用户名: 密码: 验证码:
高级氧化技术对典型PPCPs降解效果及降解机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
PPCPs是医药品和个人护理品(Pharmaceuticals and personal care products)的简称,包括人们在日常生活中广泛使用的多种处方和非处方药品如抗生素、抗肿瘤药、抗焦虑药、抗惊厥药、激素类药、阻滞剂与类交感神经药、消炎药、减肥药等,这些PPCPs在生产和使用过程中大部分以原药或代谢产物的形式排入水环境,具有排放面广、浓度低、成分复杂、生物毒性大、难降解等特点,是一类对水生态环境及人类健康潜在危害较大的新兴微污染物。目前,传统污水处理工艺对PPCPs的去除效果较差。因此,研究开发高效去除PPCPs的新技术,是国内外水处理领域的重要前沿课题。
     高级氧化技术(Advanced oxidation processes,AOPs)是去除污水中难生物降解污染物的有效方法,具有极大的开发潜力和良好的应用前景。本文选择城市污水厂出水中检出率高、危害性大的抗生素类药品磺胺间甲氧基嘧啶(sulfamonomethoxine,SMM)和氧氟沙星(Ofloxacin,OFL)作为目标污染物,系统地研究了UV/Oxone体系处理磺胺间甲氧基嘧啶模拟污水、Fenton和UV/Oxone/Co2+体系处理氧氟沙星模拟污水的性能、工艺条件和反应动力学;通过对降解过程中间产物(transformation products,TPs)的分析,重点研究了3种高级氧化技术降解目标污染物的机理,为应用高级氧化技术处理磺胺间甲氧基嘧啶、氧氟沙星实际废水提供了理论依据。论文主要研究内容和成果如下:
     1.UV/Oxone氧化体系对磺胺间甲氧基嘧啶的降解效果及反应机理的研究。结果表明:UV可以使Oxone产生硫酸根自由基(SO4-),能够高效降解磺胺间甲氧基嘧啶;反应体系在进水SMM浓度为5mg L-1、紫外光全程照射、pH值为中性、温度为20°C、SMM:Oxone=0.0107:1、反应时间为90min的优化条件下,磺胺间甲氧基嘧啶的降解率为96.36%,溶液的TOC去除率为89.01%;降解反应呈假一级动力学反应,表观速率常数为0.038min-1。依据LC-MS检测出的6种中间产物,推测出了UV/Oxone氧化体系降解磺胺间甲氧基嘧啶的路径,表明磺胺间甲氧基嘧啶能够被硫酸根自由基彻底氧化分解为二氧化碳和水。
     2.Fenton氧化体系对氧氟沙星的降解效果及反应机理的研究。结果表明:反应体系在进水OFL浓度为9mg L-1、,pH=4.0、温度为25°C、[H2O2]=1.5mmol L-1、[Fe2+]=0.03mmol L-1、[H2O2]:[Fe2+]=50:1、反应时间为80min的优化条件下,氧氟沙星的降解率为98.84%,溶液的TOC去除率为73.7%;降解反应呈假一级动力学反应,表观速率常数为0.65min-1。通过对LC-MS检测出的8种中间产物的分析,推测出了Fenton氧化体系降解氧氟沙星的路径;依据红外色谱的检测结果,确定该反应体系中羟基自由基(OH)对氧氟沙星的降解是从脱羧开始;离子色谱检测到反应结束后的溶液中含有氟离子,说明羟基自由基可以将氟从氧氟沙星的分子中剥离出来。
     3.UV/Oxone/Co2+氧化体系对氧氟沙星的降解效果及反应机理的研究。结果表明:反应体系在进水OFL浓度为9mg L-1、紫外光全程照射、pH=5.0、[Oxone]/[Co2+]为1000:1、[Oxone]=0.6mmol L-1、温度为25℃、反应时间为60min的优化条件下运行,氧氟沙星能够被全部降解,溶液的TOC去除率为87%;降解反应呈一级动力学方程,表观速率常数为0.67min-1。在相同工艺条件下,Oxone/Co2+体系对氧氟沙星的降解率为91.3%,溶液TOC的去除率为65.8%,说明有紫外光照射的UV/Oxone/Co2+体系的氧化能力较Oxone/Co2+体系更强;通过对LC-MS检测出的13种中间产物的分析,推测出了硫酸根自由基降解氧氟沙星的路径。实验发现硫酸根自由基对氧氟沙星的进攻位点受pH值影响较大,中性pH溶液中降解主要进行喹诺酮的脱羧反应,降解哌嗪基多发生在pH=3左右。
     4. Fenton氧化体系和UV/Oxone/Co2+氧化体系对氧氟沙星降解效果的比较。通过对2种氧化体系降解同浓度氧氟沙星污染物的降解时间,降解效果、降解路径的比较发现:UV/Oxone/Co2+氧化体系的氧化能力比Fenton氧化体系强;硫酸根自由基可以多路径同时降解水样中的氧氟沙星。
Pharmaceuticals and personal care products (PPCPs) are a group of compounds whichinclude prescription and over-the-counter (OTC) drugs, such as antibiotic, antineoplastic,antianxiety and anticonvulsion, harmonic, retardant, sympathomimetic, anti-inflammatory andantiobesity drugs, etc. These PPCPs are discharged into aquatic environment in the form ofintact and metabolites during the process of the production and usage, which are characterizedby wide distribution, low residual level, complicated chemical composition, high toxicity andrefractory. PPCPs are considered as emerging contaminants, with potential risks to waterecological system and human health. The low efficiency in the removal of PPCPs bytraditional wastewater treatment technology has resulted in the recent emergence of concernsabout the development of new technique for PPCPs removal, which become an importanttopic in the field of water treatment technology all over the world.
     Advanced oxidation processes (AOPs) have been considered as effective methods for thedegradation of refractory pollutant within aquatic environments. Due to their high detectionrate and high damage in discharging of urban sewage plant, sulfamonomethoxine (SMM) andOfloxacin (OFL) were chosen as the typical target pollutants in this study. A series of study onthe performance, operating condition and reaction kinetics of SMM-contained simulatedwastewater by UV/Oxone oxidation system, OFL-contained simulated wastewater by Fentonand UV/Oxone/Co2+oxidation system were carried out. The degradation mechanisms ofSMM and OFL were proposed based on the identification of transformation products duringthe oxidation processes. This work could offer a fundamental understanding towards thedegradation of SMM and OFL by AOPs. The main conclusions in the paper are as follows:
     1. Research on the degradation efficiency and reaction mechanism of SMM-contained simulated wastewater by UV/Oxone oxidation system. The results showed that UV urges theproduction of SO4-from Oxone, which could degrade SMM efficiently. The optimaloperating parameters for degradation of SMM by UV/Oxone oxidation system were:[SMM]=5mg L-1, UV irradiation throughout the experiment, neutral pH, reaction temperature=20°C, SMM:Oxone=0.0107and reaction time=90min. Under the optimal conditions, thedegradation efficiency of SMM and removal efficiency of TOC achieved96.78%and89.01%,respectively. The degradation reaction followed the pseudo-first-order kinetics and theapparent rate constant was0.038min-1. Six transformation products were detected with theaid of high performance liquid chromatography combined with mass spectroscopy (LC-MS).Based on this, the reaction mechanism of SMM by UV/Oxone was proposed. The resultsindicated that SMM could ultimately be mineralized to CO2and H2O by SO4-.
     2. Research on the degradation efficiency and reaction mechanism of OFL-containedsimulated wastewater by Fenton oxidation system. The results showed that the optimaloperating parameters for degradation of OFL by Fenton oxidation system were: pH=4.0,[OFL]=9mg L-1,[H2O2]=1.5mmol L-1,[Fe2+]=0.03mmol L-1,[H2O2]:[Fe2+]=50:1,reaction temperature=25°C and reaction time=80min. The degradation efficiency andTOC removal of OFL were achieved98.84%and73.7%under the optimal condition,respectively. The degradation reaction was obeyed the pseudo-first-order kinetics and theapparent rate constant was0.65min-1. Eight transformation products were detected with theaid of high performance liquid chromatography combined with mass spectroscopy (LC-MS)and the reaction mechanism of OFL-contained simulated wastewater by Fenton oxidationsystem were proposed. Results from infrared spectrum confirmed that the degradation of OFLwas initiated from the decarboxylation by OH radicals. The F ions which were detected withIon Chromatography could be released from Ofloxacin with the assistance OH radicals.
