用户名: 密码: 验证码:
直流变换器的鲁棒控制算法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
DC-DC开关变换器控制问题的研究是当前功率电子学研究的主要方向之一,通过对它的控制来改善变换器的输出电能质量。相比于传统的PWM控制,找到一种更有效控制方法来提高变换器的动态性能和稳态性能指标,是当前形势所需。
     本文致力于研究Hē控制和无源控制等鲁棒控制方法应用于DC-DC开关变换器的理论与技术。针对系统的干扰抑制问题和鲁棒镇定问题,通过建立变换器的确定模型和不确定模型,研究解决上述问题的鲁棒控制算法。具体内容如下:
     1.考虑电路输入端和输出端扰动以及外部噪声的影响,建立直流变换器的增广状态空间平均模型。应用Hē控制理论推导控制器算法来抑制干扰,以保证系统的鲁棒稳定性和动态响应性能。以boost变换器为例说明Hē控制器的计算过程,时域和频域的仿真结果表明该算法得到的控制器对干扰抑制的有效性。
     2.基于直流变换器的切换线性模型,提出了一种通过调节输入电压来稳定输出的鲁棒控制算法。通过建立直流变换器的扩张切换线性模型,应用线性矩阵不等式(LMI)性质和Hē控制理论,给出了该线性切换系统的Hē控制器存在的充分条件和设计方法的LMI形式。所得控制器使直流变换器闭环系统在任意切换策略下渐近稳定且具有Hē性能界。Buck和boost变换器的仿真结果显示了该控制器能有效抑制输出端干扰,鲁棒稳定性好;可用任意常数占空比切换变换器系统,在参数扰动时自动调节输入电压实现输出电压稳定在期望值上。
     3.以buck直流变换器为研究对象,推导了非线性鲁棒控制算法以达到减小干扰影响的目的。首先在buck变换器非线性模型的基础上,建立具有扰动的系统误差模型。然后根据无源性控制理论,得到Hē控制器及其参数约束条件,并理论分析了闭环控制系统的稳定性。最后对buck变换器元件参数扰动的情况进行数值模拟和电路仿真来验证该控制算法的正确性和有效性。
     4.考虑buck变换器中的多个参数存在不确定的情况,通过一阶泰勒近似的方法建立buck变换器的参数不确定模型,应用LMI和Hē控制理论,研究其输出反馈Hē控制算法。给出该不确定buck系统的输出反馈Hē控制器存在的充分条件和计算方法,所得控制器使得buck变换器闭环系统在多个参数小范围变化的情况下渐近稳定且对外部噪声的抑制具有最大Hē鲁棒性能界。
     5.为提高直流变换器对干扰及不确定因素的鲁棒性,提出了一种基于LMI的鲁棒PID控制算法。PID参数应用区域极点配置的方法来整定。将PID控制和Hē控制相结合,以LMI形式给出Hē PID控制器的可解性条件。所得的控制器使得闭环系统满足:闭环极点分布在指定区域内以获得期望的动态特性;对外部噪声的抑制具有最大Hē鲁棒性能界。此外,该控制算法也可应用于参数不确定的多胞型直流变换器系统。
     6.应用非线性系统无源化方法研究了Buck变换器的控制策略。基于Buck变换器的非线性误差模型,通过坐标变换得到与之反馈等价的系统。根据无源理论,对反馈等价系统施加适当反馈使之无源化,给出了闭环系统无源性证明,并构造Lyapunov函数保证闭环系统的渐近稳定性,进而得到Buck变换器的无源反馈控制律。设计了该无源控制器的Pspice仿真电路,仿真结果表明该无源控制的Buck变换器输出的稳定性可以得到有效控制,对负载扰动和输入电压扰动的鲁棒性好,且调整控制律中的可调系数可以改善系统的动态响应。
The control problem of DC-DC switching converters is one of the main directions ofcurrent research in power electronics. By controlling converters, the quality of output powercan be improved. Compared to conventional PWM control, it is present requirement to find amore effective control method to improve dynamic performance and steady-state performanceof the converters.
     In this paper, the theories and technologies of robust control methods used in DC-DCswitching converters are researched, such as Hē control and passive control. To solve theinterference suppression problem and robust stabilization problem of the converters, somerobust control algorithms are studied by establishing certainty model and uncertainty model ofconverters. The main contents are as follows:
     First, to suppress perturbations of input, output and external noise for a DC-DC switchconverter, an Hē control algorithm is proposed based on the augmented average state-spacemodel of DC-DC converters. A robust controller, guaranteeing stability and the desiredclosed-loop dynamical response, is designed. As an example, boost converter is used toillustrate the design procedure of the controller. Simulation results in frequency domain andtime domain indicate that the controlled system has high immunity to perturbations.
     Second, a robust control algorithm by adjusting input voltage is studied based on theswitched linear model of DC-DC converters. The augmented switched linear model ofDC-DC converters is established. According to linear matrix inequality (LMI) and Hē controltheories, the sufficient condition of controller existence and the design method of Hēcontroller for the proposed switched system is derived in the form of linear matrix inequality.The obtained controller is such that the closed loop system is asymptotically stable underarbitrary switch conditions and has an Hē disturbance attenuation bound. The simulationresults for buck and boost converters are presented to show that the good robust stability canbe obtained with respect to the output disturbance. By adjusting the input voltage, the outputvoltage can be stabilized on the expected value with the parameters perturbation underarbitrary constant duty cycle.
