用户名: 密码: 验证码:
生物—化学法净化甲醛废气应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物法废气净化新技术研究是现阶段低浓度废气治理技术研究领域中广受关注的前沿热点之一。由于甲醛兼有水溶性和挥发性的特殊性,使得采用生物法对低浓度甲醛废气的处理方式与其它有机废气的处理方式具有不同的特征,如何实现对废气中甲醛的高效生化降解去除是近年来研究获得生物法净化甲醛废气实用工程技术所面临的一个难题。
     本论文研究针对生物膜填料塔降解净化甲醛废气技术应用中,存在的气态甲醛溶解并累积于循环液而导致废气中甲醛不能被高效生化降解去除的技术难题,开展了采用添加化学促进剂强化生物膜填料塔降解净化甲醛废气性能的应用基础研究,重点对高效化学促进剂的选择及其强化生物膜填料塔降解净化甲醛废气性能的可行性、适用高效化学促进剂亚硫酸钠对微生物菌种及优势种群的影响、提高生物膜填料塔降解净化甲醛废气性能的最佳操作条件、甲醛降解过程机理与降解途径以及相关基础动力学等进行了系统的应用基础研究,以期通过探索研究“化学促进-生物降解”集成优化于生物膜填料塔对甲醛废气降解净化效果的突跃增强作用,为解决生物法净化甲醛废气技术应用中的技术难题提供一个有效途径。
     首先,本研究通过实验证实,当生物膜填料塔在气体流量为0.2m3/h、循环液流量为5L/h、进口气体甲醛浓度范围50~150mg/m3的条件下操作时,溶解在循环液中的甲醛累积浓度可达8.45~33.00mg/L。对应进行的去除累积甲醛的化学促进剂选择实验结果表明,当按与液相甲醛化学反应摩尔比为1:1添加化学试剂时,在实验选用的亚硫酸钠、亚硫酸氢钠、氯化铵等三种试剂中,以亚硫酸钠对液相甲醛的去除率最高,达到了68.69%。进一步实验考察亚硫酸钠添加浓度变化对生物膜填料塔系统中液相甲醛去除效果的结果表明,当亚硫酸钠浓度由0.05M增加到0.15M时,液相甲醛去除率随之升高,最高可达到99.98%。综合考虑工业木材生产过程中甲醛废气的排放浓度、本研究的目标以及生物膜填料塔系统操作运行的经济性等方面的因素,本研究选择亚硫酸钠作为最适用化学促进剂并以0.05M为适宜添加浓度开展后续相关研究。
     采用亚硫酸钠强化生物膜填料塔净化甲醛废气性能的可行性研究结果表明,在相同的实验条件下,采用浓度为0.05M亚硫酸钠循环液的生物膜填料塔(2号塔)的循环液中甲醛溶解累积的最大浓度值,比不添加亚硫酸钠的生物膜填料塔(1号塔)的减小了99.2%。随着循环喷淋液流量及进口气体甲醛浓度的增加,虽然两个生物净化塔的甲醛降解效率均可维持在96.6~100%的水平上,但2号塔的甲醛生化降解量随之增加(分别增加约0.02及1.5倍),而对应的不添加亚硫酸钠的1号塔的甲醛生化降解量则大幅度持续减小(分别减小约1.8及2.2倍),也即甲醛溶解累积量快速增加。这一结果证实了亚硫酸钠对溶解累积在循环液中的甲醛具有很强的去除作用,同时也验证了采用亚硫酸钠作为促进剂强化生物膜填料塔对甲醛废气的降解净化性能是可行的。
     通过应用PCR-DGGE、PCR扩增16Sr RNA、基因组总DNA提取及构建系统进化树等分子生物学研究方法,研究添加亚硫酸钠对降解甲醛微生物优势种群影响的结果表明,采用亚硫酸钠能够促进甲醛降解菌群体的快速生长,并通过延长甲醛降解菌的生长稳定期大幅度提高优势种群降解甲醛的能力,同时也使甲醛降解微生物系统中的优势种群出现了明显变化。其中由于添加亚硫酸钠而新检出的一类甲醛降解菌(甲基营养菌)-副球菌,能够在亚硫酸钠的刺激下强势生长,使其转变成为优势种群,并在甲醛的生化降解过程中发挥重要作用。
     为了进一步确认亚硫酸钠的强化作用效果,采用在添加亚硫酸钠的作用环境中驯化得到的微生物优势种群液挂膜的生物膜填料塔(3号塔),与仅采用以浓度为0.05M亚硫酸钠循环液的生物膜填料塔(2号塔)进行的对比实验结果表明,在相同条件下随着进口气体甲醛浓度及气体流量增加,3号塔的甲醛生化降解量的最大值分别达到61.1及112.4mg/L.h,其值远大于对应的2号塔对甲醛最大生化降解量分别仅为5.3及3.08mg/L.h的结果。这充分体现出了“化学促进-生物降解”集成优化于3号塔对甲醛降解效果的突跃增强作用。通过正交试验研究确定了3号塔的最佳操作条件是:循环液流量为5L/h,进口气体甲醛浓度为80mg/m3,气体流量为0.4m3/h。对3号塔中优势种群降解废气中甲醛的气、液相主要产物的分析结果表明,气相甲醛的最终生化降解产物主要为CO2,液相中的亚硫酸钠可与溶解的甲醛反应生成羟甲基磺酸钠,其可作为微生物生长的碳源被微生物降解及利用。
     通过对添加亚硫酸钠的生物膜填料塔降解甲醛废气的生化反应机理和降解途径的研究得知,添加亚硫酸钠的生物膜填料塔的生物膜中甲醛的生化反应速率小于它在液膜中的扩散速率,为一级慢速生化降解反应,亚硫酸钠显著强化了生物膜降解甲醛的生化反应过程,其降解净化甲醛废气的表观生化反应速率Ra值比不添加亚硫酸钠的生物膜填料塔的Ra值提高了363.3%,甲醛生化反应一级反应速率常k1*提高了216.8%。对应的微生物学分析表明,添加亚硫酸钠强化了生物膜填料塔对废气中甲醛的生化去除效果,其实质是亚硫酸钠刺激了降解甲醛优势种群中的甲基营养菌假单胞菌和副球菌的快速生长,从而使构成生物膜优势种群主体的甲基营养菌假单胞菌和副球菌能够共同通过异化和同化途径将其捕获的甲醛代谢为CO2和细胞能量,使甲醛得以生化降解完全。
     对添加亚硫酸钠的液相微生物降解甲醛动力学和生物膜填料塔系统净化甲醛废气的相关动力学研究结果表明,对于添加亚硫酸钠的生物膜填料塔系统,其液相甲醛生化降解动力学过程符合Monod模式,其模型计算值与实验值之间有很好的相关性,相关系数R=0.9852。由于添加亚硫酸钠的作用,使得微生物降解液相甲醛一级生化反应的甲醛浓度提高了11%,反应速率常数提高了7%,最大比降解速率提高了15.9%。这一结果证实了添加的亚硫酸钠对微生物在液相对甲醛的降解过程发挥了明显的促进作用。对采用亚硫酸钠强化的生化降解净化甲醛废气过程的适用动力学模型的对比验证结果表明,采用“吸收-生物膜”理论动力学模型的计算值与实验值的相关性(相关系数0.9297~0.9441)明显优于采用“吸附-生物膜”理论动力学模型的计算值与实验值的相关性(相关系数0.5982~0.7650)。这表明“吸收-生物膜”理论动力学模型适合于描述本研究采用亚硫酸钠强化的生物膜填料塔降解净化甲醛废气的动力学过程。
     本论文研究通过采用亚硫酸钠促进剂将“化学促进-生物降解”集成优化于生物膜填料塔净化系统中,使生物膜填料塔对甲醛废气的降解净化性能实现了突跃增强,初步形成了一项具有“化学促进-生物降解”特性的高效降解净化甲醛废气新技术。该项新技术在有效解决气态甲醛溶解并累积于循环液而导致废气中甲醛不能被高效生化降解的技术难题,以及有效提升生物膜填料塔对甲醛废气的降解净化性能方面具有重要的突破意义。本研究成果将在工业低浓度甲醛废气净化污染控制方面具有广阔的应用前景。
