用户名: 密码: 验证码:
稳定化纳米级钯铁体系对水中2,4-二氯苯酚的催化还原脱氯研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用纳米级零价铁(NZVI)技术可以有效去除2,4-二氯苯酚(2,4-DCP),将其还原脱氯转化为苯酚,达到降低毒性和可生物降解的目的。但是,NZVI颗粒由于磁力和范德华力的作用而容易发生团聚,反应之后生成的含铁氢氧化物和氧化物会在NZVI表面形成钝化层,致使其反应活性迅速下降;而且由于颗粒极小,反应后的纳米材料难以回收,如果排放存在一定的环境风险。故本研究通过制备以下纳米级稳定化NZVI体系来克服这些缺点。
     10-20nm多壁纳米碳管(MWCNTs)可以很好地负载Pd/Fe纳米颗粒,有效去除2,4-DCP。由于π-π键的作用,MWCNTs对苯酚(P)、邻氯酚(o-CP)、对氯酚(p-CP)和2,4-DCP的吸附能力随着苯环上的-C1基团的增多而逐渐增大,反应1min内的吸附去除率分别达到19.7%,60.5%,72.0%和95.1%。当MWCNTs作为载体负载NZVI之后,可以有效抑制NZVI的团聚和钝化现象,尽管NZVI占据部分表面会减弱MWCNTs的吸附能力,但在反应1min内目标污染物2,4-DCP的去除率仍旧达到50%左右,并且随着时间推移逐渐增加至100%,中间脱氯产物(o-CP和p-CP)的浓度在反应过程中始终维持较低水平(<1mg L-1),最终脱氯产物(P)被逐渐释放返回液相中,通过MWCNTs对有机物的不同吸附能力,以及对2,4-DCP的吸附、脱氯以及P的脱附这一过程,达到污染物的降解目的。同时选用较大管径的60-100nmMWCNTs作为对比,两种规格的MWCNTs对酚的吸附能力都遵循2,4-DCP>p-CP> o-CP>P的顺序,通过批量吸附实验探明了MWCNTs对四种有机物的吸附动力学和吸附等温线模型,并系统地考察了两种规格的MWCNTs-Pd/Fe体系对2,4-DCP的去除效果。60-100nm和10-20nmMWCNTs负载的Pd/Fe体系都可以有效去除2,4-DCP,当钯化率为0.20wt%时,反应1min的去除率分别达到41.8%和53.2%,反应5h后逐渐增加到94.6%和77.7%。相比之下,60-100nmMWCNTs负载的Pd/Fe体系的还原脱氯作用较10-20nm MWCNTs强,而吸附作用较弱。60-100nmMWCNTs的吸附和Pd/Fe纳米颗粒的还原作用的结合效果较好。
     纳米级Fe3O4-Pd/Fe体系比单独Pd/Fe体系具有更高的2,4-DCP还原脱氯效率。Fe3O4的存在使其在外加磁场的作用下为纳米材料的回收提供可能,并且可以显著增强2,4-DCP的脱氯效果;当体系中存在3g L-1Pd/Fe时,Pd/Fe采和Fe3O4的最佳质量比是3.0:2.0,反应5h内可以去除76.4%的2,4-DCP,明显高于同样条件下3.0:0.0(35.8%),3.0:1.0(58.0%),3.0:2.5(66.3%)和3.0:3.0(7.4%)质量比时的去除率。随着钯化率增加,2,4-DCP的脱氯和P的生成速率明显加快,当钯化率为0.20wt%时2,4-DCP去除率最高,反应5h达到98.2%。另外,体系中共存的阴阳离子、天然有机物也会影响2,4-DCP的去除效果。Fe3O4-Pd/Fe体系具有很稳定的催化活性和可循环性。
     纳米级MWCNTs、Fe3O4和Pd/Fe组成的复合体系可以有效地协同去除2,4-DCP,反应1min,5h和72h后,2,4-DCP的去除率分别达到54.2%,92.3%和100%。探讨了MWCNTs-Fe3O4-Pd/Fe体系对2,4-DCP, p-CP,2-CP和P的吸附动力学,热力学和等温线模型。MWCNTs存在的体系均对污染物具有吸附选择性,遵循目标污染物(2,4-DCP)>中间脱氯产物(p-CP和o-CP)>最终脱氯产物(P)的吸附顺序。MWCNTs-Fe3O4-Pd/Fe体系可以实现快速吸附-逐步脱氯-最终释放的过程。反应72h后,由于吸附能力差,超过82.7%的P脱附并返回液相中,使得MWCNTs-Fe3O4-Pd/Fe颗粒表面的大部分活性位点得到恢复。在5个连续实验中,MWCNTs-Fe3O4-Pd/Fe体系都保持了很高的反应活性,并且反应后的纳米材料可以达到预期的磁性分离回收效果。而另外相关的纳米体系(MWCNTs, MWCNTs-Fe3O4, MWCNTs-Fe3O4-Fe, Pd/Fe, Fe3O4-Pd/Fe和MWCNTs-Pd/Fe)较MWCNTs-Fe3O4-Pd/Fe复合体系在吸附能力、脱氯效果及可回收性等方面均有不同程度的下降。
2,4-dichlorophenol (2,4-DCP) could be effectively removed by nano-scale zero valent iron (NZVI), and dechlorinated to phenol (P), which was of low toxicity and more biodegradable. However, NZVI particles would be aggregated due to magnetic and van der Waals force, and new generated iron hydroxide and oxide would form a passivation layer on the NZVI surface, then the reactivity would decline. Moreover, nano materials were difficult to retrieve as the particles were too small, which had environmental risk. In order to overcome these shortages, nano-scale stabilized NZVI systems were prepared:
     Nanoscale Pd/Fe particles were well supported by10-20nm multi-walled carbon nanotubes (MWCNTs), which were used to remove2,4-DCP. The adsorption capacity of MWCNTs was found to be increased with the increasing amount of chlorine atoms, and the removal rate of P,2-chlorophenol (2-CP),4-chlorophenol (4-CP) and2,4-DCP reached19.7%,60.5%,72.0%and95.1%in a short period of1min by MWCNTs, respectively, which probably due to π-π interaction. The adsorption kinetics and adsorption isotherm were discussed. MWCNTs as a supporter, was effective for avoiding the agglomeration of nZVI. Furthermore, the speedy removal efficiency of the initial substances (2,4-DCP) reached about50%in1min, and over the time continued to rise to100%, remaining low concentrations (<1mg