用户名: 密码: 验证码:
功能化离子液体及改性硅基介孔材料捕集CO_2研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CO2是导致温室效应的最主要成分,因此碳捕集技术的研究受到学术界和产业界的高度重视。以液体为主体的吸收技术和以固体为主体的吸附技术是碳捕集技术的主要组成部分。这其中,离子液体具有不挥发、不燃烧、热稳定性好、溶解能力强、结构和性质可调节并可循环使用等特性,在CO2的吸收/分离领域中展现了广阔的应用前景。除此之外,硅基介孔材料改性成的固态胺吸附剂由于具有高吸收性能和高选择性的特点,在捕集CO2领域也被广为关注。在本工作中,系统研究了功能化离子液体通过物理作用或化学作用对CO2的捕集行为,并通过扩大孔径缩短孔道进程,深入研究了载体形貌结构对硅基介孔材料胺化以后吸收CO2性能的影响,开发了具有高的CO2捕集能力、高选择性、高吸脱附动力学的碳捕集新材料。具体内容如下:
     1.合成了两种氟化咪唑离子液体1-丁基-3-甲基咪唑七氟丁酸[C4mim][CF3CF2CF2COO]和1-丁基-3-甲基咪唑九氟丁基磺酸离子液体[C4mim][CF3CF2CF2CF2SO3],并进行了1H和13C NMR谱表征。在293.15至343.15K温度范围和高达8.9MPa的压力范围内测定了CO2、H2、N2和O2在这两种离子液体中的溶解度。利用这些数据,分别推导了这些气体在两种离子液体中的亨利常数标准吉布斯自由能,标准溶解焓,及标准熵,计算了对CO2/O2、CO2/N2和CO2/H2的溶解度选择性,分析了分子间的相互作用机理。将CO2在这两种离子液体中的溶解度与带有相同阳离子的其他含氟离子液体进行了比较。结果表明,CO2在这些离子液体中的溶解度大小顺序为:[C4mim][CF3CF2CF2CF2SO3]=[C4mim][Tf2N]>[C4mim][CF3CF2CF2COO]>[C4mim][CF3COO]>[C4mim][CF3SO3]>[C4mim][BF4]。此外,这些溶解度数据可以用Pitzer模型和Krichevsky-Kasarnovsky方程很好的关联。
     2.将三种氨基酸功能离子液体分散固载到介孔氧化硅材料SBA-15上用来吸收CO2。SBA-15的大比表面积和独特的孔道结构,大大提高了氨基酸离子液体对CO2的吸收能力。被充分分散的离子液体不再是堆积在一起而是被分别隔离至SBA-15独立的各个孔道表面,使得胺基基团与CO2按照1:1的摩尔当量比反应生成氨基甲酸,从而达到了0.91molCO2mol-1IL的吸收量。除此之外,CO2吸收能力可以通过调节氨基酸离子液体的负载量和吸收温度而得到优化。而且,吸收的CO2可以通过真空加热的解吸方式得到完全释放。分散到SBA-15上的氨基酸离子液体在五次吸收-解吸的循环过程中性能稳定。这项研究提供了一种与固体纳米多孔材料联用使得氨基功能化离子液体等摩尔吸收CO2的新方法,再加上它的稳定性和可再生性,使得它有可能大大促进离子液体碳捕集技术在工业上的实际应用。
     3.为了增强对CO2的吸附能力,制备了具有大孔径和短孔道行程的层状SBA-15,并用具有不同个数胺基基团的氨基硅烷试剂(mono-,di-和tri-氨基硅烷)与其进行硅烷化反应接枝胺基。深入分析了吸附剂载体的结构对胺负载量、CO2吸附能力和CO2/N2选择性的影响。结果表明,相比于传统的SBA-15,胺负载量和CO2吸附能力可分别增加66%和120%,对CO2/N2的选择性从37显著提高到169。这种新型吸附剂对CO2吸附焓达到67KJ mol-1,表明化学吸附起主要作用。此外,这种吸附剂可完全再生,并表现出良好的稳定性。这项研究提供了一种可以高效、可逆进行碳捕集的新材料。
Since CO2is one of the most important greenhouse gases, the research and development in thecarbon capture technology have long been the focus of many academic and industrial studies. Solventabsorption and solid sorbent adsorption technology have been implemented and modified for the carboncapture. Ionic liquids have a number of unique properties, such as no-volatility, non-flammation,recyclability, high thermal stability, strong solubility capacity, and the tunability of molecularstructures andphysicochemical properties, and therefore have broad prospect in the absorption and separation of CO2. Inaddition, silicon modified mesoporous materials have also been widely concerned in the field of CO2capture due to its high absorption performance and high selectivity. The morphology of silicon-basedmesoporous materials were redesigned to adjust pore structure, morphology and structure in order to studythe impact on the adsorption properties and optimize CO2diffusion in the pore. In this work, functionalionic liquids were applied to capture CO2by physical or chemical action. In addition, by expanding thepore size and shorten the mosochannels, we developed the new mesoporous materials with high CO2capture capacity, high selectivity, high adsorption-desorption dynamics. Details are as follows:
     1. Ionic liquids1-n-butyl-3-methylimidazolium heptafluorobutyrate [C4mim][CF3CF2CF2COO]and1-n-butyl-3-methylimidazolium nonafluorobutyl sulfonate [C4mim][CF3CF2CF2CF2SO3] have beensynthesized and characterized by1H and13C NMR spectra. Solubilities of CO2, H2, N2and O2in these ILshave been determined at the temperature range from (293.15to343.15) K and the pressure up to8.9MPa.From these data, the Henry’s constant, the standard state solution Gibbs energy, standard state solutionenthalpy and standard state solution entropy of these gases in [C4mim][CF3CF2CF2COO] and[C4mim][CF3CF2CF2CF2SO3] were derived and analyzed from molecular interactions. And the solubilityselectivites for CO2relative to O2, N2and H2in both of ILs were calculated. The CO2solubility in these ILwas compared to other ILs sharing the same cation. This comparison shows that the solubility of CO2inthese ILs follows the sequence:[C4mim][CF3CF2CF2CF2SO3]=[C4mim][Tf2N]>[C4mim][CF3CF2CF2COO]>[C4mim][CF3COO]>[C4mim][CF3SO3]>[C4mim][BF4]. It is indicated thatthis kind of ILs would be a promising absorbents for CO2viewing from the absorption capacity andselectivity performance. Furthermore, these solubility data were well correlated by Pitzer model and Krichevsky-Kasarnovsky equation.
     2. The adsorption capacities of AAILs have been greatly enhanced by dispersed on themesoporous silica material SBA-15with special pore structures and large specific surface area. The CO2capture capacity reached up to0.91mol CO2per mol IL by forming carbamic acid in a ratio of one CO2perone amine (1:1stoichiometry) since SBA-15can disperse AAILs molecules from the bulk of the liquidphase to the surface of the support and separate them fully. In addition, CO2capture capacity can be finelytuned via AAIL loading and sorption temperature. Furthermore, the captured CO2can be released byheating under vacuum, and the adsorbent is quite stable after five adsorption-desorption cycles. The presentstudy provides a new approach for equimolar CO2capture of amine-functional ILs by the combination of asolid nanoporous material, which may provide an industrially attractive alternative for CO2capture of ILs.
     3. To enhance CO2adsorption capacity, a kind of platelet SBA-15with short channels and largepore diameter has been prepared and then grafted with various aminosilanes (mono-, di-, andtri-aminosilanes). Thorough analysis of the support structure and sorbent performance was estimatedthrough a combination of amine loading and CO2adsorption capacity and CO2/N2selectivity. It was shownthat compared to traditional SBA-15, the increase in amine loading CO2adsorption capacity can be up to66%and120%, respectively, for these novel sorbents, and the selectivity of CO2/N2was remarkablyenhanced from37to169. The CO2adsorption enthalpy reached67kJ mol1which suggests thatchemisorption was the predominant process. Moreover, these sorbents are regenerable and exhibit goodstabilities. Thus, this approach offers an alternative for the development of technological innovationtowards efficient and reversible processes for carbon capture.
引文
[1] Metz, B.; Davidson, O. R., Climate change2007: mitigation: contribution of working group III tothe fourth assessment report of the intergovernmental panel on climate change. IntergovernmentalPanel on Climate Change:2007.
    [2] Team, C. W.; Pachauri, R.; Reisinger, A., IPCC2007: climate change2007: synthesis report. Geneva:IPCC2007.
    [3] Metz, B.; Davidson, O. R.; Bosch, P. R.; Dave, R.; Meyer, L. A., Contribution of Working Group IIIto the fourth assessment report of the Intergovernmental Panel on Climate Change.2007.
    [4] Metz, B.; Davidson, O.; De Coninck, H.; Loos, M.; Meyer, L., Carbon dioxide capture and storage.2005.
    [5] Herzog, H. J., Peer Reviewed: What Future for Carbon Capture and Sequestration? Environmentalscience&technology2001,35,(7),148A-153A.
    [6] Yang, H.; Xu, Z.; Fan, M.; Gupta, R.; Slimane, R. B.; Bland, A. E.; Wright, I., Progress in carbondioxide separation and capture: A review. Journal of Environmental Sciences2008,20,(1),14-27.
