways[J]. PLoS One,2012,7(10):e47516.
    [8]Lin C, Wu M, Dong J. Quercetin-4'-O-β-D-glucopyranoside (QODG) inhibits angiogenesis by suppressing VEGFR2-mediated signaling in zebrafish and endothelial cells [J]. PLoS One,2012,7(2):e31708.
    [9]Wong VK, Zhou H, Cheung SS, et al. Mechanistic study of saikosaponin-d (Ssd) on suppression of murine T lymphocyte activation[J]. J Cell Biochem,2009,107(2): 303-315.
    [10]李剑明,杨和平.姜黄属中药活性成分对人内皮增殖的抑制作用[J].中国临床康复,2004,8(22):4539-4541.
    [11]Kim SA, Lee HJ, Ahn KS, et al. Paeonol exerts anti-angiogenic and anti-metastatic activities through downmodulation of Akt activation and inactivation of matrix metalloproteinases[J]. Biol Pharm Bull,2009,32(7):1142-1147.
    [12]何秀娟,李萍,邱全瑛,等.几种外用中药成份对离体人脐静脉内皮增殖的影响[J].中国病理生理杂志,2004,20(5):832-835
    [13]沈洪,刘增巍,张坤,等.黄芪对SGC7901胃癌细胞COX-1、COX-2、VEGF和PGE-2表达的影响[J].肿瘤,2007,27(3):194-198.
    [14]谢思柔,王宇,刘长伟,等.甘草素对人脐静脉内皮血管生成的作用及其机制探讨[J].营养学报,2011,33(4):389-392.
    [15]袁定芬,邓辉,阎春林,等.紫草素对内皮细胞血管新生活性的影响[J].中国临床药理学与治疗学,2006,14(11):1253-1255.
    [16]叶兰,徐晓玉,李荣亨,等.三棱、莪术药物血清对培养的人脐静脉血管内皮生长和VEGF表达的影响[J].第三军医大学学报,2007,29(2),121-124.
    [17]王照华,李永胜,杨乐,等.丹参酮对肥大心肌细胞中电生理特征和钙调神经磷酸酶活性的作用[J].现代中西医结合杂志,2011,20(32):4060-4063.
    [18]Chen Q, Zhuang Q, Mao W, et al. Inhibitory effect of cryptotanshinone on angiogenesis and Wnt/(3-catenin signaling pathway in human umbilical vein endothelial cells [J]. Chin J Integr Med,2014, Apr 16. [Epub ahead of print]
    [1]Autier P, Boniol M, LaVecchia C, et al. Disparities in breast cancer mortality trends between 30 European countries:retrospective trend analysis of WHO mortality database[J]. BMJ,2010,341:c3620.
    [2]Zhao P, Dai M, Chen W, et al. Cancer Trends in China[J]. Jpn. J. Clin. Oncol, 2010,40(4):281-285.
    [3]中国抗癌协会乳腺癌诊治指南与规范(2013版)[J].中国癌症杂志,2013,23(8):637-684.
    [4]Alvarez RH, Valero V, Hortobagyi GN. Emerging Targeted Therapies for Breast Cancer [J]. J Clin Oncol,2010,28(7):3366-3379.
    [5]尉承泽,江泽飞.乳腺癌治疗基本原则和临床选择[J].中国实用外科杂志,2009,29(9):774-776.
    [6]Ravaioli A, Tassinari D, Panzini I, et al. Staging of breast cancer:it is time to break with tradition and initiate the evidence-based-medicine age[J]. Journal of Clinical Oncology,2001,19:1234.
    [7]MA, Willett AM, Reed MW, Hammond PJ. Effect of patient age on management decisions in breast cancer:consensus from a national consultation[J]. Oncologist, 2010,15(7):657-664.
    [8]于跃,施俊义,盛湲,等.乳腺癌保乳手术切缘宽度为2cm与3cm的疗效比较[J].第二军医大学学报,2007,28(11):1229-1231.
    [9]徐兵河,孙燕.乳腺癌内科治疗的策略及研究[J].乳腺病杂志,2003,1(1):1-3.
    [10]Henderson TO, Amsterdam A, Bhatia S, et al. Systematic review:surveillance for breast cancer in women treated with chest radiation for childhood, adolescent, or young adult cancer[J]. Ann Intern Med,2010,152(7):444-455.
    [11]Ikeda T, Jinno H, Shirane M. Chemosensitivity-related genes of breast cancer detected by DNA microarray[J]. Anticancer Res,2007,27(4C):2649-2655.
    [12]Nishimura R, Osako T, Okumura Y, et al. Changes in the ER, PgR, HER2, p53 and Ki-67 biological markers between primary and recurrent breast cancer: discordance rates and prognosis[J]. World J Surg Oncol,2011,9:131.
    [13]Gianni L, Zambetti M, Clark K, et al. Gene expression profiles in paraffin-embedded core biopsy tissue predict response to chemotherapy in women with locally advanced breast cancer[J]. J Clin Oncol,2005,23(29):7265-7277.