L-1) of the intermediate substances (o-CP, p-CP), and gradual release of the final substance (P) from MWCNTs-Pd/Fe composites during the whole process, proposed a novel method for in situ remediation technology.60-100nm MWCNTs was also introduced, and a systematic investigation of two specified MWCNTs-Pd/Fe nanocomposites to remove2.4-DCP is presented. Both MWCNTs-Pd/Fe nanocomposites showed excellent adsorption efficiencies for phenols and followed the sequential order;2,4-DCP> p-CP> o-CP> P. Batch adsorption experiments including kinetics and isotherm were also intensively investigated. Significantly high2,4-DCP removal was observed after1min when it reached to49.7%and53.2%, then continuously increased up to95.2%and77.7%after5h at0.20wt%Pd loading by60-100nm and10-20nm MWCNTs-Pd/Fe nanocomposites, respectively. However, stronger dechlorination and weaker adsorption was found in60-100nm MWCNTs-Pd/Fe nanocomposites. Moreover, an integrated approach of physical adsorption by60-100nm MWCNTs and chemical reduction by Pd/Fe nanoparticles to remove2,4-DCP was successfully achieved.
     The nano-scale Pd/Fe-Fe3O4nanocomposites showed higher dechlorination efficiency of2,4-DCP rather than bare Pd/Fe nanoparticles in the batch dechlorination experiments. Fe3O4provided a convenient way to recycle the nanocomposites with an external magnetic field and significantly enhanced2,4-DCP dechlorination.3.0:2.0nFe3O4was the optimal mass ratio of Pd/Fe:Fe3O4in the presence of3g L-1Pd/Fe nanoparticles in our system, removing76.4%2,4-DCP within5h in the aqueous environment. This was much higher than3.0:0.0(35.8%),3.0:1.0(58.0%),3.0:2.5(66.3%), and3.0:3.0(7.4%) mass ratio of Pd/Fe:Fe3O4employed under the same conditions. Efficiencies of dechlorination and phenol formations were increased significantly when the amount of Pd increased, whereas the highest2,4-DCP removal efficiency was observed98.2%at0.20wt%Pd loading. Moreover, co-existed ions and nature organic material would affect the2,4-DCP removal. The nanocomposites showed stable catalytic activity, and promising to recycle during the process.
     2,4-DCP was effectively removed by the synergetic system consists of nano-scale MWCNTs, Fe3O4and Pd/Fe. As high as54.2%,92.3%, and100%of2,4-DCP was simultaneously adsorbed and dechlorinated after1min,5h, and72h, respectively. The adsorption kinetics, thermodynamics, and isotherms of2,4-DCP, p-CP,2-CP, and P were discussed. Notably, an adsorption priority order of initial contaminant (2,4-DCP)> intermediate dechlorinated product (p-CP and o-CP)> final dechlorinated product (P) was observed in the presence of MWCNTs. Rapid adsorption, gradual dechlorination, and final desorption were achieved by MWCNTs-Fe3O4-Pd/Fe system. Over82.7%of P was desorbed and released to aqueous phase after72h due to its low adsorption capacity leaving majority of active sites available on the surface of MWCNTs-Fe3O4-Pd/Fe. MWCNTs-Fe3O4-Pd/Fe system maintained high activity in continuous five runs experiment, and exceptional retrievability was revealed via external magnetic separation after reaction. Other relative system (MWCNTs, MWCNTs-Fe3O4, MWCNTs-Fe3O4-Fe, Pd/Fe, Fe3O4-Pd/Fe, and MWCNTs-Pd/Fe) was found to have one or two shortcomings of lower adsorption, weaker dechlorination, and poorer retrievability.
引文
[1]杨小飞.我国土壤污染的现状特征及其法律规制[J].环境科学,2008,37(4):63-64.