    [7] Ciferno, J.; Litynski, J.; Plasynski, S.; Murphy, J.; Vaux, G.; Munson, R.; Marano, J., DOE/NETLcarbon dioxide capture and storage RD&D roadmap. US DOE National Energy TechnologyLaboratory, Pittsburgh2010.
    [8] Srivastava, M. L.; Shukla, N. K.; Singh, S. K.; Jaiswal, M. R., Studies on dl-α-tocopherol liquidmembranes. Journal of Membrane Science1996,117,(1–2),39-44.
    [9] Moreno, C.; Valiente, M., Studies on the mechanism of transport of lanthanide ions throughsupported liquid membranes containing di-(2-ethylhexyl) phosphoric acid (D2EHPA) as a carrier.Journal of Membrane Science1999,155,(1),155-162.
    [10] Jamal, A.; Meisen, A.; Jim Lim, C., Kinetics of carbon dioxide absorption and desorption in aqueousalkanolamine solutions using a novel hemispherical contactor—II: Experimental results andparameter estimation. Chemical Engineering Science2006,61,(19),6590-6603.
    [11] Oyenekan, B. A.; Rochelle, G. T., Energy Performance of Stripper Configurations for CO2Captureby Aqueous Amines. Industrial&Engineering Chemistry Research2005,45,(8),2457-2464.
    [12] Henni, A.; Li, J.; Tontiwachwuthikul, P., Reaction Kinetics of CO2in Aqueous1-Amino-2-Propanol,3-Amino-1-Propanol, and Dimethylmonoethanolamine Solutions in the Temperature Range of298313K Using the Stopped-Flow Technique. Industrial&Engineering Chemistry Research2008,47,(7),2213-2220.
    [13] Astaria, G.; Savage, D. W.; Bisio, A., Gas treating with chemical solvents.1983.
    [14] Kohl, A. L.; Nielsen, R., Gas purification. Gulf Professional Publishing:1997.
    [15] Maddox, R. N.; Morgan, D. J., Gas Conditioning and Processing: Gas Treating and LiquidSweetening. Campbell Petroleum Series:1998.
    [16] Rogers, R. D., Materials science: Reflections on ionic liquids. Nature2007,447,(7147),917-918.
    [17] Bara, J. E.; Carlisle, T. K.; Gabriel, C. J.; Camper, D.; Finotello, A.; Gin, D. L.; Noble, R. D., Guideto CO2Separations in Imidazolium-Based Room-Temperature Ionic Liquids. Industrial&Engineering Chemistry Research2009,48,(6),2739-2751.
    [18] Hasib-ur-Rahman, M.; Siaj, M.; Larachi, F., Ionic liquids for CO2capture—Development andprogress. Chemical Engineering and Processing: Process Intensification2010,49,(4),313-322.
    [19] Karadas, F.; Atilhan, M.; Aparicio, S., Review on the Use of Ionic Liquids (ILs) as Alternative Fluidsfor CO2Capture and Natural Gas Sweetening. Energy&Fuels2010,24,(11),5817-5828.
    [20] Blanchard, L. A.; Hancu, D.; Beckman, E. J.; Brennecke, J. F., Green processing using ionic liquidsand CO2. Nature1999,399,(6731),28-29.
    [21] Blanchard, L. A.; Gu, Z.; Brennecke, J. F., High-pressure phase behavior of ionic liquid/CO2systems.The Journal of Physical Chemistry B2001,105,(12),2437-2444.
    [22] Yuan, X.; Zhang, S.; Liu, J.; Lu, X., Solubilities of CO2in hydroxyl ammonium ionic liquids atelevated pressures. Fluid Phase Equilibria2007,257,(2),195-200.
    [23] Anthony, J. L.; Anderson, J. L.; Maginn, E. J.; Brennecke, J. F., Anion Effects on Gas Solubility inIonic Liquids. The Journal of Physical Chemistry B2005,109,(13),6366-6374.
    [24] Hong, G.; Jacquemin, J.; Deetlefs, M.; Hardacre, C.; Husson, P.; Costa Gomes, M. F., Solubility ofcarbon dioxide and ethane in three ionic liquids based on the bis{(trifluoromethyl)sulfonyl}imideanion. Fluid Phase Equilibria2007,257,(1),27-34.
    [25] Kume an, J.; Tuma, D.; Pérez-Salado Kamps, A. l.; Maurer, G., Solubility of the Single GasesCarbon Dioxide and Hydrogen in the Ionic Liquid [bmpy][Tf2N]. Journal of Chemical&Engineering Data2009,55,(1),165-172.
    [26] Anthony, J. L.; Maginn, E. J.; Brennecke, J. F., Solubilities and Thermodynamic Properties of Gasesin the Ionic Liquid1-n-Butyl-3-methylimidazolium Hexafluorophosphate. The Journal of PhysicalChemistry B2002,106,(29),7315-7320.
    [27] Anderson, J. L.; Dixon, J. K.; Brennecke, J. F., Solubility of CO2, CH4, C2H6, C2H4, O2, and N2in1-Hexyl-3-methylpyridinium Bis(trifluoromethylsulfonyl)imide: Comparison to Other Ionic Liquids.Accounts of Chemical Research2007,40,(11),1208-1216.
    [28] Baltus, R. E.; Culbertson, B. H.; Dai, S.; Luo, H.; DePaoli, D. W., Low-Pressure Solubility ofCarbon Dioxide in Room-Temperature Ionic Liquids Measured with a Quartz Crystal Microbalance.The Journal of Physical Chemistry B2003,108,(2),721-727.
    [29] Chen, Y.; Zhang, S.; Yuan, X.; Zhang, Y.; Zhang, X.; Dai, W.; Mori, R., Solubility of CO2inimidazolium-based tetrafluoroborate ionic liquids. Thermochimica Acta2006,441,(1),42-44.
    [30] Muldoon, M. J.; Aki, S. N. V. K.; Anderson, J. L.; Dixon, J. K.; Brennecke, J. F., Improving CarbonDioxide Solubility in Ionic Liquids. The Journal of Physical Chemistry B2007,111,(30),9001-9009.
    [31] Cadena, C.; Anthony, J. L.; Shah, J. K.; Morrow, T. I.; Brennecke, J. F.; Maginn, E. J., Why Is CO2So Soluble in Imidazolium-Based Ionic Liquids? Journal of the American Chemical Society2004,126,(16),5300-5308.
    [32] Aki, S. N. V. K.; Mellein, B. R.; Saurer, E. M.; Brennecke, J. F., High-Pressure Phase Behavior ofCarbon Dioxide with Imidazolium-Based Ionic Liquids. The Journal of Physical Chemistry B2004,108,(52),20355-20365.
    [33] Schilderman, A. M.; Raeissi, S.; Peters, C. J., Solubility of carbon dioxide in the ionic liquid1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Fluid Phase Equilibria2007,260,(1),19-22.
    [34] Zhang, X.; Liu, Z.; Wang, W., Screening of ionic liquids to capture CO2by COSMO-RS andexperiments. AIChE Journal2008,54,(10),2717-2728.
    [35] Jalili, A. H.; Mehdizadeh, A.; Shokouhi, M.; Sakhaeinia, H.; Taghikhani, V., Solubility of CO2in1-(2-hydroxyethyl)-3-methylimidazolium ionic liquids with different anions. The Journal ofChemical Thermodynamics2010,42,(6),787-791.
    [36] Shin, E.-K.; Lee, B.-C., High-Pressure Phase Behavior of Carbon Dioxide with Ionic Liquids:1-Alkyl-3-methylimidazolium Trifluoromethanesulfonate. Journal of Chemical&Engineering Data2008,53,(12),2728-2734.
    [37] Palgunadi, J.; Kang, J. E.; Nguyen, D. Q.; Kim, J. H.; Min, B. K.; Lee, S. D.; Kim, H.; Kim, H. S.,Solubility of CO2in dialkylimidazolium dialkylphosphate ionic liquids. Thermochimica Acta2009,494,(1–2),94-98.
    [38] Shin, E.-K.; Lee, B.-C.; Lim, J. S., High-pressure solubilities of carbon dioxide in ionic liquids:1-Alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. The Journal of Supercritical Fluids2008,45,(3),282-292.
    [39] Wolsky, A. M.; Daniels, E. J.; Jody, B. J., CO2Capture from the flue gas of conventionalfossil-fuel-fired power plants. Environmental Progress1994,13,(3),214-219.
    [40] Bates, E. D.; Mayton, R. D.; Ntai, I.; Davis, J. H., CO2Capture by a Task-Specific Ionic Liquid.Journal of the American Chemical Society2002,124,(6),926-927.
    [41] Crooks, J. E.; Donnellan, J. P., Kinetics and mechanism of the reaction between carbon dioxide andamines in aqueous solution. Journal of the Chemical Society, Perkin Transactions21989,(4),331-333.
    [42] Zhang, J.; Zhang, S.; Dong, K.; Zhang, Y.; Shen, Y.; Lv, X., Supported Absorption of CO2byTetrabutylphosphonium Amino Acid Ionic Liquids. Chemistry–A European Journal2006,12,(15),4021-4026.
    [43] Zhang, Y.; Zhang, S.; Lu, X.; Zhou, Q.; Fan, W.; Zhang, X., Dual Amino-FunctionalisedPhosphonium Ionic Liquids for CO2Capture. Chemistry–A European Journal2009,15,(12),3003-3011.
