用户名: 密码: 验证码:
种植密度和氮肥水平互作对冬小麦产量和氮素利用率的调控效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
于2011-2013两年度小麦生长季在山东兖州新兖镇杨庄村大田,以冬小麦多穗型品种济麦22和大穗型品种泰农18为供试材料,分别采用裂区设计,设置不同的氮肥水平(0、180和240kg/hm2)和种植密度(济麦22为低密度120万/hm2、中密度180万/hm2和高密度240万/hm2,泰农18为低密度135万/hm2、中密度270万/hm2、高密度405万/hm2)水平,氮肥水平为主因素,种植密度为副因素,结合15N微区试验,研究了种植密度和氮肥水平互作对小麦籽粒产量和氮素利用效率的影响。研究结果如下:
     1种植密度和氮肥水平对小麦产量形成的影响
     1.1对小麦干物质积累的影响
     氮肥水平相同的条件下,随种植密度增加,两品种小麦成熟期干物质积累量显著增加;出苗-冬前、冬前-拔节和开花-成熟的这三个生育阶段干物质积累量显著提高,出苗-冬前、冬前-拔节阶段干物质积累量占成熟期干物质积累量的比例显著提高,拔节-开花阶段干物质积累量占成熟期干物质积累量的比例显著降低;种植密度相同的条件下,随氮肥水平增加,小麦成熟期干物质积累量显著增加;出苗-冬前、冬前-拔节和开花-成熟各生育阶段干物质生产量均显著增加,开花-成熟期干物质积累量占成熟期干物质积累量的比例显著提高。
     1.2对小麦籽粒产量、生物产量和收获指数的影响
     种植密度和氮肥水平及其互作效应对两品种籽粒产量的影响均达显著水平。在不施氮和施氮量为180kg/hm2的条件下,生物产量和籽粒产量随种植密度增加而增加,收获指数无显著差异,在施氮量为240kg/hm2的条件下,高密度处理生物产量显著大于中密度处理,收获指数显著低于中密度处理,籽粒产量无显著差异,高密度和中密度处理生物产量和籽粒产量均显著大于低密度处理。施氮量为180kg/hm2的高密度处理籽粒产量与施氮量为240kg/hm2的高密度和中密度处理产量无显著差异。
     1.3对小麦籽粒灌浆特性的影响
     在不施氮条件下,随种植密度增加,灌浆速率最大时出现时间、活跃生长期、渐增期、快增期和缓增期均无显著差异,灌浆速率最大时粒重,最大灌浆速率以及平均速率均呈降低的趋势,成熟期粒重降低;在施氮量180kg/hm2条件下,随种植密度增加,除活跃生长期和渐增期无显著差异外,灌浆速率最大时出现时间推迟、快增期和缓增期延长,灌浆速率最大时粒重,最大灌浆速率以及平均速率均呈降低的趋势,成熟期粒重降低;在施氮量240kg/hm2条件下,随种植密度增加,灌浆速率最大时出现时间推迟,活跃生长期、渐增期、快增期和缓增期均延长,灌浆速率最大时粒重,最大灌浆速率以及平均速率均呈降低的趋势,成熟期粒重降低。泰农18的平均籽粒灌浆速率显著低于济麦22。
     1.4开花后营养器官干物质向籽粒的转运及对籽粒的贡献
     在不施氮条件下,增加种植密度显著提高花前营养器官干物质贮藏再转运量和花后干物质生产量,花前营养器官贮藏干物质再转运率和对籽粒的贡献率无显著差异;施氮量180kg/hm2条件下,增加种植密度显著提高花前营养器官干物质贮藏再转运量和花后干物质生产量,花前营养器官干物质贮藏再转运率降低;施氮量240kg/hm2条件下,随种植密度增加,花后干物质生产量和对籽粒的贡献率显著增加,花前营养器官干物质贮藏再转运量表现先增加后降低的趋势,花前营养器官干物质贮藏再转运率和对籽粒的贡献率降低。同一种植密度条件下,随氮肥水平增加,花前营养器官干物质贮藏再转运量、转运率以及对籽粒的贡献率降低,花后干物质生产量和对籽粒的贡献率升高。
     2对小麦氮素吸收效率的影响
     2.1对小麦氮素积累的影响
     氮肥水平相同的条件下,随种植密度增加,成熟期地上部氮素积累量增加;增加种植密度显著提高了出苗-冬前、冬前-拔节和开花-成熟的这三个生育阶段氮素积累量和所占吸收氮素的比例;种植密度相同的条件下,随氮肥水平增加,各生育阶段氮素积累量均显著增加,开花-成熟期氮素积累量占总积累量的比例增加。
     2.2对小麦氮素吸收效率的影响
     同一氮肥水平条件下,随种植密度增加,小麦氮素吸收效率增加;同一种植密度条件下,随氮肥水平提高,小麦氮素吸收效率降低,种植密度和氮肥水平对小麦氮素吸收效率互作效应达显著水平,表现为高种植密度和低氮肥水平处理氮素吸收效率最高。
     2.3对小麦不同土层氮素吸收的影响
     随着标记层次的下移,各处理15N氮素吸收量均降低。氮肥水平相同的条件下,增加种植密度提高了小麦根系对各个土层氮素的吸收,各土层增加的氮素吸收量和比例随标记层次的下移而显著提高;种植密度相同的条件下,增施氮肥增加了小麦根系对20cm和60cm处土层氮素的吸收,降低了100cm土层氮素的吸收量。氮素吸收量与20cm和60cm的氮素吸收量呈显著正相关关系,氮素吸收效率与100cm的氮素吸收量呈显著正相关关系,表明可以通过调节种植密度和氮肥水平改变小麦根群结构以及在各个土层的分布,同步提高小麦氮素吸收量和氮素吸收效率。
     3对小麦氮素利用效率的影响
     3.1对小麦氮素利用效率的影响
     在不施氮和施氮量为180kg/hm2条件下,增加种植密度对氮素利用效率影响不显著,在施氮量为240kg/hm2条件下,中密度处理与低密度处理相比较,氮素利用效率无显著差异,均显著高于高密度处理。
     3.2对小麦氮素收获指数和籽粒含氮量的影响
     氮素利用效率为氮素收获指数和籽粒含氮量的比值。在不施氮和施氮量为180kg/hm2条件下,增加种植密度对氮素收获指数和籽粒含氮量影响均不显著,在施氮量为240kg/hm2条件下,中密度处理与低密度处理相比较,氮素收获指数无显著差异,显著高于高密度处理;籽粒含氮量无显著差异,均显著低于高密度处理。
     3.3开花后营养器官氮素向籽粒的转运及对籽粒的贡献
     在不施氮和施氮量180kg/hm2条件下,增加种植密度显著提高花前营养器官氮素贮藏再转运量、花后氮素生产量以及籽粒氮素积累量,花前营养器官贮藏氮素再转运率和对籽粒的贡献率无显著差异。施氮量240kg/hm2条件下,中密度与低密度相比,籽粒氮素积累量、营养器官贮藏再转运量和花后氮素同化量显著增加,花前营养器官贮藏氮素再转运率和对籽粒的贡献率无显著差异;高密度与中密度相比较,营养器官贮藏再转运量无显著差异,花后氮素生产量和籽粒氮素积累量显著增加,营养器官贮藏再转运率和对籽粒的贡献率降低。同一种植密度条件下,随施氮量的增加,花前营养器官氮素贮藏再转运量、花后氮素同化量和籽粒氮素积累量均增加,花前营养器官氮素贮藏再转运率以及对籽粒的贡献率降低,花后氮素同化量对籽粒的贡献率升高。
     4对小麦氮素利用率的影响
     氮素利用率为氮素吸收效率和氮素利用效率的乘积。在不施氮和施氮量为180kg/hm2条件下,随种植密度增加,氮素利用率显著增加,在施氮量为240kg/hm2条件下,中密度处理和高密度处理氮素利用率无显著差异,显著高于低密度处理。种植密度相同的条件下,随氮肥水平的提高,氮素利用率显著降低。
     5种植密度和氮肥水平对不同土层土壤硝态氮含量和氮素平衡的影响
     种植密度相同的条件下,随氮肥水平的提高,各土层硝态氮积累量增高,0-200cm硝态氮总积累量影响达到显著水平,表现为N240>N180>N0处理,土壤无机氮残留量,氮素表观损失量和损失率均增加;氮肥水平相同的条件下,随种植密度增加,各土层硝态氮积累量有降低趋势,0-200cm硝态氮总积累量影响达到显著水平,表现为低密度>中密度>高密度处理。土壤无机氮残留量,氮素表观损失量和损失率均降低。
     2011-2012年度,与播种前土壤硝态氮积累量相比较,不施氮条件下各密度处理0-200cm各土层硝态氮积累量均显著降低;施氮量为180kg/hm2的各密度处理0-40cm土层硝态氮积累量显著高于播种前,40-120cm土层硝态氮积累量与播种前基本平衡,120-200cm硝态氮积累量显著低于播种前;施氮量为240kg/hm2的各密度处理处理80-100cm土层硝态氮积累量显著高于播种前,其余土层表现规律与N180处理相同;2012-2013年度,与播种前比较,N0处理0-200cm各土层硝态氮积累量显著降低;N180和N240处理只有60-80cm土层硝态氮积累量显著高于播种前,其余土层均出现了氮素亏缺。年份之间试验结果的差异性与降雨量不同有关。
The experiment was conducted with two common cultivars, Jimai22(high tilleringcapability) and Tainong18(low tillering capability) in2011-2013wheat growing season inYangzhuang village, Yanzhou, Shangdong. Considering the different tillering capacities, plantdensities of120,180, and240plants m–2were used for cultivar J22, while plant densities of135,270, and405plants m–2were utilized for T18. The N fertilization treatment was appliedat three levels using urea, i.e., no fertilization N (N0),180kg ha–1of N (N180, therecommended N input), and240kg ha–1of N (N240; local farmer’s fertilizer applicationamount). Since the plant density differed between cultivars, the field experiment was designedspecifically for each cultivar, which was established as a split-plot design of three replicateswith N input as the main plots and plant density as the subplot.15N-microplot experiment wasalso included in each plot. The results were as follows:
     1The effects of different plant density and nitrogen level on grain yield formation inwheat
     1.1The effects of different plant density and nitrogen level on dry matter accumulation
     At the same nitrogen level, the dry matter at maturity was significantly increased withthe increasing plant density, with the increasing plant density, the dry matter accumulationduring the seeding–before winter, before winter-jointing, anthesis-maturity stage weresignificantly increased, the dry matter accumulation ratio during the seeding–before winterand before winter-jointing stage were significantly increased, the dry matter accumulationratio during the jointing-anthesis stage were significantly decreased; At the same plant density,the dry matter at maturity was significantly increased with the increasing nitrogen level, withthe increasing nitrogen level, the dry matter accumulation during the seeding–before winter,before winter-jointing, jointing-anthesis, anthesis-maturity stage were significantly increased,the dry matter accumulation ratio during the anthesis-maturity stage were significantlyincreased.
     1.2The effects of different plant density and nitrogen level on grain yield
