用户名: 密码: 验证码:
小南海坝基软弱夹层发育规律及三维可视化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重庆长江小南海水电站坝址位于重庆市江津区珞璜镇下游约1.4km,是国务院批准的《长江流域综合利用规划简要报告》推荐梯级开发方案的重要枢纽。坝址控制流域面积70.5万km2,多年平均流量8650m3/s,相应多年平均径流量2685亿m3。小南海水电站大中坝坝址水库正常蓄水位为196m,死水位194m,校核水位以下总库容为13.0亿m3;中坝址枢纽布置代表方案的最大坝高为67m,装机容量1680MW,水电站对带动重庆地区经济可持续发展及提高重庆境内长江干流航道标准具有重要意义。小南海水电站中坝址建坝地层为侏罗系上统遂宁组(J3s)红层,是一种软硬相间的不等厚的地层组合岩体。红层坝基中软弱夹层众多,在后期的构造变动中不同程度地遭受剪切破坏而泥化,引起大坝抗滑稳定、沉陷变形、渗透变形及长期演变等问题,是工程勘察过程中亟待研究和解决的工程问题。软弱夹层的分布规律是布置勘探、指导勘探的前提和依据,是对一个地区地基地质条件作出正确评价和结论的基础,科学地解释软弱夹层的形成规律,可避免工程勘察的盲目性,对今后类似平缓红层地区的工程地质研究有着重要的意义。坝区地质构造复杂、地质信息众多,给坝址选择、枢纽布置、地下工程设计与施工等各方面带来了很大的困难,建立反映工程地质信息的三维地质模型,能提供对工程地质问题的正确判断和分析的大量信息。论文结合小南海水电站实际情况及项目任务书,研究坝址区红层地层的岩性组合、物质成分、结构特点、粒度参数、沉积构造、古生物等沉积环境特征,分析地层旋回特征,揭示坝址区软弱夹层的沉积规律及发育特征。通过对软弱夹层样品粒度组成、物质成分、物理化学特性、微结构特征及力学性质的室内试验研究,结合水利水电工程地质勘察规范中夹层工程地质分类方法,建立坝址区软弱夹层的工程分类标准,综合提出不同类型软弱夹层的强度参数建议取值。采用PFC2D软件模拟软硬互层岩体中,软弱夹层在层间剪切作用下剪切带的形成与破坏过程。最终选用GOCAD软件建立小南海坝基地层及软弱夹层空间分布三维地质结构模型,建立岩性参数模型,并分析参数在地质体中的分布规律,为坝基抗滑稳定评价提供基础。论文的主要研究内容及结论为:
     (1)结合钻井资料和室内试验研究坝基沉积环境判别标志,进一步分析得到坝基岩层水平向和垂向演变及软弱夹层的分布规律。
     小南海水电站建坝地层为侏罗系上统遂宁组(J3s)红层,基岩主要为砂岩、粉砂岩、黏土质粉砂岩、粉砂质黏土岩和黏土岩。砂岩矿物成分以石英为主,占矿物总含量90%以上,其次为白云母,含微量长石、铁质、燧石、绿泥石等,砂岩成分成熟度高。坝基软岩(包括黏土质粉砂岩、粉砂质黏土岩、黏土岩)的矿物成分主要由绿泥石、伊利石、石英、长石、方解石及赤铁矿组成,化学成分以SiO2为主,含量为50~60%,其次为Al2O3。以采用薄片粒度统计法和筛分-虹吸比重瓶联合测定法分析坝基岩石的粒度特征,认为J3s6段细粒沉积物在剖面上有上细下粗的韵律变化,与之相比J3s5段地层沉积物粒度更粗,主要为长石岩屑砂岩—黏土质粉砂岩、粉砂质黏土岩二元结构。坝基岩层主要发育的层理类型有大型交错层理、中小型交错层理、水平层理、波状层理、卷曲层理、波痕等。生物化学特征表现为粉细砂岩及粉砂岩中见虫孔构造和植物根系及植屑化石。粉砂岩或黏土质粉砂岩中含有大量灰绿色斑点或团块,可能为小生物遗骸生成的有机质在氧化条件下造成局部还原的效果。综合分析得到,小南海坝基岩层属于典型的河流沉积,主要建坝地层J3s6~J3s4段地层中共识别出以下4种次一级的沉积环境,即河床滞留、边滩、天然堤及洪泛平原(盆地)沉积,其中洪泛平原(盆地)发育最为普遍。J35s~J3s4段地层剖面可划分为5个明显的沉积旋回,每个旋回厚度约10m,具有典型的二元结构。
     分别统计了坝址区研究范围内J3s6~J3s4段黏土岩类(粉砂质黏土岩及黏土岩)的厚度及占该段地层总厚度的百分比,并利用Surfer软件绘制了厚度等值线图及厚度百分比等值线图。结果可知坝址区J3s6段地层中黏土岩类厚度最大为22m,大多钻孔揭露的黏土岩类厚度在5m以内,局部区域黏土岩类厚度占J3s6段地层总厚度的70~80%,而左岸溢流坝局部区域不含黏土岩类;坝址区J3s5段地层中黏土岩类总体较少,仅在左岸厂房钻孔MZK232附近的地层中出现一段厚度大于15m的黏土岩,其他大部分区域黏土岩类厚度均在5m以内:坝址区内仅少量钻孔完全揭露J3s4段地层。对野外J3s4-1剖面地层的沉积环境进行了马尔可夫链分析,得出J3s4-1段地层的韵律结构模式主要分2种:①粉砂岩-厚层黏土质粉砂岩互层半韵律沉积,韵律层厚度大,代表了典型的洪泛平原细粒沉积;②黏土质粉砂岩-黏土岩薄互层半韵律沉积,韵律层厚度小,为泥化夹层的形成提供了良好的条件。
     软弱夹层的产出受到沉积环境的制约,洪泛盆地沉积的软弱夹层厚度大、连续性好、分布稳定,对工程的影响最大,常构成控制结构面;天然堤沉积如未经改造,分布也较稳定,夹层薄、性状较差;洪泛平原沉积连续性好,分布较稳定,但粒度较天然堤中形成的夹层粗,性状稍好;边滩沉积中的夹层不稳定、连续性差,但性状较好。漫长的地质时期中,同一地区的沉积环境是不断演变的,演变过程中新老地层的不同组合对软弱夹层的分布有着重要的影响,前期形成的软弱夹层受后续水动力较强的河道、边滩冲刷改造作用,连续性将被破坏。
     (2)论文通过试验研究了软弱夹层工程地质特征,建立了坝址区软弱夹层的工程分类标准,并提出各类软弱夹层强度参数建议取值。
     粒度分析结果看出大部分软弱夹层黏粒质量分数(<0.002mm)介于10%~30%之间,母岩多为黏土质粉砂岩或粉砂质黏土岩。软弱夹层矿物成分以伊利石(水云母)、绿泥石等黏土矿物为主,次为石英、方解石、长石和赤铁矿。定向片数据分析结果显示坝址区软弱夹层内伊利石含量为65~85%,蒙脱石含量除编号为3S101的夹层高达55%之外多在5%~20%之间,绿泥石一般含量5~10%,高岭石含量5~10%。综合考虑软弱夹层矿物成分、粒度成分、泥化程度及构造特征等因素的基础上,结合《SL55-2005中小型水利水电工程地质勘察规范》附录C软弱夹层工程地质分类方法将坝址区软弱夹层划分为三大类:Ⅰ类岩块岩屑型、Ⅱ类岩屑夹泥型和Ⅲ类泥化夹层(包括Ⅲ1泥夹岩屑型和Ⅲ2全泥型)。
     采用Quanta200环境扫描电子显微镜观察软弱夹层的微区形貌和微观结构,结果看出平行于层理方向,软弱夹层内泥化面多见于黏土岩、粉砂质黏土岩夹层内,泥化表面起伏度较小,见明显条纹状挤压擦痕;片状黏土矿物呈高度定向排列,黏土矿物单片及片簇较为密集,主要为面-面接触;厚层泥化夹层通常包含两个或两个以上主错动面,说明夹层曾遭受多期构造挤压作用影响;夹层内摩擦光面多附方解石薄膜。垂直于层理方向,泥化夹层具有明显分带性,可分为泥化带和劈理带,泥化带较薄,见两个错动面,超微结构为分散结构,错动面附近有较强平行层面排列趋势。