    [44] Gurkan, B. E.; de la Fuente, J. C.; Mindrup, E. M.; Ficke, L. E.; Goodrich, B. F.; Price, E. A.;Schneider, W. F.; Brennecke, J. F., Equimolar CO2absorption by anion-functionalized ionic liquids.Journal of the American Chemical Society2010,132,(7),2116-2117.
    [45] Soutullo, M. D.; Odom, C. I.; Wicker, B. F.; Henderson, C. N.; Stenson, A. C.; Davis, J. H.,Reversible CO2Capture by Unexpected Plastic-, Resin-, and Gel-like Ionic Soft MaterialsDiscovered during the Combi-Click Generation of a TSIL Library. Chemistry of Materials2007,19,(15),3581-3583.
    [46] Yu, G.; Zhang, S., Insight into the cation–anion interaction in1,1,3,3-tetramethylguanidinium lactateionic liquid. Fluid Phase Equilibria2007,255,(1),86-92.
    [47] Scovazzo, P.; Kieft, J.; Finan, D. A.; Koval, C.; DuBois, D.; Noble, R., Gas separations usingnon-hexafluorophosphate [PF6] anion supported ionic liquid membranes. Journal of MembraneScience2004,238,(1–2),57-63.
    [48] Baltus, R. E.; Counce, R. M.; Culbertson, B. H.; Luo, H.; DePaoli, D. W.; Dai, S.; Duckworth, D. C.,Examination of the Potential of Ionic Liquids for Gas Separations. Separation Science andTechnology2005,40,(1-3),525-541.
    [49] Park, Y.-I.; Kim, B.-S.; Byun, Y.-H.; Lee, S.-H.; Lee, E.-W.; Lee, J.-M., Preparation of supportedionic liquid membranes (SILMs) for the removal of acidic gases from crude natural gas.Desalination2009,236,(1–3),342-348.
    [50] Hanioka, S.; Maruyama, T.; Sotani, T.; Teramoto, M.; Matsuyama, H.; Nakashima, K.; Hanaki, M.;Kubota, F.; Goto, M., CO2separation facilitated by task-specific ionic liquids using a supportedliquid membrane. Journal of Membrane Science2008,314,(1–2),1-4.
    [51] Myers, C.; Pennline, H.; Luebke, D.; Ilconich, J.; Dixon, J. K.; Maginn, E. J.; Brennecke, J. F., Hightemperature separation of carbon dioxide/hydrogen mixtures using facilitated supported ionic liquidmembranes. Journal of Membrane Science2008,322,(1),28-31.
    [52] Bara, J. E.; Gabriel, C. J.; Carlisle, T. K.; Camper, D. E.; Finotello, A.; Gin, D. L.; Noble, R. D., Gasseparations in fluoroalkyl-functionalized room-temperature ionic liquids using supported liquidmembranes. Chemical Engineering Journal2009,147,(1),43-50.
    [53] Ilconich, J.; Myers, C.; Pennline, H.; Luebke, D., Experimental investigation of the permeability andselectivity of supported ionic liquid membranes for CO2/He separation at temperatures up to125°C.Journal of Membrane Science2007,298,(1–2),41-47.
    [54] Iarikov, D. D.; Hacarlioglu, P.; Oyama, S. T., Supported room temperature ionic liquid membranesfor CO2/CH4separation. Chemical Engineering Journal2011,166,(1),401-406.
    [55] Tang, J.; Tang, H.; Sun, W.; Plancher, H.; Radosz, M.; Shen, Y., Poly(ionic liquid)s: a new materialwith enhanced and fast CO2absorption. Chemical Communications2005,(26),3325-3327.
    [56] Tang, J.; Sun, W.; Tang, H.; Radosz, M.; Shen, Y., Enhanced CO2Absorption of Poly(ionic liquid)s.Macromolecules2005,38,(6),2037-2039.
    [57] Bara, J. E.; Lessmann, S.; Gabriel, C. J.; Hatakeyama, E. S.; Noble, R. D.; Gin, D. L., Synthesis andPerformance of Polymerizable Room-Temperature Ionic Liquids as Gas Separation Membranes.Industrial&Engineering Chemistry Research2007,46,(16),5397-5404.
    [58] Blasig, A.; Tang, J.; Hu, X.; Tan, S. P.; Shen, Y.; Radosz, M., Carbon Dioxide Solubility inPolymerized Ionic Liquids Containing Ammonium and Imidazolium Cations from MagneticSuspension Balance: P[VBTMA][BF4] and P[VBMI][BF4]. Industrial&Engineering ChemistryResearch2007,46,(17),5542-5547.
    [59] Blasig, A.; Tang, J.; Hu, X.; Shen, Y.; Radosz, M., Magnetic suspension balance study of carbondioxide solubility in ammonium-based polymerized ionic liquids: Poly(p-vinylbenzyltrimethylammonium tetrafluoroborate) and poly([2-(methacryloyloxy)ethyl] trimethyl ammoniumtetrafluoroborate). Fluid Phase Equilibria2007,256,(1–2),75-80.
    [60] Tang, J.; Tang, H.; Sun, W.; Radosz, M.; Shen, Y., Low-pressure CO2sorption in ammonium-basedpoly(ionic liquid)s. Polymer2005,46,(26),12460-12467.
    [61] Tang, J.; Tang, H.; Sun, W.; Radosz, M.; Shen, Y., Poly(ionic liquid)s as new materials for CO2absorption. Journal of Polymer Science Part A: Polymer Chemistry2005,43,(22),5477-5489.
    [62] Tang, J.; Shen, Y.; Radosz, M.; Sun, W., Isothermal Carbon Dioxide Sorption in Poly(ionic liquid)s.Industrial&Engineering Chemistry Research2009,48,(20),9113-9118.
    [63] Bara, J. E.; Gabriel, C. J.; Hatakeyama, E. S.; Carlisle, T. K.; Lessmann, S.; Noble, R. D.; Gin, D. L.,Improving CO2selectivity in polymerized room-temperature ionic liquid gas separation membranesthrough incorporation of polar substituents. Journal of Membrane Science2008,321,(1),3-7.
    [64] Bara, J. E.; Hatakeyama, E. S.; Gin, D. L.; Noble, R. D., Improving CO2permeability inpolymerized room-temperature ionic liquid gas separation membranes through the formation of asolid composite with a room-temperature ionic liquid. Polymers for Advanced Technologies2008,19,(10),1415-1420.
    [65] Bara, J. E.; Camper, D. E.; Gin, D. L.; Noble, R. D., Room-Temperature Ionic Liquids andComposite Materials: Platform Technologies for CO2Capture. Accounts of Chemical Research2009,43,(1),152-159.
    [66] Zhang, S.; Yuan, X.; Chen, Y.; Zhang, X., Solubilities of CO2in1-Butyl-3-methylimidazoliumHexafluorophosphate and1,1,3,3-Tetramethylguanidium Lactate at Elevated Pressures. Journal ofChemical&Engineering Data2005,50,(5),1582-1585.
    [67] Camper, D.; Scovazzo, P.; Koval, C.; Noble, R., Gas solubilities in room-temperature ionic liquids.Industrial&Engineering Chemistry Research2004,43,(12),3049-3054.
    [68] Poole, C. F., Chromatographic and spectroscopic methods for the determination of solvent propertiesof room temperature ionic liquids. Journal of Chromatography A2004,1037,(1),49-82.
    [69] Kilaru, P. K.; Condemarin, R. A.; Scovazzo, P., Correlations of low-pressure carbon dioxide andhydrocarbon solubilities in imidazolium-, phosphonium-, and ammonium-based room-temperatureionic liquids. Part1. Using surface tension. Industrial&Engineering Chemistry Research2008,47,(3),900-909.
    [70] Kilaru, P. K.; Scovazzo, P., Correlations of low-pressure carbon dioxide and hydrocarbon solubilitiesin imidazolium-, phosphonium-, and ammonium-based room-temperature ionic liquids. Part2.Using activation energy of viscosity. Industrial&Engineering Chemistry Research2008,47,(3),910-919.
    [71] Camper, D.; Becker, C.; Koval, C.; Noble, R., Low pressure hydrocarbon solubility in roomtemperature ionic liquids containing imidazolium rings interpreted using regular solution theory.Industrial&Engineering Chemistry Research2005,44,(6),1928-1933.
    [72] Camper, D.; Becker, C.; Koval, C.; Noble, R., Diffusion and solubility measurements in roomtemperature ionic liquids. Industrial&Engineering Chemistry Research2006,45,(1),445-450.
    [73] Carlisle, T. K.; Bara, J. E.; Gabriel, C. J.; Noble, R. D.; Gin, D. L., Interpretation of CO2solubilityand selectivity in nitrile-functionalized room-temperature ionic liquids using a group contributionapproach. Industrial&Engineering Chemistry Research2008,47,(18),7005-7012.
    [74] Moganty, S. S.; Baltus, R. E., Regular solution theory for low pressure carbon dioxide solubility inroom temperature ionic liquids: Ionic liquid solubility parameter from activation energy of viscosity.Industrial&Engineering Chemistry Research2010,49,(12),5846-5853.
    [75] Bhargava, B.; Balasubramanian, S., Probing anion–carbon dioxide interactions in room temperatureionic liquids: Gas phase cluster calculations. Chemical Physics Letters2007,444,(4),242-246.