     3. Research on the degradation efficiency and reaction mechanism of OFL-contained simulated wastewater by UV/Oxone/Co2+oxidation system. The results showed that theoptimal operating parameters for degradation of OFL by UV/Oxone/Co2+oxidation systemwere:[OFL]=9mg L-1, UV light irradiation, pH=5.0,[Oxone]:[Co2+]=1000:1,[Oxone]=0.6mmol L-1, reaction temperature=25°C, and reaction time=60min. OFL could bedegrade completely and the TOC removal was achieved87%under the optimal condition.The degradation reaction was obeyed the pseudo-first-order kinetics and the apparent rateconstant was0.67min-1. The degradation efficiency and TOC removal of Ofloxacin byOxone/Co2+oxidation system achieved91.3%and65.8%under the identical condition,respectively. The results indicated that UV/Oxone/Co2+oxidation system which possessed UVlight displayed stronger oxidizing ability than Oxone/Co2+oxidation system.13kinds oftransformation products were detected with the aid of high performance liquidchromatography combined with mass spectroscopy (LC-MS), where the reaction mechanismof OFL-contained simulated wastewater by SO4-radicals were proposed based on theidentification. The results indicated that the pH value had important effect on the attack sitesof OFL by SO4-radicals, the destruction of the carboxyl of the quinolone moiety wasdominant under the neutral pH conditions, while the SO4-attack at the piperazinyl substituentwas preferable near pH=3.
     4. The degradation efficiency of OFL-contained simulated wastewater between Fentonand UV/Oxone/Co2+oxidation system was compared. It could be found that UV/Oxone/Co2+oxidation system displayed stronger oxidizing ability than Fenton oxidation system. The SO4-radicals could degrade OFL in multipath at the same time.
引文
[1]Daughton C.G., Ternes T.A. Pharmaceuticals and personal care products in the environment: agents ofsubtle change?[J]. Environmental Health Perspectives1999,107(6):907-938.
    [2]Jjemba P.K. Excretion and ecotoxicity of pharmaceutical and personal care products in the environment [J].Ecotoxicology and Environmental Safety2006,63(1):113-130.
    [3]Matamoros V., Bayona J.M. Elimination of pharmaceuticals and personal care products in subsurface flowconstructed wetlands [J]. Environmental Science&Technology2006,40(18):5811-5816.
    [4]Buser H.R., Balmer M.E., Schmid P., Kohler M. Occurrence of UV filters4-methylbenzylidene camphorand octocrylene in fish from various swiss rivers with inputs from wastewater treatment plants [J].Environmental Science&Technology2006,40(5):1427-1431.
    [5]Pietrogrande M.C., Basaglia G. GC-MS analytical methods for the determination of personal-care productsin water matrices [J]. Trac-Trends in Analytical Chemistry2007,26(11):1086-1094.
    [6]Kim S.D., Cho J., Kim I.S., Vanderford B.J., Snyder S.A. Occurrence and removal of pharmaceuticals andendocrine disruptors in South Korean surface, drinking, and waste waters [J]. Water Research2007,41(5):1013-1021.
    [7]Loraine G.A., Pettigrove M.E. Seasonal variations in concentrations of pharmaceuticals and personal careproducts in drinking water and reclaimed wastewater in Southern California [J]. Environmental Science&Technology2006,40(3):687-695.
    [8]Moldovan Z. Occurrences of pharmaceutical and personal care products as micropollutants in rivers fromRomania [J]. Chemosphere2006,64(11):1808-1817.
    [9]Nakada N., Tanishima T., Shinohara H., Kiri K., Takada H. Pharmaceutical chemicals and endocrinedisrupters in municipal wastewater in Tokyo and their removal during activated sludge treatment [J].Water Research2006,40(17):3297-3303.
    [10]Batt A.L., Snow D.D., Aga D.S. Occurrence of sulfonamide antimicrobials in private water wells inWashington County, Idaho, USA [J]. Chemosphere2006,64(11):1963-1971.
    [11]Benotti M.J., Trenholm R.A., Vanderford B.J., Holady J.C., Stanford B.D., Snyder S.A. Pharmaceuticalsand endocrine disrupting compounds in US drinking water [J]. Environmental Science&Technology2009,43(3):597-603.
    [12]胡洪营,王超,郭美婷.药品和个人护理用品(PPCPs)对环境的污染现状与研究进展[J].生态环境2005,14(6):947-952.
    [13]Golet E.M., Xifra I., Siegrist H., Alder A.C., Giger W. Environmental exposure assessment offluoroquinolone antibacterial agents from sewage to soil [J]. Environmental Science&Technology2003,37(15):3243-3249.
    [14]Campagnolo E.R., Johnson K.R., Karpati A., Rubin C.S., Kolpin D.W., Meyer M.T., Esteban J.E.,Currier R.W., Smith K., Thu K.M. Antimicrobial residues in animal waste and water resources proximalto large-scale swine and poultry feeding operations [J]. The Science of the Total Environment2002,299(1-3):89-95.
    [15]Kay P., Blackwell P.A., Boxall A.B.A. Transport of veterinary antibiotics in overland flow following theapplication of slurry to arable land [J]. Chemosphere2005,59(7):951-959.
    [16]Tong L., Li P., Wang Y., Zhu K. Analysis of veterinary antibiotic residues in swine wastewater andenvironmental water samples using optimized SPE-LC/MS/MS [J]. Chemosphere2009,74(8):1090-1097.
    [17]吕玄文,梁敏思,党志,杨琛.鱼塘沉积物中氯霉素的超声萃取、净化与测定[J].农业环境科学学报2007,26(3):1195-1200.
    [18]http://zhidao.baidu.com/link?url=tH41M3FKD16CbCxX7SYYbSVnArk8nYSqgFf2eN6cPGj6u8Taxt2-w2FoEyTpiiCIi-PKGIh3mHhUiqOd9wUZ7K.
    [19]Cleuvers M. Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen, andacetylsalicylic acid [J]. Ecotoxicology and Environmental Safety2004,59(3):309-315.
    [20]Henschel K.P., Wenzel A., Diedrich M., Fliedner A. Environmental Hazard Assessment ofPharmaceuticals [J]. Regulatory Toxicology and Pharmacology1997,25(3):220-225.
    [21]Verenitch S.S., Lowe C.J., Mazumder A. Determination of acidic drugs and caffeine in municipalwastewaters and receiving waters by gas chromatography-ion trap tandem mass spectrometry [J].Journal of Chromatography A2006,1116(1-2):193-203.
    [22]Cleuvers M. Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects [J].Toxicology Letters2003,142(3):185-194.
    [23]Gomez M.J., Bueno M.J.M., Lacorte S., Fernandez-Alba A.R., Aguera A. Pilot survey monitoringpharmaceuticals and related compounds in a sewage treatment plant located on the Mediterranean coast[J]. Chemosphere2007,66(6):993-1002.
    [24]Tauxe-Wuersch A., De Alencastro L.F., Grandjean D., Tarradellas J., Occurrence of several acidic drugsin sewage treatment plants in Switzerland and risk assessment [J]. Water Research2005,39(9):1761-1772.
    [25]Schwaiger J., Ferling H., Mallow U., Wintermayr H., Negele R.D. Toxic effects of the non-steroidalanti-inflammatory drug diclofenac [J]. Aquatic Toxicology2004,68(2):141-150.
    [26]Lee H.B., Peart T.E., Svoboda M.L. Determination of endocrine-disrupting phenols, acidicpharmaceuticals, and personal-care products in sewage by solid-phase extraction and gaschromatography-mass spectrometry [J]. Journal of Chromatography A2005,1094(1-2):122-129.
    [27]Ferrari B.T., Paxéus N., Giudice R.L., Pollio A., Garric J. Ecotoxicological impact of pharmaceuticalsfound in treated wastewaters: study of carbamazepine, clofibric acid, and diclofenac [J]. Ecotoxicologyand Environmental Safety2003,55(3):359-370.
    [28]Lin A.Y.C., Yu T.H., Lateef S.K. Removal of pharmaceuticals in secondary wastewater treatmentprocesses in Taiwan [J]. Journal of Hazardous Materials2009,167(1-3):1163-1169.
    [29]Triebskorn R., Casper H., Heyd A., Eikemper R., K hler H.R., Schwaiger J. Toxic effects of thenon-steroidal anti-inflammatory drug diclofenac [J]. Aquatic Toxicology2004,68(2):151-166.
    [30]Koutsouba V., Heberer T., Fuhrmann B., Schmidt-Baumler K., Tsipi D., Hiskia A. Determination of polarpharmaceuticals in sewage water of Greece by gas chromatography-mass spectrometry [J].Chemosphere2003,51(2):69-75.