    [14]于双全,于志勇.乳腺癌分子分型及其临床意义[J].国际肿瘤学杂志,2012,39(6):432-435.
    [15]Liedtke C, Hatzis C, Symmans WF, et al. Genomic grade index is associated with response to chemotherapy in patients with breast cancer[J]. J Clin Oncol,2009, 27(19):3185-3191.
    [16]万冬桂,栾宝红.乳腺癌化疗的进展[J].中日友好医院学报,2004,18(2):117-119.
    [17]马文玥,张频.乳腺癌新辅助化疗的研究现状[J].癌症进展,2011,9(2):165-171.
    [18]Lumachi F, Luisetto G, Basso SM, et al. Endocrine therapy of breast cancer[J]. Curr Med Chem,2011,18(4):513-522.
    [19]Normanno N, Morabito A, De Luca A, et al. Target-based therapies in breast cancer:current status and future perspectives[J]. Endocrine-Related Cancer, 2009,16(3):675-702.
    [20]Carpini JD, Karam AK, Montgomery L. Vascular endothelial growth factor and its relationship to the prognosis and treatment of breast, ovarian, and cervical cancer[J]. Angiogenesis,2010,13(1):43-58.
    [21]Maegawa RO, Tang SC. Triple-negative breast cancer:unique biology and its management [J]. Cancer Invest,2010,28(8):878-883.
    [22]Schwartz GK, Shah MA. Targeting the cell cycle:a new approach to cancer therapy[J]. J Clin Oncol,2005,23(36):9408-9421.
    [23]Hanahan D. The Hallmarks of Cancer [J]. Cell,2000,100,57-70.
    [24]杨春娥,李宏力,高苏莉.抗肿瘤药物临床应用的现状与研究进展[J].国外医药:抗生素分册,2004,25(1):30-33.
    [25]孙燕.肿瘤药物治疗百年回顾与展望[J].中华肿瘤杂志,2004,26(11):701-703.
    [26]尚海,潘莉,杨澍,等.微管蛋白抑制剂的研究进展[J].药学学报,2010,45(9):1078-1088.
    [27]莫晓媚,李静,耿美玉.DNA拓扑异构酶与抗肿瘤[J].中国药理学通报,2007,23(1):20-23.
    [28]Folkerd EJ, Dowsett M. Influence of sex hormones on cancer progression[J]. J Clin Oncol,2010,28(26):4038-4044.
    [29]Vaidya JS, Baldassarre G, Thorat MA, et al. Role of glucocorticoids in breast cancer[J]. Curr Pharm Des,2010,16(32):3593-3600.
    [30]Moeller LC, Fuhrer D. Thyroid hormone, thyroid hormone receptors, and cancer: a clinical perspective[J]. Endocr Relat Cancer,2013,20(2):R19-29.
    [31]Elmore S. Apoptosis:a review of programmed cell death [J].Toxicol Pathol, 2007,35(4):495-516.
    [32]Ghavami S, Hashemi M, Ande SR, et al. Apoptosis and cancer:mutations within caspase genes[J]. Journal of Medical Genetics,2009,46(8):497-510.
    [33]Fesik SW. Promoting apoptosis as a strategy for cancer drug discovery[J]. Nat Rev Cancer,2005,5(11):876-885.
    [34]Wong RS. Apoptosis in cancer:from pathogenesis to treatment[J]. J Exp Clin Cancer Res,,2011,30:87.
    [35]Renoir JM, Bouclier C, Seguin A, et al. Antioestrogen-mediated cell cycle arrest and apoptosis induction in breast cancer and multiple myeloma cells[J]. Journal of Molecular Endocrinology,2008,40(3):101-112.
    [36]Adjei AA, Hidalgo M. Intracellular signal transduction pathway proteins as targets for cancer therapy [J]. J Clin Oncol,2005,23(23):5386-5403.
    [37]Drake JM, Lee JK, Witte ON. Clinical targeting of mutated and wild-type protein tyrosine kinases in cancer[J]. Mol Cell Biol,2014,34(10):1722-1732.
    [38]Masuda H, Zhang D, Bartholomeusz C, et al. Role of epidermal growth factor receptor in breast cancer [J]. Breast Cancer Res Treat,2012,136(2):331-345.
    [39]Fox EM, Miller TW, Balko JM, et al. A kinome-wide screen identifies the insulin/IGF-I receptor pathway as a mechanism of escape from hormone dependence in breast cancer[J]. Cancer Res,2011,71(21):6773-6784.
    [40]El-Attar HA, Sheta MI. Hepatocyte growth factor profile with breast cancer[J]. Indian J Pathol Microbiol,2011,54(3):509-513
    [41]Zhang S, Huang WC, Zhang L, et al. SRC family kinases as novel therapeutic targets to treat breast cancer brain metastases[J]. Cancer Res,2013,73(18):5764-5774.