    [76] Bhargava, B.; Krishna, A.; Balasubramanian, S., Molecular dynamics simulation studies ofCO2–[bmim][PF6] solutions: Effect of CO2concentration. AIChE Journal2008,54,(11),2971-2978.
    [77] Shimoyama, Y.; Ito, A., Predictions of cation and anion effects on solubilities, selectivities andpermeabilities for CO2in ionic liquid using COSMO based activity coefficient model. Fluid PhaseEquilibria2010,297,(2),178-182.
    [78] Ventura, S. P. M.; Pauly, J.; Daridon, J. L.; Lopes da Silva, J. A.; Marrucho, I. M.; Dias, A. M. A.;Coutinho, J. A. P., High pressure solubility data of carbon dioxide in(tri-iso-butyl(methyl)phosphonium tosylate water) systems. The Journal of ChemicalThermodynamics2008,40,(8),1187-1192.
    [79] Li, X.; Hou, M.; Zhang, Z.; Han, B.; Yang, G.; Wang, X.; Zou, L., Absorption of CO2by ionicliquid/polyethylene glycol mixture and the thermodynamic parameters. Green Chemistry2008,10,(8),879-884.
    [80] Camper, D.; Bara, J. E.; Gin, D. L.; Noble, R. D., Room-Temperature Ionic Liquid Amine Solutions:Tunable Solvents for Efficient and Reversible Capture of CO2. Industrial&Engineering ChemistryResearch2008,47,(21),8496-8498.
    [81] Feng, Z.; Cheng-Gang, F.; You-Ting, W.; Yuan-Tao, W.; Ai-Min, L.; Zhi-Bing, Z., Absorption of CO2in the aqueous solutions of functionalized ionic liquids and MDEA. Chemical Engineering Journal2010,160,(2),691-697.
    [82] Zhao, Y.; Zhang, X.; Zeng, S.; Zhou, Q.; Dong, H.; Tian, X.; Zhang, S., Density, Viscosity, andPerformances of Carbon Dioxide Capture in16Absorbents of Amine+Ionic Liquid+H2O, IonicLiquid+H2O, and Amine+H2O Systems. Journal of Chemical&Engineering Data2010,55,(9),3513-3519.
    [83] Xu, X.; Song, C.; Andresen, J. M.; Miller, B. G.; Scaroni, A. W., Novel polyethylenimine-modifiedmesoporous molecular sieve of MCM-41type as high-capacity adsorbent for CO2capture. Energy&Fuels2002,16,(6),1463-1469.
    [84] Xu, X.; Song, C.; Miller, B. G.; Scaroni, A. W., Influence of moisture on CO2separation from gasmixture by a nanoporous adsorbent based on polyethylenimine-modified molecular sieve MCM-41.Industrial&Engineering Chemistry Research2005,44,(21),8113-8119.
    [85] Xu, X.; Song, C.; Andresen, J. M.; Miller, B. G.; Scaroni, A. W., Preparation and characterization ofnovel CO2“molecular basket” adsorbents based on polymer-modified mesoporous molecular sieveMCM-41. Microporous and Mesoporous Materials2003,62,(1),29-45.
    [86] Xu, X.; Song, C.; Andresen, J. M.; Miller, B. G., Adsorption separation of CO2from simulated fluegas mixtures by novel CO2" molecular basket" adsorbents. International journal of environmentaltechnology and management2004,4,(1),32-52.
    [87] Xu, X.; Song, C.; Miller, B. G.; Scaroni, A. W., Adsorption separation of carbon dioxide from fluegas of natural gas-fired boiler by a novel nanoporous “molecular basket” adsorbent. Fuel ProcessingTechnology2005,86,(14),1457-1472.
    [88] Ma, X.; Wang, X.; Song, C.,“Molecular Basket” sorbents for separation of CO2and H2S fromvarious gas streams. Journal of the American Chemical Society2009,131,(16),5777-5783.
    [89] Franchi, R. S.; Harlick, P. J.; Sayari, A., Applications of pore-expanded mesoporous silica.2.Development of a high-capacity, water-tolerant adsorbent for CO2. Industrial&EngineeringChemistry Research2005,44,(21),8007-8013.
    [90] Son, W.-J.; Choi, J.-S.; Ahn, W.-S., Adsorptive removal of carbon dioxide usingpolyethyleneimine-loaded mesoporous silica materials. Microporous and Mesoporous Materials2008,113,(1),31-40.
    [91] Chen, C.; Yang, S.-T.; Ahn, W.-S.; Ryoo, R., Amine-impregnated silica monolith with a hierarchicalpore structure: enhancement of CO2capture capacity. Chemical Communications2009,(24),3627-3629.
    [92] Gargiulo, N.; Caputo, D.; Colella, C., Preparation and characterization of polyethylenimine-modifiedmesoporous silicas as CO2sorbents. Studies in Surface Science and Catalysis2007,170,1938-1943.
    [93] Goeppert, A.; Meth, S.; Prakash, G. S.; Olah, G. A., Nanostructured silica as a support forregenerable high-capacity organoamine-based CO2sorbents. Energy&Environmental Science2010,3,(12),1949-1960.
    [94] Qi, G.; Wang, Y.; Estevez, L.; Duan, X.; Anako, N.; Park, A.-H. A.; Li, W.; Jones, C. W.; Giannelis, E.P., High efficiency nanocomposite sorbents for CO2capture based on amine-functionalizedmesoporous capsules. Energy&Environmental Science2011,4,(2),444-452.
    [95] Drage, T.; Arenillas, A.; Smith, K. M.; Snape, C. E., Thermal stability of polyethylenimine basedcarbon dioxide adsorbents and its influence on selection of regeneration strategies. Microporous andMesoporous Materials2008,116,(1),504-512.
    [96] Dasgupta, S.; Nanoti, A.; Gupta, P.; Jena, D.; Goswami, A. N.; Garg, M. O., Carbon Di-OxideRemoval with Mesoporous Adsorbents in a Single Column Pressure Swing Adsorber. SeparationScience and Technology2009,44,(16),3973-3983.
    [97] Demessence, A.; D’Alessandro, D. M.; Foo, M. L.; Long, J. R., Strong CO2binding in a water-stable,triazolate-bridged metal organic framework functionalized with ethylenediamine. Journal of theAmerican Chemical Society2009,131,(25),8784-8786.
    [98] Yue, M. B.; Sun, L. B.; Cao, Y.; Wang, Y.; Wang, Z. J.; Zhu, J. H., Efficient CO2Capturer Derivedfrom As‐Synthesized MCM‐41Modified with Amine. Chemistry-A European Journal2008,14,(11),3442-3451.
    [99] Yue, M. B.; Chun, Y.; Cao, Y.; Dong, X.; Zhu, J. H., CO2Capture by As‐Prepared SBA‐15withan Occluded Organic Template. Advanced Functional Materials2006,16,(13),1717-1722.
    [100] Yue, M. B.; Sun, L. B.; Cao, Y.; Wang, Z. J.; Wang, Y.; Yu, Q.; Zhu, J. H., Promoting the CO2adsorption in the amine-containing SBA-15by hydroxyl group. Microporous and MesoporousMaterials2008,114,(1),74-81.
    [101] Gray, M.; Soong, Y.; Champagne, K.; Pennline, H.; Baltrus, J.; Stevens Jr, R.; Khatri, R.; Chuang, S.;Filburn, T., Improved immobilized carbon dioxide capture sorbents. Fuel Processing Technology2005,86,(14),1449-1455.
    [102] Lee, S.; Filburn, T. P.; Gray, M.; Park, J.-W.; Song, H.-J., Screening test of solid amine sorbents forCO2capture. Industrial&Engineering Chemistry Research2008,47,(19),7419-7423.
    [103] Gray, M.; Champagne, K.; Fauth, D.; Baltrus, J.; Pennline, H., Performance of immobilized tertiaryamine solid sorbents for the capture of carbon dioxide. International Journal of Greenhouse GasControl2008,2,(1),3-8.
    [104] Gray, M.; Hoffman, J.; Hreha, D.; Fauth, D.; Hedges, S.; Champagne, K.; Pennline, H., Parametricstudy of solid amine sorbents for the capture of carbon dioxide. Energy&Fuels2009,23,(10),4840-4844.
    [105] Jadhav, P.; Chatti, R.; Biniwale, R.; Labhsetwar, N.; Devotta, S.; Rayalu, S., Monoethanol aminemodified zeolite13X for CO2adsorption at different temperatures. Energy&Fuels2007,21,(6),3555-3559.
    [106] Su, F.; Lu, C.; Kuo, S.-C.; Zeng, W., Adsorption of CO2on amine-functionalized Y-type zeolites.Energy&Fuels2010,24,(2),1441-1448.
    [107] Fisher, J. C.; Tanthana, J.; Chuang, S. S., Oxide‐supported tetraethylenepentamine for CO2capture.Environmental progress&sustainable energy2009,28,(4),589-598.
    [108] Choi, S.; Drese, J. H.; Jones, C. W., Adsorbent Materials for Carbon Dioxide Capture from LargeAnthropogenic Point Sources. ChemSusChem2009,2,(9),796-854.
    [109] Chew, T.-L.; Ahmad, A. L.; Bhatia, S., Ordered mesoporous silica (OMS) as an adsorbent andmembrane for separation of carbon dioxide (CO2). Advances in colloid and interface science2010,153,(1),43-57.