Developing biology-based technologies for low-concentration waste gas purufication has been a hot research topic in the field of waste gas purification. Due to the fact that formaldehyde is water-soluble and vaporable, it is challenging for using existing biology-based technologies to efficiently purify low concentration formaldehyde waste gas.
     In the thesis, studies were conducted to overcome the challenge in purifying formaldehyde waste gas with biotrickling filter, which is, due to water solubility of formaldehyde gas, accumulation of formaldehyde in circulating liquid leads to limited formaldehyde purification efficiency. The studies were focused on investigating:feasibility of adding chemicals in a biotrickling filter to enhance formaldehyde purification; effect of sodium sulfite on the microorganisms that degrade formaldehyde; optimal operation parameters in the proposed biotrickling filter; mechanisms and kinetics of formaldehyde degradation in the biotrickling filter. The aim was to develop a new type of biotrickling filter which employs "chemical-reaction enhanced degradation" to purify low concentration formaldehyde waste gas with high efficiency.
     Experiments showed that when inlet gas flow rate was0.2m3/h, circulating liquid flow rate was5L/h, and inlet formaldehyde gas concentration was50-150mg/m3, concentrations of formaldehyde accumulated in the circulating liquid were found up to8.45~33.00mg/L. Under the condition, sodium sulfite, sodium bisulfite, and ammonium chloride were added, respectively, with Molar ratio of1:1between the chemical concentration and formaldehyde concentration in the circulating liquid. It was shown that adding sodium sulfite led to highest removal efficiency of formaldehyde in the liquid, which was up to68.69%. Experiments also showed that when the concentration of sodium sulfite was increased from0.05M to0.15M, the removal efficiency of formaldehyde in the liquid was up to99.98%. Based on the consideration of concentration level of formaldehyde waste gas from wood-processing industry and economical operation of a biotrickling filter, sodium sulfite of0.05M was used in the studies.
     Experiments comparing performances of two biotrickling filters (filter1without sodium sulfite and filter2with0.05M sodium sulfite) showed that the maximum concentration of formaldehyde in circulating liquid in filter2was99.2%lower than that in filter1. When the flow rate of circulating liquid and inlet formaldehyde gas concentration were increased, though formaldehyde degradation efficiencies of the two filters were similar in the range of96.6~100%, biochemical degradation of formaldehyde in filter2was increased by factors of0.02and1.5, respectively. Whereas the biochemical degradation of filter1was decreased by factors of1.8and2.2, respectively, which indicated that the amount of formaldehyde accumulated in circulating liquid was increased in filter1. The results showed that adding sodium sulfite led to remarkable removal of formaldehyde in the liquid and it is feasible to use sodium sulfite in a biotrickling filter to enhance purification of formaldehyde waste gas.