    [42]Luo M, Guan JL. Focal adhesion kinase:a prominent determinant in breast cancer initiation, progression and metastasis[J]. Cancer Lett,2010,289(2):127-139.
    [43]Appels NM, Beijnen JH, Schellens JH. Development of farnesyl transferase inhibitors:a review[J[. Oncologist,2005,10(8):565-578.
    [44]English JM, Cobb MH. Pharmacological inhibitors of MAPK pathways[J]. Trends Pharmacol Sci,2002,23(1):40-45.
    [45]Yu Z, Baserga R, Chen L, et al. microRNA, cell cycle, and human breast cancer[J]. The Ameracan Journal of Pathology,2010,176(3):1058-1064.
    [46]Yu Z, Baserga R, Chen L, Wang C, Lisanti MP, Pestell RG microRNA, cell cycle, and human breast cancer[J]. Am J Pathol,2010,176(3):1058-1064.
    [47]Hochreiter AE, Xiao H, Goldblatt EM, et al. Telomerase template antagonist GRN163L disrupts telomere maintenance, tumor growth, and metastasis of breast cancer [J]. Clin Cancer Res,2006,12(10):3184-92.
    [48]McCarthy M, Auda G, Agrawal S, et al.. In vivo anticancer synergy mechanism of doxorubicin and verapamil combination treatment is impaired in BALB/c mice with metastatic breast cancer [J]. Exp Mol Pathol,2014, S0014-4800(14):00063-X.
    [49]Yde CW, Clausen MP, Bennetzen MV, et al. The antipsychotic drug chlorpromazine enhances the cytotoxic effect of tamoxifen in tamoxifen-sensitive and tamoxifen-resistant human breast cancer cells [J]. Anticancer Drugs,2009,20(8): 723-735.
    [50]林中,陈赛贞.抗肿瘤药物的研究进展[J].药学新进展,2004,23(5):305-308.
    [51]Cross D, Burmester JK. Gene therapy for cancer treatment:past, present and future[J]. Clin Med Res,2006,4(3):218-227.
    [52]Hursting SD, Berger NA. Energy balance, host-related factors, and cancer progression[J] Journal of Clinical Oncology,2010,28(26):4058-4065.
    [53]秦海洗.唐汉钧教授治疗乳腺癌辨证思路与用药经验[J].中西医结合学报,2004,2(4):297.
    [54]徐力,龚蔚.疏肝化瘀解毒方联合TE方案治疗乳腺癌15例[J].南京中医药大学学报,2008,24(1):66-67.
    [55]洪宋贞,周劬志.乳腺癌术后的中医辨证治疗概况[J].中华中医药杂志,2005,20(8):499-502.
    [56]孙红,薛冬,高非,等,中药舒肝凉血方改善乳腺癌患者潮热的临床研究[J].中国中西医结合杂志,2009,29(1):30-33.
    [57]孙红,李萍萍,解云涛.舒肝凉血方与三苯氧胺合用对人乳腺癌细胞MCF-7生长及ER表达影响[J].中国肿瘤,2005,14(9):607-610.
    [58]杨柳,王雪莹,刘畅,等.北柴胡化学成分与药理作用的研究进展[J].中医药信息,2012,29(3):143-145.
    [59]Chen JC, Chang NW, Chung JG, et al. Saikosaponin-A induces apoptotic mechanism in human br east MDAMB-231 and MCF-7 cancer cells [J]. Am J Chin Med,2003,31(3):363-377.
    [60]王宝峰,程延安,王西京,等.柴胡皂甙D对实验性大鼠肝癌血管形成的抑制作用[J].世界华人消化杂志,2008,16(12):1273-1280.
    [61]李秀琴,孙秀燕,何仲贵,等.柴胡挥发油提取方法的研究[J].中国药学杂志,2004,39(2):103-105.
    [62]刘华钢,刘俊英,赖茂祥,等.郁金化学成分及药理作用的研究进展[J].广西中医学院学报,2008,11(2):81-83.
    [63]Shehzad A,Wahid F,Lee YS.Curcumin in cancer chemoprevention:molecular targets, pharmacokinetics,bioavailability,and clinical trials [J]. Arch Pharm (Weinheim),2010,343(9):489-499.
    [64]Labbozzetta M, Notarbartolo M, Poma P, et al. Curcumin as a possible lead compound against hormone-independent,multidrugresistant breast cancer[J].Ann N Y Acad Sci,2009,1155:278-283.
    [65]王辉,牛国梁,张树友,等.姜黄素对人乳腺癌MDA-MB-231细胞裸鼠移植瘤放射增敏的作用[J].中国癌症杂志,2012,22(5):342-346.
    [66]Chakraborty G, Jain S, Kale S, et al.Curcumin suppresses breast tumor angiogenesis by abrogating osteopontin-induced VEGF expression[J]. Mol Med Rep. 2008,1(5):641-646.