     室内慢剪试验获得性状最差的泥化夹层在饱水状态下的摩擦因数为0.223,按规范用粒度成分定量指标选取的夹层强度参数明显偏低,相当于接近液限状态时室内剪切峰值强度的0.72~0.86倍,最终类比其他相似地质条件下的工程经验,提出各类软弱夹层强度参数建议值。
     (3)软弱夹层剪切破坏过程的PFC2D模拟。
     层间剪切带的形成需具备物质条件、动力条件和环境条件。坝基沉积物多属洪泛平原沉积,厚度大,分布广泛,沉积物较细,黏粒质量分数及黏土矿物含量较高,为层间剪切带的形成提供了物质基础;地层以粉砂岩-黏土岩不等厚互层的岩性组合为主,在构造运动或岩层屈曲时,由于软硬岩层强度差异,夹层发生层间剪切位移而引起结构破坏;在一定地下水条件下,水岩物理化学作用导致夹层的矿物成分和结构连接特性发生变化,发生软化和泥化。论文建立软硬相间岩层软弱夹层简化PFC2D模型,用水平剪切速度产生的水平应力作用来加载,比较不同剪切时步夹层内孔隙比的变化、剪切裂隙发育位置、宽度、角度及间距,直观地反映其剪切破坏过程。建立不同试样尺寸的PFC2D模型,对比不同厚度及延伸长度的夹层破坏特征:夹层厚度及上下所夹硬岩尺寸一定时,试样长度越长,裂隙与层面夹角越小、裂隙间距越大,微裂隙越容易集中在夹层左右两端;试样长度和上下所夹硬岩厚度相同时,裂隙与层面的夹角相近,但夹层厚度越大,裂隙间距越大,模拟结果为解释红层坝基不同发育规模软弱夹层的剪切破坏特征提供依据。
     (4)应用GOCAD三维地质建模软件建立坝基三维地层结构模型,分析软弱夹层空间延展特征,建立控制性软弱夹层的三维地质模型,评价各主要建坝地层的强度参数分布特征。
     论文应用GOCAD三维地质建模软件建立了研究区钻孔揭露的9个主要地层界面,包括地表、Q4、J3s6、J3s4-2、J3s4-1、J3s3、J3s2、J3s1,利用软件强大的三维空间数据处理功能解决了建模过程中地层的缺失、尖灭等问题,取得了形象的、直观三维地质模型。通过GOCAD软件中的DSI插值法将各个钻孔的参数属性(岩体粒度、黏粒质量分数)值插入到整个三维地质模型中,建立坝区工程地质参数模型,可通过鼠标点击模型获得相应位置的属性值,得到各种地质信息在整个模型中的分布特征及规律。采用GOCAD软件中的属性截面法和Slicer法,从平行于3个坐标轴的方向对参数模型任意位置进行切割,得到不同剖面上地层岩性及参数属性的空间分布及变化。采用GOCAD软件中的X-Section法,在研究区任意钻孔之间建立剖面,简单快捷地形成工程地质剖面图。建立三维地质体模型及岩石力学参数模型,分别评价各主要建坝地层的强度参数分布特征。通过钻孔岩芯编录资料的核对、沉积相分析及钻孔录像分析三种方法判定软弱夹层发育的位置、类型、性状及连通性等特征。提出延展长度、延展宽度、纵向连通率、横向连通率、面积、面积比几个与延展性有关的概念,用于分析坝区内软弱夹层的空间延展特性。论文考虑建基面20m以下连续性较好的软弱夹层为控制性软弱夹层,会影响坝基稳定性。计算得出不同水工建筑物(右岸溢流坝、右岸电站厂房、左岸电站厂房、左岸溢流坝及船闸)下的控制性软弱夹层的发育深度及延展性特征,并应用GOCAD三维地质建模软件,按照不同建筑物坝段分别建立地层面模型及软弱夹层面模型,实现软弱夹层的三维可视化。
The Xiaonanhai Reservoir is a proposed dam on the Yangtze River in Chongqing Provience, which is40km upstream of the city. The basin area controlled by the dam site is around705,000square kilometers. The amount of water flowing on average every year is8,650cubic meters, which is the equal of268.5billion of the runoff per year. The normal storage level is196meters, and the level of dead water is194meters. The total storage capacity below the check water level is1.3billion cubic meters. This reservoir is a big issue for the sustainable development of Chongqing Provience. The Xiaonanhai Reservoir is located in Chongqing Province. The hard and weak interbedded strata with low strength and great variation belong to the Upper Jurassic Suining Formation. Weak intercalations, which are suffered shear failure and argillization owing to the tectonic events, can lead to a series of geotechnical problems, such as the stability, deformation, seepage and long-term evolution of the foundation. In this case, analyzing the distribution of the weak intercalations is the premise for arranging and guiding the exploration, and the basis of making correct evaluation and conclusion for geotechnical conditions. It has great significance for the researches in similar red bed area in future. A lot of complicated geological structure information has brought great difficulties to choose the dam location, layout of the project and design of the underground constructions. It is necessary to build three-dimensional geological model to show the information of the geological body. The thesis began with the analysis of the environment properties of the