     The affect of sodium sulfite on the dominant bacteria which degraded formaldehyde in the biotrickling filter was studied using PCR-DGGE, PCR amplified16S r RNA, and genomic DNA techniques. The results showed that sodium sulfite accelerated the growth of the bacteria and extended the stable period of the bacteria, and therefore enhanced the degradation of formaldehyde. A new type of bacteria which can degrade formaldehyde, Methylotrophic bacteria-Paracoccus bacteria, was found when sodium sulfite was added. The bacteria grew rapidly under the stimulation of sodium sulfite and became the dominant bacteria, which played an important role in formaldehyde degradation.
     Comparison experiments were conducted to further examine formaldehyde degradation enhancement caused by sodium sulfite. Sodium-sulfite adapted dominant bacteria were used to hang film and the film was used in a biotrickling filter (filter3). The performance of filter3was compared with that of filter2. Sodium sulfite was added in both filters. The difference between the filters was that filter2did not use sodium-sulfite adapted bacteria for hanging film. With the increase of inlet formaldehyde gas concentration and inlet gas flow rate, the maximum amount of formaldehyde biochemical degradation in filter3were61.1and112.4mg/L-h, which were much larger than those of filter2(5.3and3.08mg/L-h). The results demonstrated significant improvement of formaldehyde degradation with the "chemical enhanced degradation". The optimal operation parameters of filter3were determined based on orthogonal tests:circulating liquid flow rate of5L/h, inlet formaldehyde gas concentration of80mg/m3, and gas flow rate of0.4m3/h. It was found that the product of formaldehyde gas degradation was CO2, and the reaction of sodium sulfite with formaldehyde in the liquid produced CH2(OH)SO3Na,which can be degraded by microorganisms and can be used as carbon source for microorganisms.
     The mechanism of the biochemical reactions in the formaldehyde degradation and the pathways of degradation were investigated. The results showed that in the biotrickling filter where sodium sulfite was added, the biochemical reaction rate in the biofilm was smaller than the diffusivity. The reaction was first-class slow biochemical degradation reaction. As a result, the biochemical reaction was significantly enhanced. Apparent biochemical reaction rate Ra and first-class reaction constant k1of the biochemical reaction were increased by363.3%and216.8%, respectively, in the biotrickling filter with sodium sulfite, compared to a regular biotrickling filter. It was found that sodium sulfite stimulated the growth of Methylotrophic bacteria-Pseudomonas bacteria, and Paracoccus bacteria, the dominant bacteria which degraded formaldehyde through assimilation and dissimilation. Because the products were CO2and cell energy, it was a complete degradation.
     The study of the kinetics of formaldehyde degradation in the biotrickling filter where sodium sulfite was added, showed that the kinetics of formaldehyde degradation in the liquid could be described with the Monod model. The model predictions had good correlation with measurements. The correlation coefficient R is0.9852. Due to the effect of sodium sulfite, the formaldehyde concentration was increased by11%, the reaction rate constant was increased by7%, and the maximum degradation rate was increased by15.9%. The results demonstrated that sodium sulfite significantly enhanced formaldehyde degradation in the liquid. The results also showed that the quantities calculated using the "absorption-biofilm" kinetics model had better correlation with experiments (correlation coefficients:0.9297~0.9441) than those calculated using the "adsorption-biofilm" kinetics model (correlation coefficients:0.5982~0.7650). This indicated that the kinetics of the sodium-sulfite enhanced formaldehyde degradation can be described with the "absorption-biofilm" kinetics model.
     In the thesis, a biochemical method which utilized sodium sulfite to achieve chemical-enhanced degradation in a biotrickling filter, was proposed and studied. The studies showed that with this new technology, formaldehyde waste gas purification was improved remarkably. The technology overcomes the challenge that the efficiency of formaldehyde waste gas purification in a regular biotrickling filter is limited due to that formaldehyde gas is water soluble and is accumulated in the circulating liquid. The study results will have significant impact in the field of formaldehyde waste gas purification and the technology will have wide applications in treatment of low concentration formaldehyde waste gas from industry.