     The effects of N input, plant density, and all two-way interactions were significant ongrain yield for the two cultivars. An N input of0and180kg ha–1, no significant difference ofHI was observed among the plant density treatment, biomass and grain yield significantlyincreased with the increasing plant density. An N input of240kg ha–1, biomass significantlyincreased with the increasing plant density, no significant difference of grain yield wasobserved between the middle plant density and high plant density treatment, which aresignificantly higher than that of the low plant density.
     1.3The effects of different plant density and nitrogen level on grain filling parametersindex
     An no N input, no significant difference of Tmax, D,T1,T2andT3were observed betweenthe plant density treatments, Wmax, GRmax and the mean grain filling rate showed adecreased trend and the grain weight at maturity significantly decreased with the increasingplant density. An N input of180kg ha–1, no significant difference of D and T1were observedbetween the plant density treatments, Tmax, T2andT3significantly increased, Wmax, GRmaxand the mean grain filling rate showed a decreased trend and the grain weight at maturitysignificantly decreased with the increasing plant density. An N input of240kg ha–1, Tmax,D,T1,T2andT3were all significantly increased, Wmax, GRmax and the mean grain filling rateshowed a decreased trend and the grain weight at maturity significantly decreased with theincreasing plant density.T18had a higher the mean grain filling rate compared to J22.
     1.4The effects of different plant density and nitrogen level on dry matter translocation
     An no N input, both the translocation amount of dry matter stored in vegetative organsbefore anthesis and the dry matter accumulation amount after anthesis increased with theincreasing plant density, no significant difference of the translocation ratio and its contributionto grain of dry matter stored in vegetative organs before anthesis was observed among theplant density treatment. An N input of180kg ha–1, both the translocation amount of dry matterstored in vegetative organs before anthesis and the dry matter accumulation amount afteranthesis increased with the increasing plant density, the translocation ratio of dry matterstored in vegetative organs before anthesis was decreased with increasing plant density. An Ninput of240kg ha–1, the dry matter accumulation amount after anthesis was significantlyincreased with increasing plant density, the translocation amount of dry matter stored invegetative organs before anthesis was increased first and then decreased,the translocationratio of dry matter stored in vegetative organs before anthesis and its contribution to grainswere all decreased with increasing plant density. At the same plant density, the dry matter accumulation amount after anthesis and contribution to grain was significantly increased withthe increasing nitrogen level, the translocation amount and ratio of dry matter stored invegetative organs before anthesis and its contribution to grain were all decreased.
     2The effects of different plant density and nitrogen level on nitrogen uptake efficiency(UPE)
     2.1The effects of different plant density and nitrogen level on nitrogen accumulation
     At the same nitrogen level, the nitrogen accumulation amount at maturity wassignificantly increased with the increasing plant density, with the increasing plant density, thenitrogen accumulation amount and ratio during the seeding–before winter, beforewinter-jointing, anthesis-maturity stage were significantly increased; At the same plant density,the nitrogen accumulation amount was significantly increased with the increasing nitrogenlevel, with the increasing nitrogen level, the the nitrogen accumulation amount during theseeding–before winter, before winter-jointing, jointing-anthesis, anthesis-maturity stage wereall significantly increased, the nitrogen accumulation ratio during the anthesis-maturity stagewere significantly increased.
     2.2The effects of different plant density and nitrogen level on nitrogen uptake efficiency(UPE)
     At the same nitrogen level, UPE was significantly increased with the increasing plantdensity, at the same plant density, UPE was significantly decreased with the increasing plantdensity, the interaction between N input and plant density was manifested at a highest UPEwith a combination of low N input and high plant density.
     2.3The effects of different plant density and nitrogen level on nitrogen uptake fromdifferent soil layer
     Mean total15N uptake amount at depths0.2,0.6and1.0m were significantly decreasedwith the increasing depth of15N labeling. At the same nitrogen level, total15N uptake amountat depths0.2,0.6and1.0m were significantly increased with the increasing plant density, theabsolute amount and relative proportion of increased15N uptake increased with increasinglabeled depth. At the same plant density,15N uptake amount at depths0.2m and0.6m of Ninput of180kg ha–1were significantly lowerer than240kg ha–1,5N uptake amount at depths1.0m of N input of180kg ha–1were significantly higher than240kg ha–1. AGN was positivelyrelated with15N uptake amount at depths0.2and0.6m, UPE was positively related with15Nuptake amount at depths1.0m.
     3The effects of different plant density and nitrogen level on nitrogen utilizationefficiency (UTE)
     3.1The effects of different plant density and nitrogen level on nitrogen utilizationefficiency (UTE)
     An N input of0and180kg ha–1, no significant difference of UTE was observed amongthe plant density treatment, An N input of240kg ha–1, no significant difference of UTE wasobserved between the low plant density and middle plant density treatment, which aresignificantly higher than that of the high plant density.