    [31]Lin A.Y.C., Tsai Y.T. Occurrence of pharmaceuticals in Taiwan's surface waters: Impact of waste streamsfrom hospitals and pharmaceutical production facilities [J]. Science of the Total Environment2009,407(12):3793-3802.
    [32]Pounds N., Maclean S., Webley M., Pascoe D., Hutchinson T. Acute and chronic effects of ibuprofen inthe mollusc Planorbis carinatus (Gastropoda: Planorbidae)[J]. Ecotoxicology and Environmental Safety2008,70(1):47-52.
    [33]Hernando M.D., Heath E., Petrovic M., Barcelo D. Trace-level determination of pharmaceutical residuesby LC-MS/MS in natural and treated waters. A pilot-survey study [J]. Analytical and BioanalyticalChemistry2006,385(6):985-991.
    [34]Heckmann L., Callaghan A., Hooper H., Connon R., Hutchinson T., Maund S., Sibly R. Chronic toxicityof ibuprofen to Daphnia magna: Effects on life history traits and population dynamics [J]. ToxicologyLetters2007,172(3):137-145.
    [35]Stumpf M., Ternes T.A., Wilken R.D., Rodrigues S.V., Baumann W. Polar drug residues in sewage andnatural waters in the state of Rio de Janeiro, Brazil [J]. The Science of the total environment1999,225(1-2):135-141.
    [36]Roberts P.H., Thomas K.V. The occurrence of selected pharmaceuticals in wastewater effluent andsurface waters of the lower Tyne catchment [J]. Science of the Total Environment2006,356(1-3):143-153.
    [37]Kim J.W., Ishibashi H., Yamauchi R., Ichikawa N., Takao Y., Hirano M., Koga M., Arizono K. Acutetoxicity of pharmaceutical and personal care products on freshwater crustacean (Thamnocephalusplatyurus) and fish (Oryzias latipes)[J]. Journal of Toxicological Sciences2009,34(2):227-232.
    [38]Martinez Bueno M.J., Agueera A., Dolores Hernando M., Jose Gomez M. Evaluation of various liquidchromatography-quadrupole-linear ion trap-mass spectrometry operation modes applied to the analysisof organic pollutants in wastewaters [J]. Journal of Chromatography A2009,1216(32):5995-6002.
    [39]Zhao J.L., Ying G.G., Wang L., Yang J.F., Yang X.B., Yang L.H., Li X. Determination of phenolicendocrine disrupting chemicals and acidic pharmaceuticals in surface water of the Pearl Rivers in SouthChina by gas chromatography-negative chemical ionization-mass spectrometry [J]. Science of the TotalEnvironment2009,407(2):962-974.
    [40]Bendz D., Paxéus N.A., Ginn T.R., Loge F.J. Occurrence and fate of pharmaceutically active compoundsin the environment, a case study: H je River in Sweden [J]. Journal of Hazardous Materials2005,122(3):195-204.
    [41]Kim Y., Choi K., Jung J., Park S., Kim P.G., Park J. Aquatic toxicity of acetaminophen, carbamazepine,cimetidine, diltiazem and six major sulfonamides, and their potential ecological risks in Korea [J].Environment International2007,33(3):370-375.
    [42]Quinn B., Gagné F., Blaise C. An investigation into the acute and chronic toxicity of elevenpharmaceuticals (and their solvents) found in wastewater effluent on the cnidarian, Hydra attenuata [J].Science of The Total Environment2008,389(2-3):306-314.
    [43]Calamari D., Zuccato E., Castiglioni S., Bagnati R., Fanelli R. Strategic Survey of Therapeutic Drugs inthe Rivers Po and Lambro in Northern Italy [J]. Environmental Science&Technology2003,37:1241-1248.
    [44]Reddersen K., Heberer T. Multi-compoundmethods for the detection of pharmaceutical residues invarious waters applying solid phase extraction (SPE) and gas chromatography with mass spectrometric(GC-Ms) detection [J]. Journal of Separation Science2003,26:1443-1450.
    [45]Brain R.A., Johnson D.J., Richards S.M., Hanson M.L., Sanderson H., Lam M.W., Young C., MaburyS.A., Sibley P.K., Solomon K.R. Microcosm evaluation of the effects of an eight pharmaceutical mixtureto the aquatic macrophytes Lemna gibba and Myriophyllum sibiricum [J]. Aquatic Toxicology2004,70(1):23-40.
    [46]Miao X.S., Metcalfe C.D. Determination of pharmaceuticals in aqueous samples using positive andnegative voltage switching microbore liquid chromatography/electrospray ionization tandem massspectrometry [J]. Journal of Mass Spectrometry2003,38(1):27-34.
    [47]Miao X.S., Metcalfe C.D. Determination of cholesterol-lowering statin drugs in aqueous samples usingliquid chromatography-electrospray ionization tandem mass spectrometry [J]. Journal ofChromatography A2003,998(1-2):133-141.
    [48]DeLorenzo M.E., Fleming J. Individual and mixture effects of selected pharmaceuticals and personalcare products on the marine phytoplankton species Dunaliella tertiolecta [J]. Archives of EnvironmentalContamination and Toxicology2008,54(2):203-210.
    [49]Park S., Choi K. Hazard assessment of commonly used agricultural antibiotics on aquatic ecosystems [J].Ecotoxicology2008,17(6):526-538.
    [50]Seifrtova M., Pena A., Lino C.M., Solich P. Determination of fluoroquinolone antibiotics in hospital andmunicipal wastewaters in Coimbra by liquid chromatography with a monolithic column andfluorescence detection [J]. Analytical and Bioanalytical Chemistry2008,391(3):799-805.
    [51]Karthikeyan K.G., Meyer M.T. Occurrence of antibiotics in wastewater treatment facilities in Wisconsin,USA [J]. Science of the Total Environment2006,361(1-3):196-207.
    [52]Kim J.W., Jang H.S., Kim J.G., Ishibashi H., Hirano M., Nasu K., Ichikawa N., Takao Y., Shinohara R.,Arizono K. Occurrence of Pharmaceutical and Personal Care Products (PPCPs) in Surface Water fromMankyung River, South Korea [J]. Journal of Health Science2009,55(2):249-258.
    [53]Nie X., Gu J., Lu J., Pan W., Yang Y. Effects of norfloxacin and butylated hydroxyanisole on thefreshwater microalga Scenedesmus obliquus [J]. Ecotoxicology2009,18(6):677-684.
    [54]Kolpin D.W., Furlong E.T., Meyer M.T., Thurman E.M., Zaugg S.D., Barber L.B., Buxton H.T.Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams,1999-2000: anational reconnaissance [J]. Environmental Science&Technology2002,36(6):1202-1211.
    [55]Isidori M., Lavorgna M., Nardelli A., Pascarella L., Parrella A. Toxic and genotoxic evaluation of sixantibiotics on non-target organisms [J]. Science of The Total Environment2005,346(1-3):87-98.
    [56]Brown K.D., Kulis J., Thomson B., Chapman T.H., Mawhinney D.B. Occurrence of antibiotics inhospital, residential, and dairy, effluent, municipal wastewater, and the Rio Grande in New Mexico [J].Science of the Total Environment2006,366(2-3):772-783.
    [57]Xu W.H., Zhang G., Zou S.C., Li X.D., Liu Y.C. Determination of selected antibiotics in the VictoriaHarbour and the Pearl River, South China using high-performance liquid chromatography-electrosprayionization tandem mass spectrometry [J]. Environmental Pollution2007,145(3):672-679.
    [58]Xu W.H., Zhang G., Li X.D., Zou S.H., Li P., Hu Z.H., Li J. Occurrence and elimination of antibiotics atfour sewage treatment plants in the Pearl River Delta (PRD), South China [J]. Water Research2007,41(19):4526-4534.
    [59]Halling-Sorensen B. Algal toxicity of antibacterial agents used in intensive farming [J]. Chemosphere2000,40(7):731-739.
    [60]Li D., Yang M., Hu J.Y., Zhang Y., Chang H., Jin F. Determination of penicillin G and its degradationproducts in a penicillin production wastewater treatment plant and the receiving river [J]. WaterResearch2008,42(1-2):307-317.
    [61]Na G.S., Fang X.D., Cai Y.Q., Ge L.K., Zong H.M., Yuan X.T., Yao Z.W., Zhang Z.F. Occurrence,distribution, and bioaccumulation of antibiotics in coastal environment of Dalian, China [J]. MarinePollution Bulletin2013,69(1-2):233-237.
    [62]Hartig C., Storm T., Jekel M. Detection and identification of sulphonamide drugs in municipal wastewater by liquid chromatography coupled with electrospray ionisation tandem mass spectrometry [J].Journal of Chromatography A1999,854(1-2):163-173.