引文
[1]韩光范.有机化学[M].哈尔滨:哈尔滨工业大学出版社,2006:112-113
    [2]张剑平,李福林.人造板及其制品甲醛释放量限量与室内甲醛污染[J].化学工程师,2010,10(8):67-68
    [3]孟彩云.我国甲醛生产现状与技术进展[J].化学工程与装备,2010,9:160-162
    [4]张忠涛.我国木材工业用胶黏剂产业现状及发展趋势[J].林产工业,2011,38(3):6-9
    [5]戴永务,余建辉,刘燕娜.2012中国人造板产业内贸易现状与决定因素的实证分析[J].林业科学,2012,48(9):136-139
    [6]黄山.纤维干燥排气VOCs成分及释放特性[D].南京:南京林业大学,2012:35-45
    [7]楚杰,段新芳,王金林,虞华强.基于产排污系数的木材工业排污量估算及污染负荷研究[J].林业科学,2013,49(6):143-148
    [8]第一次全国污染源普查资料编纂委员会污染源普查产排污系数手册[上][S].北京:中国环境科学出版社,2011
    [9]何中凯,张寅平.人造板车间内工人甲醛暴露的健康风险评估[J].建筑科学,2010,(8):15-18
    [10]GB/T 18883-2002,室内空气质量标准[S].北京:中国标准出版社,2003
    [11]GBZ 2-2002,工作场所有害因素职业接触限值[S].北京:中国标准出版社,2003
    [12]任甜.人造板工业中甲醛排污系数及控制对策研究[J].环境保护科学,2008,34(3):24-25
    [13]GB 16297-1996,大气污染物综合排放标准[S].北京:中国环境科学出版社,1997
    [14]宁晓宇,袁向华,郑浩.甲醛污染防治技术研究进展[J].中国环保产业,2010,(3):23-25
    [15]钟卫鸿,吴婉欣,陈雯雯.一株甲醛降解菌的分离鉴定降解条件研究[J].浙江工业大学学报,2013,41(1):25-30
    [16]Martin-Tereso J, Gonzalez A, Vauleea H, et al. In situ ruminal degradation of phytic acid in formaldehy-treated rice bran [J].Animal Feed Science and Technology,2009,152(3-4):286-297
    [17]Lyapina M, Zhelezova G, Petrova E, et al. Flow cytometric determination of neutrophil respiratory burst activity in workers exposed to formaldehyde [J]. Int Arch Occup Environ Health,2004,77(5):335-401
    [18]Erdei E, Bobvos J, Brozik M, et al. Indoor air pollutants and immune biomarkers among Hungarian asthmatic children [J]. Arch Environ Health,2003,58(6):337-341
    [19]郑京力晴.甲醛污染的危害及控制措施[J].科技情报开发与经济,2004,14(16):265-266
    [20]胡军,陈建华,贾铭春.活性碳纤维负载TiO2去除低浓度甲醛气体的实验研究[J].武汉理工大学学报,2011,35(4):849-852
    [21]Sekine Y, Oikawa D, Butsugan M. Determination of uptake rate of sensitive diffusion sampler for formaldehyde in air [J]. Applied Surface Science,2004,235:14-17
    [22]蔡建,胡将军,张雁.改性活性纤维对甲醛吸附性能研究[J].环境科学与技术,2004,27(3):16-20
    [23]Blazewicz S,Swiatkowski A, Trznadel B J.The influence of heat treatment on activated carbon structure and porosity[J].Carbon.199693-700
    [24]Rong H Q,Ryu Z Y,Zheng J T,et al.Influence of heat treatment of Rayon-Based activated carbon fibers on the adsorption of ormaldehyde[J]. Journal of Colloid and Interface Science,2003,261:207-212
    [25]王文超.改性活性碳吸附甲醛的研究[D].山东:山东科技大学,2006
    [26]陆震维.有机废气的挣化技术[M].北京:化学工业出版社,2011:17-74
    [27]Rong H Q,Ryu Z Y,Zheng J.T, et al. Effect of air oxidation of Rayon-based activated carbon fibers on the adsorption behavior for formaldehyde [J]. carbon,2002,40:2291-2300
    [28]Rong H Q,Ryu Z Y,Zheng J T,et al.Influence of heat treatment of Rayon-Based activated carbon fibers on the adsorption of formaldehyde[J]. Journal of Colloid and Interface Science,2003,261:207-212
    [29]Virote B,Srisuda S,Wiwut T.Preparation of activated carbons from coffee residue for the adsorption of formaldehyde[J].Separation and Purification Technology,2005,42:159-168
    [30]Tanada S, Kawasaki N, Nakamura T, et al. Removal of formaldehyde by activated carbons conaining amino groups [J] Journal of Colloid and Interface Science,1999,214(1):106-109
    [31]汤进华,梁晓怿,龙东辉,刘小军,凌立成.活性炭孔结构和表面官能团对吸附甲醛性能影响[J].炭素技术,2007,(3):22-26
    [32]董春欣,孙胜龙,杨秋晰.改性活性炭吸附室内甲醛气体的应用研究[J].吉林化工学院学报,2011,28(3):28-29
    [33]敖广宇,杨铁金.新型甲醛吸附剂的研制与应用[J].高等理科学刊,2007,27(6):43
    [34]王燕云,毕晓伊,孙佩石.甲醛废气的处理方法及研究进展[J].云南大学学报,2010,32(S2):240-245
    [35]汪小兰.有机化学[M].北京:人民教育出版社,1981:75-90
    [36]封娜.室内甲醛污染的危害和防治[J].化工技术与开发,2010,39(22):37-40
    [37]朱振中,王志良,汪德成.膜吸收法处理高浓度甲醛废气资源化技术研究[J].环境工程学报,2009,8(3):1473-1476
    [38]杜前明,徐倩,高灿柱.室内空气中低浓度甲醛的化学吸收去除法[J].环境与健康杂志,2008;25(1):42-44
    [39]段惠敏,郭光美,李淑芳.室内空气甲醛消除剂研制[J].中国公共卫生,2006,22(2):204-205
    [40]杜前明.室内空气中低浓度甲醛的去除方法研究[D].山东:山东大学,2008:80-97
    [41]Hannmerle M, HallE A, Cade N. Biosensors in air monitoring [J]. Biosensors Bioelectron, 1996,38(11):239
    [42]Guibault G A biosensor for the determination of formaldehyde in air [J]. Anal.Chem,1983,55:1682
    [43]梁燕萍,王燕,刘忠宝.过氧化尿素降解甲醛的研究[J].应用化工,2007,36(2):124-126