red beds in research area, including the lithological association, material composition, grain size parameter, sedimentary structure and palaeobios of the deposits. Markov chain analysis was applied to the stratigraphic succession in order to point out any depositional regularity of the weak intercalations. Considering the grain size, mudding degree and structure characteristics, weak intercalations were divided into several types and the depositional regularities of each type was discussed. Strength parameters were obtained through the physic-mechanical properties. Based on the particle flow theory, PFC2D models of the hard and weak interbedded layer were constituted to study the failure process of weak intercalations. Finally, the thesis studies on the geosciences modeling and3D visualization of the dam formation. Parameter models were further constructed to show their distribution regularities. The research contents and results of this thesis are shown as follows:
     (1) Based on the drilling data and laboratory experiments results, indicators for distinguishing depositional environments were revealed, and the distribution regularities of weak intercalations in horizontal and vertical direction were further discussed.
     The bedrocks were characterized by alternations of sandstone, siltstone, argillaceous siltstone and mudstone. Thin section tests show that red sandstones contain more than90%of quartz, followed by muscovite, and the rest minerals are feldspar, irony, flint, and chlorite, et al. X-ray tests reveal that the soft rock, including clayey siltstones, silty claystones, and mudstones, are composed of chlorite, illite, quartz, feldspar, calcite and hematite. The chemical composition are dominated by SiO2with a percentage of50-60%, followed by Al2O3. The grain size properties of the sediments are obtained by thin section test and sieving-siphon pycnometer method. The results show the grain size of J3s6changes from fine to coarse with depth. However, there are more coarse-grained sediments in J3s5, which showing the dual structure of feldspathic litharenite-clayey siltstones.
     The bedding structures include cross bedding, horizontal bedding, wavy bedding, curled bedding and ripple marks. Biochemical characteristics are obvious in the siltstones, such as burrow structure, plant roots and fossils. Some celadon spots or agglomerates should be the result of local reduction in organic matters under oxidized conditions. According to the comprehensive analysis, there are four sub-sedimentary environment recognized in J3s6-J3s4: channel lag deposits, point bar, natural levee and flood plain or flood basin. The succession is interpreted to be fluvial facies, dominated by the point bar and flood plain (basin) sub-facies. However, channels and levee deposits are rarely to be found in this area. Five vertically repeated cycle rhythms are recognized in the strata of J3s6-J3s4. A cyclical variation is normally10meters thick, which shows a typical dual structure.