     3.2The effects of different plant density and nitrogen level on nitrogen harvest index(NHI) and grain nitrogen concentration (GNC)
     UTE could be calculated based on the ratio of the NHI to the GNC. An N input of0and180kg ha–1, no significant difference of NHI and GNC were observed among the plantdensity treatment, An N input of240kg ha–1, no significant difference of NHI was observedbetween the low plant density and middle plant density treatment, which are significantlyhigher than that of the high plant density. no significant difference of GNC was observedbetween the low plant density and middle plant density treatment, which are significantlylower than that of the high plant density.
     3.3The effects of different plant density and nitrogen level on nitrogen translocation inwheat
     An no N input and N input of180kg ha–1, both the translocation amount of nitrogenstored in vegetative organs before anthesis and the nitrogen accumulation amount afteranthesis increased with the increasing plant density, no significant difference of thetranslocation ratio and its contribution to grain of nitrogen stored in vegetative organs beforeanthesis was observed among the plant density treatment. An N input of240kg g ha–1, themiddle plant density treatment increased the translocation amount of nitrogen stored invegetative organs before anthesis and the nitrogen accumulation amount after anthesis, but nosiginificant difference of the translocation ratio and its contribution to grain of nitrogen storedin vegetative organs before anthesis was observed, compared to the low plant densitytreatment. The high plant density treatment increased the the nitrogen accumulation amountafter anthesis, decreased the the translocation ratio and its contribution to grain of nitrogenstored in vegetative organs before anthesis, no siginificant difference of the amount ofnitrogen stored in vegetative organs before anthesis was observed,compared to the middleplant density treatment.
     At the same plant density, the translocation amount of nitrogen stored in vegetativeorgans before anthesis and nitrogen accumulation amount after anthesis was significantly increased with the increasing nitrogen level, the translocation ratio of nitrogen stored invegetative organs before anthesis and its contribution to grain were all decreased.
     4The effects of different plant density and nitrogen level on nitrogen use efficiency(NUE)
     An N input of0and180kg ha–1, NUE increased significantly with the increasing plantdensity, An N input of240kg ha–1, no significant difference was observed between the highplant density and middle plant density treatment, which are significantly higher than that ofthe low plant density.
     5The effects of different plant density and nitrogen level on NO3-N and soil nitrogenblance
     At the same plant density, soil NO3-N accumulation in0-200cm soil layer are increasedwith the increase of nitrogen level, which was presented as N240>N180>N0. the residualNmin and nitrogen apparent loss are increased significantly.At the same plant density, soilNO3-N accumulation in0-200cm soil layer are decreased with the increase of plant density,which was presented as low plant densty>middle plant density>high plant density,the residualNmin and nitrogen apparent loss are decreased significantly with the increasing plant density.
     In the2011-2012year, compared with soil NO3-N accumulation before sowing, at no Ninput, NO3-N accumulation of0-200cm soil layer at maturity of all the plant densitytreatments significantly increased, An N input of180kg ha–1, NO3-N accumulation of0-40cmsoil layer at maturity of all the plant density treatments significantly increased, no significantdifference of NO3-N accumulation of40-120cm soil layer at maturity of all the plant densitytreatments was observed, NO3-N accumulation of120-200cm soil layer at maturity of all theplant density treatments significantly decreased, An N input of240kg ha–1, NO3-Naccumulation of0-40cm and80-100cm soil layer at maturity of all the plant densitytreatments significantly increased, no significant difference of NO3-N accumulation of40-60cm soil layer at maturity of all the plant density treatments was observed, NO3-Naccumulation of100-200cm soil layer at maturity of all the plant density treatmentssignificantly decreased.
引文
曹承富,孔令聪,汪建来,赵斌,赵竹.施氮量对强筋和中筋小麦产量和品质及养分吸收的影响[J].植物营养与肥料学报,2005,11(1):46–50
    曹倩,贺明荣,代兴龙,等.密度、氮肥互作对小麦产量及氮素利用效率的影响[J].植物营养与肥料学报,2011,17(4):815-822
    曹胜彪,张吉旺,董树亭,刘鹏,赵斌,杨今胜.施氮量和种植密度对高产夏玉米产量和氮素利用效率的影响[J].植物营养与肥料学报,2012,18(6):1343-1353
    曾建敏,崔克辉,黄见良,贺帆,彭少兵.水稻生理生化特性对氮肥的反应及与氮利用效率的关系[J].作物学报,2007,33(7):1168-1176
    柴小清,印莉萍,刘祥林,于宝霞,韩秋娥,洪剑明,邱泽生.不同浓度的N0-3和NH4+对小麦根系谷氨酰胺合成酶及其相关酶的影响[J].植物学报,1996,38(10):803-808
    陈俊才,汤顺英,孙敬东,李亚伟,林佩佩,黄秀芳,朱阳林.播期与密度对扬麦16号子粒产量和生育期及抗逆性的影响[J].作物杂志,2007(5):34-36
    陈清林.播期和种植密度对泛麦8号产量的影响[J].河北农业科学,2011(1):8-10
    程建峰,戴廷波,荆奇,姜东,潘晓云,曹卫星.不同水稻基因型的根系形态生理特性与高效氮素吸收[J].土壤学报,2007,2
    程晟,刘晋荣.简析氮素营养对超高产小麦的调控[J].山西农业科学,2011,39(3):291-294
    丛新军,吴科,钱兆国,孙宪印,沙英,王超.超高产条件下种植密度对泰山21号群体动态、干物质积累和产量的影响[J].山东农业科学,2004(04):16-18
    戴廷波,曹卫星,荆奇,等.氮形态对不同小麦基因型氮素吸收和光合作用的影响[J].应用生态学报,2001,12(6):849-852
    董剑,赵万春,陈其皎,李哲清,刘俊,庞红喜,高翔.陕西关中地区不同冬小麦品种晚播高产的适宜播期和密度[J].西北农业学报,2010,19(3):66-69
    董爱民,甘森,王秀玉,冯新忠,韩林,陈建峰.不同肥力与密度条件下对小麦群体结构及产量的研究[J].河南职业技术师范学院学报,2004,32(2):12-14.
    杜金哲,李文雄,胡尚连,刘锦红.春小麦不同品质类型氮的吸收、转运利用及与籽粒产量和蛋白质含量的关系[J].作物学报,2001,27(2):253-260
    段文学,于振文,张永丽,王东,石玉.施氮量对旱地小麦氮素吸收转运和土壤硝态氮含量的影响[J].中国农业科学,2012,45(15):3040-3048
    段文学,于振文,张永丽,王东.测墒补灌对不同穗型小麦品种耗水特性和干物质积累与分配的影响[J].植物生态学报,2010,34(12):1424-1432.
    房春兴,沈恩庭.不同播期和密度对偃展4110小麦群体动态及产量的影响[J].现代农业科技,2009(21):26,28
    高亚军,李云,李生秀,强秦,曹卫贤,刘文国,等.旱地小麦不同栽培条件对土壤硝态氮残留的影响[J].生态学报,2005,25(11):2901-2910
    郭天财,彭羽.播期对不同穗型、筋型优质冬小麦影响效应的研究[J].耕作与栽培,2001(2):19-20
    郭伟,于立河,崔丽亚.密度及干物质运转对龙麦26小麦产量及品质的影响[J].黑龙江八一农垦大学学报,2003(3):17-20
    郭伟,于立河,薛盈文,孙海燕.播种期对强筋小麦生长的影响[J].黑龙江八一农垦大学学报,2006,18(3):21-24
    郭战玲,沈阿林.小麦氮营养效率的种间差异与机理研究进展[J].河南农业科学,2004(2):31-35.