    [44]池致超,胡双启,晋日亚,徐高强,武晔.气体CIO2对空气中甲醛去除效果的研究[J].工业安全与环保,2010,36(4):25-26
    [45]耿晓辉,李岳臻,李伯骥.优良的甲醛祛除剂—二氧化氯[J].化学工程与装备,2009,11:133-134
    [46]杨建军,李东旭,李庆霖.甲醛光催化氧化的反应机理[J].物理化学学报,2001,17(3):278-281
    [47]Liang WJ, Li J, Jin YQ. Photo-catalytic degradation of gaseous form aldehyde by TiO2/UV, Ag/TiO2/UVaIId Ce/TiO2/UV [J]. Building and Environment,2001,(51):345-350
    [48]Shiraishi F, Yamaguchi S, Ohbuchi Y. A rapid treatment of Formaldehyde in a highly tight room using a photocatalytic reactor combined with a continuous adsorption and desorption apparatus [J].Chemical Engineering Science,2003,58(3-6)929-934
    [49]Shahed K, Al-Shahry M, William B. Efficient photochemical water splitting by a chemically modified n-TiO2 [J]. Science,2002,297(27):2243-2245
    [50]何运兵,纪红兵,王乐夫.室内甲醛催化氧化脱除的研究进展[J].化工进展,2007,26(8):1104-1108
    [51]邓吨英.固定二氧化钛薄膜的制备及其光催化降解甲醛的研究[D].湖南:湖南师范大学,2005:34-45
    [52]Yu JG, Zhou MH, Cheng B, et al. Preparation, characterization and photocatalytic activity of in situ N,S-codoped TiO2 powders [J]. Mol. Catal. A:Chem.,2006,246(1-2)176-184
    [53]李玉华,王琨,赵庆良.球载纳米TiO2光催化氧化低质量浓度甲醛[J].化学工程,2009,37(1):37-39
    [54]余宇翔,易康,蔡盛.光催化氧化处理室内空气中甲醛污染研究[J].江西化工,2011,(1):104-106
    [55]黄薇.室内空气中甲醛污染控制研究[D].南昌:南昌大学,2007:40-55
    [56]赵德志,丁天英,李小松.室温MnOx上O3氧化脱除空气中甲醛[J].催化学报,2012,33(3):396-401
    [57]王琨.室内空气污染物净化研究[J].哈尔滨工业大学学报,2004,3(7):34-36
    [58]Zhou JH, Qin FF, Su J, et al. Purification of formaldehyde polluted air by indoor plants of Araceae, Agavaceae and Liliaceae [J]. Journal of Food, Agriculture & Environment,2001,9(3-4):1012-1018
    [59]欧坚泉,周俊辉,陈水渐.几盆盆栽植物对甲醛的净化作用[J].北方园艺,2011,(22):57-60
    [60]陈新凤,赵继军,张重杰.霍加拉特剂吸附甲醛性能的研究[J].中国环保产业,2002,(10):26-27
    [61]景作亮,邓启良,王建清.复合纳米Ti02/ZrO2对甲醛吸附性能的研究[J].职业与健康,2004,20(12):13-16
    [62]齐虹,孙德智,迟国庆.光催化降解甲醛的影响因素及动力学研究[J].哈尔滨工业大学学报,2006,38(7):1051-1053
    [63]赵彦军.吸附-光催化降解低浓度甲醛气体的研究[D].上海:华东理工大学,2011:25-50
    [64]Wen CD, Hui LT, Ya DJ, et al. Formaldehyde OTFT sensors based on airbrushed different ratios of P3HT/ZnO films [J]. Journal of Electronic Science and Technology,2013,11(3):312-315
    [65]冯国会,胡艳军.活性炭-纳米Ti02复合光催化网处理空气中微量甲醛的试验[J].沈阳建筑大学学报(自然科学版),2006,22(3):433-436
    [66]Shiraishi F, Yamaguchi S, Ohbuchi Y. A rapid treatment of formaldehyde in a highly tight room using a photocatalytic reactor combined with a continuous adsorption and desorption apparatus [J]. Chemical Engineering Science,2011,58:929-934
    [67]刘丽,辛春伟,卢俊瑞.纳米Mn02负载硅藻土的制备及其降解空气中甲醛的研究[J].天津理工大学学报,2013,29(2):36-40
    [68]Fu X, Zeltner WA, Anderson MA.210th ACS National Meeting, August 20-24,1995[C]. Chicago: American Chemical Society,1995
    [69]王鹏,高得力,杨学昌王鹏,高得力,杨学昌.离子体放电催化纳米Ti02降解甲醛的实验分析[J].高压技术,2011,06:256-261
    [70]韩冰雁,黄欣,李一倬.脉冲放电等离子体-催化耦合降解室内甲醛的研究[J].环境污染与防治,2013,35(6):32-35
    [71]毛国柱,闻建平,刘伟,张晓菁.生物法净化有机废气研究进展[J].现代化工,2002,(22):70-72
    [72]蒋莉.纳米TiOz光催化降解空气涂料的制备及性能研究[D].南京:南京工业大学,2003:22-40
    [73]方黎,韩选利,李斌强.改性纳米氧化锌光催化降解水体甲醛的研究[J].应用化工,2013,42(5):895-896
    [74]Sekine Y, Nishimura A. Removal of formaldehyde from indoor air by passive type air-cleaning materials [J]. Atmospheric Environment,2001,35:2001-2007
    [75]孙奇,李玉国.化工企业含甲醛废水的处理方法[J].吉利水利,2011,(06):3940
    [76]李琳,刘俊新.挥发性有机污染物与恶臭的生物处理技术及其工艺选择[J].环境污染治理技术与设备,2001,2(5):41-47
    [77]Rasa Vais kunaite, Pranas Baltrenas, valdas Spakauskas. Mathematical modeling of bio-filtration in activated pine-bark charge of a bio-filter [J]. Research Articles,2005,12(5):297-301
    [78]程足芬.生物法降解低浓度甲醛污染物的研究[D].北京:北京化工大学,2009:33-45
    [79]王志海,魏宏斌,贾志宇.活性污泥法处理甲醛废水的试验研究[J].中国给水排水,2009,1(25):86-88
    [80]曹秋.甲醛工业废水的处理方法及研究进展[J].污染防治技术,2009,4(22):55-58
    [81]Leson G. Biofiltration:an innovative air pollution control technology for COV emissions [J]. Air Waste Manage. Assoc.,1991,41(8):1045-1053
    [82]Ockeloen HF. A biological fixed-film simulation model for the removal of volatile organic air polltants [C].85th Annual Meeting & Exhibition of Air & Waste Management Association, Kansas City, MO, June 21-26,1992