    [2]Witthuhn B, Klauth P, Klumpp E, et al. Sorption and biodegradation of 2,4-dichlorophenol in the presence of organoclays[J]. Applied Clay Science,2005, 28(1-4):55-66.
    [3]章海波,骆永明,赵其国,等.香港土壤研究Ⅳ·土壤中有机氯化合物的含量和组成[J].土壤学报,2006,43(2):220-225.
    [4]曹先仲,陈花果,申松梅,等.多氯联苯的性质及其对环境的危害[J].环境科学与工程,2011,2(12):33-37.
    [5]刘雯.红枫湖水体中持久性有机污染物—多氯联苯含量测定及源解析[D]:贵州师范大学,2009.
    [6]Lee CC, Huffman GL. Innovative thermal destruction technologies[J]. Environmental Progress,1989,8(3):190.
    [7]Hileman B. Concerns broaden over chlorine and chlorinated hydrocarbons[J]. Chemical Engineering. News,1993,71(16):11.
    [8]温东辉,祝万鹏.高浓度难降解有机废水的催化氧化技术进展[J].环境科学,1994,15(5):88-91.
    [9]Huang CP, Davis AP. Removal of Phenls from Water by A Photocatalytic Oxidation Process[J]. Water Science Technology,1989,21(6-7):455-464.
    [10]Lipczynska-Kochany E, Harms S, Milburn R. Degradation of carbon tetrachloride in the presence of iron and sulphur containing compounds[J]. Chemosphere,1994, 29(7):1477-1489.
    [11]韩恩厚.超临界水环境中材料的腐蚀研究现状[J].腐蚀科学与防护技术,1999,11(1):53-56.
    [12]Fill C, Tiltscher H. Investigations on material and corrosion problems for the oxidation of contaminations in supercritical water[J]. Materials and Corrosion,1997, 48(3):146-150.
    [13]张全兴,王勇,李秀娟.树脂吸附法处理硝基苯和硝基氯苯生产废水的研究[J].化工环保,1997,17(6):323-326.
    [14]肖羽堂,王继徽.二硝基氯苯废水预处理技术研究[J].化工环保,1997,17(5):264-267.
    [15]朱永安.空气气提法处理含苯和氯苯的废水[J].化工环保,1995,15(4):247-248.
    [16]高春风,马素华.重力分离-NMC工艺处理对二氯苯生产废水[J].化工环保,1996,16(1):30-34.
    [17]彭飞.共沸蒸馏技术在氯苯废水处理中的应用[J].河南化工,1999,7:38-39.
    [18]武迎生.硝基氯苯废水的治理[J].化工给排水设计,1997,1:17-27.
    [19]王世和,金杭,杨新萍.含氯苯和对邻硝基氯苯农药废水的混凝一氧化预处理[J].化工环保,2002,22(1):31-35.
    [20]Pettier C, Micolle M, Merlin G, et al. Characteristics of pentachlorophenate degradation in aqueous solution by means of ultrasound[J]. Environmental Science & Technology,1992,26:1639-1642.
    [21]Petrier C, Jiang Y, Lamy MF. Ultrasound and environment:sonochemical destruction of chloromatic derivatives[J]. Environmental Science-& Techmelogy, 1998,32:1316-1318.
    [22]Wu JM, Huang HS, Livengood CD. Ultrasonic destruction of chlorinated compound in aqueous solution[J]. Environmental Progress,1992,11:195-201.
    [23]华彬,陆永生,唐春燕,等.含氯苯废水的超声降解研究[J].环境污染与防治,2001,23(3):95-97.
    [24]Wu YJ, Zhang JH, Tong YF, et al. Chromium (VI) reduction in aqueous solutions by Fe3O4-stabilized Fe0 nanoparticles[J]. Journal of Hazardous Materials,2009, 172(2-3):1640-1645.
    [25]Xu XH, Zhou M, He P, et al. Catalytic reduction of chlorinated and recalcitrant compounds in contaminated water[J]. Journal of Hazardous Materials,2005, 123(1-3):89-93.
    [26]Yang GCC, Lee HL. Chemical reduction of nitrate by nanosized iron:kinetics and pathways[J]. Water Research,2005,39(5):884-894.
    [27]Lin YM, Chen ZL, Megharaj M, et al. Degradation of scarlet 4BS in aqueous solution using bimetallic Fe/Ni nanoparticles[J]. Journal of Colloid and Interface Science,2012,381(1):30-35.
    [28]Luo S, Yang SG, Sun C, et al. Improved debromination of polybrominated diphenyl ethers by bimetallic iron-silver nanoparticles coupled with microwave energy[J]. Science of the Total Environment,2012,429(0):300-308.
    [29]Mossa HS., Ataie-Ashtiani B., Kholghi M. Nitrate reduction by nano-Fe/Cu particles in packed column[J]. Desalination,2011,276(1-3):214-221.
    [30]Huang Q, Liu W, Peng PA, et al. Reductive dechlorination of tetrachlorobisphenol A by Pd/Fe bimetallic catalysts[J]. Journal of Hazardous Materials,2013,262(0):634-641.
    [31]Wang C, Zhang W. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs[J]. Environmental Science & Technology,1997, 31(7):2154.