    蒿宝珍,姜丽娜,方保停,张英华,张菡,李春喜,王志敏.限水灌溉冬小麦冠层氮分布与转运特征及其对供氮的响应[J].生态学报,2011,31(17):4945-4951
    河南农科院主编.河南小麦栽培学[M].郑州:河南科技出版社,1988
    胡焕焕.播种期和密度对冬小麦群体质量和产量的调控效应[D].保定:河北农业大学,2008
    贾永国,安调过,李俊明,童依平,安忠民.不同小麦基因型孕穗期根系性状与吸氮量的关系[J].华北农学报,2006,21(3):37-40
    姜东,于振文,苏波,许玉敏,余松烈.不同施氮时期对冬小麦根系衰老的影响[J].作物学报,1997,23(2):181-190
    荆奇,戴廷波,姜东,曹卫星,孙传范.不同生态条件下不同基因型小麦干物质和氮素积累与分配特征[J].南京农业大学学报,2004,27(1):1-5
    巨晓棠,刘学军,张福锁.冬小麦/夏玉米轮作中NO3--N在土壤剖面的累积及移动[J].土壤学报,2003,40(4):538-546
    雷振生,林作楫.河南小麦品种农艺性状演变及今后育种方向[J].中国农业科学,1995,28(A01):28-33
    李春俭,彭云峰,牛君仿,马玮,闫慧峰,焦润兴.土壤中的玉米根系生长及其研究应注意的问题[J].植物营养与肥料学报,2010,16(1):225-231
    李伏生,康绍忠.大气CO2浓度和温度升高对作物生理生态的影响[J].应用生态学报,2002,13(9):1169-1173
    李豪圣,宋健民,刘爱烽,程敦公,王西芝,杜长林,刘建军.播期和种植密度对超高产小麦‘济麦22’产量及其构成因素的影响[J].中国农学通报,2011,27(5):243-248
    李世娟,周殿玺,诸叶平,李建民,兰林旺.水分和氮肥运筹对小麦氮素吸收分配的影响[J].华北农学报,2002,17(1):69-75
    李淑文,文宏达,周彦珍,李雁鸣,肖凯.不同氮效率小麦品种氮素吸收和物质生产特性[J].中国农业科学,2006,39(10):1992-2000
    栗丽,洪坚平,王宏庭,谢英荷,张璐,邓树元,李云刚.施氮与灌水对夏玉米土壤硝态氮积累、氮素平衡及其利用率的影响[J].植物营养与肥料学报,2010,16(6):1358-1365
    廖祥政.栽培措施对优质强筋小麦豫麦34号产量和品质影响的研究[D].贵阳:贵州大学,2005
    林忠辉,周允华,王辉民.青藏高原冬小麦冠层几何结构、光截获及其对光合潜能的影响[J].生态学报,1998,(4):392-398.
    凌启鸿,陆卫平,蔡建中,曹显祖.水稻根系分布与叶角关系的研究初报[J].作物学报,1989,15(2):123-125
    凌启鸿,凌励.水稻不同层次根系的功能及对产量形成作用的研究[J].中国农业科学,1984,17(5):3-11.
    刘新宇,张丽娟,袁丽金,巨晓棠,文宏达.耕层水氮调控对小麦利用土壤深层累积硝态氮的影响[J].中国农业科学,2010,43(17):3564-3571
    刘艳阳.不同播期对小麦产量和品质的影响[J].安徽农业科学,2009,37(35):17425-17428
    吕丽华,陶洪斌,王璞,刘明,赵明,王润正.种植密度对夏玉米碳氮代谢和氮利用率的影响[J].作物学报,2008,34(4):718-723
    马冬云,郭天财,查菲娜,王晨阳,朱云集,王永华.种植密度对两种穗型冬小麦旗叶氮代谢酶活性及籽粒蛋白质含量的影响[J].作物学报,2007,33(3):514-517
    米国华,刘建安,张福锁.玉米杂交种的氮农学效率及其构成因素剖析[J].中国农业大学学报,1998(3):97-104
    苗果园,张云亭,尹钧,侯跃生,潘幸来.黄土高原旱地冬小麦根系生长规律的研究[J].作物学报,1989,15(2):104-115
    潘庆民,于振文.公顷产9000kg小麦氮素吸收分配的研究[J].作物学报,1999,25(5):541-547
    秦晓东.小麦冠层氮碳时空分布特征及与氮素利用效率的关系[D].南京:南京农业大学,2006
    屈会娟,李金才,沈学善,魏凤珍,王成雨,郅胜军.种植密度和播期对冬小麦品种兰考矮早八干物质和氮素积累与转运的影响[J].作物学报,2009,35(1):124-131
    沈学善,李金才,屈会娟,魏凤珍,王成雨.种植密度对晚播冬小麦氮素同化积累分配及利用效率的影响[J].中国农业大学学报,2009,14(4):41-46
    石德杨,张海艳,董树亭.土壤高残留氮条件下施氮对夏玉米氮素平衡、利用及产量的影响[J].植物营养与肥料学报,2013,19(1):37-44
    石祖梁.土壤—小麦植株系统氮素运移及高效利用的生态基础[D].南京农业大学,2011
    宋建民,田纪春,赵世杰.植物光合碳和氮代谢之间的关系及其调节[J].植物生理学通讯,1998,34(3):230-238
    田纪春,张忠义,梁作勤.高蛋白和低蛋白小麦品种的氮素吸收和运转分配差异的研究[J].作物学报,1994,20(1):76-83
    田文仲,温红霞,高海涛,杨洪强,余四平,段国辉,张少澜.不同播期、播种密度及其互作对小麦产量的影响[J].河南农业科学,2011,40(2):45-49
    田中伟.小麦产量和氮素吸收利用特性的改良特征及生理基础[D].南京农业大学,2012.
    同延安,赵营,赵护兵,樊红柱.施氮量对冬小麦氮素吸收转运及产量的影响[J].植物营养与肥料学报,2007,13(1):64-69
    童依平,李继云,李振声.不同小麦品种(系)吸收利用氮素效率的差异及有关机理研究[J].西北植物学报,1999,19(2):270–277
    汪建来,孔令聪,汪芝寿,曹承富,甘斌杰,王瑞,赵竹.播期播量对皖麦44产量和品质的影响[J].安徽农业科学,2003,31(6):949-950
    王晨阳,朱云集,夏国军,宋家永,李九星,王永华,罗毅.氮肥后移对超高产小麦产量及生理特性的影响[J].作物学报,1998,24(6):978-983
    王东,于振文,贾效成.播期对优质强筋冬小麦籽粒产量和品质的影响[J].山东农业科学,2004(2):25-26
    王法宏,王旭清,李松坚,边麦玲,于振文,余松烈.高产小麦生育后期不同层次土壤中根系活性的研究[J].作物学报,2001,27(6):891-895
    王法宏,赵君实.作物根系的研究进展[J].莱阳农学院学报,1991,8(3):198-201
    王纪华,王之杰,黄文江,马智宏,刘良云,赵春江.冬小麦冠层氮素垂直分布及光谱相应[J].遥感学报,2004,(7)
    王玲敏.氮素调控对高产小麦干物质转移,氮素吸收及土壤硝态氮累积的影响[D].河南农业大学,2012
    王鹏文,戴俊英.玉米群体光分布特征及其对产量和品质的影响[J].华北农学报,1994,14(3):60-64
    王平,不同氮效率类型小麦氮代谢差异及其机理分析[D].泰安:山东农业大学
    王萍,陶丹,宋海星,冉彦中,陈玉江,李建忠,韩其俊,王罡.品种、播期和密度对冬小麦生育期和产量的影响[J].沈阳农业大学学报,1999,30(6):602-605
    王绍华,曹卫星,王强盛,丁艳锋,黄丕生,凌启鸿.水稻叶色分布特点与氮素营养诊断[J].中国农业科学,2002,35(12):1461-1466.
    王树丽.播期和种植密度对小麦群体结构与氮素利用效率的影响[D].山东农业大学,2012
    王夏,胡新,孙忠富,杜克明,宋广树,任德超.不同播期和播量对小麦群体性状和产量的影响[J].中国农学通报,2011,27(21):170-176
    王艳.玉米根系对硝酸盐反应的基因型差异及生理机制[D].北京:中国农业大学,2001:1-17.