    [83]秦娜.生物过滤法净化有机废气[D].北京:北京化工大学,2010:25-40
    [84]朱雅兰.生物法处理低浓度有机废气[J].甘肃科技,2008,24(2):63-65
    [85]Groener K, Hueber H. Huette Umweltschutztechnik [M], Springer Verlage,1999
    [86]杨义飞,姜安玺.生物脱臭技术研究进展[J].环境保护科学,2001,27(6):3-6
    [87]Yamazaki T, Tsuga-wa W, Sode K. Biodegradation of formaldehyde by a formaldehyde-resistant bacterium isolated from seawater [J]. Applied Biochemistry and Biotechnology,2001,91 (3):213-217
    [88]Mirdamadi S, Rajabi A, Khalilzadeh P, et al. Isolation of bacteria able to metabolize high concentrations of formaldehyde [J]. Microbiology & Biotechnology,2005,(21):1299-1301
    [89]Azachi M., Henis Y. Orena A, etal. Transformation of formaldehyde by a Halomonas sp [J]. Canadian Journal of Microbiology,1995,41 (6):548-553
    [90]Doronina NV, Ezhov VA, Trotsenko luA. Aerobic biodegradation of formaldehyde, methanol and methylamine by immobilized Methylobacterium extorquens cells [J]. Applied Biochemistry and Microbilogy,1997,33:138-141
    [91]Mingbo Q and Bhattacharya SK. Toxicity and biodegradation of formaldehyde in anaerobic methanogenic culture [J]. Biotechnology and Bioengineering,1997,55:727-736
    [92]Mitsui R, Omori M, Kitazawa H, et al. Formaldehyde-limited cultivation of a newly isolated Methylo-trophic bacterium, Methylobacterium sp. MF1:Enzymatic analysis related to Cl meta-bolism[J]. Biosci Bioeng,2005,99(1):18-22
    [93]Adroer N, Casas C, Demas C, et al. Mechanism of Formaldehyde Biodegradation by Pseudomonas putida [J]. Appl Microbiol Biotechnol,1990,33(2):217-220
    [94]Eiroa M, Kennes C, Veiga MC. Formaldehyde biodegradation and its inhibitory effect on nitrification [J]. J Chem Technol Biotechnol,2004,79(5):499-504
    [95]Obukhov VA, Kopylov NM. Biological air purification from toxic gases [J]. Liteinoe Proizvod, 1996,(6):27(Russ)
    [96]Mackowiak J. Biofiltration of formaldehyde-containing waste gas WLB [J], Wasser, Luft Boden,1992 36(33):65-6(Ger)
    [97]Windsperger A. Use of biofilters for the purification of gases containing solvents [J]. Radex Rundsch, 1991,(3-4):457-64 (Eng/Ger)
    [98]Mackowiak J. Removal of formaldehyde from waste gas in a biofilter [J]. Stud. Environ. Sci., 1992,51:273-8(Ger)
    [99]Lukanin AV, Aisakov AT, Ostaeva GYu. Biotechnical treatment and deodorization of waste gases [J]. Biotekhnologiya,1992,(1)63-6 (Russ)
    [100]Bronnenmeier R, Menner M. Treatment of formaldehyde-containing waste gas in a pilot plant using a starter-culture [J]. Stud. Environ. Sci.,1992,51:265-72 (Ger)
    [101]Knauf, Susann. Pilot-scale unit for biological treatment of phenol and fonnaldehyde containing waste air [J]. WLB, Wasser, Luft Boden.1994,38(3):62-64 (Ger)
    [102]Prado OJ, Veiga MC, Kennes C. Effect of key parameters on the removal of formaldehyde and methanol in gas-phase biotrickling filters [J]. Journal of Hazardous Materials,2006,138(3):543-548
    [103]Oliveira S, Moraes EM, Adorno M AT, et al. Formaldehyde degradation in an anaerobic packed-bed bioreactor [J]. Water Research,2004,38(7):1685-1694
    [104]孟彩云.我国甲醛生产现状与技术进展[J].化学工程与装备,2010,9:160-162
    [105]牛凤兰,宋德锋,林.环境中甲醛污染来源及检测方法新进展[J].上海预防医学杂志,2009,21(9):453-455
    [106]孙珮石.生物法净化低浓度有机废气技术基础与应用研究[M].云南:云南科技出版社,2004:1-14
    [107]王洁,孙佩石,束嘉秀,孙学习.生物膜填料塔净化低浓度CS2废气的实验研究[J].昆明理工大学学报,2004,6:108-110
    [108]王洁,孙珮石,王恒颖,黄贤峰.液相催化氧化对生物膜填料塔净化SO2和NOx烟气的促进作用[J].环境工程,2008,26(1):41-43
    [109]陆继来,孙珮石,黄兵.微生物法处理低浓度H2S恶臭气体研究进展[J].贵州环保科技,2002,2:11-14
    [110]乔莉,孙珮石.高浓度甲醛废气的生物法处理实验研究[J].云南大学学报(自然科学版),2009,31(1):80-83
    [111]徐云,金晶,郑重.高活性高耐受甲醛降解菌株的分离鉴定及降解条件研究[J].环境科学,2010,31(10):2481-2486
    [112]吕阳,刘京,吕炳南.生物滴滤塔处理甲醛和三苯混合气体的实验研究[J].天津大学学报,2007,40(10):1215-1219
    [113]黄赛花,陈能场.一株甲醛降解真菌Aspergillus spp. H4的分离鉴定[J].生态环境,2007,16(4):1175-1179
    [114]费丽.生物膜填料塔净化低浓度甲醛废气的基础应用研究[D].昆明:昆明理工大学,2005:25-40
    [115]乔莉.生物法净化甲醛废气技术的应用基础研究[D].昆明:云南大学,2009:10-50