    [67]张志海,王彩云,杨天鸣,等.陈皮的化学成分及药理作用研究进展[J].西北药学杂志,2005,20(1):47-48.
    [68]王志国,李兰英,张利.陈皮多甲氧基黄酮类成分对人乳腺癌MCF-7、肝癌HepG2细胞株增殖抑制作用及其敏感性比较[J].江西中医药,2007,39(11):79-80.
    [69]王坚,韦正,陈鸿平,等.源于同一植株陈皮挥发油成分动态变化规律研究[J].中国实验方剂学杂志,2013,19(3):73-78.
    [70]徐耀庭,李劲松,顾炜,等.D-柠檬烯诱导人膀胱癌细胞周期阻滞及凋亡的研究[J].中国医学工程,2010,18(3):6-9.
    [71]Chen C, Ono M, Takeshima M, et al. Antiproliferative and apoptosis-inducing activity of nobiletin against three subtypes of human breast cancer cell lines [J]. Anticancer Res,2014,34(4):1785-1792.
    [72]张健萍,李连珍,赵红江,等.牡丹皮的化学成分、药理作用及临床应用研究概况[J].中华中医药杂志,2006,21(5):295-297.
    [73]Cai J, Chen S, Zhang W, et al. Paeonol reverses paclitaxel resistance in human breast cancer cells by regulating the expression of transgelin 2[J]. Phytomedicine, 2014, S0944-7113(14):00114-00117.
    [74]Wang JJ, Li QW,Ou YT, et al. Antitumor Effects of Paeonol on Mice Bearing EMT6 Breast Infiltrating Ductal Carcinoma [J]. LATIN AMERICAN JOURNAL OF PHARMACY,2010,29(3):369.
    [75]王建杰,董航,罗文哲,等.丹皮酚对EMT6乳腺癌小鼠免疫功能的影响[J].中国医药导报,2013,10(27):17-19.
    [76]Kim SA, Lee HJ, Ahn KS, et al. Paeonol exerts anti-angiogenic and anti-metastatic activities through downmodulation of Akt activation and inactivation of matrix metalloproteinases [J]. Biol Pharm Bull,2009,32(7):1142-1147.
    [77]张蔷,高文远,满淑丽.黄芪中有效成分药理活性的研究进展[J].中国中药杂志,2012,37(21):3203-3206.
    [78]陈艳蕊,毛欣月,金文闻,等.黄芪多糖结构及其单糖组成的气相色谱-质谱研究[J].现代生物医学进展,2011,11(S1):4632.
    [79]陈国辉,黄文凤.黄芪的化学成分及药理作用研究进展[J].中国新药杂志,2008,17(17):1482-1485.
    [80]郑春燕,肖伟.肺癌患者外周血单个核细胞Th1/Th2反应状态及黄芪的调节作用[J].中国免疫学杂志,2002,18(7):502-504.
    [81]杨璐,沈洪.黄芪及其主要成分抗肿瘤免疫机制研究进展[J].山东中医药大学学报,2011,35(3):281-285.
    [82]沈洪,刘增巍,张坤,等.黄芪对SGC7901胃癌细胞COX-1、COX-2、VEGF和PGE-2表达的影响[J].肿瘤,2007,27(3):194-198.
    [83]周瑞芳,刘鹏熙,谭敏.黄芪注射液在生理量雌二醇环境下对人乳腺癌MCF27细胞的影响[J].中药材,2009,32(5):744-747.
    [84]张峰,董菊子,彭俊华,等.黄芪注射液对人乳腺癌细胞中VEGF和CXCR4表达的影响[J].西北国防医学杂志,2009,30(6):438-440.
    [85]‘谷俊朝,余微波,王宇,等.黄芪多糖对TA2小鼠乳腺癌MA2891移植瘤生长及HSP70表达的影响[J].中华肿瘤防治杂志,2006,13(20):1534-1537.
    [86]叶媚娜,陈红风,周瑞娟,等.黄芪多糖对基底细胞样乳腺癌细胞增殖和Akt磷酸化的影响[J].中西医结合学报,2011,9(12):1339-1346.
    [87]张波,官月平,田庆来,等.乌拉尔甘草中黄酮类化学成分的研究进展[J].中成药,2006,28(9):1362-1365.
    [88]李德华,李德宇,李永光.甘草化学成分与药理作用研究进展[J].中医药信息,1995,5:31-35.
    [89]马君义,张继,杨永利,等.乌拉尔甘草叶挥发油的化学成分分析[J].中国药学杂志,2005,40(20):1534-1535.
    [90]胡菁,敖明章,崔永明,等.甘草多糖的抗肿瘤活性及对免疫功能的影响[J].天然产物研究与开发,2008,20:911-913.
    [91]赵世元,农智新,钟振国.甘草总黄酮体内抗肿瘤作用的实验研究[J].广西医学,2006,28(9):1348-1350.