    [63]Choi K., Kim Y., Park J., Park C.K., Kim M., Kim H.S., Kim P. Seasonal variations of severalpharmaceutical residues in surface water and sewage treatment plants of Han River, Korea [J]. Scienceof the Total Environment2008,405(1-3):120-128.
    [64]Lutzhoft H.H., Halling-Sorensen B., Jorgensen S.E. Algal toxicity of antibacterial agents applied inDanish fish farming [J]. Archives of Environmental Contamination and Toxicology1999,36(1):1-6.
    [65]Perret D., Gentili A., Marchese S., Greco A., Curini R. Sulphonamide residues in Italian surface anddrinking waters: A small scale reconnaissance [J]. Chromatographia2006,63(5-6):225-232.
    [66]Pailler J.Y., Krein A., Pfister L., Hoffmann L., Guignard C. Solid phase extraction coupled to liquidchromatography-tandem mass spectrometry analysis of sulfonamides, tetracyclines, analgesics andhormones in surface water and wastewater in Luxembourg [J]. Science of the Total Environment2009,407(16):4736-4743.
    [67]Clara M., Strenn B., Gans O., Martinez E., Kreuzinger N., Kroiss H. Removal of selectedpharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor andconventional wastewater treatment plants [J]. Water Research2005,39(19):4797-4807.
    [68]Wollenberger L., Halling-Sorensen B., Kusk K.O. Acute and chronic toxicity of veterinary antibiotics toDaphnia magna [J]. Chemosphere2000,40(7):723-730.
    [69]Yang L.H., Luan T.G., Lan C.Y. Solid-phase microextraction with on-fiber silylation for simultaneousdeterminations of endocrine disrupting chemicals and steroid hormones by gas chromatography-massspectrometry [J]. Journal of Chromatography A2006,1104(1-2):23-32.
    [70]Laganà A., Bacaloni A., De Leva I., Faberi A., Fago G., Marino A. Analytical methodologies fordetermining the occurrence of endocrine disrupting chemicals in sewage treatment plants and naturalwaters [J]. Analytica Chimica Acta2004,501(1):79-88.
    [71]Pawlowski S., van Aerle R., Tyler C.R., Braunbeck T. Effects of17alpha-ethinylestradiol in a fatheadminnow (Pimephales promelas) gonadal recrudescence assay [J]. Ecotoxicology and EnvironmentalSafety2004,57(3):330-345.
    [72]Vieno N.M., Tuhkanen T., Kronberg L. Analysis of neutral and basic pharmaceuticals in sewagetreatment plants and in recipient rivers using solid phase extraction and liquid chromatography-tandemmass spectrometry detection [J]. Journal of Chromatography A2006,1134(1-2):101-111.
    [73]Grujic S., Vasiljevic T., Lausevic M. Determination of multiple pharmaceutical classes in surface andground waters by liquid chromatography-ion trap-tandem mass spectrometry [J]. Journal ofChromatography A2009,1216(25):4989-5000.
    [74]Leclercq M., Mathieu O., Gomez E., Casellas C., Fenet H., Hillaire-Buys D. Presence and Fate ofCarbamazepine, Oxcarbazepine, and Seven of Their Metabolites at Wastewater Treatment Plants [J].Archives of Environmental Contamination and Toxicology2009,56(3):408-415.
    [75]Cleuvers M. Initial risk assessment for three beta-blockers found in the aquatic environment [J].Chemosphere2005,59(2):199-205.
    [76]Huggett D.B., Brooks B.W., Peterson B., Foran C.M., Schlenk D. Toxicity of select beta adrenergicreceptor-blocking pharmaceuticals (B-blockers) on aquatic organisms [J]. Archives of EnvironmentalContamination and Toxicology2002,43(2):229-235.
    [77]Hilton M.J., Thomas K.V. Determination of selected human pharmaceutical compounds in effluent andsurface water samples by high-performance liquid chromatography–electrospray tandem massspectrometry [J]. Journal of Chromatography A2003,1015(1-2):129-141.
    [78]Vasskog T., Berger U., Samuelsen P.J., Kallenborn R., Jensen E. Selective serotonin reuptake inhibitorsin sewage influents and effluents from Troms, Norway [J]. Journal of Chromatography A2006,1115(1-2):187-195.
    [79]Pery A.R.R., Gust M., Vollat B., Mons R., Ramil M., Fink G., Ternes T., Garric J. Fluoxetine effectsassessment on the life cycle of aquatic invertebrates [J]. Chemosphere2008,73(3):300-304.
    [80]Cunningham V.L., Constable D.J.C., Hannah R.E. Environmental risk assessment of paroxetine [J].Environmental science&technology2004,38(12):3351-3359.
    [81]Minagh E., Hernan R., O'Rourke K., Lyng F.M., Davoren M. Aquatic ecotoxicity of the selectiveserotonin reuptake inhibitor sertraline hydrochloride in a battery of freshwater test species [J].Ecotoxicology and Environmental Safety2009,72(2):434-440.
    [82]Lajeunesse A., Gagnon C., Sauve S. Determination of basic antidepressants and their n-desmethylmetabolites in raw sewage and wastewater using solid-phase extraction and liquid chromatography-Tandem mass spectrometry [J]. Analytical Chemistry2008,80(14):5325-5333.
    [83]Johnson D.J., Sanderson H., Brain R.A., Wilson C.J., Solomon K.R. Toxicity and hazard of selectiveserotonin reuptake inhibitor antidepressants fluoxetine, fluvoxamine, and sertraline to algae [J].Ecotoxicology and Environmental Safety2007,67(1):128-139.
    [84]Grung M., Kallqvist T., Sakshaug S., Skurtveit S., Thomas K.V. Environmental assessment of Norwegianpriority pharmaceuticals based on the EMEA guideline [J]. Ecotoxicology and Environmental Safety2008,71(2):328-340.
    [85]Iinuma Y., Kahnt A., Mutzel A., B ge O., Herrmann H. Ozone-driven secondary organic aerosolproduction Chain [J]. Environmental Science&Technology2013,47(8):3639-3627
    [86]Castiglioni S., Bagnati R., Calamari D., Fanelli R., Zuccato E. A multiresidue analytical method usingsolid-phase extraction and high-pressure liquid chromatography tandem mass spectrometry to measurepharmaceuticals of different therapeutic classes in urban wastewaters [J]. Journal of Chromatography A2005,1092(2):206-215.
    [87]DellaGreca M., Iesce M.R., Isidori M., Nardelli A., Previtera L., Rubino M. Phototransformationproducts of tamoxifen by sunlight in water. Toxicity of the drug and its derivatives on aquatic organisms[J]. Chemosphere2007,67(10):1933-1939.
    [88]Santos L.H.M.L.M., Araújo A.N., Fachini A., Pena A., Delerue-Matos C., Montenegro M.C.B.S.M.Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment [J].Journal of Hazardous Materials2010,175(1-3):45-95.
    [89]Littlefield N.A., Sheldon W.G., Allen R., Gaylor D.W. Chronic toxicity/carcinogenicity studies ofsulphamethazine in Fischer344/N rats: two-generation exposure [J]. Food and Chemical Toxicology1990,28(3):157-167.
    [90]Littlefield N.A., Gaylor D.W., Blackwell B.N., Allen R.R. Chronic toxicity/carcinogenicity studies ofsulphamethazine in B6C3F1mice [J]. Food and Chemical Toxicology1989,27(7):455-463.
    [91]Reel J.R., Tyl R.W., Lawton A.D., Lamb IV J.C. Reproductive toxicity of sulfamethazine in Swiss CD-1mice during continuous breeding [J]. Fundamental and Applied Toxicology1992,18(4):609-615.
    [92]Al-Ahmad A., Daschner F.D., Kummerer K. Biodegradability of Cefotiam, Ciprofloxacin, Meropenem,Penicillin G, and Sulfamethoxazole and inhibition of wastewater bacteria [J]. Archives ofEnvironmental Contamination and Toxicology1999,37:158-163.
    [93]Hapeshi E., Achilleos A., Vasquez M.I., Michael C., Xekoukoulotakis N.P., Mantzavinos D., Kassinos D.Drugs degrading photocatalytically: Kinetics and mechanisms of ofloxacin and atenolol removal ontitania suspensions [J]. Water Research2010,44(6):1737-1746.
    [94]Hari A.C., Paruchuri R.A., Sabatini D.A., Kibbey T.C.G. Effects of pH and cationic and nonionicsurfactants on the adsorption of pharmaceuticals to a natural aquifer material [J]. Environmental Science&Technology2005,39(8):2592-2598.