     This paper studied the thickness and proportion of clay rocks in J3s6-J3s4of the research area. Contour maps are presented by Surfer software. The results show that most of the thickness of clay rocks is less than5meters. The thickest layer reaches22meters in J3s6. Clay rocks are rare in the overflow dam on left bank. However, only a few of drillings expose clay rocks no further than5meters in J3s5, but there are15meters of that around the MZK232drill. Most of the drills cannot show the layers in J3s4because the limit of drilling depth.
     Cyclic processes are clear in J3s4-1strata. Taking these strata as an example, the Markovian simulation results show that the semi-rhythmic structures of the given section are mainly of two types:one is siltstone and argillaceous siltstone alternation with great rhythmic thickness, the other is thin bedded argillaceous siltstone with interbedded mudstone.
     The distribution of weak intercalations is controlled by sedimentary environment. Continuous intercalations deposited in flood basin can easily turn to controlled structural surface, which lead to the unstability of the dam foundation. Thin weak intercalations in natural levee always have poor mechanical properties. By contrast, the intercalations in flood plain have high strength and stable distribution. The worst and most volatile ones exist in the point bar. As the evolution of the sedimentary environment, the distribution of weak intercalations should be transformed as the stratum combination alters. For example, their continuities would be destroyed as the result of river revolution and beach erosion.
     (2) Study on the engineering geological properties of the weak intercalations, and establish their standard classification, finally suggest the values for strength parameters.
     Grain size analysis results show that the clay content of the weak intercalations is between10%and30%. The minerals of them are dominated by clay minerals of illite, and follow by quartz, calcite, feldspar and hematite. The oriented strand thin section test reveals that the main clay mineral of the weak intercalations is illite with a proportion of65-85%. Montmorillonite accounts for5-20%, but except for the sample of number3S101, in which the content reaches up to55%. Both of chlorite and kaolinite have a percentage of5-10%.
     Considering the grain size, mudding degree and structure characteristics, the in-competent beds are divided into three types:(i) cracked rock;(ii) cracked rock with mud interbedded;(iii) mudstone with cracked rock interbedded, or mudstone.
     Micro-structures of the weak intercalations are described by means of scanning electron microscopy (SEM). The results show that the mudding surfaces with small relief are frequently seen in mudstones and silty claystones. The schistose clay minerals which contact by surface to surface, are highly oriented arranged. Thick weak intercalations normally have two steep planes caused by multi-period tectonic deformations. Calcite films attached to the smooth friction surface. In addition, the intercalations with dispersed structures have obviously zonations, including muddy zones and cleavage zones.
     Slow shear test reveals that the lowest strength parameter of weak intercalations is0.223, and the value of strength parameter according to the quantified index of granularity composition is0.72to0.86times of that obtained from the slow shear test. In addition, recommended values of typical weak intercalations were given by considering other similar engineering experience.
     (3) Numerical simulation of the failure process of intercalated shear zone by PFC2D software.
     Materials, tectonics and environments are three essential elements for the formation of the intercalated shear zone. The flood plain deposits with high clay content provide abundant material basis. Shear zones are formed when shear rupture occurs in interbedded hard and weak rocks. The minerals and structures will change under certain groundwater condition. As a result, weak intercalations become softening and mudding.
     Based on the particle flow theory, PFC2D models of shear zone were constituted to study the failure process of shear band. The simulation test focused on the void ratio change, as well as the position, width, angle and spacing of the shear cracks. The results show that the shear failure process of the model is consistent with the development of slip surface in clay which was proposed by A.W. Skempton. The failure experiences a process of fissures formed, grew lager, and developed until large scale sliding occurs. Soil structure is seriously damaged and bearing capacity decline after slide occurs. Compare eight PFC2D models with different thickness and length, the simulation results reveal that when the thickness of hard and weak rock is fixed, the longer sample leads to the gentler angle of the cracks and larger spacing between them. Meanwhile, micro cracks are prone to be concentrated initially in both ends of shear zone. Maintaining the length and the thickness of hard rock, the spacing of the cracks becomes larger with the increasing thickness of shear zone, but the angle remains unchanged.
     (4) Build three-dimensional geological modeling of the dam foundation by GOCAD software. Analyze the spatial extension features of weak intercalations by means of drilling videos, build the three-dimensional geological models and evaluate the strength parameters distribution regularities.
     Three-dimensional geological models of9formation interfaces were intuitively established by GOCAD software, including ground, Q4, J3s6, J3s5, J3s4-2, J3s4-1, J3s3, J3s2and J3s1. Visual geological models were obtained and stratigraphic lost and pitch-out problems were solved using spatial data processing functions. DSI method was applied to build engineering geological parameter models, such as rock granularity and clay content. As a result, parameter values at any point can be obtained by clicking the place in the model, distribution regularities of the parameters can be further obtained. Spatial distribution properties of any geological information were shown in three directions which parallel to the axis by using the Section or Slicer method in GOCAD. In addition, engineering geological profiles between any drilling can be speedily established by using X-Section method.
     The position, type, property and connectivity and other features of weak intercalations are obtained through the logging data, sedimentary facies analysis and drilling videos. Several new concepts related to extensibility, such as extended length, extended width, vertical connectivity rate, lateral connectivity rate, are proposed to analyze spatial extension characteristics of weak intercalations in the research area. Continuous weak intercalations, which are20m below the foundation surface, have impact on the stability of the dam. Calculate the depth and extending parameters of these controlled weak intercalations in different marine constructions, including overflow dam, power-house and ship lock. Build the three-dimensional geological models and parameter models and evaluate the distribution regularities of the parameters in each layer.