     Third, to reduce the effect of disturbances, a nonlinear controller is designed for DC-DCbuck converter. Firstly, an error model with disturbances is built based on nonlinear model ofbuck converter. Then an Hē controller and its parameters are deduced based on the passivetheory. And the theoretical analysis is give to prove the stability of closed-loop control system.Finally, numerical simulation and circuit simulation are performed for the case of parametric perturbations of buck converter. The simulation results demonstrate the validity andeffectiveness of the proposed control strategy.
     Fourth,a parameter uncertainty model of buck converter with multiple uncertaintyparameters is built by method of first-order Taylor approximation. Based on the model, thesolvability condition for the existence of output feedback Hē controller is derived in the formof linear matrix inequality according to Hē control theory. The designed controller is such thatthe closed-loop system is asymptotically stable when several parameters change in a smallrange. And the closed-loop system has an Hē disturbance attenuation upper bound.
     Fifth,in order to improve the robustness of DC-DC converters with disturbances anduncertainties, an robust PID control algorithm based on linear matrix inequality is proposed.The PID parameters are tuned by regional pole assignment. The PID control is combined withHē control and solvability condition for the existence of Hē PID controller is derived in theform of LMI. The designed controller is such that the closed-loop system poles are assignedin a specific region in order to obtain anticipant dynamical characteristics, and the closed-loopsystem has an Hē disturbance attenuation upper bound. Further, the proposed algorithm isapplied to the DC-DC converters with polytopic uncertain parameters.
     Sixth,a passivity-based control strategy for DC-DC buck converter is proposed. Based onthe nonlinear error model of buck converter, a feedback equivalence system is obtained by theway of coordinate transformation. According to passive theory, the feedback equivalentsystem is to be passive by adding feedback appropriately. The proof of the passivity ofclosed-loop system is given. And a Lyapunov function is constructed to guarantee asymptoticstability of closed-loop system. Finally, a passive feedback control law for buck converter isderived. Simulate by designing control circuit in Pspice environment, and the simulativeresults show that the stability of output voltage is effectively controlled by the proposedcontrol method. The controller has very strong robustness for disturbance caused by loadchange and input voltage change. And the system dynamic response is improved by adjustingthe coefficient of the control law.
引文
[1]吴爱国,李际涛. DC-DC变换器控制方法研究现状[J].电力电子技术,1999,33(2):75-79
    [2] Middlebrook R D, Cuk S. A general unified approach to modeling switching converterpower stages[A].7th Annual IEEE Power Electronics Specialists Conference [C],Clebeland, Ohil:IEEE,1976:18-34
    [3] Sanders S R, Noworolsk J M, Liu X Z,Verghese G C. Generalized averaging method forpower conversion circuits[J]. IEEE Trans. Power Electron,1991,6(2):251-249
    [4] Mahdavi J, Emaadi A, Bellar M D, Ehsani M. Analysis of power electronic convertersusing the generalized state-space averaging approach[J]. IEEE Transactions on circuitsand systems.1997,44(8):767-770
    [5] Chetty P R K. Current injected equivalent circuit approach to modeling switching dc-dcconverters[J]. IEEE Transaction on Aerospace and Electronics Systems,1981,17(6):802-808
    [6]张兴柱,黄是鹏.等效受控源平均法与幵关式变换器的模型[J].电杂志,1986,1(3):1-14
    [7] Voprerina V, Tymerski R, Lee F C Y. Equivalent circuit approach to models forresonant and pwm switches[J]. IEEE Transactions on Power Electronics,1989,4(2):205-214
    [8] Brown A R, Middlebrook R D. Sampled-date modeling of switching regulators[A].IEEE Power Electronics Specialists Conference[C], Boulder, Colorado:IEEE,1981:349-369
    [9]张卫平.开关变换器的建模与控制[M].北京:中国电力出版社,2005:6-10
    [10] Robert W Erickson, Dragan Maksimovic. Fundamentals of Power Electronics[M].Colorado: Kluwer Academic Publishers Group,2000
    [11]王凤岩,许建平. DC/DC开关电源控制方法小信号模型比较[J].电力电子技术,2007,41(1):75-77
    [12]陈青昌,彭力,康勇.基于极点配置的DC/DC变换器PID参数优化设计[J].通信电源技术,2005,22(2):6-8