    [32]Dong TT, Luo HJ, Wang YP, et al. Stabilization of Fe-Pd bimetallic nanoparticles with sodium carboxymethyl cellulose for catalytic reduction of para-nitrochlorobenzene in water[J]. Desalination,2011,271(1-3):11-19.
    [33]Su J, Lin S, Chen ZL, et al. Dechlorination of p-chlorophenol from aqueous solution using bentonite supported Fe/Pd nanoparticles:Synthesis, characterization and kinetics[J]. Desalination,2011,280(1-3):167-173.
    [34]Meng ZH, Liu HL, Liu Y, et al. Preparation and characterization of Pd/Fe bimetallic nanoparticles immobilized in PVDF·Al2O3 membrane for dechlorination of monochloroacetic acid[J]. Journal of Membrane Science,2011, 372(1-2):165-171.
    [35]Smuleac V, Varma R, Sikdar S, et al. Green synthesis of Fe and Fe/Pd bimetallic nanoparticles in membranes for reductive degradation of chlorinated organics[J]. Journal of Membrane Science,2011,379(1-2):131-137.
    [36]Sun JM, Karim AM., Zhang H, et al. Carbon-supported bimetallic Pd-Fe catalysts for vapor-phase hydrodeoxygenation of guaiacol[J]. Journal of Catalysis,2013, 306(0):47-57.
    [37]Zhao DM, Li M, Zhang DX, et al. Reductive dechlorination of 2,4-dichlorophenol by Pd/Fe nanoparticles prepared in the presence of ultrasonic irradiation[J]. Ultrasonics Sonochemistry,2013,20(3):864-871.
    [38]Wang XY, Zhu MP, Liu HL, et al. Modification of Pd-Fe nanoparticles for catalytic dechlorination of 2,4-dichlorophenol[J]. Science of the Total Environment,2013,449(0):157-167.
    [39]Wang XY, Yang JC, Zhu MP, et al. Characterization and regeneration of Pd/Fe nanoparticles immobilized in modified PVDF membrane [J]. Journal of the Taiwan Institute of Chemical Engineers,2013,44(3):386-392.
    [40]Yang L, Lv L, Zhang SJ, et al. Catalytic dechlorination of monochlorobenzene by Pd/Fe nanoparticles immobilized within a polymeric anion exchanger[J]. Chemical Engineering Journal,2011,178(0):161-167.
    [41]Matheson LJ, Tratnyek PG. Reductive dehalogenation of chlorinated methanes by iron metal [J]. Environmental Science & Technology,1994,28(12):2045-2053.
    [42]Tie SL, Lee HC, Bae YS, et al. Monodisperse Fe304/Fe@SiO2 core/shell nanoparticles with enhanced magnetic property [J]. Colloids and Surfaces A: Physicochemical Engineering Aspects,
    [43]Chang PR, Zheng PW, Liu BX, et al. Characterization of magnetic soluble starch-functionalized carbon nanotubes and its application for the adsorption of the dyes[J]. Journal of Hazardous Materials,2011,186(2-3):2144-2150.
    [44]Smart SK, Cassady Al, Lu GQ, et al. The biocompatibility of carbon nanotubes[J]. Carbon,2006,44(6):1034-1047.
    [45]Lin Y, Taylor S, Li H, et al. Advances towards bioapplications of carbon nanotubes[J]. Journal of Materials Chemistry,2004,14(4):527-541.
    [46]Lu C, Chung YL, Chang KF. Adsorption of trihalomethanes from water with carbon nanotubes[J]. Water Research,2005,39(6):1183-1189.
    [47]Cardoso NF, Pinto RB, Lima EC, et al. Removal of remazol black B textile dye from aqueous solution by adsorption[J]. Desalination,2011,269(1-3):92-103.
    [48]Machado FM, Bergmann CP, Fernandes THM, et al. Adsorption of reactive red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon[J]. Journal of Hazardous Materials,2011,192(3):1122-1131.
    [49]Wang JP, Chen YZ, Feng HM, et al. Removal of 2,4-dichlorophenol from aqueous solution by static-air-activated carbon fibers[J]. Journal of Colloid Interface Science,2007,313(1):80-85.
    [50]Luboch E, Wysiecka EW, Muchlado ZP, et al. Synthesis and properties of azobenzocrown ethers with π-electron donor, or π-electron donor and π-electron acceptor group(s) on benzene ring(s)[J]. Tetrahedron,2005,61(45):10738-10747.
    [51]Jung MW, Ahn KH, Lee Y, et al. Adsorption characteristics of phenol and chlorophenols on granular activated carbons (GAC)[J]. Microchemical Journal, 2001,70(2):123-131.
    [52]Li XN, Zhao HM, Quan X, et al. Adsorption of ionizable organic contaminants on multi-walled carbon nanotubes with different oxygen contents[J]. Journal of Hazardous Materials,2011,186(1):407-415.
    [53]Chingombe P, Saha B, Wakeman RJ. Sorption of atrazine on conventional and surface modified activated carbons[J]. Journal of Colloid Interface Science,2006, 302(2):408-416.