    [110] Leal, O.; Bolívar, C.; Ovalles, C.; García, J. J.; Espidel, Y., Reversible adsorption of carbon dioxideon amine surface-bonded silica gel. Inorganica Chimica Acta1995,240,(1),183-189.
    [111] Delaney, S. W.; Knowles, G. P.; Chaffee, A. L., Hybrid mesoporous materials for carbon dioxideseparation. Fuel Chem Div. Preprints2002,47,65.
    [112] Knowles, G. P.; Delaney, S. W.; Chaffee, A. L., Amine-functionalised mesoporous silicas as CO2adsorbents. Studies in Surface Science and Catalysis2005,156,887-896.
    [113] Knowles, G. P.; Graham, J. V.; Delaney, S. W.; Chaffee, A. L., Aminopropyl-functionalizedmesoporous silicas as CO2adsorbents. Fuel Processing Technology2005,86,(14),1435-1448.
    [114] Chaffee, A. L., Molecular modeling of HMS hybrid materials for CO2adsorption. Fuel ProcessingTechnology2005,86,(14),1473-1486.
    [115] Knowles, G. P.; Delaney, S. W.; Chaffee, A. L., Diethylenetriamine [propyl (silyl)]-functionalized(DT) mesoporous silicas as CO2adsorbents. Industrial&Engineering Chemistry Research2006,45,(8),2626-2633.
    [116] Liang, Z.; Fadhel, B.; Schneider, C. J.; Chaffee, A. L., Stepwise growth of melamine-baseddendrimers into mesopores and their CO2adsorption properties. Microporous and MesoporousMaterials2008,111,(1),536-543.
    [117] Acosta, E. J.; Carr, C. S.; Simanek, E. E.; Shantz, D. F., Engineering Nanospaces: Iterative Synthesisof Melamine‐Based Dendrimers on Amine‐Functionalized SBA‐15Leading to ComplexHybrids with Controllable Chemistry and Porosity. Advanced Materials2004,16,(12),985-989.
    [118] Hiyoshi, N.; YOGO, K.; Yashima, T., Adsorption of carbon dioxide on amine modified SBA-15inthe presence of water vapor. Chemistry Letters2004,33,(5),510-511.
    [119] Hiyoshi, N.; Yogo, K.; Yashima, T., Adsorption characteristics of carbon dioxide on organicallyfunctionalized SBA-15. Microporous and Mesoporous Materials2005,84,(1),357-365.
    [120] Huang, H. Y.; Yang, R. T.; Chinn, D.; Munson, C. L., Amine-grafted MCM-48and silica xerogel assuperior sorbents for acidic gas removal from natural gas. Industrial&Engineering ChemistryResearch2003,42,(12),2427-2433.
    [121] Chang, A. C.; Chuang, S. S.; Gray, M.; Soong, Y., In-situ infrared study of CO2adsorption onSBA-15grafted with γ-(aminopropyl) triethoxysilane. Energy&Fuels2003,17,(2),468-473.
    [122] Gray, M.; Soong, Y.; Champagne, K.; Pennline, H.; Baltrus, J.; Jr, R.; Khatri, R.; Chuang, S.,Capture of carbon dioxide by solid amine sorbents. International journal of environmentaltechnology and management2004,4,(1),82-88.
    [123] Khatri, R. A.; Chuang, S. S.; Soong, Y.; Gray, M., Carbon dioxide capture by diamine-graftedSBA-15: A combined Fourier transform infrared and mass spectrometry study. Industrial&Engineering Chemistry Research2005,44,(10),3702-3708.
    [124] Khatri, R. A.; Chuang, S. S.; Soong, Y.; Gray, M., Thermal and chemical stability of regenerablesolid amine sorbent for CO2capture. Energy&Fuels2006,20,(4),1514-1520.
    [125] Zheng, F.; Tran, D. N.; Busche, B.; Fryxell, G. E.; Addleman, R. S.; Zemanian, T. S.; Aardahl, C. L.,Ethylenediamine-modified SBA-15as regenerable CO2sorbents. Prepr. Pap.-Am. Chem. Soc., Div.Fuel Chem2004,49,(1),261.
    [126] Zheng, F.; Tran, D. N.; Busche, B. J.; Fryxell, G. E.; Addleman, R. S.; Zemanian, T. S.; Aardahl, C.L., Ethylenediamine-modified SBA-15as regenerable CO2sorbent. Industrial&EngineeringChemistry Research2005,44,(9),3099-3105.
    [127] Zeleňák, V.; Badani ová, M.; Halamova, D.; ejka, J.; Zukal, A.; Murafa, N.; Goerigk, G.,Amine-modified ordered mesoporous silica: effect of pore size on carbon dioxide capture. ChemicalEngineering Journal2008,144,(2),336-342.
    [128] Drese, J. H.; Choi, S.; Lively, R. P.; Koros, W. J.; Fauth, D. J.; Gray, M. L.; Jones, C. W.,Synthesis–structure–property relationships for hyperbranched aminosilica CO2adsorbents. AdvancedFunctional Materials2009,19,(23),3821-3832.
    [129] Hicks, J. C.; Drese, J. H.; Fauth, D. J.; Gray, M. L.; Qi, G.; Jones, C. W., Designing adsorbents forCO2capture from flue gas-hyperbranched aminosilicas capable of capturing CO2reversibly. Journalof the American Chemical Society2008,130,(10),2902-2903.
    [130] Kn fel, C.; Descarpentries, J.; Benzaouia, A.; Zeleňák, V.; Mornet, S.; Llewellyn, P.; Hornebecq, V.,Functionalised micro-/mesoporous silica for the adsorption of carbon dioxide. Microporous andMesoporous Materials2007,99,(1),79-85.
    [131] Harlick, P. J.; Sayari, A., Applications of pore-expanded mesoporous silica.5. Triamine graftedmaterial with exceptional CO2dynamic and equilibrium adsorption performance. Industrial&Engineering Chemistry Research2007,46,(2),446-458.
    [132] Serna-Guerrero, R.; Belmabkhout, Y.; Sayari, A., Influence of regeneration conditions on the cyclicperformance of amine-grafted mesoporous silica for CO2capture: An experimental and statisticalstudy. Chemical Engineering Science2010,65,(14),4166-4172.
    [133] Lu, C.; Su, F.; Hsu, S.-C.; Chen, W.; Bai, H.; Hwang, J. F.; Lee, H.-H., Thermodynamics andregeneration of CO2adsorption on mesoporous spherical-silica particles. Fuel ProcessingTechnology2009,90,(12),1543-1549.
    [134] Hsu, S.-C.; Lu, C.; Su, F.; Zeng, W.; Chen, W., Thermodynamics and regeneration studies of CO2adsorption on multiwalled carbon nanotubes. Chemical Engineering Science2010,65,(4),1354-1361.
    [135] Su, F.; Lu, C.; Cnen, W.; Bai, H.; Hwang, J. F., Capture of CO2from flue gas via multiwalled carbonnanotubes. Science of the total environment2009,407,(8),3017-3023.
    [136] Harlick, P. J.; Sayari, A., Applications of pore-expanded mesoporous silicas.3. Triamine silanegrafting for enhanced CO2adsorption. Industrial&Engineering Chemistry Research2006,45,(9),3248-3255.
    [137] Sayari, A.; Hamoudi, S.; Yang, Y., Applications of pore-expanded mesoporous silica.1. Removal ofheavy metal cations and organic pollutants from wastewater. Chemistry of Materials2005,17,(1),212-216.
    [138] Serna-Guerrero, R.; Da’na, E.; Sayari, A., New insights into the interactions of CO2withamine-functionalized silica. Industrial&Engineering Chemistry Research2008,47,(23),9406-9412.
    [139] Serna-Guerrero, R.; Belmabkhout, Y.; Sayari, A., Further investigations of CO2capture usingtriamine-grafted pore-expanded mesoporous silica. Chemical Engineering Journal2010,158,(3),513-519.
    [140] Serna-Guerrero, R.; Belmabkhout, Y.; Sayari, A., Triamine-grafted pore-expanded mesoporous silicafor CO2capture: Effect of moisture and adsorbent regeneration strategies. Adsorption2010,16,(6),567-575.
    [141] Belmabkhout, Y.; Serna-Guerrero, R.; Sayari, A., Adsorption of CO2-containing gas mixtures overamine-bearing pore-expanded MCM-41silica: application for gas purification. Industrial&Engineering Chemistry Research2009,49,(1),359-365.
    [142] Sayari, A.; Belmabkhout, Y., Stabilization of amine-containing CO2adsorbents: dramatic effect ofwater vapor. Journal of the American Chemical Society2010,132,(18),6312-6314.
    [143] Belmabkhout, Y.; Sayari, A., Isothermal versus non-isothermal adsorption desorption cycling oftriamine-grafted pore-expanded MCM-41mesoporous silica for CO2capture from flue gas. Energy&Fuels2010,24,(9),5273-5280.
    [144] Kim, S.-N.; Son, W.-J.; Choi, J.-S.; Ahn, W.-S., CO2adsorption using amine-functionalizedmesoporous silica prepared via anionic surfactant-mediated synthesis. Microporous and MesoporousMaterials2008,115,(3),497-503.
    [145] Beckman, E., A challenge for green chemistry: designing molecules that readily dissolve in carbondioxide. Chem. Commun.2004,(17),1885-1888.