    [13]邢岩,蔡宣三.高频功率开关变换技术[M].北京:机械工业出版社.2005
    [14]张占松,蔡宣三.开关电源的原理与设计[M].北京:电子工业出版社.2005
    [15] Mario di Bernardo, Francesco Vasca. Discrete-time maps for the analysis of bifurcationsand chaos in dc/dc converters[J]. IEEE Trans. on Circuits and Syst.I,2000,47(2):130-143
    [16] Sounitro Banerjee, Krishnendu Chakrabarty. Nonlinear modeling and bifurcations in theboost converter[J]. IEEE Trans. on Power Electron.,1998,13(2):252-260
    [17]曲颖,张波.电压控制型BUCK变换器DCM的精确离散模型[J].电子学报,2002,30(8):1253-1256
    [18] Tse C.K. Chaos from a Buck switching regulator operating in discontinuous mode[J].International Journal of Circuit Theory and applications,1994,22:263-278
    [19]冷朝霞,刘庆丰,王华民.一种DC-DC变换器的离散数学模型[J].系统仿真学报,2008,20(20):5672-5676
    [20] Stephane Bibian, Hua Jin. High performance predictive dead-beat digital cintriller forDC power supplies[J]. IEEE Trans. on Power Electron.,2002,17(3):420-427
    [21] Willem L. De Koning. Digital optimal reduced-order control of pulse-width-modulatedswitched linear systems[J]. Autonatica,2003,39:1997-2003
    [22]汪剑鸣,许镇琳. PWM型DC/DC变换器的Washout滤波器混沌控制方法[J].信息与控制,2005,34(3):269-273
    [23]卢伟国,周雒维,罗全明,杜雄. BOOST变换器延迟反馈混沌控制及其优化[J].物理学报,2007,56(11):6275-6282
    [24]孟光伟,瞿少成,蔡汉强,姚琼荟.基于离散变结构控制的DC/DC变换器[J].控制理论与应用,2003,20(1):63-65
    [25]吴爱国,李际涛. DC-DC变换器控制方法研究现状[J].电力电子技,1999,4(2):75-78
    [26]蔡宣三,陈芬. PWM开关稳压电源反馈控制律的大信号设计[J].清华大学学报(自然科学版),1991,31(1):45-52
    [27]张涌萍,张波, DC-DC变换器双线性系统建模及基于李亚普诺夫直接法的控制方法[J].中国电机工程学报,2008,28(9):7-11
    [28]刘彦博.车载DC/DC变换器的建模及非线性控制研究[D].辽宁:大连理工大学硕士论文,2010
    [29]乐江源.基于微分几何理论电力电子变换器非线性复合控制研究[D].广州:华南理工大学博士论文,2011,41-50
    [30]帅定新,谢运祥,王晓刚.基于状态反馈精确线性化Buck变换器的最优控制[J].中国电机工程学报,2008,28(33):1-5
    [31]刘兆娟. BOOST型电力电子变换器非线性控制策略及非最小相位特性的研究[D].济南:山东大学硕士论文,2008,37-40
    [32]帅定新,谢运祥,王晓刚,周福星. Boost变换器非线性电流控制方法[J].中国电机工程学报,2009,29(15):15-21
    [33]吴忠强,王志君. DC/DC变换器的一种无源化控制方案[J].电机与控制学报,2008,12(2):147-150
    [34]刘锦波,明文龙.一种基于输入/输出反馈线性化的Boost型DC/DC变换器非线性控制方案[J].中国电机工程学报,2010,30(27):55-61
    [35]陆益民,张波,尹丽云. DC/DC变换器的切换仿射线性系统模型及控制[J].中国电机工程学报,2008,28(15):16-22
    [36]高明远.双向DC-DC变换器基于切换系统的建模与储能控制[J].电力系统保护与控制,2012,40(3):129-134
    [37]李继方,韩金刚,汤天浩.基于切换系统的开关变换器统一建模[J].华南理工大学学报,2011,39(10):157-164
    [38]百科ROBOT.百度百科[EB/OL], http://baike.baidu.com/link?url=vIP_-HppGvG_u87tVyvPfychHGmAeRFzJBYj-6geUrtCgeBB2vSW23UFZL_78zuRTG8oRvc3bFbNS8ooK57lyq,2010,6,25
    [39]付主木,费树民,高爱云.切换系统H控制[M].北京:科学出版社,2007
    [40]谢广明.线性切换系统的分析与控制[D].北京:清华大学博士学位论文,2001
    [41] Messai M, Zaytoon J, Riera B. Using neural networks for the indentification of a classof hybrid dynamic systems[A]. Proceedings of IFAC Conference on Analysis andDesign of Hybrid Systems[C], Alghero: Elsevier Science Ltd,2006:217-222
    [42]胡宗波,张波,胡少甫等.基于切换线性系统的DC-DC变换器的输出能控性研究[J].电子学报,2005,33(2):370-374
    [43]胡宗波,张波,邓卫华等. PWM DC-DC变换器混杂动态系统的能控性和能观性[J].电工技术学报,2005,20(2):76-82
    [44]胡宗波,张波,邓卫华等.基于切换线性系统理论的DC-DC变换器控制系统的能控性和能达性[J].中国电机工程学报,2004,24(12):165-170
    [45]杜贵平,张波,张涌萍等.基于切换线性系统的DC-DC变换器矩阵系数多项式描述模型[J].中国电机工程学报,2006,26(21):65-70
    [46] Sreekumar C, Agarwal V. Hybrid control of a tri-state boost converter[A]. IEEEInternational Conference on Industrial Technology[C], Mumbai:IEEE,2006,121-125
    [47] LuY M, Zhang B, Huang X F,Yin L Y. Hybrid feedback switching control in a buckconverter[A]. IEEE International Conference on Automation and Logistics[C],Qingdao:IEEE,2008,207-210
    [48] Trofino A, Assmann D, Scharlau C C, Coutinho D F. Switching rule design forswitched dynamic systems with affine vector fields[A]. IEEE Conference on Decisionand Control and28th Chinese Control Conference[C], Shanghai:IEEE,2009:6365-6370
    [49] Deaecto G S,Geromel J C, Garcia F S, Pomilio J A. Switched affine systems controldesign with application to DC-DC converters[J]. IET Control Theory and Applications,2010,4(7):1201-1210
    [50] Garcia F S, Pomilio J A, Deaecto G S, Geromel J C. Analysis and Control of DC-DCconverters Based on Lyapunov Stability Theory[A]. IEEE and Energy ConversionCongress Exposition[C], San Jose:IEEE,2009,2920-2927
    [51] Erickson R W, Maksimovic D. Fundamental of Power Electronics, Second Edition[M].USA: Sprinter,2002:11-488
    [52]周泽坤.单片大功率DC_DC变换器高性能控制方法研究[D].成都:电子科技大学博士学位论文,2012
    [53]侯振义.直流开关电源技术及应用[M].北京:电子工业出版社,2006:10-120