    [95]Luo Y., Mao D., Rysz M., Zhou Q., Zhang H., Xu L., Alvarez P.J.J. Trends in Antibiotic ResistanceGenes Occurrence in the Haihe River, China [J]. Environmental Science&Technology2010,44(19):7220-7225.
    [96]Jiao S., Zheng S., Yin D., Wang L., Chen L. Aqueous photolysis of tetracycline and toxicity of photolyticproducts to luminescent bacteria [J]. Chemosphere2008,73(3):377-382.
    [97]Zhang J.Q., Dong Y.H. Effect of low-molecular-weight organic acids on the adsorption of norfloxacin intypical variable charge soils of China [J]. Journal of Hazardous Materials2008,151(2-3):833-839.
    [98]Figueroa R.A., Leonard A., MacKay A.A. Modeling tetracycline antibiotic sorption to clays [J].Environmental Science&Technology2004,38(2):476-483.
    [99]Jorgensen S.E., Halling-Sorensen B. Drugs in the environment [J]. Chemosphere2000,40(7):691-699.
    [100]Pruden A., Pei R., Storteboom H., Carlson K.H. Antibiotic resistance genes as emerging contaminants:Studies in northern Colorado [J]. Environmental Science&Technology2006,40(23):7445-7450.
    [101]Rysz M., Alvarez P.J.J. Amplification and attenuation of tetracycline resistance in soil bacteria: aquifercolumn experiments [J]. Water Research2004,38(17):3705-3712.
    [102]Besse J.P., Garric J. Human pharmaceuticals in surface waters [J]. Toxicology Letters2008,176(2):104-123.
    [103]Cooper E.R., Siewicki T.C., Phillips K. Preliminary risk assessment database and risk ranking ofpharmaceuticals in the environment [J]. Science of The Total Environment2008,398(1-3):26-33.
    [104]Hernando M., Mezcua M., Fernandezalba A., Barcelo D. Environmental risk assessment ofpharmaceutical residues in wastewater effluents, surface waters and sediments [J]. Talanta2006,69(2):334-342.
    [105]Sanchez de la Campa A., Garcia-Salamanca A., Solano J., de la Rosa J., Ramos J.L. Chemical andMicrobiological Characterization of Atmospheric Particulate Matter during an Intense African DustEvent in Southern Spain [J]. Environmental Science&Technology2013,47(8):3630-3638.
    [106]Ternes A.T. Occurrence of drugs in German sewage treatment plants and rivers [J]. Water Research1998,32(11):3245-3260.
    [107]Luo Y., Xu L., Rysz M., Wang Y., Zhang H., Alvarez P.J.J., Occurrence and Transport of Tetracycline,Sulfonamide, Quinolone, and Macrolide Antibiotics in the Haihe River Basin, China [J]. EnvironmentalScience&Technology2011,45(5):1827-1833.
    [108]Walling C., Fenton's Reagent Revisited [J]. Accounts of Chemical Research1974,8:125-131.
    [109]郑展望.非均相LTV/Fenton处理难降解有机废水研究(博士学位论文).杭州:浙江大学,2004.
    [110]Huang C.P., Dong C.D., Tang Z.H. Advanced chemical oxidation: Its present role and potential future inhazardous waste treatment [J]. Waste Management1993,13(5-7):361-377.
    [111]Thomson J., Roddick, F.A., Drikas, M. Natural organic matter removal by enhanced photo-oxidationusing low pressure mercury vapour lamps [J]. Water Science and Technology2002,2(5-6):435-443.
    [112]Rivas F.J., Beltrán F.J., Frades J., Buxeda P. Oxidation of p-hydroxybenzoic acid by Fenton's reagent [J].Water Resesrch2001,35(2):387-396.
    [113]Kuo W.G. Decolorizing dye wastewater with Fenton's reagent [J]. Water Research1992,26(7):881-886.
    [114]Catalkaya E.C., Kargi F. Color, TOC and AOX removals from pulp mill effluent by advanced oxidationprocesses: A comparative study [J]. Journal of Hazardous Materials2007,139(2):244-253.
    [115]Fujishima A., Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature1972,238(5358):37-38.
    [116]Hermosilla D., Cortijo M., Huang C.P. Optimizing the treatment of landfill leachate by conventionalFenton and photo-Fenton processes [J]. Science of the Total Environment2009,407(11):3473-3481.
    [117]Rozas O., Contreras D., Mondaca M.A., Perez-Moya M., Mansilla H.D. Experimental design of Fentonand photo-Fenton reactions for the treatment of ampicillin solutions [J]. Journal of Hazardous Materials2010,177(1-3):1025-1030.
    [118]Flox C., Garrido J.A., Rodriguez R.M., Cabot P.L., Centellas F., Arias C., Brillas E. Mineralization ofherbicide mecoprop by photoelectro-Fenton with UVA and solar light [J]. Catalysis Today2007,129(1-2):29-36.
    [119]Luna A.J., Chiavone-Filho O., Machulek Jr.A., De Moraes J.E.F., Nascimento C.A.O. Photo-Fentonoxidation of phenol and organochlorides (2,4-DCP and2,4-D) in aqueous alkaline medium with highchloride concentration [J]. Journal of Environmental Management2012,111:10-17.
    [120]Assadi A., Eslami A. Comparison of phenol photodegradation by UV/H2O2and photo-Fenton processes[J]. Environmental Engineering and Management Journal2010,9(6):807-812.
    [121]Rodrigues-Silva C., Maniero M.G., Rath S., Guimar es J.R. Degradation of flumequine by the Fentonand photo-Fenton processes: Evaluation of residual antimicrobial activity [J]. Science of the TotalEnvironment2013,445-446:337-346.
    [122]Poulopoulos S.G., Nikolaki M., Karampetsos D., Philippopoulos C.J. Photochemical treatment of2-chlorophenol aqueous solutions using ultraviolet radiation, hydrogen peroxide and photo-Fentonreaction [J]. Journal of Hazardous Materials2008,153(1-2):582-587.
    [123]Kiran S., Ali S., Asgher M. Degradation and mineralization of Azo Dye reactive Blue222by sequentialphoto-Fenton's oxidation followed by aerobic biological treatment using White Rot Fungi [J]. Bulletin ofEnvironmental Contamination and Toxicology2013,90(2):208-215.
    [124]Nitoi I., Oncescu T., Oancea P. Mechanism and kinetic study for the degradation of lindane byphoto-Fenton process [J]. Journal of Industrial and Engineering Chemistry2013,19(1):305-309.
    [125]Kavitha V., Palanivelu K. Degradation of nitrophenols by Fenton and photo-Fenton processes [J].Journal of Photochemistry and Photobiology A: Chemistry2005,170(1):83-95.
    [126]Colombo R., Ferreira T.C.R., Alves S.A., Carneiro R.L., Lanza M.R.V. Application of the responsesurface and desirability design to the Lambda-cyhalothrin degradation using photo-Fenton reaction [J].Journal of Environmental Management2013,118:32-39.
    [127]Hayon E., Treinin A., Wilf J. Electronic spectra, photochemistry, and autoxidation mechanism of thesulfite-bisulfite-pyrosulfite systems. SO-2, SO-3, SO-4, and SO-5radicals [J]. Journal of the AmericanChemical Society1972.,94(1):47-57.
    [128]Yu Z.Y., Kiwi-Minsker L., Renken A., Kiwi J. Detoxification of diluted azo-dyes at biocompatible pHwith the oxone/Co2+reagent in dark and light processes [J]. Journal of Molecular Catalysis A:Chemical2006,252(1-2):113-119.
    [129]Anipsitakis G.P., Dionysiou D.D. Degradation of organic contaminants in water with sulfate radicalsgenerated by the conjunction of peroxymonosulfate with cobalt [J]. Environmental Science&Technology2003,37(20):4790-4797.
    [130]Kim J., Edwards J.O. A study of cobalt catalysis and copper modification in the coupled decompositionsof hydrogen peroxide and peroxomonosulfate ion [J]. Inorganica Chimica Acta1995,235(1-2):9-13.
    [131]Kolthoff B.I.M., Medalia A.I., Raaen H.P. The Reaction between Ferrous Iron and Peroxides. IV.Reaction with Potassium Persulfatela [J]. Journal of the American Chemical Society1951,73:1733-1739.
    [132]Anipsitakis G.P., Dionysiou D.D. Transition metal/UV-based advanced oxidation technologies for waterdecontamination [J]. Applied Catalysis B: Environmental2004,54(3):155-163.