    [116]Myers GE. How mole ratio of UF resin affects formaldehyde emission and other properties [J]. Forest Products,1984,34(5):35-41
    [117]Tang X, Bai Y, Duong A, Smith MT, Li L, Zhang L. Formaldehyde in China:Production, consumption, exposure levels, and health effects [J]. Environment International,2009,35:1210-1224
    [118]Jiao Z, Luo P. Absorption of learn formaldehyde from air with Na2SO3 solution [J]. Journal of Hazardous Materials,2006,134:176-182
    [119]Lam RCW, Leung MKH, Leung DYC, et al. Visible-light-assisted photocatalytic degradation of gaseous formaldehyde by paralled-plate reactor coated with Cr ion-implanted TiO2 thin film [J]. Sol. Energy Mater. Sol. Cells,2007,91(1):54-61
    [120]Deng Q, Zhou WH, Li XM. Micro radiation solid-phase synthesis of phosphotungstate nanoparticle catalysts and photocatalytic degradation of formaldehyde [J]. Mol. Catal. A:Chem., 2007,262(1-2):149-155
    [121]宋广生.室内环境质量评价及检测手册[G].北京:机械工业出版社,2002:3-5
    [122]李国刚,吕怡兵,付强,李娟.环境监测分析方法[G].北京:化学工业出版社,2012:4-10
    [123]丁国芳,郁迪,杨最素等.亚硫酸氢钠抑制甲醛挥发性的实验研究仁[J].环境与职业医学,2003,20(6):651-653
    [124]Erica M, Viral A, Amor C, et al. Biodegradation and effect of formaldehyde and phenol on the demystification process [J]. Water Research,2005,39(2-3):449-455
    [125]沈萍,范秀荣,李广武.微生物学实验[M].(第三版).北京:高等教育出版社,]999:28-35
    [126]周德庆.微生物学实验手册[M].上海:上海科学技术出版社,1983:101-132
    [127]Chen J, Liu H, Li XF, et al. Protocols of environmental microbiology [M]. Chemical Industry Press, BeiJing,2008.(In Chinese)
    [128]Casamayor EO, Pedros-Alio C, Muyzer G, et al. Microheterogeneity in 16S ribosomal DNA-defined bacterial population from a stratified planktonic environment is related to temporal changes and to ecological adaptations [J]. Appl. Environ. Microbiol.,2002,68(4)1706-1714
    [129]Muyzer G, Brinkhoff T, Nubel U, et al. Denaturing gradient Gel electrophoresis (DGGE) in microbial ecology [M]. New York:Molecular Microbial Ecology Manual,1996,1-27
    [130]里斯著,数理统计与数据分析[M].田金方译.北京:机械工业出版社,2011:30-40
    [131]姚玉英主编.化工原理[MJ.(第三版).天津:天津科学技术出版社,2011:100-125
    [132]邓修,吴俊生编.化工分离工程[M].北京:科学出版社,2000:99-145
    [133]林爱光,阴金香编.化学工程基础[M].北京:清华大学出版社,2008:90-125
    [134]Vorholt Julia A, Marx Christopher J, Lidstrom Marye, et al. Novel formaldehyde-activating enzyme in Methylobacterium extorquens AM1 required for growth on methanol [J]. Journal of Bacteriology,2000,182(23):6645-6650
    [135]Anthony C. The Biochemistry of Methylotrophs [M]. NewYork:Academic Press,1982
    [136]Hanson RS, Hanson TE. Methanotrophic bacteria [J]. Microbiol Rev,1996,60(2):439-471
    [137]Green PN. Methylobacterium. Dworkin M. Proteobacteria:Alpha and Beta Subclasses [M]. New York:Springer New York,2006, pp257-265
    [138]Lidstrom ME. Aerobic methylotrophic prokaryotes. Dworkin M. Proteobacteria:Alpha and Beta Subclasses [M]. New York:Springer,2006,pp618-634
    [139]Lidstrom ME, Stirling DI. Methylotrophs:genetics and commercial applications [J]. Annu Rev Microbiol,1990,44:27-58
    [140]Shen PH, Wu B. Over-expression of a hydroxyl pyruvate reductase in Methylobacterium sp. MB200 enhances glyoxylate accumulation [J]. J Ind Microbiol Biotechnol,2007,34(10):657-663
    [141]Wang X, Sahr F, Xue T, et al. Methylobacterium salsuginis sp. nov, isolated from seawater [J]. Int J Syst Evol Microbiol,2007,57(Pt 8):1699-1703
    [142]金晶,吴婉欣,陈雯雯,钟卫鸿.微生物甲醛代谢途径的研究进展[J].2011,254(4):70-72
    [143]晁红军,宋修鹏,孙继华.甲基营养菌的研究进展[J].微生物学通报,2009,36(11):1727-1737
    [144]宋鸽,郭长虹.甲基营养菌代谢甲醛的异化途径[J].哈尔滨工业大学学报,2009,(12):202-205
    [145]Crowther GJ, Kosaly G, Lidstrom ME. Formate as the main branch point for methylotrophic metabolism in Methylobacterium extorquens AM1 [J]. J Bacteriol,2008,190(4):5057-5062
    [146]Welander PV, Metcalf WW. Mutagenesis of the Cloxidation pathway in methanosarcina barkeri: new insights into the Mtr/Mer bypass pathway[J]. Bacteriol,2008,190(6):1928-1936.
