用户名: 密码: 验证码:
小麦—长穗偃麦草杂种后代的分子细胞遗传学分析及种质材料的筛选鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长穗偃麦草(Elytrigia elongata (Host) Nevisk.=Syn. Thinopyrum ponticum (Podp.)Barkworth and D. R. Dewey)是小麦的野生近缘植物之一,具有生长繁茂、多花多实、抗多种小麦病害(三锈、白粉、赤霉、黄矮病等)、抗寒冷、耐盐碱、耐干旱、较耐湿、耐贫瘠以及高蛋白等优良性状,是小麦遗传改良中具有重要价值的优异外源基因供体。本研究利用分子细胞遗传学和分子生物学等方法对小麦与长穗偃麦草不同杂种世代中偃麦草染色体的传递特点、主要细胞学及性状特点进行了分析;综合利用形态学、分子细胞遗传学和分子标记等方法对选育的优异小偃麦种质材料进行了鉴定,对白粉病抗性基因进行了分子标记定位。获得以下主要结果:
     1.以拟鹅观草总基因组DNA(St)作探针,对长穗偃麦草根尖细胞有丝分裂染色体进行基因组原位杂交(GISH),可以将长穗偃麦草根尖细胞染色体分为5种不同的类型。利用覆盖普通小麦A、B、D基因组的4560对SSR引物和1200个RAPD引物,对二倍体长穗偃麦草(Ee)、比萨偃麦草(Eb)、拟鹅观草(St)和十倍体长穗偃麦草进行了分子标记分析结果表明,长穗偃麦草的染色体组间具有较近的亲缘关系,但同二倍体供体种染色体组已有较大差异,Ee、Eb和St染色体组应为十倍体长穗偃麦草的基本染色体组,其染色体组组型公式应为StStEeEbEx。
     2.运用形态学和分子细胞遗传学等方法,分析长穗偃麦草和小麦杂种F1、F2、BC1F1、BC1F2、BC2F1等不同杂种世代的染色体组组成及构型,明确了小麦与长穗偃麦草不同杂种世代的染色体分离特点,以及不同杂交方式对杂种后代染色体及性状分离的影响。
     3.对在普通小麦与长穗偃麦草杂种后代中选育的3个八倍体小偃麦(SN19、SN20和SN122)、11个小偃麦渐渗系山农87074-513、-526、-541、-551、-554、-555、-557、-565、-576、NX22、NX28和3个小偃麦易位系NX5、NX24、NX25进行了鉴定,明确了其主要性状和细胞学特点。
     4.利用基因组原位杂交(GISH)和荧光原位杂交(FISH)技术,确定了19个小偃麦异染色体系的染色体构成特点。以拟鹅观草总基因组DNA为探针的GISH分析结果表明,八倍体小偃麦SN19染色体总数为54条,含12条长穗偃麦草染色体;SN20和SN122染色体总数均为56条,各含14条长穗偃麦草染色体;小偃693和小偃7430染色体总数也均为56条,但小偃693含16条长穗偃麦草染色体,小偃7430含12条长穗偃麦草染色体。5个八倍体小偃麦的外源染色体构成分别为:2"St+4"Ee、1"St+5"Ee+1"Eb、1"St+4"Ee+2"Eb、4"Ee+4"Eb和1"St+4"Ee+1"Eb。对NX5、NX24和NX25的原位杂交鉴定证明,它们均是小麦-长穗偃麦草染色体小片段易位系,易位片段均在小麦1BS染色体端部。以荧光绿标记的pAsl和德克萨斯红标记的pHvG38为探针,对11个小偃麦渐渗系(87074-513、-526、-541、-551、-554、-555、-557、-565、-576、NX22、NX28)和3个小偃麦易位系(NX5、NX24、NX25)的荧光原位杂交鉴定证明,14个小偃麦种质材料的部分染色体与普通小麦亲本均有不同程度的结构变异。
     5.在对获得的稳定小偃麦种质SN0224进行细胞学和原位杂交鉴定的基础上,利用优选小群体方法,筛选获得3个与小偃麦易位系SN0224的抗白粉病基因PmSn0224紧密连锁的SSR标记(Barc212、Xwmc522和Xbarc1138),并将抗白粉病基因定位在小麦2A染色体上。
Elytrigia elongata (Host) Nevisk.[Syn. Thinopyrum ponticum (Podp.) Barkworth](2n=10x=70) was determined to have many agronomical useful traits for wheat improvement,such as high protein, tolerance to salt and drought, resistance to stripe rust, leaf rust, Fusariumhead blight and wheat streak mosaic virus.These genes have been transferred into wheat andextensively used in improved resistance to various pests and tolerance to abiotic stresses.Inthe present study, identified and analysed by methods of morphology, cytology, biochemistryand molecular biology, analyze the genome composition and configuration of wheat-E.elongata hybrids plants; identified Trititrigia alien chromosome lines from progenies betweenE. elongata and Triticum aestivum; and molecular marker analysis powdery mildew resistancegene. The main results were as follows:
     1. GISH was conducted using St-genomic DNA from Pseudoregnaria strigosa as theprobe determined that5types chromosome composition was of E. elongata was exhibited. By4560pairs of SSR markers and1200RAPD markers analyze E. elongata, Agropyronelongatum (Ee), Thinopyrum Bessarabicum (Eb) and Ps. strigosa (St). The sesults indicate thatEe、Eband St had a close genetic relationship, and were basic chromosome complement of E.elongata. The genomic formulas for E. elongata were StStEeEbEx.
     2. By methods of morphology andmolecular cytogenetics, analyze the genomecomposition and configuration of wheat-E. elongata F1、F2、BC1F1、BC1F2and BC2F1hybridsplants. To discuss the characteristics of chromosome separation in different hybrid generationsand affect of chromosome segregation with different pattern of crossing.