    [146] Crosthwaite, J. M.; Muldoon, M. J.; Dixon, J. K.; Anderson, J. L.; Brennecke, J. F., Phase transitionand decomposition temperatures, heat capacities and viscosities of pyridinium ionic liquids. TheJournal of Chemical Thermodynamics2005,37,(6),559-568.
    [147] Almantariotis, D.; Gefflaut, T.; Pádua, A. A. H.; Coxam, J. Y.; Costa Gomes, M. F., Effect ofFluorination and Size of the Alkyl Side-Chain on the Solubility of Carbon Dioxide in1-Alkyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide Ionic Liquids. The Journal ofPhysical Chemistry B2010,114,(10),3608-3617.
    [148] Almantariotis, D.; Stevanovic, S.; Fandi o, O.; Pensado, A. S.; Padua, A. A. H.; Coxam, J. Y.; CostaGomes, M. F., Absorption of Carbon Dioxide, Nitrous Oxide, Ethane and Nitrogen by1-Alkyl-3-methylimidazolium (Cnmim, n=2,4,6) Tris(pentafluoroethyl)trifluorophosphate IonicLiquids (eFAP). The Journal of Physical Chemistry B2012,116,(26),7728-7738.
    [149] Caba o, M. I.; Danten, Y.; Tassaing, T.; Longelin, S.; Besnard, M., Raman spectroscopy ofCO2–acetone and CO2–ethanol complexes. Chemical Physics Letters2005,413,(4),258-262.
    [150] Nelson, M. R.; Borkman, R. F., Ab initio calculations on CO2binding to carbonyl groups. TheJournal of Physical Chemistry A1998,102,(40),7860-7863.
    [151] Kazarian, S. G.; Vincent, M. F.; Bright, F. V.; Liotta, C. L.; Eckert, C. A., Specific intermolecularinteraction of carbon dioxide with polymers. Journal of the American Chemical Society1996,118,(7),1729-1736.
    [152] Carvalho, P. J.; Alvarez, V. H.; Schr der, B.; Gil, A. M.; Marrucho, I. M.; Aznar, M.; Santos, L. M.;Coutinho, J. A., Specific solvation interactions of CO2on acetate and trifluoroacetate imidazoliumbased ionic liquids at high pressures. The Journal of Physical Chemistry B2009,113,(19),6803-6812.
    [153] Costa Gomes, M. F.; Pádua, A. A. H., Interactions of Carbon Dioxide with Liquid Fluorocarbons.The Journal of Physical Chemistry B2003,107,(50),14020-14024.
    [154] Bonhote, P.; Dias, A.-P.; Papageorgiou, N.; Kalyanasundaram, K.; Gr tzel, M., Hydrophobic, highlyconductive ambient-temperature molten salts. Inorganic chemistry1996,35,(5),1168-1178.
    [155] Fukumoto, K.; Yoshizawa, M.; Ohno, H., Room temperature ionic liquids from20natural aminoacids. Journal of the American Chemical Society2005,127,(8),2398-2399.
    [156] Zhao, Y.; Zhang, X.; Dong, H.; Zhen, Y.; Li, G.; Zeng, S.; Zhang, S., Solubilities of gases in novelalcamines ionic liquid2-[2-hydroxyethyl (methyl) amino] ethanol chloride. Fluid Phase Equilibria2011,302,(1–2),60-64.
    [157] Zhou, L.; Fan, J.; Shang, X.; Wang, J., Solubilities of CO2, H2, N2and O2in ionic liquid1-n-butyl-3-methylimidazolium heptafluorobutyrate. The Journal of Chemical Thermodynamics2013,59,(0),28-34.
    [158] Shiflett, M. B.; Yokozeki, A., Solubilities and diffusivities of carbon dioxide in ionicliquids:[bmim][PF6] and [bmim][BF4]. Industrial&Engineering Chemistry Research2005,44,(12),4453-4464.
    [159] Lee, B.-C.; Outcalt, S. L., Solubilities of gases in the ionic liquid1-n-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide. Journal of Chemical&Engineering Data2006,51,(3),892-897.
    [160] Althuluth, M.; Mota-Martinez, M. T.; Kroon, M. C.; Peters, C. J., Solubility of Carbon Dioxide inthe Ionic Liquid1-Ethyl-3-methylimidazolium Tris(pentafluoroethyl)trifluorophosphate. Journal ofChemical&Engineering Data2012,57,(12),3422-3425.
    [161] Soriano, A. N.; Doma Jr, B. T.; Li, M.-H., Carbon dioxide solubility in1-ethyl-3-methylimidazoliumtrifluoromethanesulfonate. The Journal of Chemical Thermodynamics2009,41,(4),525-529.
    [162] Seki, T.; Grunwaldt, J.-D.; Baiker, A., In Situ Attenuated Total Reflection Infrared Spectroscopy ofImidazolium-Based Room-Temperature Ionic Liquids under “Supercritical” CO2. The Journal ofPhysical Chemistry B2008,113,(1),114-122.
    [163] Kazarian, S. G.; Briscoe, B. J.; Welton, T., Combining ionic liquids and supercritical fluids: ATR-IRstudy of CO dissolved in two ionic liquids at high pressures. Chemical Communications2000,(20),2047-2048.
    [164] Camper, D.; Bara, J.; Koval, C.; Noble, R., Bulk-Fluid Solubility and Membrane Feasibility ofRmim-Based Room-Temperature Ionic Liquids. Industrial&Engineering Chemistry Research2006,45,(18),6279-6283.
    [165] Finotello, A.; Bara, J. E.; Narayan, S.; Camper, D.; Noble, R. D., Ideal gas solubilities and solubilityselectivities in a binary mixture of room-temperature ionic liquids. The Journal of PhysicalChemistry B2008,112,(8),2335-2339.
    [166] Shannon, M. S.; Tedstone, J. M.; Danielsen, S. P.; Hindman, M. S.; Irvin, A. C.; Bara, J. E., Freevolume as the basis of gas solubility and selectivity in imidazolium-based ionic liquids. Industrial&Engineering Chemistry Research2012,51,(15),5565-5576.
    [167] Scovazzo, P.; Camper, D.; Kieft, J.; Poshusta, J.; Koval, C.; Noble, R., Regular solution theory andCO2gas solubility in room-temperature ionic liquids. Industrial&Engineering Chemistry Research2004,43,(21),6855-6860.
    [168] Huang, X.; Margulis, C. J.; Li, Y.; Berne, B. J., Why Is the Partial Molar Volume of CO2So SmallWhen Dissolved in a Room Temperature Ionic Liquid? Structure and Dynamics of CO2Dissolved in
    [Bmim+][PF6-]. Journal of the American Chemical Society2005,127,(50),17842-17851.
    [169] Lee, H.; Cho, M. H.; Lee, B. S.; Palgunadi, J.; Kim, H.; Kim, H. S.,Alkyl-fluoroalkylimidazolium-Based Ionic Liquids as Efficient CO2Absorbents. Energy&Fuels2010,24,(12),6689-6692.
    [170] Raveendran, P.; Wallen, S. L., Cooperative CH⊙⊙⊙O Hydrogen Bonding in CO2-Lewis BaseComplexes: Implications for Solvation in Supercritical CO2. Journal of the American ChemicalSociety2002,124,(42),12590-12599.
    [171] MacFarlane, D. R.; Pringle, J. M.; Johansson, K. M.; Forsyth, S. A.; Forsyth, M., Lewis base ionicliquids. Chemical Communications2006,(18),1905-1917.
    [172] Pitzer, K. S., Thermodynamics of electrolytes. I. Theoretical basis and general equations. TheJournal of Physical Chemistry1973,77,(2),268-277.
    [173] Cheng, K.-W.; Tang, M.; Chen, Y.-P., Vapor–liquid equilibria of carbon dioxide with diethyl oxalate,ethyl laurate, and dibutyl phthalate binary mixtures at elevated pressures. Fluid Phase Equilibria2001,181,(1–2),1-16.
    [174] Soriano, A. N.; Doma Jr, B. T.; Li, M.-H., Solubility of carbon dioxide in1-ethyl-3-methylimidazolium2-(2-methoxyethoxy) ethylsulfate. The Journal of ChemicalThermodynamics2008,40,(12),1654-1660.
    [175] Sakhaeinia, H.; Jalili, A. H.; Taghikhani, V.; Safekordi, A. A., Solubility of H2S in Ionic Liquids1-Ethyl-3-methylimidazolium Hexafluorophosphate ([emim][PF6]) and1-Ethyl-3-methylimidazolium Bis (trifluoromethyl) sulfonylimide ([emim][Tf2N]). Journal ofChemical&Engineering Data2010,55,(12),5839-5845.
    [176] Krichevsky, I. R.; Kasarnovsky, J. S., Thermodynamical Calculations of Solubilities of Nitrogen andHydrogen in Water at High Pressures. Journal of the American Chemical Society1935,57,(11),2168-2171.
    [177] Prausnitz, J.; Lichtenthaler, R.; de Azevedo, E. G., Molecular Thermodynamics of Fluid. Fluid PhaseEquilibria,3rd ed.(Prentice-Hall, Upper Saddle River, NJ,1999)1969.
    [178] Stogryn, D. E.; Stogryn, A. P., Molecular multipole moments. Molecular Physics1966,11,(4),371-393.
    [179] Wesseler, E. P.; Iltis, R.; Clark Jr, L. C., The solubility of oxygen in highly fluorinated liquids.Journal of Fluorine Chemistry1977,9,(2),137-146.