    王月福,于振文,李尚霞,于松烈.土壤肥力和施氮量对小麦根系氮同化及子粒蛋白质含量的影响[J].植物营养与肥料学报,2003,9(1):39-44
    王月福,于振文,李尚霞,余松烈.氮素营养水平对冬小麦氮代谢关键酶活性变化和籽粒蛋白质含量的影响[J].作物学报,2002,(6):743-748
    王志敏.小麦籽粒蛋白质贮积的生理学研究进展[J].麦类作物学报,1996,4:23-26
    王宙,麻慧芳.不同播期对小麦产量与品质的影响[J].山西农业科学,2007,35(3):36-38
    魏爱丽,张英华,黄琴,王志敏.小麦不同绿色器官光合速率与碳同化酶活性及其基因型差异研究[J].作物学报,2007,33(9):1426-1431
    吴兰云,周得宝,徐茂林.淮北地区高产小麦的氮肥和密度效应研究[J].中国农学通报,2008,24(7):153-157
    吴永成.华北地区冬小麦-夏玉米节水种植体系氮肥高效利用机理研究[D].北京:中国农业大学,2005.
    谢琰.氮肥和密度对不同穗型小麦穗粒数形成的影响[D].南京农业大学,2012
    熊淑萍,王小纯,李春明,马新明,杜少勇,张营武,蔺世召.冬小麦根系时空分布动态及产量对不同氮源配施的响应[J].植物生态学报,2011,35(7):759-768
    徐富贤,熊洪,谢戎,朱永川,郭晓艺,刘茂.水稻氮素利用效率的研究进展及其研究动向[J].植物营养与肥料学报,2009,15(5):1215-1225
    徐恒永,赵君实.高产冬小麦的冠层光合能力及不同器官的贡献[J].作物学报,1995,21(2):204-209
    闫长生,肖世和,张秀英,等.冬小麦冠层内光分布[J].华北农学报,2002,17(3):7-13.
    严小龙.根系生物学:原理与应用[M].北京:科学出版社
    杨桂霞,赵广才,许轲,常旭虹,杨玉双,马少康,徐凤娇.播期和密度对冬小麦籽粒产量和营养品质及生理指标的影响[J].麦类作物学报,2010,30(4):687-692
    杨胜利,马玉霞,冯荣成,路开梅,刘立杰.豫北地区两类强筋小麦最佳播期及晚播极限研究[J].河南科技学院学报:自然科学版,2008,36(3):9-13
    杨学明,吴松.不同密度及氮肥运筹对宁麦9号产量和群体质量的影响[J].江苏农业科学,2002(5):11-13.
    殷春渊,张庆,魏海燕,等.不同产量类型水稻基因型氮素吸收,利用效率的差异[J].中国农业科学,2010,43(1):39-50
    于文明.不同施氮量条件下密度对小麦产量和品质的影响及其生理基础[D].山东:山东农业大学,2006
    于小凤,李进前,田昊,等.影响粳稻品种吸氮能力的根系性状[J].中国农业科学,2012,44(21):4358-4366
    于振文,等.作物栽培学各论[M].北京:中国农业出版社,2003
    于振文,潘庆民.9000kg/公顷小麦施氮量与生理特性分析[J].作物学报,2003,29(1):37-43.
    于振文.小麦产量与品质生理及栽培技术[M].北京:中国农业出版社,2007,2
    余泽高,覃章景,李力.小麦不同播期生长发育特性及若干性状的研究[J].湖北农业科学,2003(5):24-27
    张法全,王小燕,于振文,王西芝,白洪立.公顷产10000kg小麦氮素和干物质积累与分配特性[J].作物学报,2009,35(6):1086-1096.
    张福锁,陈新平,等.协调作物高产与环境保护的养分资源综合管理技术研究与应用[M].北京:中国农业大学出版社,2008,75-80
    张洪程,许轲,戴其根,霍中洋,董明辉.超高产小麦吸氮特性与氮肥运筹的初步研究[J].作物学报,1998,24(6):935-940.
    张金宝,秦霞,孙佩贤,胡根海,曹银萍.黄淮麦区种植密度对晚播冬小麦花后氮素代谢和利用率的影响[J].西北农林科技大学学报,2010,38(12):112-116
    张艳敏,李晋生,钱维朴,黄德明.小麦冠层结构与分光分布研究[J].华北农学报,1996,11(1):54-58
    赵广才,万富世,常旭虹,刘利华,杨玉双,池忠志,杨丽珍.不同试点氮肥水平对强筋小麦加工品质性状及其稳定性的影响[J].作物学报,2006,32(10):1498-1502
    赵广才,张保明,王崇义.不同类型高产小麦氮素积累及施氮对策探讨[J].作物学报,1998,24(6):894-898
    赵会杰,邹琦,郭天财,等.密度和追肥时期对大穗型小麦~(14) C-同化作用及其分配的调控效应[J].核农学报,2003,17(1):67-72.
    赵俊晔,于振文.高产条件下施氮量对冬小麦氮素吸收分配利用的影响[J].作物学报,2006,32(4):484-490
    赵万春,高翔,董剑.小麦干物质、果聚糖的积累分配及其与籽粒产量和品质的关系[J].西北农林科技大学学报,2005,33(3):43-47
    郑景生,林文,姜照伟,李义珍.超高产水稻根系发育形态学研究[J].福建农业学报,1999,14(3):1-6
    郑圣先,聂军,戴平安,郑颖俊.控释氮肥对杂交水稻生育后期根系形态生理特征和衰老的影响[J].植物营养与肥料学报,2006,12(2):188-194.
    周江明,赵琳,董越勇,等.氮肥和栽植密度对水稻产量及氮肥利用率的影响[J].植物营养与肥料学报,2010,16(2):274-281
    周顺利,张福锁,王兴仁.高产条件下冬小麦产量性状的品种差异及氮肥效应[J].麦类作物学报,2001,21(2):67-71
    朱新开,郭文善,封超年,彭永欣,凌启鸿.不同类型专用小麦氮素吸收积累差异研究[J].植物营养与肥料学报,2005,11(2):148-154
    朱新开,郭文善,周正权,封超年,彭永欣,凌启鸿.氮肥对中筋小麦扬麦10号氮素吸收、产量和品质的调节效应[J].中国农业科学,2004,37(12):1831-1837
    朱新开.不同类型专用小麦氮素吸收利用特性与调控[D].扬州:扬州大学,2006
    朱云集,李向阳,郭天财,马冬云.小麦灌浆期间冠层温度与产量关系研究[J].河南科学,2004,12(6):798-801
    庄克章,郭新宇,王纪华,黄文江,王空军.作物冠层中叶片氮素垂直分布研究进展[J].玉米科学,2006,14(2):104-107,129
    Aarus J L, Brown H R, Febrero A, Bort J. Ear photosynthesis, carbon isotope discriminationand the contribution of respiratory CO2to differences in grain mass in durum wheat[J].plant cell and environment,1993,16:383-392
    Aerts R, de Caluwe H. Effects of nitrogen supply on canopy structure and leaf nitrogendistribution in Carex species[J]. Ecology,1994:1482-1490
    Albrizio, R., Todorovic, M., Matic, T., Stellacci, A. M. Comparing the interactive effects ofwater and nitrogen on durum wheat and barley grown in a Mediterranean environment[J].Field crops research,2010,115:179-190
    Alcoz M M, Hons F M, Haby V A. Nitrogen fertilization timing effect on wheat production,nitrogen uptake efficiency, and residual soil nitrogen[J]. Agronomy Journal,1993,85(6):1198-1203
    álvaro, F., Isidro, J., Villegas, D., García del Moral, L. F.,&Royo, C. Breeding effects ongrain filling, biomass partitioning and remobilization in Mediterranean durum wheat[J].Agronomy Journal,2008,100:361–370
    Andersson A, Johansson E, Oscarson P. Nitrogen redistribution from the roots in post-anthesisplants of spring wheat[J]. Plant and soil,2005,269(1-2):321-332.