    [54] Liaw C M, Chiang S J, Lai C Y, etal. Modelling and controller design of a current-modecontrolled converter[J]. IEEE Transaction on Industrial Eleetronies,1994,41(2):230-240
    [55]李思臻.高频开关电源的高效集成单周期控制策略研究[D].武汉:华中科技大学博士学位论文,2010
    [56] Lyapunov A M. The general problem of the stability of motion[J]. International Journalof Control.1992,55:531-773
    [57] Chen F, Cai X S. Design of feedback control laws for switching regulators based on thebilinear large signal model[A]. PESC[C], Milwaukee: IEEE,1989,26-29
    [58] Chen F, Cai X S. Design of feedback control laws for switching regulators based on thebilinear large signal model[J]. IEEE Trans on Power Electronics.1990,5(2):236-240
    [59] Sanders S R, Verghese G C. Lyapunov-based control of switched power converters[J].IEEE Trans on Power Electronics.1992,7(1):17-24
    [60] Sanders S R, Verghese G C. Lyapunov-based control for switched power converters[A].IEEE Annual Power Eleetronies Specialists Conference[C], San Antonio:IEEE,1990,51-58
    [61] Yefim Berkovieh, Adrian loinviei. Analysis and design of PWM regulators forlarg-signal stability[A]. Proeeedings-IEEE International Symposium on Circuits andSystems[C], Scottsdale:IEEE,2002,409-412
    [62] Wiktor Bolek, Jerzy Sasiadek. Singularity of baekstepping control for non-linearsystems[A]. Proeeedings of the American Control Conferenee[C], Anchorage:AmericanAutomatic Control Council,2002,2689-2694
    [63] Fellipe S Gareia, José A Pomilio,Graee S Deaecto, etal. Analysis and control of DC-DCconverters based on lyapunov stability theory[A]. IEEE Energy Conversion Congressand Exposition[C], San Jose:IEEE,2009,2920-2927
    [64] Marino R, Tomei P. Nonlinear Control Design: Geometric, Adaptive and Robust[M].Prentice Hall, New York,1995
    [65] Alberto Isidori(著).王奔等译.非线性控制系统(第三版).北京:电子工业出版社,2006
    [66] Isidori A, Krener A J, Gori-giorgi C, etal. Nonlinear decoupling via feedback: adifferential geometric approach[J]. IEEE Trans. On automatic control,1981,26(2):331-345
    [67]程代展.非线性系统的微分几何理论[M].北京:科学出版社,1982
    [68]邓卫华,张波,胡宗波,等.CCM Buck变换器的状态反馈精确线性化的非线性解耦控制研究[J].中国电机工程学报,2004,24(5):120-125
    [69]程代展.非线性系统的微分几何理论[M].北京:科学出版社,1982
    [70] Yacoubi L, Fnaiech F, Al-Haddad K, etal. Input-output feedback linearization control ofa three-phase three-level neutral point clamped boost rectifier[A]. Thirty-Sixth IndustryApplications Conference[C], San Diego: Academic Press,2001,(1):626-631
    [71]刘兆娟,刘锦波.基于输入输出反馈线性化三态Boost DC-DC变换器的新型控制策略[J].山东大学学报(工学版),2008,38(1):43-47
    [72] Liebal D, Vijayraghavan P, Sreenath N. Control of DC-DC buck-boost converter usingexact linearization techniques[A].PESC[C],Seattle: IEEE,1993:203-207
    [73]高为炳.变结构控制的理论及设计方法[M].北京:科学出版社,1996
    [74]梁健.电力系统功角稳定的非线性控制方法综述[J].广西电业,2012,9(149):91-94
    [75]张黎.滑模控制应用于开关变换器的理论与技术研究[D].广州:华南理工大学博士学位论文,2005
    [76] Santi E, Monti A, Li D, etal. Synergetic control for power electronics applications: acomparison with the sliding mode approach[J]. J. of Circuits, Systems, and Computers,2004,13(4):737-760
    [77] Bilalovic F, Music O, Sabanovic A. Buck converter regulator operating in the slidingmode[A], Proceeding of Power Conversion International Conference[C],
    [78] Venkataramanan R, Sabanovic A Cuk S. Sliding mode control of DC DC converters[A],Proc. IEEE Ind. Electronics Conf.[C], San Francisco:IEEE,1985,22-30
    [79] Vadim I Utkin. Sliding mode control design principles and applications to electricdrives[J]. IEEE Transactions on Industrial Electronies,1993,40(1):23-36
    [80] Tan S C, Lai Y M, Tse C K, etal. Special family of PWM-based sliding-mode voltagecontrollers for basic DC-DC converters in discontinuous conduction mode[J]. IETElectric Power Applications,2007,1(1):64-74
    [81] Siew-Chong Tan, Lai Y M, Tse C K. A unified approach to the design of PWM-basedsliding-mode voltage controllers for basic DC-DC converters in continuous conductionmode[J]. IEEE Transactions on Circuits and Systems I,2006,53(8):1816-1827
    [82] Morel C. Application of slide mode control to current-mode-controlled boostconverter[A]. IEEE Conference on Industrial Electronics[C], Spain:IEEE,2002,8(3):1824-182
    [83] Fossas E, Martinez L, Ordinas J. Sliding mode control reduces audiosusceptibility andload perturbation in the Cuk converter[J]. IEEE Transactions on Circuits and Systems I,1992,39(10):847-849