    [54]Yu Q, Zhang RQ, Deng SB, et al. Sorption of perflurooctane sulfonate and perfluorooctanoate on activated carbons and resin:kinetics and isotherms study[J]. Water Research,2009,43(4):1150-1158.
    [55]Bilgili MS. Adsorption of 4-chlorophenol from aqueous solutions by xad-4 resin: Isotherm, kinetic, and thermodynamic analysis[J]. Journal of Hazardous Materials, 2006,137(1):157-164.
    [56]Langmuir I. The constitution and fundamental properties of solids and liquids[J]. Journal of American Chemical Society,1916,38:2221-2295.
    [57]Chen JP, Wu SN, Chong KH. Surface modification of a granular activated carbon by citric acid for enhancement of copper adsorption[J]. Carbon,2003, 41(10):1979-1986.
    [58]徐新华,刘永,卫建军,等.纳米级Pd/Fe双金属体系对水中2,4-二氯苯酚脱氯的催化作用[J].催化学报,2004,25(2):138-142.
    [59]Xu XH, Zhou HY, He P, et al. Catalytic dechlorination kinetics of p-dichlorobenzene over Pd/Fe catalysts[J]. Chemosphere,2005,58(8): 1135-1140.
    [60]Klausen J, Trober SP, Haderlein SB, et al. Reduction of subsititued nitrobenzenes by Fe(II) in aqueous mineral suspensions[J]. Environmental Science & Technology,1995,29:2394-2404.
    [61]Xu J, Hao ZW, Xie CS, et al. Promotion effect of Fe2+ and Fe3O4 on nitrate reduction using zero-valent iron[J]. Desalination,2012,284:9-13.
    [62]Zhang Z, Shen QH, Cissoko N, et al. Catalytic dechlorination of 2,4-dichlorophenol by Pd/Fe bimetallic nanoparticles in the presence of humic acid[J]. Journal of Hazardous Materials,2010,182(1-3):252-258.
    [63]Dolfing J, Harrison BK. Gibbs free energy of formation of halogenated aromatic compounds and their potential role as electron acceptor in anaerobic environments[J]. Environmental Science & Technology,1992,26:2213-2216.
    [64]Giasuddin ABM, Kanel SR, Choi H. Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal[J]. Environmental Science & Technology,2007,41:2022-2027.
    [65]Wei JJ, Xu XH, Liu Y, et al. Catalytic htdrodechlorination of 2,4 dichlorophenol over nanoscale Pd/Fe:Reaction pathway and some experimental parameters[J]. Water Research,2006,40:348-354.
    [66]Calvete T, Lima EC, Cardoso NF, et al. Application of carbon adsorbents prepared from Brazilian-pine fruit shell for the removal of reactive orange 16 from aqueous solution:Kinetic, equilibrium, and thermodynamic studies[J]. Journal of Environmental Management,2010,91(8):1695-1706.
    [67]Kara S, Aydiner C, Demirbas E, et al. Modeling the effects of adsorbent dose and particle size on the adsorption of reactive textile dyes by fly ash[J]. Desalination, 2007,212:282-293.
    [68]Xu J, Lv XS, Li JD, et al. Simultaneous adsorption and dechlorination of 2,4-dichlorophenol by Pd/Fe nanoparticles with multi-walled carbon nanotube support[J]. Journal of Hazardous Materials,2012,225-226:36-45.
    [69]Dubinin MM, Walker PL. Chemistry and Physics of Carbon, Marcel Dekker, New York,1966.
    [70]Peng XJ, Li YH, Luan ZK, et al. Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes[J]. Chemical and Physics Letters,2003,376(1-2):154-158.
    [71]Pelekani C, Snoeyink VL. Competitive adsorption between atrazine and methylene blue on activated carbon:the importance of pore size distribution[J]. Carbon,2000,38(10):1423-1436.
    [72]Joo SH, Zhao D. Destruction of lindane and atrazine using stabilized iron nanoparticles under aerobic and anaerobic conditions:Effects of catalyst and stabilizer[J]. Chemosphere,2008,70(3):418-425.
    [73]Lien HL, Zhang WX. Nanoscale Pd/Fe bimetallic particles:Catalytic effects of palladium on hydrodechlorination[J]. Applied Catalysis B:Environmental,2007, 77(1-2):110-116.
    [74]Xu XH, Wo JJ, Zhang JH, et al. Catalytic dechlorination of p-NCB in water by nanoscale Ni/Fe[J]. Desalination,2009,242:346-354.
    [75]Zhang Z, Hao ZW, Yang YP, et al. Reductive denitrification kinetics of nitrite by zero-valent iron[J]. Desalination,2010,257(1-3):158-162.
    [76]Reardon EJ. Anaerobic corrosion of granular iron measurement and interpretation of hydrogen evolution rates[J]. Environmental Science & Technology,1995,29: 2936-2945.
    [77]Wang CM, Baer DR, Amonette JE, et al. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles [J]. Journal of American Chemistry Society,2009,131:8824-8832.
    [78]Li XQ, Elliot DW, Zhang WX. Zero-valent iron nanoparticles for abatement of environmental pollutants:materials and engineering aspects[J]. Critical Reviews in Solid State and Materials Sciences,2006,31(4):111-122.