     3. By methods of morphology and cytology,17Trititrigia alien chromosome lines wereidentified from progenies between E. elongata and Triticum aestivum, including3octoploid Trititrigia (SN19、SN20and SN122),11introgression lines (87074-513、-526、-541、-551、-554、-555、-557、-565、-576、NX22and NX28), and3translocation line (NX5、NX24andNX25).
     4. Genomic in situ hybridization (GISH) and fluorescence in situ hybridization (FISH)were used to establish the genomic constitutions of the19Trititrigia alien chromosome lines.Octoploid Trititrigia SN19has54chromosomes and other partial amphiploids have56chromosomes. SN19and XY7430both had intact wheat genome chromosomes plus12E.elongata chromosomes, SN20and SN122both had14chromosomes from E. elongata,XY693has16chromosomes from E. elongata, and their constitutions of alien chromosomeswere:2"St+4"Ee、1"St+4"Ee+1"Eb、1"St+5"Ee+1"Eb、1"St+4"Ee+2"Eband4"Ee+4"Eb. NX5、NX24and NX25were3translocation line and their translocation chromosomewas1BS. Probing of other14Trititrigia alien chromosome lines with pAsl and pHvG38revealed that their chromosome structure were different with their wheat parents.
     5. SN0224, derived from crosses between E. elongata and common wheat Yannong15,was analyzed with cytological procedures, genomic in situ hybridization, powdery mildewresistance screening and molecular marker analysis.A single dominant Pm gene, derived fromE. elongata and temporarily designated as PmSn0224, was found on the wheat chromosome2A of SN0224. Based on data from205F2plants of SN0224/Huixianhong, the resistance genewas linked to three polymorphic microsatellite markers Barc212, Xwmc522and Xbarc1138with genetic distances of5.1,5.3and7.0cM.
引文
鲍印广,李兴锋,宗浩,赵春华,崔法,王玉海,王洪刚.小偃麦异代换系山农0095辐照花粉后代的细胞学及SSR标记分析[J].分子细胞生物学报,2009,42(2):89-94.
    陈佩度,周波,齐莉莉等.用分子原位杂交技术(GISH)鉴定小麦-簇毛麦双二倍体、附加系、代换系和易位系[J].遗传学报,1995,22(5):380-386.
    陈全战,亓增军,冯祎高,王苏玲,陈佩度.利用离果山羊草3C染色体诱导簇毛麦4V染色体结构变异[J].遗传学报,2002,29(4):355-358.
    陈全战.离果山羊草3C染色体诱导簇毛麦2V、4V和6V染色体结构变异的研究[D].南京农业大学博士学位论文,2007.
    陈全战,曹爱忠,亓增军,张伟,陈佩度.利用离果山羊草3C染色体诱导簇毛麦2V染色体结构变异.中国农业科学,2008,41(2):362-369.
    陈孝,徐惠君,杜丽璞,尚立民,韩彬,施爱农,肖世和.利用组织培养技术向普通小麦导入簇毛麦抗白粉病基因的研究[J].中国农业科学,1996,29(6):1-8.
    丁斌,王洪刚,孙海艳,等.小麦-中间偃麦草双体异附加系的鉴定[J].西北植物学报,2003,23(11):1910-1915.
    董玉琛.小麦的基因源[J].麦类作物学报,2000,20(3):78-81.
    董玉琛.小麦远缘杂交育种.21世纪小麦遗传育种展望--小麦遗传育种国际学术讨论会文集[L],郑州,2001,5:12-22.
    傅杰,徐霞,杨群慧,等.八倍体小滨麦与缺体小麦杂交的细胞遗传学研究[J].遗传学报,1997,24((4):350-357.
    高安礼,何华纲,陈全战,等.分子标记辅助选择小麦抗白粉病基因Pm2、Pm4a和Pm21的聚合体[J].作物学报,2005,31(11):1400-1405.
    高明君,郝水,何孟元,等.中间偃麦草染色体组构成的同工酶研究[J].遗传学报,1992,19(4):336-343.
    郝薇薇,汤才国,李葆春,郝晨阳,张学勇.小麦-十倍体长穗偃麦草广谱抗锈易位系的鉴定及分析.中国农业科学,2012,45(16):3240-324.
    何中虎,兰彩霞,陈新民,等.小麦条锈病和白粉病成株抗性研究进展与展望[J].中国农业科学,2011,4(11):2193-2215.
    胡含,张相岐,张文俊,景建康,王二明,王献平.花粉小麦染色体工程[J].科学通报,1999,44(1):6-11.
    胡铁柱,李洪杰,刘子记,等.普通小麦品种“豫麦66”抗白粉病基因的鉴定与分子标记[J].作物学报,2008,34(4):545-550.
    吉万全,薛秀庄,王秋英.中间偃麦草染色体组的分子细胞遗传学研究[M].中国的遗传学研究,1995,110.
    金善宝.中国小麦学[M].北京:中国农业出版社,1990.
    李春鑫,许为刚.小麦白粉病抗病基因分子标记开发及应用研究进展[J].中国农学通报,2009,25(10):53-58.
    李丹丹,王洪刚,刘树兵,等.抗白粉病小偃麦异代换系的细胞学鉴定和RAPD分析[J].作物学报,2003,29(4):525-529.
    李红美.抗白粉病小麦-中间偃麦草易位系不同诱导方法的效果分析[D].山东农业大学硕士学位论文,2005.
    李洪杰,朱至清.组织培养诱导的普通小麦-黑麦代换系和附加系分子细胞遗传学检测[J].植物学报,1998,40(1):37-41.
    李洪杰,郭北海,张艳敏,李义文,杜立群,李银心,贾旭,朱至清.利用组织培养和辐射诱变创造高频率小麦与簇毛麦染色体易位[J].遗传学报,2000,27(6):511-519.