    [84] Knight J, Shirsavar S, Holderbaum W. An improved reliability Cuk based solar inverterwith sliding mode control[J]. IEEE Transactions on Power Electronics,2006,21(4):1107-1115
    [85] Chen Zengshi. PI and sliding mode control of a Cuk converter[J]. IEEE Transactions onPower Electronics,2012,27(8):3695-3703
    [86] Biel D, Guinjoan F, Fossas E, etal. Sliding-mode control design of a boost-buckswitching converter for AC signal generation[J]. IEEE Transactions on Circuits andSystems I,2004,51(8):1539-1551
    [87] Lopez O, Garcia De Vicuna L, Castilla M, etal. Sliding-mode-control design of a high-power-factor buck-boost rectifier[J]. IEEE Transactions on Industrial Electronics,1999,46(3):604-612
    [88] Mattavelli P, Rossetto L, Spiazzi G. Small-signal analysis of DC DC converters withsliding mode control[J], IEEE Transactions on Power Electronics,1997,12(1):96-102
    [89] Tan S C,Lai Y M,Tse C K,et al.A fixed-frequency pulse width-modulation basedquasi-sliding mode controller for Buck converters[J].IEEE Transactions on PowerElectronics,2005,20(6):1379-1392
    [90] Cardoso B J,Moreira A F,Menezes B R,et al.Analysis of switching frequencyreduction methods applied to sliding mode controlled DC-DC converters[A], IEEEAPEC[C], Boston:IEEE,1992,403-410
    [91]倪雨,许建平.准滑模控制开关DC-DC变换器分析[J],中国电机工程学报,2005,28(21):1-6
    [92] Kuo-Hsiang Cheng, Chun-Fei Hsu, Chih-Min Lin, etal. Fuzzy-neural sliding-modecontrol for DC DC converters using asymmetric gaussian membership functions[J].IEEE Transactions on Industrial Electronics,2007,54(3):1528-1536
    [93] Sira-Ramirez H, Tarantino-Alvarado R, Llanes-Santiago. Adaptive feedbackstabilization in PWM controlled DC-to-DC power supplies[J]. Intemational Journal ofControl,1993,57(3):599-625
    [94] Sira-Rarez H, Gareia-Esteban M, Zinober A S I. Dynamical adaptive pulse-width-modulation control of DC-to-DC power supplies[J]. International Joumal of Control,1996,65(2):205-222
    [95] Jeong G J, Kim I H, Son Y I. Design of an adaptive output feedback controller for adc/dc boost converter subject to load variation[J]. International Journal of InnovativeComputing Information and Control,2011,7(2):791-803
    [96] Alawieh A, Ortega R, Pillai H, etal. Voltage regulation of a boost converter indiscontinuous conduction mode: a simple robust adaptive feedback controller[J]. IEEEof Control Systems,2013,33(3):55-65
    [97] Alawieh A, Ortega R, Pillai H, etal. Voltage regulation of a boost converter indiscontinuous conduction mode: a simple robust adaptive feedback controller[J]. IEEEof Control Systems,2013,33(3):55-65
    [98] Oucheriah S, Guo L. PWM-based adaptive sliding-mode control for boost dc dcconverters[J]. IEEE Transactions on Industrial Electronics,2013,60(8):3291-3294
    [99] Rong-Jong Wai, Li-Chung Shih. Adaptive fuzzy-neural-network design for voltagetracking control of a DC DC boost converter[J]. IEEE Transactions on PowerElectronics,2012,27(4):2104-2115
    [100] Algreer M, Armstrong M, Giaouris D. Adaptive PD+I control of a switch-mode dc dcpower converter using a recursive FIR predictor[J]. IEEE Transactions on IndustryApplications,2011,47(5):2135-2144
    [101] Hebertt Sira-Ramirez, Romeo Ortega, Mauricio Garcia-Esteban. Adaptive passivity-based control of average dc-to-dc power converter models[J]. International Journal ofAdaptive Control and Signal Processing,1998,12(1):63-80
    [102] Gateau G, Maussio P, Faueher J. Fuzzy controller based on optimal controlcommutation principle for a DC/DC converter in current mode[J]. Proceeding of the20th International Conference of Industrial Electronics, Control and Instrumentation,Bologna:IEEE,1994,1320-1324
    [103] Li C K, Lee W L, Chou Y W. Fuzzy control of power converters based on quasilinearmodelling[J]. Electronics Letters,1995,31(7):594-595Wing-Chi So, Chi K. Tse,,and Yim-Shu Lee
    [104] So Wing-Chi, Tse Chi K, Lee Yim-Shu. Development of a fuzzy logic controller forDC/DC converters: design, computer simulation, and experimental evaluation[J].IEEE Transactions on Power Electronics,1996,11(1):24-32
    [105] Mattavelli P, Rossetto L, Spiazzi G, etal. General-purpose fuzzy controller for DC-DCconverters[J]. IEEE Transactions on Power Electronics,1997,12(1):79-86