    [79]Hwanga YH, Kimb DG, Shin HS. Effects of synthesis conditions on the characteristics and reactivity of nano scale zero valent iron[J]. Applied Catalysis B: Environmental,2011,105(1-2):144-150.
    [80]Zhang WX. Nanoscale iron particles for environmental remediation:an overview[J]. Journal of Nanoparticle Research,2003,5(3-4):323-332.
    [81]Maletzky P, Bauer R, Lahnsteiner J, et al. Immobilisation of iron ions on nafion(?) and its applicability to the photo-fenton method[J]. Chemosphere,1999,38(10): 2315-2325.
    [82]Ramirez JH, Maldonado-H6dar FJ, Perez-Cadenas AF, er al. Azo-dye Orange Ⅱ degradation by heterogeneous Fenton-like reaction using carbon-Fe catalysts [J]. Applied Catalysis B:Environmental,2007,75(3-4):312-323.
    [83]Noorjahan M, Kumari VD, Subrahmanyam M, et al. Immobilized Fe (Ⅲ)-HY:an efficient and stable photo-Fenton catalyst[J]. Applied Catalysis B:Environmental, 2005,57(4):291-298.
    [84]Wu LF, Ritchie SMC. Removal of trichloroethylene from water by cellulose acetate supported bimetallic Ni/Fe nanoparticles [J]. Chemosphere,2006,63(2): 285-292.
    [85]Cheng MM, Ma WH, Li J, et al. Visible-light-assisted degradation of dye pollutants over Fe (Ⅲ)-loaded resin in the presence of H2O2 at neutral pH values [J]. Environmental Science & Technology,2004,38:1569-1575.
    [86]Shevchenko EV, Talapin DV, Murray CB, et al. Structural characterization of self-assembled multifunctional binary nanoparticle superlattices[J].Journal of American Chemistry Society,2006,128:3620-3637.
    [87]Quarta A, Di-Corato R, Manna L, et al. Multifunctional nanostructures based on inorganic nanoparticles and oligothiophenes and their exploitation for cellular studies[J]. Journal of American Chemistry Society,2008,130:10545-10555.
    [88]Strigul N, Vaccari L, Galdun C, et al. Acute toxicity of boron, titanium dioxide, and aluminum nanoparticles to Daphnia magna and Vibrio fischeri[J]. Desalination, 2009,248(1-3):771-782.
    [89]Oliveira RL, Kiyohara PK, Rossi LM. High performance magnetic separation of gold nanoparticles for catalytic oxidation of alcohols[J]. Green Chemistry,2010,12: 144-149.
    [90]Shen YF, Tang J, Nie ZH, et al. Tailoring size and structural distortion of Fe3O4 nanoparticles for the purification of contaminated water [J]. Bioresource Technology, 2009,100(18):4139-4146.
    [91]Costa RCC, Lelis MFF, Oliveira LCA, et al. Novel active heterogeneous Fenton system based on Fe3-xMxO4 (Fe, Co, Mn, Ni):The role of M2+ species on the reactivity towards H2O2 reactions[J]. Journal of Hazardous Materials,2006,129(1-3): 171-178.
    [92]Katsenovich YP, Miralles-Wilhelm FR. Evaluation of nanoscale zerovalent iron particles for trichloroethene degradation in clayey soils[J]. Science of the Total Environment,2009,407(18):4986-4993.
    [93]Wang LY, Sun Y, Wang J, et al. Preparation of surface plasmon resonance biosensor based on magnetic core/shell Fe3O4/SiO2 and Fe3O4/Ag/SiO2 nanoparticles[J]. Colloids and Surfaces B:Biointerfaces,2011,84(2):484-490.
    [94]Liu HL, Sonn CH, Wu JH, et al. Synthesis of streptavidin-FITC-conjugated core-shell Fe3O4-Au nanocrystals and their application for the purification of CD4+
    lymphocytes[J]. Biomaterials,2008,29(29):4003-4011. [95] Ryu A, Jeong SW, Choi H. Reduction of highly concentrated nitrate using nanoscale zero-valent iron:Effects of aggregation and catalyst on reactivity[J]. Applied Catalysis B:Environmental,2011,105(1-2):128-135.
    [96]Xu J, Tang J, Baig SA, et al. Enhanced dechlorination of 2,4-dichlorophenol by Pd/Fe-Fe3O4 nanocomposites[J]. Journal of Hazardous Materials,2013,244-245: 628-636.
    [97]. Li YM, Zhang Y, Li JF, et al. Enhanced removal of pentachlorophenol by a novel composite:Nanoscale zero valent iron immobilized on organobentonite[J]. Environ. Pollution,2011,159(12):3744-3749.
    [98]Fang Y, Al-Abed SR. Dechlorination kinetics of monochlorobiphenyls by Fe/Pd: effects of solvent, temperature, and PCB concentration[J]. Applied Catalysis B: Environmental,2008,78(3-4):371-380. [99] Jovanovic GN, Plazl P, Sakrittichai P, et al. Dechlorination of p-chlorophenol in a microreactor with bimetallic Pb/Fe catalyst[J]. Industrial and Engineering Chemistry Research,2005,44:5099-5106. [100] Choi H, Al-Abed SR. Effect of reaction environments on the reactivity of PCB (2-chlorobiphenyl) over activated carbon impregnated with palladized iron[J]. Journal of Hazardous Materials,2010,179(1-3):869-874.