    李桂英.辐射促成植物异源基因转移的研究与进展[J].核农学通报,1997,04:182-186.
    李桂英,王琳清,施巾帼.辐照花粉对普通小麦×窄颖赖草杂种的细胞学效应[J].核农学报,2000,14(1):6-11.
    李集临,徐香玲,徐萍,郭长虹.利用中国春-山羊草2C二体附加系与中国春-偃麦草5E二体附加系杂交诱发染色体易位与缺失[J].遗传学报,2003,30(4):345-349.
    李平路,高居荣,王洪刚.利用小麦×玉米方法选育小麦异附加系的研究[J].西北植物学报,1998,18(5):23-27.
    李平路,王洪刚.小麦异附加系的选育和鉴定研究进展[J].山东农业大学学报(自然科学版),2000,31(4):446-450.
    李平路,王洪刚,刘树兵.利用Sod同工酶和RAPD标记鉴定小麦-中间偃麦草双体异附加系[J].山东农业大学学报(自然科学版),2003,34(3):347-350.
    李斯深,王洪刚,尹承佾,李晴祺,孔令让.矮秆小偃麦异附加系31504的遗传分析-Ⅰ鉴定与细胞遗传.山东农业大学学报,1995.04:419-424.
    李振声,穆素梅,蒋立训,等.蓝粒单体小麦研究[J].遗传学报,1982,9(6):431-439.
    李振声.小麦远缘杂交[M].北京:科学出版社,1985.
    李振声.小麦远缘杂交与染色体工程.庄巧生,王恒立主编.小麦育种理论与实践进展[M].北京:科学普及出版社,1987.
    林小虎,周印富,张志雯,陈于和,马为民,贺字典,王洪刚.兼抗白粉病和条锈病的八倍体小偃麦的鉴定[J].麦类作物学报,2008,28(4):686-690.
    刘爱峰.小偃麦种质系的鉴定及其抗病基因的染色体定位和SSR分子标记.[博士毕业论文].山东:山东农业大学,2007.
    刘爱峰,王洪刚,郝元峰,等.抗条锈病小偃麦双体异附加系山农87074-519的鉴定[J].分子细胞生物学报,2007,40(3):227-233.
    刘金元,陶文静,刘大均.与小麦白粉病抗性基因Pm2紧密连锁的RAPD标记的筛选研究[J].遗传学报,2000,27(2):139-145.
    刘树兵,王洪刚.抗白粉病小麦-中间偃麦草(Thinopyrum intermedium,2n=42)异附加系的选育及分子细胞遗传鉴定[J].科学通报,2002,47(19):1500-1504.
    刘素兰,王长有,王秋英,等.小麦新种质N9628-2抗白粉病基因的SSR分析[J].作物学报,2008,34(1):84-88.
    刘志勇,孙其信,李洪杰,等.小麦抗白粉病基因Pm21的分子鉴定和标记辅助选择[J].遗传学报,1999,26(6):673-682.
    陆坤,徐柱,刘朝,张学勇. St基因组中的CRW同源序列在偃麦草中的FISH分析.遗传,2009,31(11):1141-1148.
    Lupton F G H.北京农业大学遗传育种研究室译.小麦育种的理论基础[M].北京:北京农业大学出版社,1998
    罗瑛皓,陈新民,夏兰芹,等.小麦抗白粉病基因聚合体DH材料的分子标记鉴定[J].作物学报,2005,31(5):565-570.
    马强.两个抗小麦白粉病新基因的遗传分析与染色体定位[D].成都:四川农业大学,2006.
    穆素梅,钟冠昌,李振声,等.利用缺体回交法选育小黑麦异代换系的研究[J].中国生态农业学报,1996,4(1):33-36
    亓增军,刘大钧,陈佩度.利用染色体C-分带和双色荧光原位杂交技术鉴定普通小麦-黑麦-簇毛麦双重易位系和1RS-1BL、6VS-6AL[J].遗传学报,2001,28(3):267-273.
    邱永春,张书坤.小麦抗白粉病基因及其分子标记研究进展[J].麦类作物学报,2004,24(2):127-132.
    孙仲平.利用柱穗山羊草杀配子染色体2C诱导中国春-黑麦二体附加系染色体畸变的研究[D].东北林业大学博士学位论文,2002.
    桑大军,许为钢,胡琳,等.河南省小麦品种白粉病抗性基因的分子鉴定及分子标记辅助育种[J].华北农学报,2006,21(1):86-91.
    唐秀兰.利用诱变与组织培养技术向普通小麦导入抗白粉病基因的研究[J].麦类作物学报,2004,24(1):25-26.
    王洪刚,赵吉平等.人工合成的十个优良小麦种质系的细胞学和性状特点的研究[J].山东农业大学学报,1989,2:1-7.
    王洪刚.中间偃麦草与小麦杂种配子形成途径细胞学研究[J].武汉植物学研究,1998,16(3):97-101.
    王洪刚,孔凡晶,刘树兵.作物遗传育种研究进展及发展趋向[J].山农农业大学学报,1998,29(3):403-409.
    王洪刚,孔凡晶,亓增军,等.中间偃麦草与小麦杂种的可育性及其细胞学特点[J].西北植物学报,1998,18(5):1-6.
    王洪刚,孔令让,李平路,等.中间偃麦草与小麦杂交后代的细胞遗传学及性状特点研究[J].西北植物学报,1999,30(4):471-480.
    王洪刚,张建民,刘树兵.抗白粉病小麦-中间偃麦草异附加系的细胞学和RAPD鉴定[J].西北植物学报,2000a,20(1):64-67
    王洪刚,刘树兵,亓增军,等.中间偃麦草在小麦遗传改良中的应用研究[J].山东农业大学学报(自然科学版),2000b,31(3):333-336.