    [92]Tamir S, Eizenberg M, Somjen D, et al. Estrogen-like activity of glabrene and other constituents isolated from licorice root [J]. J Steroid Biochem Mol Biol, 2001,78(3):291-298.
    [93]Jo EH, Kim SH, Ra JC, et al. Chemopreventive properties of the ethanol extract of chinese licorice (Glycyrrhiza uralensis) root:induction of apoptosis and G1 cell cycle arrest in MCF-7 human breast cancer cells[J].Cancer Lett,2005,230(2):239-247.
    [94]马琴国,李天庆.紫草化学成分及药理作用研究进展[J].甘肃中医学院学报,2013,30(2):78-80.
    [95]怡悦.紫草中的糖成分[J].国外医学中医中药分册,2005,27(2):110.
    [96]韩洁,翁新楚.紫草中活性成分的体外抗癌作用[J].精细化工,2007,24(5):474-476.
    [97]吴振,吴立军,田代真一,等.紫草素诱导A375-S2细胞凋亡的分子机制研究[J].中国药理学通报,2005,21(2):202-205.
    [98]吴振,吴立军,田代真一,等.紫草素诱导HeLa细胞凋亡经过caspase激活的机制[J].中国药理学通报,2004,20(5):540-544.
    [99]黄河,刘宗潮.紫草素及其衍生物的抗肿瘤作用[J].肿瘤防治杂志,2005,12(1):75-78.
    [100]陈菊英,刘朝纯,曾智,等.紫草素通过PI3K/Akt通路促进人乳腺癌MCF-7细胞自噬[J].中国药理学通报,2013,29(2):194-198.
    [101]索承美,胡国华.紫草在妇科及生殖内分泌方面的研究进展[J].浙江中医杂志,2010,45(9):692-695.
    [102]王薇,李萍萍.紫草提取物对MCF-7细胞及小鼠雌孕激素水平的影响[J].中国中药杂志,2003,28(11):1062-1067.
    [103]Lee HJ, Lee HJ, Magesh V, et al. Shikonin, acetylshikonin, and isobutyroylshikonin inhibit VEGF-induced angiogenesis and suppress tumor growth in lewis lung carcinoma-bearing mice[J]. Yakugaku Zasshi,2008,128(11):1681-1688.
    [104]李娆娆,原思通,肖永庆.中药槐花化学成分、药理作用及炮制研究进展[J].中国中医药信息杂志,2002,9(6):77-81.
    [105]沈丽霞,牛建昭,王继峰.槲皮素、补骨脂素对人乳腺癌T47D细胞两种受体亚型表达的影响[J].中国药理学通报,2009,25(4):461-464.
    [106]沈丽霞,董晓华,李炜,等.槲皮素、补骨脂素对乳腺癌细胞株MCF-7增殖的影响[J].中国药理学通报,2009,25(5):601-605.
    [107]李世正,李昆,张俊华,等.槲皮素在人乳腺癌细胞中抑制增殖和诱导凋亡的作用[J].中国普外基础与临床杂志,2009,16(2):124-128.
    [108]钟晓刚,吴凯南,何生,等.槲皮素对人乳腺癌裸鼠移植瘤细胞增殖和凋亡的影响[J].四川大学学报(医学版),2003,34(3):439-442.
    [109]Chien SY, Wu YC, Chung JG, et al. Quercetin-induced apoptosis acts through mitochondrial-and caspase-3-dependent pathways in human breast cancer MDA-MB-231 cells[J]. Hum Exp Toxicol.2009,28(8):493-503.
    [110]Hyun JY, Hyung JA, Geun EJ. Differential effect of quercetin and quercetin-3-glucoside on the proliferation of cancer cells[J]. FASEB J,2011,25: 1b301.
    [111]Phromnoi K, Yodkeeree S, Anuchapreeda S. et al. Inhibition of MMP-3 activity and invasion of the MDA-MB-231 human invasive breast carcinoma cell line by bioflavonoids[J]. Acta Pharmacol Sin.2009,30(8):1169-1176.
    [112]Zhao D, Qin C, Fan X, et al. Inhibitory effects of quercetin on angiogenesis in larval zebrafish and human umbilical vein endothelial cells[J]. Eur J Pharmacol, 2014,723:360-367.
    [113]Chen X, Pei L, Zhong Z, et al. Anti-tumor potential of ethanol extract of Curcuma phaeocaulis Valeton against breast cancer cells [J]. Phytomedicine, 2011,18(14):1238-1243.
    [114]Zhang X, Zhang Y, Li Y. β-elemene decreases cell invasion by upregulating E-cadherin expression in MCF-7 human breast cancer cells[J].Oncol Rep,2013,30(2): 745-750.
    [115]Zhang X, Li Y, Zhang Y,et al. Beta-elemene blocks epithelial-mesenchymal transition in human breast cancer cell line MCF-7 through Smad3-mediated down-regulation of nuclear transcription factors[J]. PLoS One,2013,8(3):e58719.