    Anten N P R, Schieving F, Werger M J A. Patterns of light and nitrogen distribution in relationto whole canopy carbon gain in C3and C4mono-and dicotyledonous species[J].Oecologia,1995,101(4):504-513
    Arduini, I., Masoni, A., Ercoli, L., Mariotti, M. Grain yield, and dry matter and nitrogenaccumulation and remobilization in durum wheat as affected by variety and seedingrate[J]. European Journal of Agronomy,2006,25(4):309-318
    Aulakh, M.S., Malhi, S.S. Fertilizer nitrogen use efficiency as influenced by interactions withother nutrients. In: Mosier, A.R., Syers, K.J., Freney, J.R.(Eds.), Agriculture and theNitrogen Cycle. Island Press, Washington, USA,2004, pp.181–191
    Barbottin, A., Lecomte, C., Bouchard, C.,&Jeuffroy, M. H. Nitrogen remobilization duringgrain filling in wheat[J]. Crop Science,2005,45(3):1141-1150.
    Barraclough, P.B., Howarth, J.R., Jones, J., Lopez-Bellido, R., Parmar, S., Shepherd, C.E.,Hawkesford, M.J., Nitrogen efficiency of wheat: genotypic and environmental variationand prospects for improvement[J]. European Journal of Agronomy,2010,33(1):1-11
    Bavec, M., Bavec, F., Varga, B. Kova evi, V. Relationships among yield, its quality and yieldcomponents, in winter wheat (Triticum aestivum L.) cultivars affected by seeding rates.Bodenkultur [J].2002,53:143-151
    Belford R K, Klepper B, Rickman RW. Studies of intact shoot-root system of field grownwinter wheat:Ⅱ Root and shoot developmental patterns as related to nitrogenfertilizer[J].Agronomy journal,1987,79:310-319
    Benesch, R., Mangelsdorf, P. A method for the colorimetric determination of ammonia inseawater[J]. Helgol nder Wiss Meeresunters.1972,23:365-375
    Bertheloot, J., Martre, P.,&Andrieu, B. Dynamics of light and nitrogen distribution duringgrain filling within wheat canopy[J]. Plant physiology,2008,148(3):1707-1720
    Blankenau, K., Olfs, H.W. Effect of different crop densities of winter wheat on recovery ofnitrogen in crop and soil within the growth period[J]. Journal of Agronomy and CropScience,2001,186(3):151-156
    Brancourt-Hulmel, M., Doussinault, G., Lecomte, C., Bérard, P., Le Buanec, B., Trottet, M.,Genetic improvement of agronomic traits of winter wheat cultivars released in Francefrom1946to1992[J]. Crop science,2003,43(1):37-45
    Bremner, J.M.,1960. Determination of nitrogen in soil by the Kjeldahl method[J]. TheJournal of Agricultural Science,1960,55(01):11-33
    Calderini D F, Reynolds M P, Slafer G A. Genetic gains in wheat yield and main physiologicalchanges associated with them during the20th century[J].1999.
    Carr PM, Horsley RD, Poland WW. Tillage and seeding rate effects on wheat cultivars:Ⅰ.Grain production[J].Crop science,2003,43:202-209
    Cassman, K.G., Dobermann, A., Walters, D.T., Yang, H.S. Meeting cereal demand whileprotecting natural resources and improving environmental quality[J]. Annual Review ofEnvironment and Resources,2003,28(1):315-358
    Chevalier, P., Schrader, L. E. Genotypic difference in nitrate absorption and partitioning of Namong plant parts[J]. Crop science,1977,17(6):897-901.
    Ciampitti, I. A., Vyn, T. J.,2011. A comprehensive study of plant density consequences onnitrogen uptake dynamics of maize plants from vegetative to reproductive stages[J]. Fieldcrops research,2011,121(1):2-1
    Cui, Z., Zhang, F., Chen, X., Miao, Y., Li, J., Shi, L., Xu, J., Ye, Y., Liu, C., Yang, Z., Zhang,Q., Huang, S., Bao, D. On-farm evaluation of an in-season nitrogen management strategybased on soil Nmintest [J]. Field Crops Research,2008,105(1):48-55
    Dai, X., Zhou, X., Jia, D., Xiao, L., Kong, H., He, M. Managing the seeding rate to improvenitrogen-use efficiency of winter wheat[J]. Field Crops Research,2013,154:100-109.
    Darwinkel, A.,1978. Patterns of tillering and grain production of winter wheat at a widerange of plant densities[J]. Netherlands Journal of Agricultural Science,1978,26
    Davidson D J, Chevalier P M. Storage and remobilization of water-soluble carbohydrates instems of spring wheat[J]. Crop Science,1992,32(1):186-190
    Debaeke,P., Aussenac,T.,Fabre, J.,Hilaire, A.,Pujol, B.,Thuries, L. Grain nitrogen content ofwinter bread wheat (Triticum aestivum L.) as related to crop management and to theprevious crop[J]. European Journal of Agronomy,1996,5(3-4):273-286.
    Delogu, G., Cattivelli, L., Pecchioni, N., De Falcis, D., Maggiore, T., Stanca, A.M. Uptakeand agronomic efficiency of nitrogen in winter barley and winter wheat[J]. EuropeanJournal of Agronomy,1998,9(1):11-20
    Dhugga K S, Waines J G. Analysis of nitrogen accumulation and use in bread and durumwheat[J]. Crop Science,1989,29(5):1232–1239
    Donaldson, E., Schillinger, F.W., Dofing, S.M. Straw production and grain yield relationshipsin winter wheat[J]. Crop Science,2001,41(1):100-106
    Donovan, G.R., Lee, J.W., Hill, R.D. Compositional changes in the developing grain of high-and low-protein wheats. II. Starch and protein synthetic capacity[J].CerealChemistry,1977,54:646-656
    Egbhall, B., Maranville, J. W. Root development and nitrogen influx of corn genotypes grownunder combined drought and nitrogen stresses[J].Agronomy Journal,1993,85(1):147-152.