    王洪刚,朱军,刘树兵.利用细胞学和RAPD技术鉴定抗病小偃麦易位系[J].作物学报,2001,27(6):886-890.
    王洪刚,李丹丹,高居荣,等.抗白粉病小偃麦异代换系的细胞学和RAPD鉴定[J].西北植物学报,2003,23(2):280-284.
    王敬昌.柱穗山羊草G2C诱导小麦-冰草附加系产生染色体易位的研究[D].西北农林科技大学硕士学位论文,2007.
    王黎明,林小虎,张平杰,等.小麦-中间偃麦草二体异代换系山农0095的选育及其鉴定[J].中国农业科学,2005,38(10):1958-1964.
    王心宇,陈佩度,张守忠.小麦白粉病抗性基因的聚合及其分子标记辅助选择[J].遗传学报,2001,28(7):640-646.
    王献平,初敬华,张相岐.小麦异源易位系的高效诱导和分子细胞遗传学鉴定[J].遗传学报,2003,30(7):619-624.
    王竹林,刘曙东,王辉,等.‘百农64’慢白粉性的遗传分析[J].西北植物学报,2006,26:332-336.
    薛秀庄,吉万全.染色体工程技术在小麦育种中的应用[J].陕西农业科学,1991,1:44-49.
    薛秀庄,吉万全.小麦染色体工程与育种[M].河北科学技术出版社,1993.
    颜济,杨俊良.小麦族生物系统学(第5卷)[M].中国农业出版社,2013.
    杨宝军,窦全文,刘文轩,周波,陈佩度.普通小麦-大赖草易位系NAU601和NAU618的选育及双端二体测交分析[J].遗传学报,2002,29(4):350-354.
    杨国华,李滨,刘建中,等.应用基因组原位杂交鉴定蓝粒小麦及其诱变后代[J].遗传学报,2002,29(3):255-259.
    杨武云,胡晓蓉,毛沛.采用桥梁单体培育小麦品种间染色体代换系的新方法[J].华北农学报,1997,12(4):23-27.
    殷贵鸿.小麦抗条锈病和白粉病基因的分子标记.[博士毕业论文].陕西:西北农林科技大学,2009
    英加,李滨,穆素梅,等.蓝粒小麦易位系的荧光原位杂交鉴定[J].植物学报,2001,2:164-168.
    余朝文,宋运淳.植物荧光原位杂交技术的发展及其在植物基因组分析中的应用[J].武汉植物学研究,2006,24(4):365-376.
    詹海仙,畅志坚,杨足君,等.小麦抗白粉病基因来源及抗性评价的研究进展[J].中国农学通报,2010,26(10):42-46.
    张学勇,董玉深.小麦和彭梯卡偃麦草杂种及其衍生后代的细胞遗传学研究, I.彭梯卡偃麦草及其与普通小麦和硬粒小麦杂种F1的染色体配对[J].遗传学报,1993,20(5):439-447.
    张学勇,董玉琛.小麦和彭梯卡偃麦草杂种及其衍生后代的细胞遗传学研究-Ⅱ.来自小麦和彭梯卡(长穗)偃麦草及中间偃麦草杂种后代11个八倍体小偃麦的比较研究[J].遗传学报,1994,21(4):287-296.
    张学勇,董玉深.小麦和彭梯卡偃麦草杂种及其衍生后代的细胞遗传学研究, III.小麦和偃麦草基因重组的遗传浅析[J].遗传学报,1995,22(3):217-222.
    张守忠,陈佩度,王秀娥等.高抗白粉病小麦新品种南农9918[J].中国种业,2004,5:46-49.
    张增艳,陈孝,张超.分子标记选择抗白粉病基因Pm4b、Pm13和Pm21聚合体[J].中国农业科学,2002,35(7):789-793.
    周汉平,李滨,李振声.蓝粒小麦易位系选育的研究[J].西北植物学报,1995,15(2):125-128.
    张正斌.小麦遗传学[M].北京:中国农业出版社,2001.
    钟冠昌,张学勇,张荣琦,陈春环.八倍体小偃麦染色体组分析[J].遗传学报,1991,18(4):339-343.
    钟冠昌,穆素梅,张正斌.麦类远缘杂交[M].北京:科学出版社,2002.
    Alam M A, Xue F, Wang C and J W. Powdery Mildew Resistance Genes in Wheat: Identification andGenetic Analysis [J]. J. Mol. Bio. Re.,2011,1:20-39.
    Bennett F. Resistance to powdery mildew in wheat: A review of its use in agriculture and breeding program[J]. Plant Pathology,1984,33:297-300.
    Bedbrook J, Jones J, O’Dell M, Thompson R D, Flavell R B. A molecular description of telomericheterochromatin in Secale species [J]. Cell,1980,19:545-560.
    Bjarko M E, Line R F. Heritability and number of genes controlling leaf rust resistance in four cultivars ofwheat [J]. Phytopathology,1988,78:457-461.
    Cai X, Jones S S, Murray T D. Molecular cytogenetic characterization of Thinopyrum genomes conferringperennial growth habit in wheat–Thinopyrum amphiploids [J]. Plant Breed,2001,120:21-26.
    Chae Y A, Fischbeck G W. Genetic analysis of powdery mildew resistance in the wheat cultivar ‘Diplomat’[J]. Zeitschrift für Pflanzenzuchtung,1979,83:272-280.
    Chantret N, Pavoine M T, Doussinault G. The race-specific resistance gene to powdery mildew, MIRE, hasa residual effect on adult plant resistance of winter line RE714[J]. Phytopathology,1999,89:533-539.
    Chantret N, Souridille P, Roder M, Tavaud M, et al. Location and mapping of the powdery mildewresistance gene MlRE and detection of a resistance QTL by bulked segregant analysis (BSA) withmicrosatellites in wheat [J]. Theor Appl Genet,2000,100:1217-1224.