    [116]蔡东焱,高翔,吴小红,等.β-榄香烯注射液联合紫杉醇注射液对乳腺癌MB-468细胞体外协同作用研究[J].中国中西医结合杂志,2013,33(7):978-982.
    [117]赵娜,郭治昕,赵雪,等.丹参的化学成分与药理作用[J].国外医药·植物药分册,2007,22(4):155-160.
    [118]刘娟,刘颖.丹参药理活性成分研究进展[J].辽宁中医药大学学报,2010,12(7):15-17.
    [119]Lin C, Wang L, Wang H, et al. Tanshinone IIA inhibits breast cancer stem cells growth in vitro and in vivo through attenuation of IL-6/STAT3/NF-kB signaling pathways[J]. J Cell Biochem,2013,114(9):2061-2070.
    [120]Su CC, Lin YH.Tanshinone IIA inhibits human breast cancer cells through increased Bax to Bcl-xL ratios[J]. Int J Mol Med,2008,22(3):357-361.
    [121]Xu CL, Xi T. Anti-migration and anti-angiogenic effects of tanshinone IIA on breast cancer cell MDA-MB-435[J].Journal of China Pharmaceutical University,2009, 40(6):565-570.
    [122]Nizamutdinova IT, Lee GW, Lee JS, et al. Tanshinone I suppresses growth and invasion of human breast cancer cells, MDA-MB-231, through regulation of adhesion molecules[J]. Carcinogenesis,2008,29(10):1885-1892.
    [123]Park IJ, Kim MJ, Park OJ, et al. Cryptotanshinone induces ER stress-mediated apoptosis in HepG2 and MCF7 cells[J]. Apoptosis,2012,17 (3):248-257.
    [124]Bian W, Chen F, Bai L, et al. Dihydrotanshinone I inhibits angiogenesis both in vitro and in vivo[J].Acta Biochim Biophys Sin (Shanghai),2008,40(1):1-6.
    [125]Tsai SL, Suk FM, Wang CI,et al. Anti-tumor potential of 15,16-dihydrotanshinone I against breast adenocarcinoma through inducing G1 arrest and apoptosis[J]. Biochem Pharmacol,2007,74(11):1575-1586.
    [126]卢振铎,刘真真,王修身,等.丹酚酸乙对乳腺癌MCF-7细胞的生长抑制及诱导凋亡研究[J].肿瘤学杂志,2012,18(7):508-511.
    [1]Brackstone M, Townson JL, Chambers AF.Tumour dormancy in breast cancer:an update [J].Breast Cancer Res,2007,9(3):208.
    [2]Folkman J.Tumor angiogenesis:therapeutic implications [J]. N Engl J Med, 1971,285(21):1182-1186.
    [3]Locopo N,Fanelli M,Gasparini G,et al. Clinical significance of angiogenic factors in breast cancer[J]. Breast Cancer Res Treast,1998,52(3):159-173.
    [4]Adams RH, Alital K. Molecular regulation of angiogenesis and lymphoangiogenesis [J]. Nat Rev Mol Cell Bil,2007,8(6):464-748.
    [5]Nichl D, Stuhlmann H. EGFL7:a unique angiogenic signaling factor in vascular develpment and disease [J]. Blood,2012,119(6):1345-1352.
    [6]Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis [J]. Nature,2011,473(7347):298-307.
    [7]Chung AS, Lee J, Ferrara N. Targeting the tumur vasculature:insights frm physiological angigenesis [J]. Nat Rev Cancer,2010,10(7):505-514.
    [8]Lu X, Kang Y. Hypoxia and hypoxia-inducible factors:master regulators of metastasis [J]. Clin. Cancer Res,2010,16(24),5928-5935.
    [9]Dalton HJ, Armaiz-Pena GN, Gonzalez-Villasana V, et al. Monocyte subpopulations in angiogenesis[J]. Cancer Res,2014,74(5):1287-1293.
    [10]Cole M, Bromberg M. Tissue factor as a novel target for treatment of breast cancer[J].Oncologist,2013,18(1):14-18.
    [11]Saharinen P, Eklund L, Pulkki K, et al. VEGF and angiopietin signaling in toumor angiogenesis and metastasis[J]. Trends Mol Med,2011,17(7),347-362.
    [12]Ribatti D, Nic B, Crivellat E. The role of pericytes in angigenesis[J]. Int. J. Dev. Bil,2011,55(3),261-268.
    [13]Patel-Hett S, D'Amre PA.Signal transductin in vasculogenesis and developmental angigenesis[J]. Int. J. Dev. Bil,2011,55(4-5):353-363.
    [14]Jain S, Cohen J, Ward MM, et al.Tetrathiomolybdate-associated copper depletion decreases circulating endothelial progenitor cells in women with breast cancer at high risk of relapse[J]. Ann Oncol,2013 Jun,24(6):1491-1498.