    El-Hendawy, S.E., El-Lattief, E.A.A., Ahmed, M.S., Schmidhalter, U. Irrigation rate and plantdensity effects on yield and water use efficiency of drip-irrigated corn[J]. Agriculturalwater management,2008,95(7):836-844
    Fang, Y., Xu, B., Turner, N.C., Li, F. Grain yield, dry matter accumulation and remobilization,and root respiration in winter wheat as affected by seeding rate and root pruning[J].European journal of agronomy,2010,33(4):257-266
    FAO, European Communities, International Soil Reference and Information Centre (FAO, EC,ISRIC),2003. WRB map of world soil resources,1:25000000. FAO, Rome, Italy
    Fischer, R.A. Optimizing the use of water and nitrogen through breeding of crops[J]. SoilWater and Nitrogen in Mediterranean-type Environments,1981:249-278
    Foulkes, M. J., Hawkesford, M. J., Barraclough, P. B., Holdsworth, M. J., Kerr, S., Kightley,S.,&Shewry, P. R. Identifying traits to improve the nitrogen economy of wheat: recentadvances and future prospects[J].Field Crops Research,2009,114(3):329-342
    Foulkes, M.J., Sylvester-Bradley, R., Scott, R.K. Evidence for differences between winterwheat cultivars in acquisition of soil mineral nitrogen and uptake and utilization ofapplied fertilizer nitrogen[J]. The Journal of Agricultural Science,1998,130(01):29-44
    Frederick J R.Winter wheat leaf photosynthesis,stomatal conductance,and leaf nitrogenconcentration during reproductive development[J].Crop Science,1997,37(6):1819-1826
    Gaju, O., Allard, V., Martre, P., Snape, J.W., Heumez, E., Le Gouis, J., Moreau, D., Bogard,M., Griffiths, S., Orford, S., Hubbart, S., Foulkes, M.J. Identification of traits to improvethe nitrogen-use efficiency of wheat genotypes[J].Field Crops Research,2011,123(2):139-152
    Gao, Y., Li, Y., Zhang, J., Liu, W., Dang, Z., Cao, W., Qiang, Q. Effects of mulch, N fertilizer,and plant density on wheat yield, wheat nitrogen uptake, and residual soil nitrate in adryland area of China[J]. Nutrient cycling in agroecosystems,2009,85(2):109-121
    Gastal, F., Lemaire, G. N uptake and distribution in crops: an agronomical andecophysiological perspective[J]. Journal of Experimental Botany,2002,53(370):789-799
    Gathumbi SM,Cadiseh G,Buresh R J. Subsoil nitrogen capture in mixed legume stands asassessed by deep nitrogen-15placement[J]. Soil Science Society of America Journal,2003,67(2):573-582
    Geleta, B., Atak, M., Baenziger, P.S., Nelson, L.A., Baltenesperger, D.D., Eskridge, K.M.,Shipman, M.J., Shelton, D.R. Seeding rate and genotype effect on agronomic performanceand end-use quality of winter wheat[J]. Crop Science,2002,42(3):827-832
    Guarda, G., Padovan, S., Delogu, G. Grain yield, nitrogen-use efficiency and baking qualityof old and modern Italian bread-wheat cultivars grown at different nitrogen levels[J].European Journal of Agronomy,2004,21(2):181-192
    Guillard K, Griffin G F, Allinson D W, Yamartino, W. R., Rafey, M. M., Pietrzyk, S. W.Nitrogen utilization of selected cropping systems in the US Northeast: II. Soil profilenitrate distribution and accumulation[J]. Agronomy Journal,1995,87(2):199-207
    Guo D,Dang T H,Qi L H.Process study of dry matter accumulation and nitrogen absorptionuse of winter wheat under different N-fertilizer rates on dry highland of loessplateau[J].Journal of Soil and Water Conservation,2008,22(5):138-141
    Haefele, S.M., Jabbar, S.M.A., Siopongco, J.D.L.C., Tirol-Padre, A., Amarante, S.T., Stacruz,P.C., Cosico, W.C. Nitrogen use efficiency in selected rice (Oryza sativa L.) genotypesunder different water regimes and nitrogen levels[J]. Field crops research,2008,107(2):137-146
    Hansen, E.M., Munkholm, L.J., Olesen, J.E. N-utilization in non-inversion tillage systems[J].Soil and Tillage Research,2011,113(1):55-60
    Hiltbrunner, J., Liedgens, M., Stamp, P., Streit, B. Effects of row spacing and liquid manureon directly drilled winter wheat in organic farming[J]. European journal of agronomy,2005,22(4):441-447
    Hiltbrunner, J., Streit, B., Liedgens, M. Are seeding densities an opportunity to increase grainyield of winter wheat in a living mulch of white clover?[J]. Field crops research,2007,102(3):163-171
    Hirel, B., Le Gouis, J., Ney, B., Gallais, A. The challenge of improving nitrogen useefficiency in crop plants: towards a more central role for genetic variability andquantitative genetics within integrated approaches[J]. Journal of Experimental Botany,2007,58(9):2369-2387
    Hirose, T., Werger, M. J. A., Pons, T. L.,&Van Rheenen, J. W. A. Canopy structure and leafnitrogen distribution in a stand of Lysimachia vulgaris L. as influenced by stand density[J].Oecologia,1988,77(2):145-150
    Hu M Y, Zhang Z B, Xu P, Dong B D,Li W Q,Li J J.Relationship of water use efficiency withphoto assimilate accumulation and transport in wheat under deficit irrigation[J].ActaAgronomica Sinica,2007,33(11):1711-1719
    Jing, Q., Bouman, B.A.M., Hengsdijk, H., Van Keulen, H., Cao, W. Exploring options tocombine high yields with high nitrogen use efficiencies in irrigated rice in China[J].European Journal of Agronomy,2007,26(2):166-177
    Johnson V A,Dreier A F,Grabouski P H. Yield and protein responses to nitrogen fertilizer oftwo winter wheat varieties differing in inherent protein content of their grain[J].Agronomy journal,1973,65(2):259-263
    Ju, X.T., Xing, G.X., Chen, X.P., Zhang, S.L., Zhang, L.J., Liu, X.J., Zhang, F.S. Reducingenvironmental risk by improving N management in intensive Chinese agriculturalsystems[J]. Proceedings of the National Academy of Sciences,2009,106(9):3041-3046
    Kanampiu F K, Raun W R, Johnson G V. Effect of nitrogen rate on plant nitrogen loss inwinter wheat varieties[J]. Journal of Plant Nutrition,1997,20(2-3):389-404
    Lan L W, Zhou D X. Studies on water-saving and high-yielding of winter wheat[M].Beijing:China Agricultural University Press,1995
    Le Gouis, J., Béghin, D., Heumez, E., Pluchard, P. Genetic differences for nitrogen uptake andnitrogen utilisation efficiencies in winter wheat[J]. European Journal of Agronomy,2000,12(3):163-173
    Lemaire, G., Gastal, F. N uptake and distribution in plant canopies. In: Lemaire G.(Ed.)Diagnosis of the Nitrogen Status in Crops. Springer-Verlag, Heidelberg,1997,pp.3-43
    Liao M T,Fillery L R P,Palta JA. Early vigorous growth is a major factor influencing nitrogenuptake in wheat[J]. Functional Plant Biology,2004,31(2):121-129
    Lingle S E,Chevalier P. Movement and metabolism of sucrose in developing barley kernels[J].Crop science,1984,24(2):315-319
    Lloveras, J., Manent J., Viudas J., López A., Santiveri P. Seeding rate influence on yield andyield components of irrigated winter wheat in a Mediterranean climate[J]. AgronomyJournal,2004,96(5):1258-1265
    López-Bellido, R.J., López-Bellido, L. Efficiency of nitrogen in wheat under Mediterraneanconditions: effect of tillage, crop rotation and N fertilization[J]. Field Crops Research,2001,71(1):31-46
    Luo Y, Field C B, Mooney H A. Predicting responses of photosynthesis and root fraction toelevated [CO2] a: interactions among carbon, nitrogen, and growth [J]. Plant, Cell andEnvironment,1994,17(11):1195-1204.
    Lynch,J. Root architecture and plant productivity[J]. Plant physiology,1995,109(1):7-13.
    Ma, Y.Z., MacKnown, C.T., Van Sanford, D.A. Differential effects of partial spikelet removaland defoliation on kernel growth and assimilate partitioning among wheat cultivars[J].Field Crop Research,1996,47:201-209
    Magalhaes J R, Huber D M. Response of ammonium assimilation enzymes to nitrogen formtreatments in different plant species1[J]. Journal of Plant Nutrition,1991,14(2):175-185
    Malhi S S, Gill K S, Harapiak J T, Nyborg. M, Gregorich, E. G, Monreal, C. M. Light fractionorganic N, ammonium, nitrate and total N in a thin Black Chernozemic soil underbromegrass after27annual applications of different N rates[J]. Nutrient Cycling inAgroecosystems,2003,65(3):201-210.
    Marshall G C, Ohm H W. Yield responses of16winter wheat cultivars to row spacing andseeding rate[J]. Agronomy journal,1987,79(6):1027-1030
    Martre, P., Jamieson, P. D., Semenov, M. A., Zyskowski, R. F., Porter, J. R.,&Triboi, E.Modelling grain nitrogen accumulation and protein composition to understand source/sinkrelations of nitrogen remobilisation for wheat. Plant Physiol,2003,133:1959-1967
    Melich, A. Determination of P, Ca, Mg, K, Na, and NH4. North Carolina Soil TestingDivision.1953,Raleigh, North Carolina USA: NC State University.
    Meng Q, Yue S, Chen X, et al. Understanding dry matter and nitrogen accumulation withtime-course for high-yielding wheat production in China[J]. PloS one,2013,8(7): e68783.