    Chen Q, Conner R L, Laroche A, Thomas J B. Genome analysis of Thinopyrum intermedium andThinopyrum ponticum using genomic in situ hybridization [J]. Genome,1998a,41:580-586.
    Chen Q, Conner R L, Laroche A, Thomas J B. Genome analysis of Thinopyrum intermedium andThinopyrum ponticum using genomic in situ hybridization [J]. Genome,1998b,41:580-586.
    Chen Q, Conner R L, Ahmad F, Laroche A, et al. Molecular characterization of the genome composition ofpartial amphiploids derived from Triticum aestivum×Thinopyrum ponticum and T. aestivum×Th.intermedium as sources of resistance to wheat streak mosaic virus and its vector, Aceria tosichella [J].Theor Appl Genet,1998c,97:1-8.
    Chen Q. Detection of alien chromatin introgression from Thinopyrum into wheat using S genomic DNA asa probe-A landmark approach for Thinopyrum genome research [J]. Cytogenet Genome Res,2005,109:350-359.
    Chen H M, Li L Z, Wei X Y, Li S S, et al. Development, chromosome location and genetic mapping ofEST-SSR markers in wheat [J]. Chinese Sci Bull,2005,50:2328-2336.
    Chen S Y, Xia G M, Quan T Y, et al. Introgression of salt-tolerance from somatic hybrids between commonwheat and Thinopyrum ponticum [J]. Plant Science,2004,167(4):773-779.
    Clark M, Karp A, Archer S. Physical mapping on maize pachytene chromosome by in situ hybridization [J].Genome,1989,32:925-929.
    Donini P, Koebner R M D, Ceoloni C. Cytogenetic and molecular mapping of the wheat-Aegilopslongissima chromatin breakpoints in powdery mildew resistant introgression lines [J]. Theor Appl Genet,1995,91:738-743.
    Dyck P L, Kerber E R, Aung T. An interchromosomal reciprocal translocation in wheat involving leaf rustresistance gene Lr3[J]. Genome,1994,37:556-559.
    Ekong R, Wolfe J. Advances in fluorescence in situ hybridization [J]. Curr Opin Biotech,1998,9:19-24.
    Ellis J G, Lawrence G J, Finnegan E J, Anderson P A. Contrasting complexity of two rust resistance loci inflax [J]. Proceedings of the National Academy of Sciences of the USA,1995,92:4185-4188.
    Endo T R. On the Aegilops chromosomes having gametecidal action on wheat [A]. Proc.5th Int. WheatGenet Symp, New Delhi,1978:306-314.
    Endo T R. Chromosomal mutations induced by gametocidal chromosomes in common wheat [A]. Proc.7thInt Wheat Genet Symp [M]. Cambridge,1988a:293-295.
    Endo T R. Introduction of chromosomal structural changes by a chromosome of Aegilops cylindrical L. incommon wheat [J]. Hered,1988b,79:366-370.
    Endo T R. Gametecidal chromosomes and their induction of chromosome mutations in wheat [J]. Jap JGenet,1990,65:135-152.
    Endo T R. Structural changes of rye chromosome1R induced by gametocidal chromosome [J]. Jap J Genet,1994,69:11-19.
    Endo T R, Gill B S. The deletion stocks of common wheat [J]. Heredity,1996,87:295-307.
    Endo T R, Shi F, Tsvetkov KS. Genetic induction of chromosome structural changes of alien chromosome
    in common wheat [A]. In: Proc9th Int Wheat Genet Symp, Saskatoon, Canada,1998,2:40-43.
    Fang S, Takshi R, Endo. Genetic induction of chromosomal rearrangements in barley chromosome7Hadded to common wheat [J]. Chromosoma,2000,109:358-363.
    Fedak G, Chen Q, Conner R L, Laroche A, Petroski R, Armstrong K W. Characterization ofwheat-Thinopyrum partial amphiploids by meiotic analysis and genomic in situ hybridization [J].Genome,2000,43:712-719.
    Fedak G, Chen Q, Conner R L, Laroche A, Comeau A, Pierre C A. Characterization of wheat-Thinopyrumpartial amphiploids for resistance to barley yellow dwarf virus [J]. Euphytica,2001,120(3):373-378.
    Fedak G and Han F. Characterization of derivatives from wheat-Thinopyrum wide crosses [J]. CytogenetGenome Res,2005,109:360-367.
    Gao H, Zhu F, Jiang Y, et al. Genetic analysis and molecular mapping of a new powdery mildew resistantgene Pm46in common wheat [J]. Theor Appl Genet,2012,125,967-973.
    Gill B, Friebe B, Endo T R. Standard karyotype and nomenclature system for description of chromosomebands and structural aberrations in wheat (Triticum aestivum)[J]. Genome,1991,34(5):830-839.
    Gill K S, Gill B S, Endo T R, Taylor T. Identification and high-density mapping of gene-rich regions inchromosome group1of wheat [J]. Genetics,1996,114:1883-1891.
    Griffey C A, Das M K, Stromberg E L. Effectiveness of adult-plant resistance in reducing grain yield lossto powdery mildew in winter wheat [J]. Plant Dis,1993,77:618-622.
    Griffey C A, Das M K. Inheritance of adult-plant resistance to powdery mildew in Knox62and Masseywinter wheats [J].Crop Sci,1994,34:641-646.
    Islam M R, Shepherd K W. Present status of genetics of rust resistance in flax [J]. Euphytica,1991,55:255-267.
    Han F P, Fedak G, Benabdelmouna A, Armstrong K, Ouellet T. Characterization of six wheat–Thinopyrumintermedium derivatives by GISH, RFLP, and multicolor GISH [J]. Genome,2003,46:490-495.
    Hart G E, Tuellen R. Chromosomal location of eleven Elytrigia elongatum isozyme structural genes [J].Genet Res,1983,41:181-202.