    [15]Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis [J]. Nature,2011,473(7347):298-307.
    [16]Mancini M, Toker A. NFAT proteins:emerging roles in cancer progression[J]. Nat Rev Cancer,2009,9(11):810-820.
    [17]Hoeben A, Landuyt B, Highley MS, et al. Vascular endothelial growth factor and angiogenesis[J]. Pharmacol Rev,2004,56(4):549-80.
    [18]Toi M, Inada K, Suzuki H, et al. Tumor angiogenesis in breast cancer:its importance as a prognostic indicator and the association with vascular endothelial growth factor expression[J]. Breast Cancer Res Treat,1995,36(2):193-204.
    [19]Kawai H, Li H, Chun P, et al. Oncogene. Direct interaction between BRCA1 and the estrogen receptor regulates vascular endothelial growth factor (VEGF) transcription and secretion in breast cancer cells[J]. Oncogene,2002,21(50):7730-7739.
    [20]Nakamura J, Savinov A, Lu Q, et al. Estrogen regulates vascular endothelial growth/permeability factor expression in 7,12-dimethylbenz(a)anthracene-induced rat mammary tumors[J]. Endocrinology,1996,137(12):5589-96.
    [21]Fagiani E, Christofori G. Angiopoietins in angiogenesis[J]. Cancer Lett,2013, 328(1):18-26.
    [22]Shim WS, Ho IA, Wong PE. Angiopoietin:a TIE(d) balance in tumor angiogenesis[J]. Mol Cancer Res,2007,5(7):655-665.
    [23]Staton CA, Hoh L, Baldwin A, et al. Angiopoietins 1 and 2 and Tie-2 receptor expression in human ductal breast disease[J]. Histopathology,2011,59(2):256-263.
    [24]Min Y, Ren X, Vaught DB, et al. Tie2 signaling regulates osteoclastogenesis and osteolytic bone invasion of breast cancer[J]. Cancer Res,2010,70(7):2819-2828.
    [25]马向涛,余力伟,付静.钙调神经磷酸酶A与B在乳腺癌组织中的表达[J].肿瘤,2008,28(2):146-149.
    [26]Muller MR, Rao A. NFAT, immunity and cancer:a transcription factor comes of age[J]. Nat Rev Immunol,2010,10(9):645-656.
    [27]Ferrara N, Kerbel RS. Angiogenesis as a therapeutic target[J]. Nature,2005, 438(7070):967-974.
    [28]Liu J, Liao S, Huang Y, et al.PDGF-D improves drug delivery and efficacy via vascular normalization, but promotes lymphatic metastasis by activating CXCR4 in breast cancer[J]. Clin Cancer Res,2011,17(11):3638-3648.
    [29]Ke Q, Costa M. Hypoxia-inducible factor-1 (HIF-1)[J]. Mol Pharmacol,2006,70 (5):1469-1480.
    [30]Salceda S, Caro J. Hypoxia-inducible factor 1alpha (HIF-1 alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes[J]. J Biol Chem, 1997,272(36):22642-22647.
    [31]Hirota K, Semenza GL. Regulation of angiogenesis by hypoxia-inducible factor 1[J]. Crit Rev Oncol Hematol,2006,59(1):15-26.
    [32]Wong CC, Gilkes DM, Zhang H, et al. Hypoxia-inducible factor 1 is a master regulator of breast cancer metastatic niche formation[J]. Proc Natl Acad Sci U S A, 2011,108(39):16369-16374.
    [33]Bos R, Zhong H, Hanrahan CF, et al. Levels of hypoxia-inducible factor-1 alpha during breast carcinogenesis[J]. J Natl Cancer Inst,2001,93(4):309-314.
    [34]Rundhaug JE. Matrix metalloproteinases and angiogenesis[J]. J Cell Mol Med, 2005,9(2):267-285.
    [35]Stankovic S, Konjevic G, Gopcevic K, et al. Activity of MMP-2 and MMP-9 in sera of breast cancer patients[J]. Pathol Res Pract,2010,206(4):241-247.
    [36]Emdad L,Sarkar D,Su ZZ, et al. Activation of the nuclear factor kappa B pathway by astrocyte elevated gene-1:Implications for tumor progression and metastasis[J]. Cancer Res,2006,66(3):1509-1516.
    [37]Sutherland HG,Lam YW,Briers S,et al.3D3/lyric:a novel transmembrane protein of the endoplasmic reticulum and muclear envelope,which is also present of the endoplasmic reticulum and nuclear envelope,which is also present in the nucleolus[J]. Exp Cell Res,2004,294(1):94-105.
    [38]Kang DC,Su ZZ,Sarkar D,et al. Cloning and charcaterization of HIV-1-inducible astrocyte elecvated gene-1,AEG-1[J]. Gene,2005,353(1):8-15.