    [180] Brennecke, J. F.; Gurkan, B. E., Ionic liquids for CO2capture and emission reduction. The Journal ofPhysical Chemistry Letters2010,1,(24),3459-3464.
    [181] Berthod, A.; Ruiz-Angel, M.; Carda-Broch, S., Ionic liquids in separation techniques. Journal ofChromatography A2008,1184,(1),6-18.
    [182] Freemantle, M., An introduction to ionic liquids. Royal Society of chemistry:2010.
    [183] Buzzeo, M. C.; Evans, R. G.; Compton, R. G., Non‐haloaluminate room‐temperature ionic liquidsin electrochemistry—A review. ChemPhysChem2004,5,(8),1106-1120.
    [184] Parvulescu, V. I.; Hardacre, C., Catalysis in ionic liquids. Chemical Reviews2007,107,(6),2615-2665.
    [185] Blanchard, L. A.; Brennecke, J. F., Recovery of organic products from ionic liquids usingsupercritical carbon dioxide. Industrial&Engineering Chemistry Research2001,40,(1),287-292.
    [186] Anthony, J. L.; Crosthwaite, J. M.; Hert, D. G.; Aki, S. N.; Maginn, E. J.; Brennecke, J. F., Phaseequilibria of gases and liquids with1-n-butyl-3-methylimidazolium tetrafluoroborate. Ionic Liquidsas Green Solvents: Progress and Prospects2003,856,110-120.
    [187] Shariati, A.; Peters, C., High-pressure phase behavior of systems with ionic liquids: II. The binarysystem carbon dioxide+1-ethyl-3-methylimidazolium hexafluorophosphate. The Journal ofsupercritical fluids2004,29,(1),43-48.
    [188] Shariati, A.; Peters, C. J., High-pressure phase equilibria of systems with ionic liquids. The Journalof supercritical fluids2005,34,(2),171-176.
    [189] Kim, Y.; Choi, W.; Jang, J.; Yoo, K.-P.; Lee, C., Solubility measurement and prediction of carbondioxide in ionic liquids. Fluid Phase Equilibria2005,228,439-445.
    [190] Ma, J.-w.; Zhou, Z.; Zhang, F.; Fang, C.-g.; Wu, Y.-t.; Zhang, Z.-b.; Li, A.-m.,Ditetraalkylammonium amino acid ionic liquids as CO2absorbents of high capacity. Environmentalscience&technology2011,45,(24),10627-10633.
    [191] Feng, Z.; Cheng-Gang, F.; You-Ting, W.; Yuan-Tao, W.; Ai-Min, L.; Zhi-Bing, Z., Absorption of CO2in the aqueous solutions of functionalized ionic liquids and MDEA. Chemical Engineering Journal2010,160,(2),691-697.
    [192] Wang, C.; Luo, X.; Luo, H.; Jiang, D. e.; Li, H.; Dai, S., Tuning the basicity of ionic liquids forequimolar CO2capture. Angewandte Chemie International Edition2011,50,(21),4918-4922.
    [193] Jiang, Y.-Y.; Wang, G.-N.; Zhou, Z.; Wu, Y.-T.; Geng, J.; Zhang, Z.-B., Tetraalkylammonium aminoacids as functionalized ionic liquids of low viscosity. Chemical Communications2008,(4),505-507.
    [194] Zhang, J.; Zhang, S.; Dong, K.; Zhang, Y.; Shen, Y.; Lv, X., Supported absorption of CO2bytetrabutylphosphonium amino acid ionic liquids. Chemistry-a European Journal2006,12,(15),4021-4026.
    [195] Wang, X.; Akhmedov, N. G.; Duan, Y.; Luebke, D.; Li, B., Immobilization of amino acid ionicliquids into nanoporous microspheres as robust sorbents for CO2capture. Journal of MaterialsChemistry A2013,1,(9),2978-2982.
    [196] Ren, J.; Wu, L.; Li, B.-G., Preparation and CO2sorption/desorption of N-(3-aminopropyl)aminoethyl tributylphosphonium amino acid salt ionic liquids supported into porous silica particles.Industrial&Engineering Chemistry Research2012,51,(23),7901-7909.
    [197] Niedermaier, I.; Bahlmann, M.; Papp, C.; Kolbeck, C.; Wei, W.; Calderón, S. K.; Grabau, M.; Schulz,P. S.; Wasserscheid, P.; Steinrück, H.-P., Carbon Dioxide Capture by an Amine Functionalized IonicLiquid-Fundamental Differences of Surface and Bulk Behavior. Journal of the American ChemicalSociety2013.
    [198] Wu, C.; Wang, J.; Wang, H.; Pei, Y.; Li, Z., Effect of anionic structure on the phase formation andhydrophobicity of amino acid ionic liquids aqueous two-phase systems. Journal of ChromatographyA2011,1218,(48),8587-8593.
    [199] Wang, X.; Ma, X.; Song, C.; Locke, D. R.; Siefert, S.; Winans, R. E.; M llmer, J.; Lange, M.; M ller,A.; Gl ser, R., Molecular basket sorbents polyethylenimine–SBA-15for CO2capture from flue gas:Characterization and sorption properties. Microporous and Mesoporous Materials2013,169,103-111.
    [200] Wei, L.; Gao, Z.; Jing, Y.; Wang, Y., Adsorption of CO2from Simulated Flue Gas onPentaethylenehexamine-Loaded Mesoporous Silica Support Adsorbent. Industrial&EngineeringChemistry Research2013,52,(42),14965-14974.
    [201] Zhao, A.; Samanta, A.; Sarkar, P.; Gupta, R., Carbon dioxide adsorption on amine-impregnatedmesoporous SBA-15sorbents: experimental and kinetics study. Industrial&Engineering ChemistryResearch2013,52,(19),6480-6491.
    [202] D'Alessandro, D. M.; Smit, B.; Long, J. R., Carbon Dioxide Capture: Prospects for New Materials.Angewandte Chemie International Edition.2010,49,(35),6058-6082.
    [203] Cui, S.; Cheng, W.; Shen, X.; Fan, M.; Russell, A.; Wu, Z.; Yi, X., Mesoporous amine-modified SiO2aerogel: a potential CO2sorbent. Energy&Environmental Science2011,4,(6),2070-2074.
    [204] Dutcher, B.; Fan, M.; Leonard, B.; Dyar, M. D.; Tang, J.; Speicher, E. A.; Liu, P.; Zhang, Y., Use ofNanoporous FeOOH as a Catalytic Support for NaHCO3Decomposition Aimed at Reduction ofEnergy Requirement of Na2CO3/NaHCO3Based CO2Separation Technology. The Journal ofPhysical Chemistry C2011,115,(31),15532-15544.
    [205] He, L.; Fan, M.; Dutcher, B.; Cui, S.; Shen, X.-d.; Kong, Y.; Russell, A. G.; McCurdy, P., Dynamicseparation of ultradilute CO2with a nanoporous amine-based sorbent. Chemical EngineeringJournal2012,189,13-23.
    [206] Jiang, Q.; Faraji, S.; Nordheden, K. J.; Stagg-Williams, S. M., CO2reforming reaction assisted withoxygen permeable Ba0.5Sr0.5Co0.8Fe0.2Ox perovskite ceramic membranes. Journal of MembraneScience2011,368,(1-2),69-77.
    [207] Li, P.; Paul, D. R.; Chung, T. S., High performance membranes based on ionic liquid polymers forCO2separation from the flue gas. Green Chem.2012,14,(4),1052-1063.
    [208] Xiong, L.; Gu, S.; Jensen, K. O.; Yan, Y. S., Facilitated Transport in Hydroxide-ExchangeMembranes for Post-Combustion CO2Separation. ChemSusChem2013, n/a-n/a.
    [209] Zhang, B.-T.; Fan, M.; Bland, A. E., CO2Separation by a New Solid K Fe Sorbent. Energy Fuels2011,25,(4),1919-1925.
    [210] Zhao, L.; Bacsik, Z.; Hedin, N.; Wei, W.; Sun, Y.; Antonietti, M.; Titirici, M.-M., Carbon DioxideCapture on Amine-Rich Carbonaceous Materials Derived from Glucose. ChemSusChem2010,3,(7),840-845.
    [211] Wang, Y.; Zhu, Y.; Wu, S., A new nano CaO-based CO2adsorbent prepared using an adsorptionphase technique. Chemical Engineering Journal2013,218,(0),39-45.
    [212] Didas, S. A.; Kulkarni, A. R.; Sholl, D. S.; Jones, C. W., Role of Amine Structure on Carbon DioxideAdsorption from Ultradilute Gas Streams such as Ambient Air. ChemSusChem2012,5,(10),2058-2064.
    [213] Qian, D.; Lei, C.; Wang, E.-M.; Li, W.-C.; Lu, A.-H., A Method for Creating Microporous CarbonMaterials with Excellent CO2-Adsorption Capacity and Selectivity. ChemSusChem2013, n/a-n/a.
    [214] Lyndon, R.; Konstas, K.; Ladewig, B. P.; Southon, P. D.; Kepert, P. C. J.; Hill, M. R., DynamicPhoto-Switching in Metal–Organic Frameworks as a Route to Low-Energy Carbon Dioxide Captureand Release. Angewandte Chemie International Edition2013,125,(13),3783-3786.