    Hautea R A, Coffman W R, Sorrells M E, Bergstrom G C. Inheritance of partial resistance to powderymildew in spring wheat [J]. Theor Appl Genet,1987,73:609-615.
    He R, Chang Z, Yang Z, Yuan Z, et al. Inheritance and mapping of powdery mildew resistance gene Pm43introgressed from Thinopyrum intermedium into wheat [J]. Theor Appl Genet,2009,118:1173-1180.
    Hsam S L K, Zeller F J. Evidence of allelism between genes Pm8and Pm17and chromosomal location ofpowdery mildew and leaf rust resistance genes in the common wheat cultivar Amigo [J]. Plant Breed,1997,116:110-122.
    Hsam S L K, Huang X Q, Ernst F, Hartl L, Zeller F J. Chromosomal location of genes for resistance topowdery mildew in common wheat (Triticum aestivum L. em Thell.).5. Alleles at the Pm1locus [J].Theor Appl Genet,1998,96:1129-1134.
    Hua W, Liu Z, Zhu J, Xie C, et al. Identification and genetic mapping of pm42, a new recessive wheatpowdery mildew resistance gene derived from wild emmer (Triticum turgidum var. dicoccoides)[J].Theor Appl Genet,2009,119,223-230.
    Huang X Q, Hsam S L K, Zeller F J. Chromosomal location of genes for resistance to powdery mildew incommon wheat (Triticum aestivum L. em. Thell.)4. Gene Pm24in Chinese landrace Chiyacao [J]. TheorAppl Genet,1997,95:950-953.
    Huang X Q, Hsam S L K, Zeller F J, Wenzel G, Mohler V. Molecular mapping of the wheat powderymildew resistance gene Pm24and marker validation for molecular breeding [J]. Theor Appl Genet,2000,101:407-414.
    Huang X Q, Hsam S L K,Zeller F J. Chromosomal location of genes for resistance to powdery mildew inChinese wheat lines Jieyan94-1-1and Siyan94-1-2[J]. Hereditas,2002,136:212-218.
    Islam M R, Shepherd K W. Present status of genetics of rust resistance in flax [J]. Euphytica,1991,55:255-267.
    Jia J, Devos K M, Chao S, Miller T E, et al. RFLP-based maps of the homoeologous group-6chromosomesof wheat and their application in the tagging of Pm12, a powdery mildew resistance gene transferredfrom Aegilops speltoides to wheat [J]. Theor Appl Genet,1996,92:559-565.
    Jiang J, Gill B S. Nonisotopic in situ hybridization and plant genome mapping: the first10years. Genome,1994.
    Johnson R. and Law C N. Cytogenetic studies on the resistance of the wheat Bersée to Puccinia striiformis[J]. Cereal Bulletin,1973,1:38-43.
    Keller M, Keller B, Schachermayr G, Winzeler M, et al. Quantitative trait loci for resistance againstpowdery mildew in a segregating wheat×spelt population [J]. Theor Appl Genet,1999,98:903-912.
    King I P, Purdie K A, Orford S E, et al. Detection of homologous chiasma formation in Triticumdurum×Thinopyrum bessarbicum hybrids using genomic in situ hybridization [J]. Heredity,1993,71:369-372.
    Krattinger S G, Lagudah E S, Spielmeyer W, Singh R P, et al. A putative ABC transporter confers durableresistance to multiple fungal pathogens in wheat [J]. Science,2009,323:1360-1363.
    Lan C X, Liang S S, Wang Z L, Yan J, et al. Quantitative trait loci mapping for adult-plant resistanceagainst powdery mildew in Chinese wheat cultivar Bainong64[J]. Phytopathology,2009,99:1121-126.
    Le H, Armstrong K, Miki B. Detection of rye DNA in wheat–rye hybrids and wheat translocation stocksusing total genomic DNA as a probe [J]. Plant Mol Biol Rep,1989,7:150-158.
    Lebsock K L, Briggle L W. Gene Pm5for resistance to Erysiphe graminis f. sp. tritici in Hope wheat [J].Crop Sci,1974,14:561-563.
    Li H, Chen Q, Conner R L, Guo B H, et al. Molecular characterization of a wheat-Thinopyrum ponticumpartial amphiploid and its derivatives for resistance to leaf rust [J]. Genome,2003,46:906-913.
    Li H, Conner R L, Chen Q, Graf R J, Laroche A, Ahmad F, et al. Promising genetic resources for resistanceto wheat streak mosaic virus and the wheat curl mite in wheat-Thinopyrum partial amphiploids and theirderivatives [J]. Genet Resour Crop,2004a,51:827-835.
    Li H, Robert L, Chen Q, Li H, et al. The transfer and characterization of resistance to common root rotfrom Thinopyrum ponticum to wheat [J]. Genome,2004b,37:215-223.
    Li H, Wang X. Thinopyrum ponticum and Th. intermedium: the promising source of resistance to fungaland viral diseases of wheat [J]. J Genet Genomics,2009,36(6):557-565.
    Li G, Fang T, Zhang H, Xie C, et al. Molecular identification of a new powdery mildew resistance genePm41on chromosome3BL derived from wild emmer (Triticum turgidum var. dicoccoides)[J]. TheorAppl Genet,2009,119,531-539.
    Liang S S, Suenaga K, He Z H, Wang Z L, et al. Quantitative trait loci mapping for adult-plant resistance topowdery mildew in bread wheat [J]. Phytopathology,2006,96:784-789.