    [147]Marx CJ, Chistoserdova L, Lidstrom M. Formaldehyde detoxifying role of the tetrahydromethanopterin-linked pathway in Methylobacterium extorquensAMl [J]. Journal of Bacteriology,2003,185(24):7160-7168
    [148]Sahoo R, Bhatta CA, Majumdar U, etal. A novel role of catalase in detoxification of peroxyni-trite in S. Cerevisiae [J]. Biochem Biophys Res Commun,2009,385(4):507-511
    [149]Kato N, Yurimoto H, Thauer RK. The physiological role of the ribulose monophosphate pathway in bacteria and archaea [J]. Biosci Biotechnol Biochem,2006,70(1):10-21
    [150]宋中邦,陈丽梅,李昆志,潘正波.细菌的核酮糖单磷酸途径与甲醛同化作用[J].微生物学报,2007,47(1):168-171
    [151JVORHOLT J A. Cofactier-dependent pathways of ormal-dehyde oxidation in methylotrophic bacteria [J] Arch Microbiol,2002,178(4):239-249
    [152]田丹丹.甲基营养型菌株WGP35的筛选、鉴定及突变sdaA基因对其产L一丝氨酸的影响[D].广西:广西大学,2011:55-60
    [153]李亚新.活性污泥法理论与技术[M].北京:中国建筑工业出版社,2007:55-60
    [154]余颖,乔俊飞.活性污泥法污水处理过程的建模与仿真技术的研究[J].信息与控制,2004,33(6):709-728
    [155]熊春梅.活性污泥法动力学模型评价[J].宁波工程学院学报,2007,19(2):40-46
    [156]顾夏声.废水与生物处理数学模式[M].北京:清华大学出版社,1993:60-70
    [157]唐顺,杨琦,尚海涛.苯为共代谢基质的1,1-二氯乙烯的好氧生物降解研究[J].环境工程学报,2011,(8):1907-1911
    [158]刘秀丽,赵林,刘涉江.甲苯在硝酸盐还原条件下的生物降解性能研究[J].环境工程学报,2011,(3):644-648
    [159]郭雅妮,段士然,周明,崔双科.PVA降解酶催化反应的动力学方程[J].上海环境科学,2012,(6):249-25
    [160]Hodge DS, Devinny JS. Noguera DR, Okabe S, Picioreanu C. Modeling removal of air contaminants by biofiltration [J]. Environ. Eng.,1994,121(1):21
    [161]Hodge DS and Devinny JS, Determination of transfer rate constants and partition coefficients for air phase biofilters [J]. Environ. Eng.,1997,123(6):577
    [162]Hodge DS and Devinny JS. Biofilter treatment of ethanol Vapors [J]. Environ. Prog, 1994,13(3):167
    [163]Devinny JS and Hodge DS. Formation of acidic and toxic intermediates in overloaded ethanol biofilters [J].Air Waste Manage.Assoc.,1995,45(2):125
    [164]Shareefdeen Z, Baltzis BC, Young-Sook O, Richard B. Biofiltration of Methanol Vapor [J]. Biotechmol. Bioeng,1993,41:512-524
    [165]Shareefdeen Z and Baltzis BC. Biofiltration of toluene vapor under steady-state and transient conditions:Theory and experimental results [J]. Chemical Engineering Science,1994, (49)24:4347-4360
    [166]Baltzis BC, Wojdyla SM, Shareefdeen Z. Modeling Biofiltration of VOC Mixtures under Steady-State Conditions [J]. Environ. Eng.,1997, (123):599-605
    [167]Deshusses MA, Hamer G, Dunn IJ, Behavior of biofilters for waste air biotreatment.1. Dynamic model development[J]. Environ.Sci.Technol,1995,29(4):1048-1058
    [168]刘强,陈荣,巴吉德.生物滴滤塔降解挥发性有机废气动力学模型研究[J].环境科学与技术,2007,30(5):10-16
    [169]王宝庆,马广大.生物过滤他降解含译本废气动力学模型[J].过程工程学报,2007,7(2):293-298
    [170]孙佩石,孙悦.气液相组合生物法降解低浓度甲醛废气研究[J].环境工程学报,2007,1(5):69-74
    [171]王恒颖.液相催化氧化-生物法烟气同时脱硫脱氮研究[D].昆明:云南大学,2011:33-45
    [172]Diks RMM. The removal of dichloromethane from waste gases in a biological trickling filter [D]. Ph.D.Thesis, Eindhoven University of Technology, The Netherlands,1992
    [173]杨萍.生物法净化挥发性有机废气动力学及过程模拟研究[D].昆明:昆明理工大学,2001:40-50

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700