    [106] El Beid S, Doubabi S. DSP-based implementation of fuzzy output tracking control fora boost converter[J]. IEEE Transactions on Industrial Electronics,2014,61(1):196-209
    [107] Cheng Kuo-Hsiang, Hsu Chun-Fei, Lin, Chih-Min, etal. Fuzzy neural sliding-modecontrol for DC DC converters using asymmetric gaussian membership functions[J].IEEE Transactions on Industrial Electronics,2007,54(3):1528-1536
    [108] Rubaai A, Ofoli A R, Burge L, etal. Hardware implementation of an adaptivenetwork-based fuzzy controller for DC-DC converters[J]. IEEE Transactions onIndustry Applications,2005,41(6):1557-1565
    [109] Perry A G, Feng Guang, Liu Yan-Fei, etal. A design method for PI-like fuzzy logiccontrollers for DC DC converter[J]. IEEE Transactions on Industrial Electronics,2007,54(5):2688-2696
    [110] Kurokawa F, Maruta H, Mizoguchi T, etal. A new digital control DC-DC converterwith multi-layer neural network predictor[A]. The International Conference onMachine Learning and Applications[C], Miami Beach:IEEE,2009,636-643
    [111] Maruta H, Motomura M, Kurokawa F. A novel neural network based control methodwith adaptive on-line training for DC-DC converters[A]. The International Conferenceon Machine Learning and Applications[C], Boca Raton:IEEE,2012,503-508
    [112] Diaz N L, Soriano J J. Study of two control strategies based in fuzzy logic andartificial neural network compared with an optimal control strategy applied to a buckconverter[A]. The Annual Meeting of the North American on Fuzzy InformationProcessing Society[C], San Diego:IEEE,2007,313-318
    [113] Hsu Chun-Fei, Lee Tsu-Tian, Wen Yao-Wei, etal. Intelligent control for DC-DC powerconverter with recurrent fuzzy neural network approach[A], IEEE InternationalConference on Fuzzy Systems[C], Vancouver:IEEE,2006,457-462
    [114] Leyva R, Martinez-Salamero L, Jammes B, etal. Identification and control of powerconverters by means of neural networks[J]. IEEE Transactions on Circuits andSystems I,1997,44(8):735-742
    [115] Javad Mahdavi, Mohammad R. Nasiri, Ali Agah, etal. Application of neural networksand state-space averaging to DC/DC PWM converters in sliding-mode operation[J].IEEE Transactions on Mechatronics,2005,10(1):60-67
    [116] Hiti S, Borojevic D. Robust nonlinear control for boost converter[J]. IEEETransactions on Power Electronics,1995,10(6):651-658
    [117] Olalla C, Leyva R, Queinnec I, etal. Robust gain-scheduled control of switched-modeDC DC converters[J]. IEEE Transactions on Power Electronics,2012,27(6):3006-3019
    [118] Cervantes I, Mendoza-Torres A, Emadi A, etal. Robust switched current control ofconverters[J]. IET of Control Theory&Applications,2013,7(10):1398-1407
    [119] Francesco Alonge, Filippo D Ippolito, Tommaso Cangemi. Identification and robustcontrol of DC/DC converter hammerstein model[J], IEEE Transactions on PowerElectronics,2008,23(6):2990-3003
    [120] Olalla C, Leyva R, El Aroudi A, etal. LMI robust control design for boost PWMconverters[J]. IET of Power Electronics,2010,3(1):75-85
    [121] Maccari L A, Montagner V F, Pinheiro H, etal. Robust H2control applied to boostconverters: design, experimental validation and performance analysis[J]. IET ofControl Theory&Applications,2012,12(6):1881-1888
    [122] Escobar G, Cidpastor C, Queinnec I, etal. Passivity-based integral control of a boostconverter for large-signal stability[J]. IEE Proceeding on Control Theory Application,2006,153(2):139-146
    [123] Sira-Ramirez H, Perez-Moreno R A, Ortega R, etal. Passivity-based controllers for thestabilization of DC-to-DC power converters[J]. Automatica,1997,33(4):499-513
    [124] Wang Bingyuan, Feng Hui. The Buck-Boost converter adopting passivity-basedadaptive control strategy and its application[A]. the International Power Electronicsand Motion Control Conference[C], Harbin:IEEE,2012,1877-1882
    [125] Young Ik Son, In Hyuk Kim. Complementary PID controller to passivity-basednonlinear control of boost converters with inductor resistance[J]. IEEE Transactionson Control Systems Technology,2012,20(3):826-834
    [126] Min-Chan Kim, Seung-Kyu Park, Ho-Gyun Ahn, etal. Robust Passivity Based Controlwith Sliding Mode for DC-to-DC Converters[A]. IEEE International Conference onIndustrial Technology[C], Mumbai:IEEE,2006,1690-1693