    [133]Fernandez J., Maruthamuthu P., Renken A., Kiwi J. Bleaching and photobleaching of Orange II withinseconds by the oxone/Co2+reagent in Fenton-like processes [J]. Applied Catalysis B: Environmental2004,49(3):207-215.
    [134]Sun J.H, Li X.Y, Feng J.L, Tian X.K, Oxone/Co2+oxidation as an advanced oxidation process:Comparison with traditional Fenton oxidation for treatment of landfill leachate [J]. Water Research2009,43(17):4363-4369.
    [135]Huang Y.H., Huang Y.F., Huang C.I., Chen C.Y. Efficient decolorization of azo dye Reactive Black Binvolving aromatic fragment degradation in buffered Co2+/PMS oxidative processes with a ppb leveldosage of Co2+-catalyst [J]. Journal of Hazardous Materials2009,170(2-3):1110-1118.
    [136]Bandala E.R., Pelaez M.A., Dionysiou D.D., Gelover S., Garcia J., Macias D. Degradation of2,4-dichlorophenoxyacetic acid (2,4-D) using cobalt-peroxymonosulfate in Fenton-like process [J].Journal of Photochemistry and Photobiology A:Chemistry2007,186(2-3):357-363.
    [137]Broseus R., Vincent S., Aboulfadl K., Daneshvar A., Sauve S., Barbeau B., Prevost M. Ozone oxidationof pharmaceuticals, endocrine disruptors and pesticides during drinking water treatment [J]. WaterResearch2009,43(18):4707-4717.
    [138]Von Gunten U. Ozonation of drinking water: Part I. Oxidation kinetics and product formation [J]. WaterResearch2003,37(7):1443-1467.
    [139]Pi Y.Z., Schumacher J., Jekel M. Decomposition of aqueous ozone in the presence of aromatic organicsolutes [J]. Water Research2005,39:83-88.
    [140]Alvares A.B., Diaper C., Parsons S.A. Partial oxidation by ozone to remove recalcitrance fromwastewaters–a review [J]. Environmental Technology2001,22(4):409-427.
    [141]Irmak S., Erbatur O., Akgerman A. Degradation of17beta-estradiol and bisphenol A in aqueousmedium by using ozone and ozone/UV techniques [J]. Journal of Hazardous Materials2005,126(1-3):54-62.
    [142]Nakada N., Shinohara H., Murata A., Kiri K., Managaki S., Sato N., Takada H. Removal of selectedpharmaceuticals and personal care products (PPCPs) and endocrine-disrupting chemicals (EDCs) duringsand filtration and ozonation at a municipal sewage treatment plant [J]. Water Research2007,41(19):4373-4382.
    [143]Umar M., Roddick F., Fan L., Aziz H.A. Application of ozone for the removal of bisphenol A fromwater and wastewater–A review [J]. Chemosphere2013,90(8):2197-2207.
    [144]Buffle M.O., Von Gunten U. Phenols and amine induced HO generation during the initial phase ofnatural water ozonation [J]. Environmental Science&Technology2006,40(9):3057-3063.
    [145]Garoma T., Matsumoto S.A., Wu Y., Klinger R. Removal of bisphenol A and its reaction-intermediatesfrom aqueous solution by ozonation [J]. Ozone Science&Engineering2010,32(5):338-343.
    [146]Huber M. M., Canonica S., Park G. Y., Von Gunten U. Oxidation of pharmaceuticals during ozonationand advanced oxidation processes [J]. Environmental Science&Technology2003,37(5):1016-1024.
    [147]Westerhoff P., Yoon Y., Snyder S., Wert E. Fate of endocrine-disruptor, pharmaceutical, and personalcare product chemicals during simulated drinking water treatment processes [J]. Environmental Science&Technology2005,39(17):6649-6663.
    [148]Peternel I., Koprivanac N., Kusic H. UV-based processes for reactive azo dye mineralization [J]. WaterResearch2006,40(3):525-532.
    [149]Xu B., Chen Z., Qi F., Ma J., Wu F. Inhibiting the regeneration of N-nitrosodimethylamine in drinkingwater by UV photolysis combined with ozonation [J]. Journal of Hazardous Materials2009,168(1):108-114.
    [150]王宝贞,王琳.水污染治理新技术-新工艺、新概念、新理论[M].北京:科学出版社2004:256-332.
    [151]史月萍,杨祝红,冯新,郑仲,陆小华.掺铂二氧化钛纤维光催化降解氯仿的研究[J].催化学报2003,24(9):663-668.
    [152]Garcia-Martinez M.J., Da Riva I., Canoira L., Llamas J.F., Alcantara R., Gallego J.L.R.Photodegradation of polycyclic aromatic hydrocarbons in fossil fuels catalysed by supported TiO2[J].Applied Catalysis B:Environmental2006,67(3-4):279-289.
    [153]Li F.F., Sun S.M., Jiang Y.S., Xia M.S., Sun M.MS, Xue B., Photodegradation of an azo dye usingimmobilized nanoparticles of TiO2supported by natural porous mineral [J]. Journal of HazardousMaterials2008,152(3):1037-1044.
    [154]Say lkan F., Asilt rk M., Tatar P., Kiraz N., ener., Arpa E. Say lkan H., Photocatalytic performanceof Sn-doped TiO2nanostructured thin films forphotocatalytic degradation of malachite green dye underUV and VIS-lights [J]. Materials Research Bulletin2008,43(1):127-134.
    [155]Dhanalakshmi K.B., Anandan S., Madhavan J., Maruthamuthu P. Photocatalytic degradation of phenolover TiO2powder: The influence of peroxomonosulphate and peroxodisulphate on the reaction rate [J].Solar Energy Materials and Solar Cells2008,92(4):457-463.
    [156]Lin J.J., Zhao X.S., Liu D., Yu Z.G., Zhang Y., Xu H. The decoloration and mineralization of azo dye CIAcid Red14by sonochemical process: Rate improvement via Fenton's reactions [J]. Journal ofHazardous Materials2008,157(2-3):541-546.
    [157]Abbasi M., Asl N.R. Sonochemical degradation of Basic Blue41dye assisted by nano TiO2and H2O2[J]. Journal of Hazardous Materials2008,153(3):942-947.
    [158]Crum L.A., Mason T.J., Reisse J.L., Suslick K.S. Sonochemistry and Sonoluminescence [M]. Dordrecht,Kluwer Academic Publishers,1999.
    [159]Ince N.H., Tezcanli-Guyer G. Impacts of pH and molecular structure on ultrasonic degradation of azodyes [J]. Ultrasonics2004,42(1-9):591-596.
    [160]Wang X., Yao Z., Wang J., Guo W., Li G. Degradation of reactive brilliant red in aqueous solution byultrasonic cavitation [J]. Ultrasonics Sonochemistry2008,15(1):43-48.
    [161]Hamdaoui O., Chiha M., Naffrechoux E. Ultrasound-assisted removal of malachite green from aqueoussolution by dead pine needles [J]. Ultrasonics Sonochemistry2008,15(5):799-807.
    [162]Homem V., Santos L. Degradation and removal methods of antibiotics from aqueous matrices–Areview [J]. Journal of Environmental Management2011,92(10):2304-2347.
    [163]Qiang Z., Adams, C., Surampalli, R. Determination of ozonation rate constants for Lincomycin andSpectinomycin [J]. Ozone Science&Engineering2004,26:525-537.
    [164]Hirose J., Kondo F., Nakano T., Kobayashi T., Hiro N., Ando Y., Takenaka H., Sano K. Inactivation ofantineoplastics in clinical wastewater by electrolysis [J]. Chemosphere2005,60(8):1018-1024.
    [165]Andreozzi R., Canterino M., Marotta R., Paxeus N. Antibiotic removal from wastewaters: Theozonation of amoxicillin [J]. Journal of Hazardous Materials2005,122(3):243-250.
    [166]Zhang G., Ji S., Xi B. Feasibility study of treatment of amoxillin wastewater with a combination ofextraction, Fenton oxidation and reverse osmosis [J]. Desalination2006,196(1-3):32-42.
    [167]Elmolla E., Chaudhuri M. Optimization of Fenton process for treatment of amoxicillin, ampicillin andcloxacillin antibiotics in aqueous solution [J]. Journal of Hazardous Materials2009,170(2-3):666-672.
    [168]Trovó A.G., Melo S.A.S., Nogueira R.F.P. Photodegradation of the pharmaceuticals amoxicillin,bezafibrate and paracetamol by the photo-Fenton process—Application to sewage treatment planteffluent [J]. Journal of Photochemistry and Photobiology A: Chemistry2008,198(2-3):215-220.