    Millard P. The accumulation and storage of nitrogen by herbaceous plants[J]. Plant, Cell andEnvironment,1988,11(1):1-8
    Milroy S P, Bange MP, Sadras V O. Profiles of leaf nitrogen and light in reproductivecanopies of cotton(Gossypium hirsutum)[J].Annals of Botany,2001,87:325-333
    Moll R H, Kamprath E J, Jackson W A. Analysis and interpretation of factors whichcontribute to efficiency of nitrogen utilization[J]. Agronomy Journal,1982,74(3):562-564
    Muchow R C. Effect of nitrogen supply on the comparative productivity of maize andsorghum in a semi-arid tropical environment III. Grain yield and nitrogen accumulation[J].Field Crops Research,1988,18(1):31-43
    Muurinen S, Slafer G A, Peltonen-Sainio P. Breeding effects on nitrogen use efficiency ofspring cereals under northern conditions[J]. Crop science,2006,46(2):561-568
    Osaki M, Morikawa K, Shinano T, Tadano T. Productivity of high-yieldingcrops:Ⅱ.Comparison of N,P,K,Ca and Mg accumulation and distribution amonghigh-yielding crops[J].Soil Sci Plant Nutr,1991,37:445-454
    Palta JA, Fillery L R P, Rebetzke GJ,Restricted-tillering wheat does not lead to greaterinvestment in roots and early nitrogen uptake[J].Field Crops research,2007,104:52-59
    Papakosta, D.K., Garianas, A.A.. Nitrogen and dry matter accumulation,remobilisation, andlosses for Mediterranean wheat during grain filling[J]. Agronomy journal,1991,83:864-870
    Pask, A.J.D., Sylvester-Bradley, R., Jamieson, P.D., Foulkes, M.J. Quantifying how winterwheat crops accumulate and use nitrogen reserves during growth[J]. Field Crops Research,2012,126:104-118
    PinthusMJ. Lodging in wheat, barley,andoats:The Phenomenon,its causes,and Preventivemeasures.In Advances in agronomy vol.Volume25:Academic Press.1974,209-263
    Przulj, N., Momcilovic, V. Genetic variation for dry matter and nitrogen accumulation andtranslocation in two-rowed spring barley. II. Nitrogen translocation[J]. European Journalof Agronomy,2001,15:255-265
    Rahimizadeh, M., Kashani, A., Zare-Feizabadi, A., Koocheki, A., Nassiri-Mahallati, M.Nitrogen use efficiency of wheat as affected by preceding crop, application rate ofnitrogen and crop residues[J]. Australian journal of crop science,2010,4(5).
    Raun, W.R., Johnson, G.V. Improving nitrogen use efficiency for cereal production[J].Agronomy Journal,1999,91(3):357-363
    Raun, W.R., Solie, J.B., Johnson, G.V., Stone, M.L., Mullen, R.W., Freeman K.W., Thomason,W.E., Lukina, E.V. Improving nitrogen use efficiency in cereal grain production withoptical sensing and variable rate application[J]. Agronomy Journal,2002,94(4):815-820
    Rien Aerts and Hannie DE Caluwe. Effects of nitrogen supply on canopy structure and leafnitrogen distribution in carex species[J].Ecology,1994,75(5):1482-1490
    Robert, P., Durieux, R. P., Kamprath, E. J., Jakckson, W. A., Moll, R. H. Root distribution ofcorn:the effect of nitrogen fertilization[J]. Agronomy Journal,1994,86(6):958-962.
    Sadras V O, Hall A J, Connor D J. Light-associated nitrogen distribution profile in floweringcanopies of sunflower (Helianthus annuus L.) altered during grain growth[J]. Oecologia,1993,95(4):488-494
    Salvagiotti F, Castellarín J M, Miralles D J, et al. Sulfur fertilization improves nitrogen useefficiency in wheat by increasing nitrogen uptake[J]. Field Crops Research,2009,113(2):170-177
    Schieving F, Pons T L, Werger M J A, et al. The vertical distribution of nitrogen andphotosynthetic activity at different plant densities in Carex acutiformis[J]. Plant and Soil,1992,142(1):9-17
    Setter T L, Conocono E A, Egdane J A, et al. Possibility of Increasing Yield Potential of Riceby Reducing Panicle Height in the Canopy. I. Effects of Panicles on Light Interceptionand Canopy Photosynthesis[J]. Functional Plant Biology,1995,22(3):441-451
    Shirawa T, Sinclair T R. Distribution of nitrogen among leaves in soybean canopies[J]. Cropscience,1993,33:804-808
    Siddique K H M,Belford R K,Tennant D.Root:Shoot ratios of old and modern, tall and semi-dwarf wheat in a Mediterranean environment [J]. Plant and Soil,1990,121:89-98
    Sieling, K., Schr der, H., Finck, M., Hanus, H. Yield, N uptake, and apparent N-useefficiency of winter wheat and winter barley grown in different cropping systems[J]. TheJournal of Agricultural Science,1998,131(04):375-387
    Sullivan, W. M., Jiang, Z.,&Hull, R. J. Root morphology and its relationship with nitrateuptake in Kentucky bluegrass[J]. Crop Science,2000,40(3):765-772.
    Sunderman, H.D. Response of hard red winter wheat to seed density and seeding rate inno-till[J]. Journal of Production Agriculture,1999,12(1):100-104
    Sylvester-Bradley, R., Kindred D.R. Analysing nitrogen responses of cereals to prioritizeroutes to the improvement of nitrogen use efficiency[J]. Journal of Experimental Botany,2009,60(7):1939-195
    Tompkins, D.K., Hultgreen, G.E., Wright, A.T., Fowler, D.B. Seed rate and row spacing ofno-till winter wheat[J]. Agronomy journal,1991,83(4):684-689
    Van Keulen, H. Nitrogen Requirements of Rice with Special Reference to Java Bogor.Ministry of Agriculture, Agricultural Technical Assistance Programme,Indonesia,1977,67pp.
    Van Sanford, D.A., Mackown, C.T. Cultivar differences in nitrogen remobilization duringgrain filling in soft red winter wheat[J].Crop Science,1987,27:295–300
    Van Sanford, D.A., MacKown, C.T. Variation in nitrogen use efficiency among soft red winterwheat genotypes[J]. Theoretical and applied genetics,1986,72(2):158-163
    VJ, Sylvester-Bradley R, Scott RK, Foulkes MJ Physiological processes associated withwheat yield progress in the UK[J]. Crop Science,2005,45:175–185.
    Walkley, A., Black, I.A. An examination of the Degtjareff method for determining soil organicmatter, and a proposed modification of the chromic acid titration method[J]. Soil science,1934,37(1):29-38
    Wang H, McCaig T N, DePauw R M, Clarke F R, Clarke J M.Physiological characteristics ofrecent Canada western red spring wheat cultivars: components of grain nitrogen yield[J].Canadian journal of plant science,2003,83(4):699-707
    Wiesler F,Horst W J. Differences among maize cultivars in the utilization of soil nitrate andthe related losses of nitrate through leaehing[J].Plant and soil,1993,151:193-203
    WieslerF,Horst WJ. Root growth and nitrate uti1ization of maize cultivars under fieldconditions[J].Plant and soil,1994,163(2):267-277
    Wood, G. A., Welsh, J. P., Godwin, R. J., Taylor, J. C., Earl, R.,&Knight, S. M. Real-timemeasures of canopy size as a basis for spatially varying nitrogen applications to winterwheat sown at different seed rates[J]. Biosystems engineering,2003,84(4):513-531
    Wyss, C.S., Czyzewicz, J.R., Below, F.E. Source–sink control of grain composition in maizestrains divergently selected for protein concentration[J]. Crop Science,1991,31:761-766.
    Yang J, Zhang J. Grain filling of cereals under soil drying[J]. New Phytologist,2006,169(2):223-236
    Yuen, S.H., Pollard, A.G. Determination of nitrogen in soil and plant materials: Use of boricacid in the micro-Kjeldahl method[J]. Journal of the science of food and agriculture,1953,4:490-496
    Zandstra, H.G. Automated determination of phosphorus in sodium bicarbonate extracts[J].Canadian journal of plant science,1968,48:219-220

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700