    [101]Huang YH, Zhang TC. Effects of low pH on nitrate reduction by iron powder[J]. Water Research,2004,38(11):2631-2642.
    [102]Zhou T, Li YZ, Wong FS, et al. Enhanced degradation of 2,4-dichlorophenol by ultrasound in a new Fenton like system (Fe/EDTA) at ambient circumstance[J]. Ultrason. Sonochemistry,2008,15(5):782-790.
    [103]Xu LJ, Wang JL. Fenton-like degradation of 2,4-dichlorophenol using Fe3O4 magnetic nanoparticles[J]. Applied Catalysis B:Environmental,2012,123-124: 117-126.
    [104]Shih YH, Hsu CY, Su YF. Reduction of hexachlorobenzene by nanoscale zero-valent iron:Kinetics, pH effect, and degradation mechanism[J]. Separation and Purification Technology,2011,76(3):268-274.
    [105]Zhang JH, Hao, ZW, Zhang Z, et al. Kinetics of nitrate reductive denitrification by nanoscale zero valent iron[J]. Process Safety and Environmental Protection, 2010,88(6):439-445.
    [106]Schlicker O, Ebert M, Fruth M, et al. Degradation of TCE with iron:the role of competing chromate and nitrate reduction[J]. Gronnd Water,2000,38(3): 403-409.
    [107]Pascual A, Ares JR, Ferrer IJ, et al. Electrical resistance evolution of Fe thin films during their sulphuration process[J]. Applied Surface Science,2004, 234(1-4):355-361.
    [108]Bae S, Lee W. Inhibition of nZVI reactivity by magnetite during the reductive degradation of 1,1,1-TCA in nZVI/magnetite suspension[J]. Applied Catalysis B: Environmental,2010,96(1-2):10-17.
    [109]Lv XS, Xu J, Jiang GM, et al. Highly active nanoscale zero-valent iron (nZVI)-Fe3O4 nanocomposites for the removal of chromium(VI) from aqueous solutions[J]. Journal of Colloid Interface Science,2012,369(1):460-469.
    [110]He N, Li PJ, Zhou YC, et al. Catalytic dechlorination of polychlorinated biphenyls in soil by palladium-iron bimetallic catalyst[J]. Journal of Hazardous Materials,2009,164(1):126-132.
    [111]Lv XS, Xu J, Jiang GM, et al. Removal of chromium(Ⅵ) from wastewater by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes[J]. Chemosphere,2011,85(7):1204-1209.
    [112]Shih YH, Chen MY, Su YF. Pentachlorophenol reduction by Pd/Fe bimetallic nanoparticles:Effects of copper, nickel, and ferric cations[J]. Applied Catalysis B: Environmental,2011,105(1-2):24-29.
    [113]Deng YQ, Nevell TG. Sulfur poisoning, recovery and related phenomena over supported palladium, rhodium and iridium catalysts for methane oxidation[J]. Applied Catalysis A:General,1993,101(1):51-62.
    [114]Su CM, Puls RW. Nitrate reduction by zerovalent iron:effects of formate, oxalate, citrate, chloride, sulfate, borate, and phosphate[J]. Environmental Science & Technology,2004,38:2715-2720.
    [115]Zhang WH, Quan X, Wang JX, et al. Rapid and complete dechlorination of PCP in aqueous solution using Ni-Fe nanoparticles under assistance of ultrasound[J]. Chemosphere,2006,65(1):58-64.
    [116]Zhang Z, Cissoko N, Wo JJ, et al. Factors influencing the dechlorination of 2,4-dichlorophenol by Ni-Fe nanoparticles in the presence of humic acid[J]. Journal of Hazardous Materials,2009,165(1-3):78-86.
    [117]Shih YH, Hsu CY, Su YF. Reduction of hexachlorobenzene by nanoscale zero-valent iron:Kinetics, pH effect, and degradation mechanism[J]. Separation and Purification Technology,2011,76(3):269-274.
    [118]Satapanajaru T, Anurakpongsatorn P, Pengthamkeerati P, et al. Remediation of Atrazine-contaminated Soil and Water by Nano Zerovalent Iron[J]. Water Air and Soil Pollution,2008,192(1-4):349-359.
    [119]Amonette JE. Dechlorination of carbon tetrachloride by Fe(Ⅱ) associated with goethite[J]. Environmental Science & Technology,2000,34:4606-4613.
    [120]Huang YH, Zhang TC. Nitrite reduction and formation of corrosion coatings in zerovalent iron systems[J]. Chemosphere,2006,64(6):937-943.
    [121]Yin WZ, Wu JH, Li P, et al. Experimental study of zero-valent iron induced nitrobenzene reduction in groundwater:The effects of pH, iron dosage, oxygen and common dissolvedanions[J]. Chemical Engineering Journal,2012,184: 198-204.
    [122]Kim JS, Shea PJ, Yang JE, et al. Halide salts accelerate degradation of high explosives by zerovalent iron[J]. Environmental Pollution,2007,147(3):634-641.