引文
[1]徐瑞春,周建军.红层与大坝[M].武汉:中国地质大学出版社,2010.
    [2]PAUL D., KRYNINE, SECTION OF GEOLOGY AND MINERALOGY:THE ORIGIN OF RED BEDS[J]. Transactions of the New York Academy of Sciences,2012.11(3): 60-68.
    [3]曲永新,徐瑞春.长江葛洲坝工程层间剪切带的研究[C].全国首届工程地质学术会议论文选集,1979.
    [4]张国祺.盐锅峡水电站概况[J].大坝与安全,1994,(3):1-3.
    [5]戴尚纯.八盘峡水电站软弱夹层地基的运行性状[J].水力发电,1994,(10):17-21.
    [6]刘丰收.黄河小浪底地区沉积环境及泥化夹层的成因分析[J].人民黄河,1990,(3):34-38.
    [7]刘彬.软硬相间层状岩体工程地质特性及作为高混凝土重力坝坝基岩体的适宜性研究[D].成都:成都理工大学,2010.
    [8]刘家铎,李琦.金沙江向家坝_坝址须家河组沉积环境分析[J].成都理工学院学报,1996,23(1):19-25.
    [9]项伟.长江葛州坝工程坝基软弱夹层的沉积规律及其工程地质意义[C].全国第三次工程地质大会论文选集,1988,200-206.
    [10]曲永新,单世桐,徐晓岚,等.某水利工程泥化夹层的形成及变化趋势的研究[J].地质科学,1977,10(4):363-371.
    [11]孙万和,杨连生,慎乃齐等.葛洲坝坝基层间剪切带的模拟研究[J].武汉水利电力学院学报,1991,24(5):495-502.
    [12]SKEMPRON A. W. Some observations on tectonic shear zones[C].1st ISRM Congress, Lisbon, Portugal, September 25-October 1,1966.
    [13]Cundall P A, Strack ODL. Particle flow code in 2 Dimensions[A]. Itasca Consulting Group, Inc.,1999.
    [14]Cundall P A, Strack ODL. A discrete numerical model for graunlar assemblies[J]. Geotechnique,1979,29(1):47-65.
    [15]周健,池毓蔚,池永,等.砂土双轴试验的颗粒流模拟[J].岩土工程学报,2000(6):701-704.
    [16]廖雄华,周健,徐建平,等.粘性土室内平面应变试验的颗粒流模拟[J].水利学报,2002(12):11-17.
    [17]周健,池永.砂土力学性质的细观模拟[J].岩土力学,2003(6):901-906.
    [18]蒋明镜,李秀梅.双轴压缩试验中砂土剪切带形成的离散元模拟分析[J].山东大学学报(工学版),2010,40(2):52-58.
    [19]JIANG M. J., YAN H.B. ZHU H.H., UTILI S. Modeling shear behavior and strain localization in cemented sand by two-dimensional distinct element method analyses [J]. Computers and Geotechnics,2010,38(1):14-29.
    [20]UTILI S., OVA R. DEM analysis of bonded granular geomaterials[J]. Journal for Numerical and Analytical Methods in Geomechanic,2008(32):1997-2031.
    [21]蔡正银.砂土的渐进破坏及其数值模拟[J].岩土力学,2008,29(3):580-585.
    [22]蔡正银,李相崧.无黏性土中剪切带的形成过程[J].岩土工程学报,2003,(2):129-134.
    [23]张晓平,吴顺川,张志增,等.含软弱夹层土样变形破坏过程细观数值模拟及分析[J].岩土力学,2008,29(5):1200-1209.
    [24]吴顺川,张晓平,刘洋.基于颗粒元模拟的含软弱夹层类土质边坡变形破坏过程分析[J].岩土力学,2008,29(11):2899-2904.
    [25]张咸恭,王思敬,张倬元.中国工程地质学[M].北京:科学出版社,2000.
    [26]Wu Jian, Cao Dai-Yong, Research on 3D distribution of meandering river sand body using sedimentary facies method and 3D geological modeling[J]. Journal of China University of Mining and Technology,2006,16(3):349-352.
    [27]Deutsch C. V., Journel A. G., GSL IB:Geostatistical software library and user's guide[S]. Oxfordpress,1992.
    [28]Holden L., Hauge R. Modeling of fluvial reservoirs with object models [J]. Mathematical Geology,1998,31 (5):473-495.
    [29]GB50201-94.防洪标准[S].
    [30]DL 5180-2003.水电枢纽工程等级划分及设计安全标准[S].
    [31]彭华,吴志才.关于红层特点及分布规律的初步探讨[J].中山大学学报,2003,42(5):109-113.
    [32]中国地质科学院.中国地层—中国地层概论[M].北京:地质出版社,1982.
    [33]邢观猷.对我国红层地区大坝工程安全措施的探讨[J].大坝与安全,1996,(1):1—7.
    [34]程强,寇小兵,黄绍槟等.中国红层的分布及地质环境特征[J].工程地质学报,2004,12(01):34-40.
    [35]中国地层典编委会.中国地层典一侏罗系[M].北京:地质出版社,2000.