    [127] Zames G. Feedback and optimal sensitivity model reference transformations,multiplicative seminorns, and approximation inverses[J]. IEEE Trans. Automat. Contr.1981,26:301-320
    [128]董清.同步发电机调速系统附加H控制的研究[D].河北:华北电力大学博士论文,2002
    [129]夏怡.永磁同步电机H控制策略的研究.无锡:江南大学硕士论文,2006
    [130] Lefebvre D, Chevrel P, Richard S. An H-infinity-based control design methodologydedicated to the active control of vehicle longitudinal oscillations[J]. IEEETransactions On Control Systems Technology,2003,11(6):948-956
    [131]陈连玉.交流伺服系统H鲁棒控制混合灵敏度指标优化算法[J].江苏技术师范学院学报(自然科学版).2008,14(1):52-56
    [132]高云霞,田沛,李沁. H混合灵敏度控制在主气压系统中的应用[J].电力系统及其自动化学报.2007,19(1):92-95
    [133]李佐成.开式循环鱼雷热动力装置结构参数摄动系统鲁棒H控制[D].西安:西北工业大学博士论文,2001
    [134] Rami Naim, George Weiss, Shmuel Ben-Yaakov. H control applied to boost powerconverters[J]. IEEE Transactions on Power Electronics,1997,12(4):677-683
    [135] Vidal-Idiarte E, Martinez-Salamero L, et al. Analysis and design of H control ofnonminimum phase-Switching converters[J]. IEEE Transactions on Circuits andSystems-I,2003,50(10):1316-1323
    [136] Andreas Kugi, Kurt Schlacher. Nonlinear H-controller design for a DC-to-DC powerconverter[J]. IEEE Transactions on Control Systems Technology,1999,7(2):230-237
    [137] Loannides G C, Manias S N. H loop-shaping control schemes for the buck converterand their evaluation using-analysis[J]. IEE Proc. Electr. Power Appl.,1999,146(2):237-246
    [138] Patnaik S K, Umamaheswari B. H loop-shaping controller for a boost converter withharmonic reduction[J]. Journal of Circuits, Systems, and Computers,2008,17(2):279-295
    [139]李会军,陈明军.基于LMI的H鲁棒PID控制器设计[J].控制工程,2007,14(3):294-315
    [140] Msjumder R, Chaudhuri B, EI-Zobaidi H, etal. LMI approach to normalized Hloop-shaping design of power system damping controllers[J]. IEE ProceedingsGeneration Transmission and Distribution,2005,152(6):952-960
    [141]孙宜标,金石,王成元.基于线性矩阵不等式的环形永磁力矩电机的H2/H静态输出反馈控制[J].中国电机工程学报,2007,27(15):8-14
    [142]俞立.鲁棒控制-线性矩阵不等式处理方法[M],北京:清华大学出版社,2002
    [143] Olalla C, Leyva R, El-Aroudi A, etal. LMI robust control design for boost PWMconverters[J]. IET Power Electron,2010,3(1):75-85
    [144] Olalla C, Leyva R, El-Aroudi A, etal. H control of DC-DC converters with saturatedinputs[A].35th Annual Conference of IEEE on Industrial Electronics[C], Porto:IEEE,2009,548-553
    [145] Robert W Erickson, Dragan Maksimovic. Fundamentals of Power Electronics[M].Norwell: Kluwer Academic Publishers Group,2000
    [146]王凤岩,许建平. DC/DC开关电源控制方法小信号模型比较[J].电力电子技术2007,41(1):75-77
    [147]申铁龙. H控制理论及应用[M].北京:清华大学出版社,1996
    [148] John C.Doyle, Keith Glover, et al. State-space solutions to standard H2and H controlproblems[J]. IEEE Transactions on Automatic Control,1989,34(8):831-847
    [149] Francis B A. A Course in H Control Theory[M]. New York: Springer-Verlag,1987
    [150] Iwasaki T, Skelton R E. All controllers for the general H control problem[J]: LMIexistence condition and state space formulas. Automatica,1994,30(8):1307-1317
    [151] Almér S, J nsson U, Kao C Y, etal. Stability analysis of a class of PWM systems[J].IEEE Transactions on Automatic Control,2007,52(6):1072-1078
    [152] Fujioka H, Kao C Y, Almér S etal. LQ optimal control for a class of pulse widthmodulated systems[J]. Automatica,2007,43(6):1009-1020
    [153] Fujioka H, Kao C Y, Almér S etal. Robust tracking with H performance for PWMsystems[J]. Automatica,2009,45(8):1808-1818
    [154]孙文安,赵军.一类不确定线性切换系统的二次鲁棒稳定性[J].电机与控制学报,2005,9(3):235-242
    [155]景丽,高立群.线性周期性切换系统的镇定及鲁棒镇定研究[J].电机与控制学报,2005,9(3):269-271
    [156]樊丽颖,武俊峰,刘宏亮,等.不确定系统的变采样控制[J].电机与控制学报,2011,15(11):90-94
    [157] Malesani L. Performance optimization of cuk converters by sliding mode control[J].IEEE Trans. on Power Electronics,1995,10(3):302-309
    [158] Tse C K, Adams K M. An adaptive control for DC-DC converters[J]. IEEE Trans. onPower Electronics,1992,7(2):315-313
    [159]陈维,王耀南. DC/DC变换器的神经网络鲁棒控制[J].湖南大学学报(自然科学版),2007,34(7):53-56
    [160]王涛,肖建,李冀昆.感应电机无源性分析及自适应控制[J].中国电机工程学报,2007,27(6):31-34
    [161]荣秀婷,李晔.有源电力滤波器自适应L2增益控制方法研究[J].现代电力,2008,25(1):28-34
    [162] Chen J M, Liu F, Mei S W. Passivity based H control for APF in three phase fourwire distribution power systems[A]. Proc. of Power Engineering Society GeneralMeeting[C], Montreal:IEEE,2006,1-6