    [123]Remazeilles C, Refait P. On the formation of β-FeOOH (akaganeite) in chloride containing environments[J]. Corrosion Science,2007,49(2):844-857.
    [124]Le C, Wu JH, Deng SB. Effects of common dissolved anions on the reduction of para-chloronitrobenzene by zero-valent iron in groundwater[J]. Water Science & Technology,2011,63(7):1485-1490.
    [125]Zeng L, Li XM, Liu JD. Adsorptive removal of phosphate from aqueous solutions using iron oxide tailings[J]. Water Research,2004,38(5):1318-1326.
    [126]Lo MC, Lam SC, Lai CK. Hardness and carbonate effects on the reactivity of zero-valent iron for Cr(Ⅵ) removal[J]. Water Research,2006,40(3):595-605.
    [127]Carlos L, Fabbri D, Capparelli A. Intermediate distributions and primary yields of phenolic products in nitrobenzene degradation by Fenton's reagent[J]. Chemosphere,2008,72(6):952-958.
    [128]Lubick N. Cap and degrade:a reactive nanomaterial barrier also serves as a cleanup tool[J]. Environmental Science & Technology,2009,43:235-235.
    [129]Mak MSH, Rao P, Lo I. Zero-valent iron and iron oxide-coated sand as a combination for removal of co-present chromate and arsenate from groundwater with humic acid[J]. Environmental Pollution,2011,159(2):377-382.
    [130]Dunnivant FM, Schwarzenbach RP, Macalady DL. Reduction of substitutednitrobenzenes in aqueous-solutions containing natural organic-matter[J]. Environmental Science & Technology,1992,26:2133-2141.
    [131]Phenrat T, Saleh N, Sirk K, et al. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions [J]. Environmental Science & Technology, 2007,41:284-290.
    [132]Agrawal A, Ferguson WJ, Gardner BO, et al. Effects of carbonate species on the kinetics of dechlorination of 1,1,1-trichloroethane by zero-valent iron[J]. Environmental Science & Technology,2002,36:4326-4333.
    [133]Furukawa Y, Kim JW, Watkins J, et al. Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron[J]. Environmental Science & Technology,2002,36:5469-5475.
    [134) Phenrat T, Long TC, Lowry GV, et al. Partial oxidation ("Aging") and surface modification decrease the toxicity of nanosized zerovalent iron[J]. Environmental Science & Technology,2009,43:195-200.
    [135]Chen JW, Xiu ZM, Lowry GV, et al. Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron[J]. Water research,2011,45(5): 1995-2001.
    [136]Liang LP, Sun W, Guan XH, et al. Weak magnetic field significantly enhances selenite removal kinetics by zero valent iron[J]. Water Reserach,2014,49: 371-380.
    [137]Andersson KI, Eriksson M, Norgren M. Removal of lignin from wastewater generated by mechanical pulping using activated charcoal and fly ash:adsorption isotherms and thermodynamics[J]. Industrial and Engineering Chemistry Research,2011,50:7722-7732.
    [138]Hu H, Trejo M, Nicho ME, et al. Adsorption kinetics of optochemical NH3 gas sensing withsemiconductor polyaniline films[J]. Sensors and Actuators,2002, 82(1):14-23.
    [139]Ho YS, Porter JF, McKay G. Equilibrium isotherm studies for the sorption of divalent metal ions onto peat:Copper, nickel and lead single component systems[J]. Water Air and Soil Pollution,2002,141(1-4):1-33.
    [140]Gerente C, Lee VKC, LeCloirec P, et al. Application of chitosan for the removal of metals from wastewaters by adsorption:Mechanisms and models review[J]. Critical Reviews in Environmental Science and Technology,2007,37(1):41-127.
    [141]Mall ID, Srivastava VC, Agarwal NK, et al. Adsorptive removal of malachite green dye from aqueous solution by bagasse fly ash and activated carbon:Kinetic study and equilibrium isotherm analyses[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2005,264(1-3):17-28.
    [142]Gunay A, Arslankaya E, Tosun I. Lead removal from aqueous solution by natural and pretreated clinoptilolite:Adsorption equilibrium and kinetics[J]. Journal of Hazardous Materials,2007,146(1-2):362-371.
    [143]Watkins R, Weiss D, Dubbin W, et al. Investigations into the kinetics and thermodynamics of Sb(III) adsorption on goethite (R-FeOOH)[J]. Journal of Colloid and Interface Science,2006,303(2):639-646.
    [144]Jaycock MJ, Parfitt GD. Chemistry of Interfaces. Ellis Horwood:Chichester, U.K.,1981.
    [145]Xu J, Sheng TT, Hu YJ, et al. Adsorption-dechlorination of 2,4-dichlorophenol using two specified MWCNTs-stabilized Pd/Fe nanocomposites[J]. Chemical Engineering Journal,2013,219:162-173.
    [146]Xu J, Tan LS, Baig SA, et al. Dechlorination of 2,4-dichlorophenol by nanoscale magnetic Pd/Fe particles:Effects of pH, temperature, common dissolved ions and humic acid[J]. Chemical Engineering Journal,2013,231:26-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700