    [36]Jones Thomas RuPert.On some Triassic or Estheriae from the red beds or Cimarron Series of Kansas[J].Geological Magazine,1898,4(5):291-293.
    [37]卡尔.奥,邓巴.约翰,罗杰斯著.杨遵仪,徐桂荣译.地层学原理[M].北京:地质出版社,1974.
    [38]中国科学院《中国自然地理》编委会.中国自然地理[M].北京:科学出版社,1980.
    [39]李廷勇,王建力.中国的红层及发育的地貌类型[J].四川师范大学学报(自然科学版),2002,25(4):427-431.
    [40]彭华.中国丹霞地貌及其研究进展[M].广州:中山大学出版社,2000.
    [41]刘尚仁,黄瑞红.广东红层岩溶地貌与丹霞地貌[J].中国岩溶,1991,(3):183-189.
    [42]中国科学院成都分院土壤研究室.中国紫色土(上篇)[M].北京:科学出版社,1991.
    [43]何毓蓉等编著.中国紫色土(下篇)[M].北京:科学出版社,2003.
    [44]成昆铁路技术总结委员会.成昆铁路—第二册(线路,工程地质及路基)[M].北京:人民铁道出版社,1980.
    [45]冯启岩,韩宝平,隋旺华.鲁西南地区红层软岩水岩作用特征与工程应用[J].工程地质学报,1999,7(3):266-271.
    [46]龚先兵.高速公路红砂岩地带路基修筑技术[M].湖南:科学技术出版社,1999.
    [47]万宗礼,聂德新,吴曾谋.黄河上游新第三系红层工程地质特性研究[J].西北水电,2002,(2):60-63.
    [48]夏祖葆,刘宝珺.红层问题[J].岩相古地理,1990,(3):47-61.
    [49]四川省水利电力厅水利水电设计院.四川红色盆地的工程地质条件,水利水电部水利水电建设总局编,不同岩性的工程地质条件,北京,水利水电出版社,1959.
    [50]杨华荟.湖南红层岩溶与水库渗漏[J].湖南水利,1985,(6):21-25.
    [51]朱定华,陈国兴.南京红层软岩流变特性试验研究[J].南京工业大学学报,2002,(9)77-79.
    [52]余宏明,胡艳欣,张纯根.三峡库区巴东地区紫红色泥岩的崩解特性研究[J].地质科技情报,2002,(12):77-80.
    [53]赵明华,刘晓明,苏永华.含崩解软岩红层材料路用工程特性试验研究[J].岩土工程学报,2005,(6):667-671.
    [54]赵明华,苏永华,刘晓明.湘南红砂岩崩解机理研究[J].湖南大学学报(自然科学版),2006,(1):11-19.
    [55]刘晓明,赵明华,苏永华,龙勇.红层软岩崩解性的灰色关联分析[J].湖南大学学报(自然科学版),2006,(4):1 6-20.
    [56]徐红梅,侯龙清,罗嗣海.红层工程性质指标相关性研究[J].东华理工学院学报(自然科学版),2005,(1):43-47.
    [57]唐兴华,赵志样,吉守信,杨晓辉.新第三系红层不同含水量与其力学性质关系试验研究[J].西北水电,2005,(4):16-19.
    [58]张永安,李峰,陈军.红层泥岩水岩作用特征研究[J].工程地质学报,2008,16(1):22-26.
    [59]周翠英,谭祥韶,邓毅梅,等.特殊软岩软化的微观机制研究[J].岩石力学与工程学报,2005,24(3):394-400.
    [60]吴泉根.红色岩层地区建坝的工程地质问题[J].华东水电技术,1993,(4):30-39.
    [61]邢林生.纪村混凝土坝基红层的恶化及其原因分析[J].水利学报,1996,(9):38-44.
    [62]张勇,王志勇.葛洲坝坝区软弱夹层沉积环境模拟[C].第二届全国工程地质力学青年学术讨论会论文集.北京:地震出版社,1992:140-146.
    [63]邬金华,余素玉,刘东健.湖北省高坝洲水电枢纽坝基软弱夹层沉积分布规律[J].水文地质工程地质,1994,(5):17-21.
    [64]马国彦.对小浪底坝区软弱夹层分布规律的初步研究[J].人民黄河,1984,(2):2-6.
    [65]胡涛,任光明,聂德新等.沉积型软弱夹层成因分类及强度特征[J].中国地质灾害与防治学报,2004,15(1):124-128.
    [66]李守定,李晓,长年学等.三峡库区侏罗系易滑地层沉积特征及其对岩石物理力学性质的影响[J].工程地质学报,2004,12(4):385-389.
    [67]Chen, Jing'an, Wan Guojiang, Zhang David Dian, Environmental records of lacustrine sediments in different time scales:Sediment grain size as an example[J]. Science in China, Series D:Earth Sciences,2004,47(10):954-960.
    [68]KONERTM,VANDENDERGHEJ. Comparison of laser grain size analysis with pipette and sieve analysis:asolution for the underestim ation of the clay fraction[J]. Sedimentology, 1997, (4):523-535.
    [69]肖晨曦,李志忠.粒度分析及其在沉积学中应用研究[J].新疆师范大学学报(自然科学版),2006,25(3):118-123.