    [169]Elmolla E.S., Chaudhuri M. Degradation of amoxicillin, ampicillin and cloxacillin antibiotics inaqueous solution by the UV/ZnO photocatalytic process [J]. Journal of Hazardous Materials2010,173(1-3):445-449.
    [170]Elmolla E., Chaudhuri, M. Improvement of biodegradability of synthetic amoxicillin wastewater byphoto-Fenton process [J]. World Applied Sciences Journal2009,5:53-58.
    [171]Elmolla E.S., Chaudhuri M. Photocatalytic degradation of amoxicillin, ampicillin and cloxacillinantibiotics in aqueous solution using UV/TiO2and UV/H2O2/TiO2photocatalysis [J]. Desalination2010,252(1-3):46-52.
    [172]Navalon S., Alvaro M., Garcia H. Reaction of chlorine dioxide with emergent water pollutants: Productstudy of the reaction of three β-lactam antibiotics with ClO2[J]. Water Research2008,42(8-9):1935-1942.
    [173]Akmehmet Balcioglu I., Otker M. Treatment of pharmaceutical wastewater containing antibiotics by O3and O3/H2O2processes [J]. Chemosphere2003,50(1):85-95.
    [174]Alaton I.A., Dogruel S., Baykal E., Gerone G. Combined chemical and biological oxidation of penicillinformulation effluent [J]. Journal of Environmental Management2004,73(2):155-163.
    [175]Arslan-Alaton I., Dogruel S., Pre-treatment of penicillin formulation effluent by advanced oxidationprocesses [J]. Journal of Hazardous Materials2004,112(1-2):105-113.
    [176]Addamo M., Augugliaro V., Di Paola A., Garcia-Lopez E., Loddo V., Marci G., Palmisano L. Removalof drugs in aqueous systems by photoassisted degradation [J]. Journal of Applied Electrochemistry2005,35(7-8):765-774.
    [177]Shemer H., Kunukcu Y.K., Linden K.G. Degradation of the pharmaceutical Metronidazole via UV,Fenton and photo-Fenton processes [J]. Chemosphere2006,63(2):269-276.
    [178]Bobu M., Yediler A., Siminiceanu I., Schulte-Hostede S. Degradation studies of ciprofloxacin on apillared iron catalyst [J]. Applied Catalysis B:Environmental2008,83(1-2):15-23.
    [179]Goebel A., McArdell C.S., Joss A., Siegrist H., Giger W. Fate of sulfonamides, macrolides, andtrimethoprim in different wastewater treatment technologies [J]. Science of the Total Environment2007,372(2-3):361-371.
    [180]De Witte B., Dewulf J., Demeestere K., Van Langenhove H. Ozonation and advanced oxidation by theperoxone process of ciprofloxacin in water [J]. Journal of Hazardous Materials2009,161(2-3):701-708.
    [181]Sirtori C., Zapata A., Oller I., Gernjak W., Agueera A., Malato S. Decontamination industrialpharmaceutical wastewater by combining solar photo-Fenton and biological treatment [J]. WaterResearch2009,43(3):661-668.
    [182]Lin A.Y.C., Lin C.F., Chiou J.M., Hong P.K.A. O3and O3/H2O2treatment of sulfonamide and macrolideantibiotics in wastewater [J]. Journal of Hazardous Materials2009,171(1-3):452-458.
    [183]Lindberg R.H., Wennberg P. J.M.I., Tysklind M., Andersson B.A.V. Screening of human antibioticsubstances and determination of weekly mass flows in five sewage treatment plants in Sweden [J].Environmental Science&Technology2005,39(10):3421-3429.
    [184]Lindberg R.H., Olofsson U., Rendahl P., Johansson M.I., Tysklind M., Andersson B.A.V. Behavior offluoroquinolones and trimethoprim during mechanical, chemical, and active sludge treatment of sewagewater and digestion of sludge [J]. Environmental Science&Technology2006,40(3):1042-1048.
    [185]Yu J.T., Bouwer E.J., Coelhan M. Occurrence and biodegradability studies of selected pharmaceuticalsand personal care products in sewage effluent [J]. Agricultural Water Management2006,86(1-2):72-80.
    [186]Kim S., Eichhorn P., Jensen J.N., Weber A.S., Aga D.S. Removal of antibiotics in wastewater: effect ofhydraulic and solid retention times on the fate of tetracycline in the activated sludge process [J].Environmental Science&Technology2005,39(15):5816-5823.
    [187]Mcardell C.S., Molnar E., Suter M.J.F., Giger W. Occurrence and fate of macrolide antibiotics inwastewater treatment plants and in the Glatt Valley Watershed, Switzerland [J]. Environmental Science&Technology2003,37(24):5479-5486.
    [188]Batt A.L., Kim S., Aga D.S. Comparison of the occurrence of antibiotics in four full-scale wastewatertreatment plants with varying designs and operations [J]. Chemosphere2007,68(3):428-435.
    [189]Li W., Nanaboina V., Zhou Q., Korshin G.V. Effects of Fenton treatment on the properties of effluentorganic matter and their relationships with the degradation of pharmaceuticals and personal careproducts [J]. Water Research2012,46(2):403-412.
    [190]Ben W.W., Qiang Z.M., Pan X., Chen M.X. Removal of veterinary antibiotics from sequencing batchreactor (SBR) pretreated swine wastewater by Fenton's reagent [J]. Water Research2009,43(17):4392-4402.
    [191]Sun J.H., Feng J.L., Shi S.H., Pi Y.Q., Song M., Shi Y. Degradation of the antibioticsulfamonomethoxine sodium in aqueous solution by photo-Fenton oxidation [J]. Chinese ScienceBulletin2012,57(5):558-564.
    [192]Prieto-Rodríguez L., Oller I., Klamerth N., Agüera A., Rodríguez E.M., Malato S. Application of solarAOPs and ozonation for elimination of micropollutants in municipal wastewater treatment planteffluents [J]. Water Research2013,47(4):1521-1528.
    [193]Yan J., Lei M., Zhu L., Anjum M.N., Zou J., Tang H. Degradation of sulfamonomethoxine with Fe3O4magnetic nanoparticles as heterogeneous activator of persulfate [J]. Journal of Hazardous Materials2011,186(2-3):1398-1404.
    [194]Yan J., Zhu L., Luo Z., Huang Y., Tang H., Chen M. Oxidative decomposition of organic pollutants byusing persulfate with ferrous hydroxide colloids as efficient heterogeneous activator [J]. Separation andPurification Technology2013,106:8-14.
    [195]Broséus R., Vincent S., Aboulfadl K., Daneshvar A., Sauvé S., Barbeau B., Prévost M. Ozone oxidationof pharmaceuticals, endocrine disruptors and pesticides during drinking water treatment [J]. WaterResearch2009,43(18):4707-4717.
    [196]De Witte B., Van Langenhove H., Hemelsoet K., Demeestere K., De Wispelaere P., Van Speybroeck V.,Dewulf J. Levofloxacin ozonation in water: Rate determining process parameters and reaction pathwayelucidation [J]. Chemosphere2009,76(5):683-689.
    [197]Kim I.H., Yamashita N., Kato Y., Tanaka H. Discussion on the application of UV/H2O2, O3and O3/UVprocesses as technologies for sewage reuse considering the removal of pharmaceuticals and personalcare products [J]. Water Science and Technology2009,59(5):945-955.
    [198]An J., Zhou Q. Degradation of some typical pharmaceuticals and personal care products withcopper-plating iron doped Cu2O under visible light irradiation [J]. Journal of Environmental Sciences2012,24(5):827-833.
    [199]Yan Y., Sun S.F., Song Y., Yan X., Guan W.S., Liu X.L., Shi W.D. Microwave-assisted in situ synthesisof reduced graphene oxide-BiVO4composite photocatalysts and their enhanced photocatalyticperformance for the degradation of ciprofloxacin [J]. Journal of Hazardous Materials2013,250:106-114.
    [200]Chen M.J., Chu W. Degradation of antibiotic norfloxacin in aqueous solution by visible-light-mediatedC-TiO2photocatalysis [J]. Journal of Hazardous Materials2012,219:183-189.
    [201]Dong S.Y., Sun J.Y., Li Y.K., Yu C.F., Li Y.H., Sun J.H. ZnSnO3hollow nanospheres/reduced grapheneoxide nanocomposites as high-performance photocatalysts for degradation of metronidazole [J]. AppliedCatalysis B:Environmental2014,144:386-393.