    [39]Yoo BK,Emdad L,Su ZZ,et al. Astrocyte elevated gene-1 regulates hepatocellular carcinoma development and progression[J]. J Clin Invest,2009,119(3): 465-477.
    [40]Yu C,Chen K,Zheng H,et al. Overexpression of astrocyte elevated gene-1 (AEG-1) is associated with esphogenesis[J].Carecinogenesis,2009,30(5):894-901.
    [41]Lee SG,Jeon HY,Su ZZ,et al. Astrocyte elevated gene-1 to the pathogenesis of neuroblastoma[J]. Oncogene,2009,28(26):2476-2484.
    [42]Kikuno N,Shiina H,Urakami S,et al. Knockdown of astrocyte elevated gene-1 inhibits prostate cancer progression though upregulation of FOXO3 activity[J]. Oncogene,2007,26(55):7647-7655.
    [43]Song L,Li W,Zhang H,et al. Over-expression of AEG-1 significantly associates with tumor aggressiveness and poor prognosis in hunman non-small cell lung cancer[J]. J Pathol,2009,219(3):317-326.
    [44]Hu G,Chong RA,Yang Q,et al. MTDH activation by 8q22 genomic gain promotes chemoresistance and metastasis of poor-grognosis breast cancer[J]. Cancer cell,2009,15(1):9-20.
    [45]Li C,Li R,Song HT,et al. Significance of AEG-1 expression in correlation with VEGF,microvessel density and clinicopathological characteristics in triple-negative breast cancer[J]. Journal of Surgical Oncology,2011,103:184-192.
    [46]Evan N,Markus B,Kamel K. Astrocyte-elevated gene-1(AEG-1) induction by hypoxia and glucose deprivation in glioblastoma[J]. Cancer Biology & Therapy,2011, 11(1):32-39.
    [47]Yoo BK,Chen D,Su ZZ,et al. Molecular mechanism of chemoresistance by astrocyte elevated gene-1[J]. Cancer Res,2010,25(70):3249-3258.
    [48]Song H,Li C,Li R,et al. Prognostic significance of AEG-1 expression in colorectal carcinoma[J]. Int J Colorectal Dis,2010,25:1201-1209.
    [49]Cobleigh MA, Langmuir VK, Sledge GW, et al. A phase Ⅰ/Ⅱ dose-escalation trial of bevacizumab in previously treated metastatic breast cancer[J].Semin Oncol, 2003,30(5 Suppl 16):117-124.
    [50]Rubin MS, Barton J, Shipley D, et al. Efficacy results from a multicenter phase Ⅱ noncomparative two-arm pilot trial of bevacizumab with anastrozole or fulvestrant as first-line endocrine therapy for metastatic breast cancer[J]. Journal of Clinical Oncology,2009,27(15S):1091.
    [51]Wedam SB, Low JA, Yang SX, et al.Antiangiogenic and Antitumor Effects of Bevacizumab in Patients With Inflammatory and Locally Advanced Breast Cancer[J]. Journal of Clinical Oncology,2006,24(5):769-777.
    [52]Foy KC, Liu Z, Phillips G, et al. Combination Treatment with HER-2 and VEGF Peptide Mimics Induces Potent Anti-tumor and Anti-angiogenic Responses in Vitro and in Vivo[J]. J Biol Chem,2011,286(15):13626-13637.
    [53]Miller K, Estes M, Perkins S, et al. An Exploratory Study of the Biological Activity of Sunitinib as a Component of Neoadjuvant Therapy for Breast Cancer[J]. Cancer Res,2009,24(69):202.
    [54]Wilhelm SM, Carter C, Tang L, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis[J]. Cancer Res,2003,64(19): 7099-7109.
    [55]Isaacs C, Wilkinson M, Liu M, et al. Phase Ⅱ Study of Sorafenib with Anastrozole To Overcome Resistance to Aromatase Inhibitors (AIs) in Patients with Hormone Receptor Positive (ER/PR+) AI Resistant Metastatic Breast Cancer (MBC) [J]. Cancer Res,2009,69(24 Supplement):3090.
    [56]Miller KD, Gradishar W, Schuchter L, et al. A randomized phase Ⅱ pilot trial of adjuvant marimastat in patients with early-stage breast cancer[J]. Ann Oncol, 2002,13(8):1220-1224.
    [57]Sparano JA, Bernardo P, Stephenson P, et al. Randomized phase Ⅲ trial of marimastat versus placebo in patients with metastatic breast cancer who have responding or stable disease after first-line chemotherapy:Eastern Cooperative Oncology Group trial E2196[J]. J Clin Oncol,2004,22(23):4683-4690.
    [58]Wang L, Chen J, Yao Q, et al. Neoadjuvant rh-endostatin, docetaxel, and epirubicin for breast cancer:Efficacy and safety in a prospective, randomized, phase II study[J]. Journal of Clinical Oncology,2011,29 (15 Supplement):1132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700