    [70]张璞,陈建强,田明中等.沉积物粒度分析在厦门市第四纪环境研究和地层划分对比中的应用[J].地球科学与环境学报,2005,27(1):88-94.
    [71]黄惠玉.滹沱河平原段现代沉积物的成分与沉积环境[J].同济大学学报,1992,20(4):467-473.
    [72]崔亮,张超,马念杰.基于沉积分析的围岩稳定性区域预测技术[J].煤炭科学技术,2011,39(10):8-10.
    [73]Miall A.D., Principles of Sedimentary Basin Analysis [M]. New York:Springer-Verlag, 1984:133-202.
    [74]龚一鸣.岩相剖面的定量历史沉积学分析[J].地球科学-武汉地质学院学报,1987,12(6):613-320.
    [75]MEI Mingxiang, MA Yongsheng, GUO Qingyin, et al. Basic lithofacies-succession model for the Wumishan cyclothems:their Markov chain analysis and regularly vertical stacking patterns in the third-order sequences[J]. Acta Geologica Sinica-English Edition,2001,75(4): 421-431.
    [76]Charvin K, Gallagher K, Hampson G L, et al. A Bayesian approach to inverse modelling of stratigraphy, part 1:method[J]. Basin Research,2009,21(1):5-25.
    [77]Verwer K, Porta G D, Oscar M T, Renter J A M. Controls and predictability of carbonate facies architecture in a Lower Jurassic three-dimensional barrier-shoal complex (Djebel Bou Dahar, High Atlas, Morocco)[J]. Sedimentology,2009,56(6):1801-1831.
    [78]Swart P K, Eberli G P, Mckenzie J A, et al. Markov models for linking environments and facies in space and time (recent Arabian gulf, Miocene paratethys)[M]. Published on line, 2012:1-2.
    [79]Hattori I. Entropy in Markov chains and discrimination of cyclic patterns in lithologic succession[J]. Math. Geol.,1976,8(4):477-497.
    [80]余烨,张长敏,张尚锋等.应用岩性统计方法判别沉积相-以珠江口盆地三角洲沉积为例[J].古地理学报,2011,13(3):271-277.
    [81]龚一鸣.湖南宁远早-中泥盆世陆源碎屑岩地层剖面马尔科夫概型分析[J].地质科技情 报,1983,(10):35-38.
    [82]Haldorsen H. H., et al. Stochastic modeling [J]. JPT,1990,42:404-412.
    [83]Hermanns Holger, Katoen Joost-Pieter, Meyer-Kayser Joachim, A Markov chain model checker[J]. Lecture Notes in Computer Science,2000,347-362.
    [84]张成凤,吕洪波,夏邦栋,等.南盘江盆地中三叠统复理石韵律的马尔科夫链特征及其地质意义[J].地质评论,2011,57(5):632-640.
    [85]张成凤,吕洪波.马尔科夫链模拟在济阳坳陷中的应用[D].山东:中国石油大学地质系,2010.
    [86]王秋良,李长安.马尔柯夫链在江汉平原第四纪沉积环境分析中的应用[J].地质科技情报,2008,27(1):38-42.
    [87]吴亚春,蔡燕弟,任玉东.用C语言实现马尔科夫链预测模型的构造[J].黑龙江水专学报,2001,28(1):327-330.
    [88]郭飞,葛成,韩宇.嵌入式马尔科夫链的地质属性建模与应用[J].地理与地理信息科学,2012,28(1):47-50.
    [89]李景山,赵善国,胡萍.坝基软弱夹层的成因及特征[J].黑龙江水利科技,2007,35(2):181.
    [90]王幼麟.葛洲坝泥化夹层成因及性状的物理化学探讨[J].水文地质工程地质,1980,(4):1-7.
    [91]肖树芳,阿基诺夫.K.泥化夹层的组构及强度蠕变特性[M-].吉林:吉林科学技术出版社,1991.
    [92]薛文芳.混凝土重力坝基岩中的软弱夹层问题[J].科技情报开发与经济,2003,13(7):171-172.
    [93]徐卫亚,孙广忠,曲永新.链子崖危岩体层间剪切带研究[C].自然边坡稳定性分析暨华蓥山边坡变形趋势研讨会论文集,1991.
    [94]简文星,殷坤龙,马昌前等.万州侏罗纪红层软弱夹层特征[J].岩土力学,2005,26(6):901-905.
    [95]Jian Wenxin, Wang Zhijian, Yin Kunlong. Mechanism of the Anlesi landslide in the Three Gorges Reservoir, China[J]. Engineering Geology,2009,(108):86-95.
    [96]谭罗荣.葛洲坝泥化夹层的物质组成特性[J].岩土力学,1984,5(2):27-34.
    [97]戴广秀,凌泽民,石秀峰等.葛洲坝水利枢纽坝基红层内软弱夹层及其泥化层的某些工程地质性质[J].地质学报,1979,(2):153-166.
    [98]马国彦,高广礼.黄河小浪底坝区泥化夹层分布及其抗剪试验方法的分析[J].工程地质学报,2000,8(1):94-99.
    [99]项伟.软弱夹层微结构研究及其力学意义[J].地球科学-武汉地质学院学报,1985,10(1):165-169.
    [100]陈守义,谭罗荣,张梅英.某些粘土岩的各向异性在亚微观结构上的表现[J].水文地质工程地质,1980,(5):17-19.