    [202]Wang X.K., Wang Y.A., Li D.L. Degradation of tetracycline in water by ultrasonic irradiation [J]. WaterScience and Technology2013,67(4):715-721.
    [203]Naddeo V., Meric S., Kassinos D., Belgiorno V., Guida M. Fate of pharmaceuticals in contaminatedurban wastewater effluent under ultrasonic irradiation [J]. Water Research2009,43(16):4019-4027.
    [204]álvarez P.M., Jaramillo J., López-Pi ero F., Plucinski P.K. Preparation and characterization of magneticTiO2nanoparticles and their utilization for the degradation of emerging pollutants in water [J]. AppliedCatalysis B:Environmental2010,100(1-2):338-345.
    [205]Hapeshi E., Fotiou I., Fatta-Kassinos D. Sonophotocatalytic treatment of ofloxacin in secondary treatedeffluent and elucidation of its transformation products [J]. Chemical Engineering Journal2013,224:96-105.
    [206]Yang Y., Wang P., Shi S.J., Liu Y. Microwave enhanced Fenton-like process for the treatment of highconcentration pharmaceutical wastewater [J]. Journal of Hazardous Materials2009,168(1):238-245.
    [207]Lau T.K., Chu W., Graham N.J.D. The aqueous degradation of butylated hydroxyanisole by UV/S22O-8:Study of reaction mechanisms via dimerization and mineralization [J]. Environmental Science&Technology2007,41(2):613-619.
    [208]Chan T.W., Graham N.J.D., Chu W. Degradation of iopromide by combined UV irradiation andperoxydisulfate [J]. Journal of Hazardous Materials2010,181(1-3):508-513.
    [209]Liang C., Su H.W. Identification of sulfate and hydroxyl radicals in thermally activated persulfate [J].Industrial&Engineering Chemistry Research2009,48(11):5558-5562.
    [210]Francesco Minisci A.C., Electron transfer processes peroxydisulfate, a useful and versatile reagent inorganic chemistry [J]. Accounts of Chemical Research1983,16:27-32.
    [211]Ahmed M.M., Barbati S., Doumenq P., Chiron S. Sulfate radical anion oxidation of diclofenac andsulfamethoxazole for water decontamination [J]. Chemical Engineering Journal2012,197:440-447.
    [212]Guerard J.J., Chin Y.P., Mash H., Hadad C.M. Photochemical fate of sulfadimethoxine in aquaculturewaters [J]. Environmental Science&Technology2009,43(22):8587-8592.
    [213]Wang Y., Liang J.B., Liao X.D., Wang L.S., Loh T.C., Dai J., Ho Y.W. Photodegradation of sulfadiazineby goethite-oxalate suspension under UV light irradiation [J]. Industrial&Engineering ChemistryResearch2010,49(8):3527-3532.
    [214]Vulliet E., Emmelin C., Chovelon J.M., Guillard C., Herrmann J.M. Photocatalytic degradation ofsulfonylurea herbicides in aqueous TiO2[J]. Applied Catalysis B: Environmental2002,38(2):127-137.
    [215]Oliviero L., Barbier J., Jr., Duprez D. Wet Air Oxidation of nitrogen-containing organic [J]. AppliedCatalysis B: Environmental2003,40(2):163-184.
    [216]Zhao L., Ma J., Sun Z.Z. Oxidation products and pathway of ceramic honeycomb-catalyzed ozonationfor the degradation of nitrobenzene in aqueous solution [J]. Applied Catalysis B: Environmental2008,79(3):244-253.
    [217]Renew J.E., Huang C.H. Simultaneous determination of fluoroquinolone, sulfonamide, andtrimethoprim antibiotics in wastewater using tandem solid phase extraction and liquidchromatography-electrospray mass spectrometry [J]. Journal of Chromatography A2004,1042(1-2):113-121.
    [218]Radjenovic J., Petrovic M., Barcelo D. Fate and distribution of pharmaceuticals in wastewater andsewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR)treatment [J]. Water Research2009,43(3):831-841.
    [219]Michael I., Hapeshi E., Ace a J., Perez S., Petrovi M., Zapata A., Barceló D., Malato S.,Fatta-Kassinos D. Light-induced catalytic transformation of ofloxacin by solar Fenton in various watermatrices at a pilot plant: Mineralization and characterization of major intermediate products [J]. Scienceof the Total Environment2013,461-462:39-48.
    [220]Zepp G.R., Faust B.C., Hoign J. Hydroxyl radical formation in aqueous reactions (pH3-8) of iron(I1)with hydrogen peroxide: The photo-Fenton reaction [J]. Environmental Science&Technology1992,26(2):313-319.
    [221]Benitez F.J, Acero J.L., Real F.J., Rubio F.J., Leal A.I. The Role of hydroxyl radicals for thedecomposition of p-Hydroxy phenylacetic acid in aqueous solutions [J]. Water Resaerch2001,35(5):1338-1343.
    [222]Kwon B.G., Lee D.S., Kang N., Yoon J. Characteristics of P-chlorophenol oxidation by Fenton's reagent[J]. Water Resaerch1999,33(9):2110-2118.
    [223]Gu C., Karthikeyan K.G. Sorption of the antimicrobial ciprofloxacin to aluminum and iron hydrousoxides [J]. Environmental Science&Technology2005,39(23):9166-9173.
    [224]Vasquez M.I., Hapeshi E., Fatta-Kassinos D., Kummerer K. Biodegradation potential of ofloxacin andits resulting transformation products during photolytic and photocatalytic treatment [J]. EnvironmentalScience and Pollution Research2013,20(3):1302-1309.
    [225]Shen L.L., Mitscher L.A., Sharma P.N., O'Donnell T.J., Chu D.W., Cooper C.S., Rosen T., Pernet A.G.Mechanism of inhibition of DNA gyrase by quinolone antibacterials: a cooperative drug--DNA bindingmodel [J]. Biochemistry1989,28(9):3886-3894.
    [226]Karl W., Schneider J., Wetzstein H.G. Outlines of an "exploding" network of metabolites generated fromthe fluoroquinolone enrofloxacin by the brown rot fungus Gibeophyllum striatum [J]. AppliedMicrobiology and Biotechnology2006,71(1):101-113.
    [227] Dewitte B., Dewulf J., Demeestere K., De Vyvere V.V., De Wispelaere P., Van Langenhove H.,Ozonation of ciprofloxacin in water: HRMS identification of reaction products and pathways [J].Environmental Science&Technology2008,42(13):4889-4895.
    [228]Liang C.J., Guo Y.Y., Chien Y.C., Wu Y.J. Oxidative degradation of MTBE by pyrite-activatedpersulfate proposed reaction pathways [J]. Industrial&Engineering Chemistry Research2010,49(18):8858-8864.
    [229]Guinea E., Antonio Garrido J., Maria Rodriguez R., Cabot P.L., Arias C., Centellas F., Brillas E.Degradation of the fluoroquinolone enrofloxacin by electrochemical advanced oxidation processesbased on hydrogen peroxide electrogeneration [J]. Electrochimica Acta2010,55(6):2101-2115.
    [230]Goyne K.W., Chorover J., Kubicki J.D., Zimmerman A.R., Brantley S.L. Sorption of the antibioticofloxacin to mesoporous and nonporous alumina and silica [J]. Journal of Colloid and Interface Science2005,283(1):160-170.
    [231]Sun J.H., Song M.L., Feng J.L., Pi Y.Q. Highly efficient degradation of ofloxacin by UV/Oxone/Co2+oxidation process [J]. Environmental Science and Pollution Research2011,19(5):1536-1543.
    [232]陈威,雷群芳,王国平,氧氟沙星镍配合物的合成、红外光谱、热分析与抗肿瘤活性[J].浙江大学学报(理学版)2008,35(5):553-556.
    [233]史维维,陈威,雷群芳,王国平,黄飞鹤,氧氟沙星锌配合物的结构、光谱性质与抗菌活性[J].浙江大学学报(理学版)2011,38(1):68-72,77.
    [234]Minisci F., Citterio A. Electron-transfer processes peroxydisulfate a useful and versatile reagent inorganic chemistry [J]. Accounts of Chemical Research1983,16:27-33.
    [235]Peyton G.R. The free-radical chemistry of persulfate-based total organic [J]. Marine Chemistry1993,41:91-103.
    [236] Shen L.L., Mitscher L.A., Sharma P.N.,óDonnell T.J., Chu D.W., Cooper C.S., Rosen T., Pernet A.G.Mechanism of inhibition of DNA gyrase by quinolone antibacterials: a cooperative drug--DNA bindingmodel [J]. Biochemistry1989,28(9):3886-3894.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700