    Linares C, Gonzalez J, Ferrer E, Fominaya A. The use of double-FISH to plysically map the positions of5SrDNA genes in relation to the chromosomal location of18S–5.8S-26S rDNA and a C genome specificDNA sequence in the genus Arena [J]. Genome,2005,36:489-494
    Lillemo M, Asalf B, Singh R P, Huerta-Espino J et al. The adult plant rust resistance loci Lr34/Yr18andLr46/Yr29are important determinants of partial resistance to powdery mildew in bread wheat line Saar[J]. Theor Appl Genet,2008,116:1155-1166.
    Luo P G, Luo H Y, Chang Z J, Zhang H Y, et al. Characterization and chromosomal location of Pm40incommon wheat: a new gene for resistance to powdery mildew derived from Elytrigia intermedium [J].Theor Appl Genet,2009,118,1059-1064.
    Lutz J, Hsam S L K, Limpert E, Zeller F J. Chromosomal location of powdery mildew resistance genes inTriticum aestivum L.(common wheat).2.Genes Pm2and Pm19from Aegilops squarrosa L [J].Heredity,1995,74:152-156.
    Ma H, Kong Z, Fu B, Li N, et al. Identification and mapping of a new powdery mildew resistance gene onchromosome6D of common wheat [J]. Theor Appl Genet,2011,123,1099-1106.
    McIntosh R A, Yamazaki Y, Devos K M, Dubcovsky J, et al.2008Catalogue of gene symbols for wheat.Verified17, March2010.
    Mingeot D, Chantret N, Baret PV, Dekeyser A, et al. Mapping QTL involved in adult plant resistance topowdery mildew in the winter wheat line RE714in two susceptible genetic backgrounds [J]. PlantBreeding,2002,121:133-140.
    Molnár-Láng M, Linc G, Friebe R B, Sutka J. Detection of wheat–barley translocations by genomic in situhybridization in derivatives of hybrids multiplied in vitro [J]. Euphytica,2000,112:117-123.
    Muramatsu M. Cytogenetics of decaploid Agropyron elongatum (Elytrigia elongatum)(2n=70).I.Frequency of decavalent formation [J]. Genome,1990,33:811-817.
    Nass H, Pedersen W, MacKenzie D, Nelson R. The residual effects of some ‘defeated’ powdery mildewresistance genes in isogenic lines of chancellor winter wheat [J]. Phytopathol,1981,71:1315-1318.
    Niu J S, Wang B Q, Wang Y H, Cao A Z, et al. Chromosome location and microsatellite markers linked to apowdery mildew resistance gene in wheat line'Lankao90(6)[J]. Plant Breeding,2008,127:346-349.
    Niu Z., Klindworth D L, Yu G, et al. Development and characterization of wheat lines carrying stem rustresistance gene Sr43derived from Thinopyrum ponticum [J]. Theor Appl Genet,2014,127(4):969-980.
    Oliver R E, Xu S S, Stack R W, Friesen T L, et al. Molecular cytogenetic characterization of four partialwheat-Thinopyrum ponticum amphiploids and their reactions to Fusarium head blight, tan spot, andStagonospora nodorum blotch[J]. Theor Appl Genet,2006,112:1473-1479.
    O’Mara J G. Cytogenetic studies on Tritical I. A method for determining the effects of individual secalechromosomes on Triticum [J]. Genetics,1940,25:401-408.
    Pedersen C, Langridge P. Identification of entire chromosome complement of bread wheat by two-colourFISH [J]. Genome,1997,40:589-593.
    Peusha H, Hsam S L K, Zeller F L. Chromosome location of powdery mildew resistance genes in commonwheat (Triticum aestivum L. em. Thell.).3. Gene Pm22in cultivar Virest [J]. Euphytica,1996,91:149-152.
    Peto F H. Hybridization of Triticum and Agropyron II. Cytology of the male parents and F1generation [J].Can J Res,1936,14Sec C:203-214.
    Raap A K. Advances in fluorescence in situ hybridization. Mutat Res,1998,400:287-298.
    Rayburn A L, Gill B S. Use of biotin labeled probes to map specific DNA sequences on wheatchromosomes [J]. Hered,1985,76:78-81.
    Rayburn A L, Gill B S. Isolation of D-genome specific repeated DNA sequence from Aegilops squarrosa[J]. Plant Mol Biol Rep,1987,4:102-109.
    Roberts J J, Caldwell R M. General resistance (slow mildewing) to Erysiphe graminis f. sp. tritici in ‘Knox’wheat [J]. Phytopathology,1970,60:1310-1326.
    Rong J K, Millet E, Manisterski J, Feldman M. A new powdery mildew resistance gene: Introgression fromwild emmer into common wheat and RFLP-based mapping [J]. Euphytica,2000,115:121-126.
    Salvo-Garrido H, Travella S, Bilham L, et al. The distribution of transgene insertion sites in barleydetermined by physical and genetic mapping [J]. Genetics,2004,167:1371-1379.
    Schneider D M, Heun M, Fischbeck G. Inheritance of powdery mildew resistance gene Pm9in relation toPm1and Pm2of wheat [J]. Plant Breeding,1991,107:161-164.
    Schneider A, Linc G, Molnár-Láng, et al. Fluorescence in situ hybridization polymorphism using tworepetitive DNA clones in different cultivars of wheat [J]. Plant Breeding,2003,122(5):396-400.
    Schwarzacher T, Leitch A R, Bennett M D, Heslop-Harrison J S. In situ localization of parental genomes ina wide hybrid [J]. Ann Bot,1989,64:315-324.
    Sears E R. Transfer of alien genetic material to wheat [A]. In: Euansc LF (eds). Wheat Science--Today andTomorrow. Cambridge Vri. Press,1981:25-89.
    Sepsi A, Molnár I, Szalay D, Molnár-Láng M. Characterization of a leaf rust-resistant wheat-Thinopyrumponticum partial amphiploid BE-1, using sequential multicolor GISH and FISH [J]. Theor Appl Gene,2008,116,825-834.