    [101]蒋明镜,沈珠江.结构性粘土剪切带的微观分析[J].岩土工程学报,1998,20(2):102-108.
    [102]王幼麟.开展软岩工程性质的微观研究[J].岩土力学与工程学报,1989,8(1):94-96.
    [103]任光明,聂德新.软弱层带夹泥粒度成分的分形研究[J].地质灾害与环境保护,1997,8(4):1-8.
    [104]聂德新,符文熹,任光明等.天然围压下软弱层带的工程特性及当前研究中存在的问题分析[J].工程地质学报,1999,7(4):298-302.
    [105]聂德新,张咸恭,韩文峰.软弱岩带工程地质评价的几个问题[C].第四届全国工程地质大会论文选集(二),1992.
    [106]任光明,聂德新,米德才.软弱层带夹泥物理力学特征的仿真研究[J].工程地质学报,1999,7(1):65-71.
    [107]符文熹,聂德新,尚岳全等.软弱夹层工程地质性质的室内仿真研究[J].浙江大学学报(工学版),2003,37(1):1-4.
    [108]胡卸文,伊小娟,胡恒洋,等.无泥型软弱层带饱水前后强度特性现场试验叨.山地学报,2011,29(2):210-216.
    [109]胡卸文.无泥型软弱层带的强度参数[J].山地学报,2000,18(1):52-56.
    [110]Cressie N.A.C., Statistics for spatial data [M]. New York:John Wiley and Sons,1991.
    [111]Davis J.C., Statistics and data analysis in geology(3rd edition) [M]. New York:John Wiley and Sons,2002.
    [112]肖裕行,肖树芳,徐瑞春等.层间剪切带法向空间分布定量预报[J].工程地质学报,1996,4(1):20-26.
    [113]曹政之.分析钻孔资料查明坝基软弱夹层的一个实例[J].四川水利发电,1986,(3):64-66.
    [114]余先华,聂德新,周洪福.大型直剪与小型直剪对软弱夹层强度试验参数取值关系的研究[J].工程地质学报,2006,14(Suppl.):126-129.
    [115]王先锋,佴磊.各类泥化夹层的剪切破坏机制与强度特征[J].长春地质学院学报,1 984,(4):90-97.
    [116]冯明权,刘丽,冯建元.彭水水电站软弱夹层性状特征与力学参数的研究[J].资源环境与工程,2008,22(增刊):86-89.
    [117]项伟.软弱夹层粘粒含量与抗剪强度参数之间的经验公式[J].水文地质与工程地质,1989,(5):45-46.
    [118]唐良琴.软弱夹层粒度成分与强度参数的关系研究[J].重庆交通学院学报,2005,24(2):94-97.
    [119]刘彬,聂德新.断层泥强度参数与含水率关系研究[J].岩土工程学报,2006,28((12):2164-2167.
    [120]贺里尧,董兰凤,穆鹏.坝基岩体软弱层带力学参数[J].兰州大学学报(自然科学版),2009,45(s1):76-79.
    [121]李青云,王幼麟.泥化夹层错动带残余强度与比表面的相关性研究[C].岩石力学在工程中的应用,1989.
    [122]程强,周德培,封志军.典型红层软岩软弱夹层剪切蠕变性质研究[J].岩石力学与工程 学报,2009,28(220):3176-3180.
    [123]林伟平.葛洲坝基岩202号泥化夹层强度选取的探讨[J].水利学报,1982,(10):68-72.
    [124]唐良琴,刘东燕,聂德新.软弱夹层力学参数取值规范分析[J].重庆大学学报,2011,34(12):3541.
    [125]Sun Wan-he, et al. Model study of intecralated shear zone in engineering geology[C].6th Int. Congr. IAEG, Amsterdam,1990:2023-2027.
    [126]Bennett R H et al.In situ porosity and permeability of selectedcarbonate sediment:Great Bahama Bank-Part 2[J]. Marine Geotechnology,1990,(9):29-42.
    [127]Bardet J P, Proubet J.A numeeerical investigation of structure of persistent shear bands in granular media[J].Geotechnique,1991,41(4):S99-613.
    [128]Bardet J P, Proubet J.Shear-band analysis in idealized granular material[J].J Engrg Mech, 1992,118(8):397-415.
    [129]Huang H, Detournay E Bellier B.Discrete Element modelling of rock cutting[J]. RockMechanics for Industry,1999,(l):123-130.
    [130]邬金华,余素玉,刘东健.湖北省高坝洲水电枢纽坝基软弱夹层沉积分布规律[J].水文地质工程地质,.994,(5):17-21.
    [131]胥良,刘汉超,石豫川,等.某电站坝基软弱夹层分布的趋势面分析[J].地质灾害与环境保护,2003,14(2):54-56.
    [132]Houlding S.W.3D Geosciences Modeling:Computer Techniques for Geological characterization[M]. Berlin:Springer-Verlag,1994.
    [133]童亮.GOCAD在某桥基三维地质建模中的应用研究[D].成都:西南交通大学,2009.
    [134]董慧超.北京地铁九号线三维地质建模研究[D].北京:中国地质大学(北京),201 1.
    [135]王明.GOCAD在郑州地铁1号线三维地质建模中的应用研究[D].成都:西南交通大学,2013.
    [136]蔡冰.基于三维建模的曹妃甸工业区工程地质环境评价[D].河北:河北理工大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700