    [215] Chen, C.; Yang, S.-T.; Ahn, W.-S.; Ryoo, R., Amine-impregnated silica monolith with a hierarchicalpore structure: enhancement of CO2capture capacity. Chemical Communications2009,(24),3627-3629.
    [216] Feng, X.; Hu, G.; Hu, X.; Xie, G.; Xie, Y.; Lu, J.; Luo, M., Tetraethylenepentamine-ModifiedSiliceous Mesocellular Foam (MCF) for CO2Capture. Industrial&Engineering Chemistry Research2013,52,(11),4221-4228.
    [217] Belmabkhout, Y.; Serna-Guerrero, R.; Sayari, A., Adsorption of CO2-Containing Gas Mixtures overAmine-Bearing Pore-Expanded MCM-41Silica: Application for Gas Purification. Industrial&Engineering Chemistry Research2009,49,(1),359-365.
    [218] Hao, S.; Chang, H.; Xiao, Q.; Zhong, Y.; Zhu, W., One-Pot Synthesis and CO2Adsorption Propertiesof Ordered Mesoporous SBA-15Materials Functionalized with APTMS. The Journal of PhysicalChemistry C2011,115,(26),12873-12882.
    [219] Son, W.-J.; Choi, J.-S.; Ahn, W.-S., Adsorptive removal of carbon dioxide usingpolyethyleneimine-loaded mesoporous silica materials. Microporous and Mesoporous Materials2008,113,(1–3),31-40.
    [220] Alkhabbaz, M. A.; Khunsupat, R.; Jones, C. W., Guanidinylated poly(allylamine) supported onmesoporous silica for CO2capture from flue gas. Fuel2014,121,(0),79-85.
    [221] Mello, M. R.; Phanon, D.; Silveira, G. Q.; Llewellyn, P. L.; Ronconi, C. M., Amine-modifiedMCM-41mesoporous silica for carbon dioxide capture. Microporous and Mesoporous Materials2011,143,(1),174-179.
    [222] Builes, S.; Vega, L. F., Understanding CO2Capture in Amine-Functionalized MCM-41by MolecularSimulation. The Journal of Physical Chemistry C2012,116,(4),3017-3024.
    [223] Bollini, P.; Didas, S. A.; Jones, C. W., Amine-oxide hybrid materials for acid gas separations.Journal of Materials Chemistry2011,21,(39),15100-15120.
    [224] Olea, A.; Sanz-Pérez, E. S.; Arencibia, A.; Sanz, R.; Calleja, G., Amino-functionalizedpore-expanded SBA-15for CO2adsorption. Adsorption2013,19,(2-4),589-600.
    [225] Sanz, R.; Calleja, G.; Arencibia, A.; Sanz-Pérez, E. S., CO2Uptake and Adsorption Kinetics ofPore-Expanded SBA-15Double-Functionalized with Amino Groups. Energy Fuels2013,27,(12),7637-7644.
    [226] Calleja, G.; Sanz, R.; Arencibia, A.; Sanz-Pérez, E. S., Influence of Drying Conditions onAmine-Functionalized SBA-15as Adsorbent of CO2. Topics in Catalysis2011,54,(1-4),135-145.
    [227] Harlick, P. J. E.; Sayari, A., Applications of Pore-Expanded Mesoporous Silica.5. Triamine GraftedMaterial with Exceptional CO2Dynamic and Equilibrium Adsorption Performance. Industrial&Engineering Chemistry Research2006,46,(2),446-458.
    [228] Heydari-Gorji, A.; Belmabkhout, Y.; Sayari, A., Polyethylenimine-Impregnated Mesoporous Silica:Effect of Amine Loading and Surface Alkyl Chains on CO2Adsorption. Langmuir2011,27,(20),12411-12416.
    [229] Prieto, G.; Martínez, A.; Murciano, R.; Arribas, M. A., Cobalt supported on morphologically tailoredSBA-15mesostructures: The impact of pore length on metal dispersion and catalytic activity in theFischer–Tropsch synthesis. Applied Catalysis A2009,367,(1–2),146-156.
    [230] Sujandi; Prasetyanto, E. A.; Park, S.-E., Synthesis of short-channeled amino-functionalized SBA-15and its beneficial applications in base-catalyzed reactions. Applied Catalysis A2008,350,(2),244-251.
    [231] Sun, J.; Zhang, H.; Tian, R.; Ma, D.; Bao, X.; Su, D. S.; Zou, H., Ultrafast enzyme immobilizationover large-pore nanoscale mesoporous silica particles. Chemical Communications2006,(12),1322-1324.
    [232] Gustafsson, H.; Johansson, E. M.; Barrabino, A.; Odén, M.; Holmberg, K., Immobilization of lipasefrom Mucor miehei and Rhizopus oryzae into mesoporous silica—The effect of varied particle sizeand morphology. Colloids and Surfaces, B2012,100,(0),22-30.
    [233] Johansson, E. M.; Córdoba, J. M.; Odén, M., The effects on pore size and particle morphology ofheptane additions to the synthesis of mesoporous silica SBA-15. Microporous and MesoporousMaterials2010,133,(1–3),66-74.
    [234] Linton, P.; Wennerstrom, H.; Alfredsson, V., Controlling particle morphology and size in thesynthesis of mesoporous SBA-15materials. Physical Chemistry Chemical Physics2010,12,(15),3852-3858.
    [235] Sujandi; Park, S.-E.; Han, D.-S.; Han, S.-C.; Jin, M.-J.; Ohsuna, T., Amino-functionalized SBA-15type mesoporous silica having nanostructured hexagonal platelet morphology. ChemicalCommunications2006,(39),4131-4133.
    [236] Heydari-Gorji, A.; Yang, Y.; Sayari, A., Effect of the Pore Length on CO2Adsorption overAmine-Modified Mesoporous Silicas. Energy Fuels2011,25,(9),4206-4210.
    [237] Chen, S.-Y.; Chen, Y.-T.; Lee, J.-J.; Cheng, S., Tuning pore diameter of platelet SBA-15materialswith short mesochannels for enzyme adsorption. Journal of Materials Chemistry2011,21,(15),5693-5703.
    [238] Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D., TriblockCopolymer Syntheses of Mesoporous Silica with Periodic50to300Angstrom Pores. Science1998,279,(5350),548-552.
    [239] Wang, L.; Yang, R. T., Increasing Selective CO2Adsorption on Amine-Grafted SBA-15byIncreasing Silanol Density. The Journal of Physical Chemistry C2011,115,(43),21264-21272.
    [240] Cao, L.; Man, T.; Kruk, M., Synthesis of Ultra-Large-Pore SBA-15Silica with Two-DimensionalHexagonal Structure Using Triisopropylbenzene As Micelle Expander. Journal of materialsChemistry2009,21,(6),1144-1153.
    [241] Goeppert, A.; Czaun, M.; May, R. B.; Prakash, G. K. S.; Olah, G. A.; Narayanan, S. R., CarbonDioxide Capture from the Air Using a Polyamine Based Regenerable Solid Adsorbent. Journal of theAmerican Chemical Society2011,133,(50),20164-20167.
    [242] Ko, Y. G.; Shin, S. S.; Choi, U. S., Primary, secondary, and tertiary amines for CO2capture:Designing for mesoporous CO2adsorbents. Journal of Colloid and Interface Scienc.2011,361,(2),594-602.
    [243] Sayari, A.; Belmabkhout, Y.; Da’na, E., CO2Deactivation of Supported Amines: Does the Nature ofAmine Matter? Langmuir2012,28,(9),4241-4247.
    [244] Ebner, A.; Gray, M.; Chisholm, N.; Black, Q.; Mumford, D.; Nicholson, M.; Ritter, J., Suitability ofa solid amine sorbent for CO2capture by pressure swing adsorption. Industrial&EngineeringChemistry Research2011,50,(9),5634-5641.
    [245] Gray, M. L.; Hoffman, J. S.; Hreha, D. C.; Fauth, D. J.; Hedges, S. W.; Champagne, K. J.; Pennline,H. W., Parametric Study of Solid Amine Sorbents for the Capture of Carbon Dioxide. Energy Fuels2009,23,(10),4840-4844.
    [246] Su, F.; Lu, C.; Chen, H.-S., Adsorption, Desorption, and Thermodynamic Studies of CO2withHigh-Amine-Loaded Multiwalled Carbon Nanotubes. Langmuir2011,27,(13),8090-8098.
    [247] Knowles, G. P.; Graham, J. V.; Delaney, S. W.; Chaffee, A. L., Aminopropyl-functionalizedmesoporous silicas as CO2adsorbents. Fuel Processing.Technology2005,86,(14–15),1435-1448.
    [248] Siriwardane, R. V.; Shen, M.-S.; Fisher, E. P.; Losch, J., Adsorption of CO2on Zeolites at ModerateTemperatures. Energy Fuels2005,19,(3),1153-1159.
    [249] Bourrelly, S.; Llewellyn, P. L.; Serre, C.; Millange, F.; Loiseau, T.; Férey, G., Different AdsorptionBehaviors of Methane and Carbon Dioxide in the Isotypic Nanoporous Metal Terephthalates MIL-53and MIL-47. Journal of the American Chemical Society2005,127,(39),13519-13521.
    [250] Schrag, D. P., Preparing to Capture Carbon. Science2007,315,(5813),812-813.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700