    [163]王江,曾启明.非线性无源控制原理及在电力电子变换器中的应用[J].控制理论与应用,2004,21(4):574-578
    [164]吴磊涛,杨兆华,胥布工. DC/DC开关变换器的无源控制方法[J].电工技术学报,2004,19(4):66-69
    [165]梅生伟,申铁龙,刘康志.现代鲁棒控制理论与应用[M].北京:清华大学出版社,2008
    [166] Tan S C, Lai Y, Tse C. Indirect sliding mode control of power converters via doubleintegral sliding surface[J]. IEEE Transactions on Power Electronics,2008,23(2):600-611
    [167] Hicham Chaoui, Suruz Miah, Pierre Sicard. Adaptive fuzzy logic control of a DC-DCboost converter with large parametric and load uncertainties[A]. IEEE/ASMEInternational Conference on Advanced Intelligent Mechatronics[C], Montreal: IEEE,2010:575-580
    [168] Olalla C, Leyva R, Aroudi A E, etal. Robust LQR control for PWM converters: AnLMI approach[J]. IEEE Transactions on Industrial Electronics,2009,56(7):2548-2558
    [169] Oettmeier F, Neely J, Pekarek S, etal. MPC of switching in a boost converter using ahybrid state model with a sliding mode observer[J]. IEEE Transactions on IndustrialElectronics,2009,56(9):3453-3466
    [170] Ioannidis G C, Manias S N. Robust vurrent assisted H controller for boost converterin the presence of uncertainty and evaluation using-analysis[A]. IEEE PowerElectronics Specialists Conference[C], Greece: IEEE,2008,3272-3278
    [171] Vinicius F. Montagner, Pedro L. D. Peres. H control with pole location for a DC-DCconverter with a switched load[A]. IEEE International Symposium on IndustrialElectronics[C], Brasil: IEEE,2003,1:550-555
    [172] Carlos Olalla, Ramon Leyva, Abdelali EI Aroudi. LMI control applied tonon-minimum phase switched power converters[A]. IEEE International Symposiumon Industrial Electronics[C], Cambridge: IEEE,2008,154-159
    [173] Singh V. Robust stability of cellular neural networks with delay: linear matrixinequality approach[J]. IEEE Proceedings of Control Theory and Application,2004,151(1):125-129
    [174] Cao Y Y, Sun Y X, Lam J. Delay-dependent robust H control for uncertain systemswith time-varying delays[J]. Proc Inst Elect Eng Contr Applicat,1998,145(3):338-344
    [175]吴忠强,王志君. DC/DC变换器的一种无源化控制方案[J].电机与控制学报,2008,12(2):147-150
    [176] Suman S, Saptarshi D, Shantanu D, etal. A conformal mapping based fractional orderapproach for sub-optimal tuning of PID controllers with guaranteed dominant poleplacement[J]. Communications in Nonlinear Science and Numerical Simulation,2012,17(9):3628-3642
    [177] Arikatla V P,Abu Qahouq J A. Adaptive digital proportional-integral-derivativecontroller for power converters[J]. IET Power Electronics,2012,5(3):341-348
    [178] Meza J L,Santibanez V,Soto R,et al. Fuzzy self-tuning PID semiglobal regulator forrobot manipulators[J]. IEEE Transactions on Industrial Electronics,2012,59(6):2709-2717
    [179]周武能,苏宏业.区域稳定性约束鲁棒控制理论及应用[M].北京:科学出版社,2009:1-6
    [180] Vinicius F M, Pedro L D P. Robust pole location for a dc-dc converter throughparameter dependent control[A]. Proceedings of the2003IEEE InternationalSymposium on Circuits and Systems[C], Thailand: IEEE,2003:351-354
    [181]马宁波,王春平,李波.系统动态性能指标间的联系及闭环零、极点和动态性能之间的关系[J].四川兵工学报,2008,29(6):61-63
    [182] Mahmoud C, Pascal G. H design with pole placement constraints: an LMIApproach[J]. IEEE Transactions on Automatic Control,1996,41(3):358-366
    [183] Hernandez C, Vazquez N, Alvarez J, et al. Modified passive-based control law for theboost inverter[A]. Proceedings of the IEEE International Symposium on IndustrialElectronics[C], Rio de Janeiro: IEEE Press,2003,764-768
    [184] Oliveira E A, Morais L M F, Seleme-júnior S I, et al. Power factor correction viapassivity-based adaptive controller using buck converter operating in continuousmode[A].11th Workshop on Control and Modeling for Power Electronics[C], Zurich:IEEE Press,2008,1-8
    [185]吕惠子,杨俊华,杨金明,等.无刷双馈调速电机无源性分析及自适应控制[J].控制理论与应用,2009,26(12):1425-1429
    [186] Cardenas V, Nunez C, Oliver M, et al. UPS inverter controlled by a non-linear passivecontrol with inductor current feedback[A]. IEEE International Power ElectronicsCongress[C], Acapulco: IEEE Press,2000,201-205
    [187] Kwasinski A, Krein P T. Passivity-based control of buck converters withconstant-power loads[A]. IEEE38th Annual Power Electronics SpecialistsConference[C], Orlando: IEEE Press,2007,259-265

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700