    Shaner G. Evaluation of slow-mildewing resistance of Knox wheat in the field [J]. Phytopathology,1973,63:867-872.
    Shi F, Endo T R. Genetic induction of structural changes in barley chromosome added to common wheat bygametocidal chromosome derived from Agrilops triuncialis [J]. Genes Genet,1999,74:49-54.
    Singh R P. Genetic association of leaf rust resistance gene Lr34with adult plant resistance to stripe rust inbread wheat [J]. Phytopathology,1992,82:835-838.
    Singh R P, Huerta-Espino J, William H M. Genetics and breeding for durable resistance to leaf and striperusts in wheat [J]. Turkish Journal of Agriculture and Forestry,2005,29:1-7.
    Singrün C, Hsam S L K, Hartl L, Zeller F J, Mohler V. Powdery mildew resistance gene Pm22in cultivarVirest is a member of the complex Pm1locus in common wheat (Triticum aestivum L. em Thell.)[J].Theor Appl Genet,2003,106:1420-1424.
    Singrün C H, Hsam S L, Zeller F J, Wenzel G, Mohler V. Localization of a novel recessive powdery mildewresistance gene from common wheat line RD30in the terminal region of chromosome7AL [J]. TheorAppl Genet,2004,109:210-214.
    Snape J W, Parker B B, Simpson E, Ainsworth C C, Payne P I, Law C N. The use of irradiated pollen fordifferential gene transfer in wheat (Triticum aestivum)[J]. Theor Appl Genet,1983,65:103-111.
    Somers D J, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Triticumaestivum L.)[J]. Theor Appl Genet,2004,109:1105-1114.
    Starling T M, Roane C W, Camper H M. Registration of Massey wheat [J]. Crop Sci,1984,24:1000.
    Stephens J L, Brown S E, Lapitan N L V, et al. Physical mapping of barley genes using an ultrasensitivefluorescence in situ hybridization technique [J]. Genome,2004,47:179-189.
    Tang S. Genomic in situ hybridization (GISH) analysis of Thinnopyrum intermedium, its partialamphyiploid Zhong5and disease-resistant derivatives in wheat [J]. Theor Appl Genet,2000,100:344-352.
    Thomas J, Chen Q, Talbert L. Genetic segregation and the detection of spontaneous wheat-alientranslocations [J]. Euphytica,1998,100:261-267.
    Tommasini L, Yahiaoui N, Srichumpa P, Keller B. Development of functional markers specific for sevenPm3resistance alleles and their validation in the bread wheat gene pool [J]. Theor Appl Genet,2006,114:165-175.
    Tosa Y, Tsujimoto H, Ogura H. A gene involved in the resistance of wheat to wheatgrass powdery mildewfungus [J]. Genome,1987,29:850-852.
    Tosa Y, Tokunaga H, Ogura H. Identification of a gene for resistance to wheatgrass powdery mildew fungusin common wheat cultivar Chinese Spring [J]. Genome,1988,30:612-614.
    Tosa Y, Tada S. Operation of resistance genes in wheat to Erysiphe graminis f. sp. tritici against E.graminis f. sp. agropyri [J]. Genome,1990,33:231-234.
    Wang Z L, Li L H, He Z H, Duan X Y, et al. Seeding and adult-plant resistance to powdery mildew inChinese bread wheat cultivars and lines [J]. Plant Disease,2005,89:457-463.
    Wang J, Xiang F, Xia G. Agropyron elongatum chromatin localization on the wheat chromosomes in anintrogression line [J]. Planta,2005,221:277-286.
    Xiao M, Song F, Jiao J, et al. Identification of the gene Pm47on chromosome7BS conferring resistance topowdery mildew in the Chinese wheat landrace Hongyanglazi [J]. Theor Appl Genet,2013,126(5):1397-1403.
    Yang Z, Sun X, Wang S, Zhang Q. Genetic and physical mapping of a new gene for bacterial blightresistance in rice [J]. Theor Appl Gene,2003,106:1467-1472.
    Yao G Q, Zhang J L, Yang L L,Xu H X, et al. Genetic mapping of two powdery mildew resistance genes ineinkorn(Triticum monococcum L.) accessions [J]. Theor Appl Gene,2007,114:351-358.
    Zhang X Y, Koul A, Petroski R, et al. Molecular verification and characterization of BYDV-resistantgermplasm derived from hybrid of wheat with Thinopyrum ponticum and Th.intermedium [J]. TheorAppl Genet,1993,91:1033-1039.
    Zhang X Y, Dong Y S, Wang R R C. Characterization of genomes and chromosomes in partial amphiploidsof the hybrids of Triticum aestivum×Thinopyrum ponticum by in situ hybridization, isozyme analysis,and RAPD [J]. Genome,1996,39:1062-1071.
    Zhang X Y, Banks P, Larkin P J. Characterization of Thinopyrum intermedium alien chromosomes andtheir translocations in derivatives of Zhong5by multicolor FISH [J]. Chinese Agricultural Sciences (inEnglish version),1999,3:56-62.
    Zhang P, Li W, Friebe B, Gill B S. Simultaneous painting of three genomes in hexaploid wheat byBAC-FISH [J]. Genome,2004,47:979-987.
    Zheng Q, Li B, Mu S, et al. Physical mapping of the blue-grained gene(s) from Thinopyrum ponticum byGISH and FISH in a set of translocation lines with different seed colors in wheat [J]. Genome,2006,49:1109-1114.
    Zhou R H, Zhu Z D, Kong X Y, Huo N X, et al. Development of wheat near-isogenic lines for powderymildew resistance [J]. Theor Appl Gene,2005,110:640-648.
    Zhu Z D, Zhou R H, Kong X R, et al. Microsatellite markers linked to2powdery mildery resistance genesintrogressed from Triticum carthicum accession PS5into common wheat [J]. Genome,2004,48(4):585-590.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700