用户名: 密码: 验证码:
蒙脱石负载纳米零价铁对水溶液中铀的去除研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锕系元素中的铀因其半衰期较长在放射性废物处置方面倍受关注。铀的天然放射性同位素有三种分别是234U,235U和238U,具有较长的半衰期,最高可达4.51×109年。地球上存量最多的同位素是铀238U(99.2742%),其次是可用作核能发电的燃料235U(0.7204%),丰度最少的是234U(0.0054%)。铀元素通过采矿作业、核试验、核燃料、核武器和意外泄露等方式释放到土壤、沉积物和地下水中,造成土壤和地下水中的铀污染,危害人类赖以生存的环境。工业中使用的铀和采矿业造成高浓度的铀污染,对环境和人的身体健康都是很大的威胁。世界卫生组织在2004年建立关于饮用水中铀的标准:最大含量不得超过15μg/L。然而,最新的调查研究表明在全世界范围内饮用水中铀的最大含量应低于10μg/L或者5μg/L更为合理。研究表明在水岩界面,利用地球化学过程包括溶解沉淀反应、氧化还原反应和吸附解吸反应等一系列反应过程,可以控制铀在土壤和地下水系统中的迁移和转化。
     本文选择接近于我国铀尾矿“返酸”后渗出的中低浓度含铀水溶液(初始浓度100μg/L)作为处理对象,以羟基铝柱撑蒙脱石为支撑负载材料,用硼氢化钠液相还原法制备蒙脱石负载纳米零价铁材料,并对比研究蒙脱石、纳米零价铁和蒙脱石负载纳米零价铁等不同材料对水溶液中低浓度的铀进行去除;采用批实验方法,研究在不同pH、固液比、温度、离子强度、初始浓度及共存离子(EDTA.HA和FA)等条件下对铀去除率的影响,并明确反应过程探讨反应机理。论文的主要研究内容可以分为以下三个方面:1.利用蒙脱石去除水溶液中低浓度的铀。
     通过对比试验发现,pH对蒙脱石去除铀有着显著的影响:在酸性条件下(pH=2-6.5),铀去除率随pH值的升高而增加;碱性条件下(pH=7-9),铀去除率随pH值的升高而降低;实验最佳pH值为6.5,最大去除率48.05%。同时,溶液中离子强度对蒙脱石吸附铀影响也比较显著:在酸性条件下(pH=2-7),随离子强度的增大,吸附去除率反而越低,证明在酸性条件下高离子强度将抑制蒙脱石对铀的吸附;碱性条件下(pH=7-9),离子强度越大,吸附去除率越高,高的离子强度能够促进蒙脱石对铀的吸附。U(Ⅵ)在蒙脱石上的吸附百分数随固液比而增大。铀在蒙脱石上的吸附与Langmuir方程描述的等温吸附模型较为符合。温度越高,越有利于蒙脱石对铀的去除。铀酰离子在蒙脱石上的吸附机理是铀酰离子通过离子交换吸附和表面位点吸附两种方式共同作用。在酸性条件下(pH<7),蒙脱石以离子交换吸附的方式去除铀;在碱性条件下(pH=7-9),蒙脱石吸附铀主要是通过表面络合作用反应形成内层配合物。
     2.利用纳米零价铁去除水溶液中低浓度的铀。
     纳米零价铁是一个壳核结构,α-Fe0位于中间核部,表面是由一层铁氧化物(FeO)包裹形成的壳部。pH对纳米零价铁去除铀有着显著的影响:在pH=2的时候,对U(Ⅵ)的去除率基本为零;在pH=3-5时,对铀的去除率在73-78%;当pH=6-9,随pH的升高,去除率降低;纳米零价铁去除铀的最佳pH=5,去除率达78%。离子强度对纳米零价铁去除铀的基本无影响。去除率随随着固液比的增加而升高。随着铀初始浓度的升高,铀的去除率一直在下降。铀在纳米零价铁的吸附与Langmuir方程描述的等温吸附模型最为符合。温度对纳米零价铁去除低浓度铀的影响不明显,证明溶液中的U(Ⅵ)与纳米零价铁的反应是
     一个化学反应控制的反应,不受温度的影响。初始pH=2时,反应后pH基本没有变化,反应后溶液中铁元素含量高达658mg/L;初始pH=3时,反应后pH变为5.57,反应后溶液中铁元素含量为18.9mg/L;初始pH在4-9时,反应后pH变为9左右;溶液中铁的释放量较少。纳米零价铁去除铀的主要机理为还原沉淀作用,反应过程中纳米零价铁和U(Ⅵ)发生氧化还原反应,电子转移生成四价铀的氧化物UO2和铁氢氧化物。
     3.利用蒙脱石负载纳米零价铁去除水溶液中低浓度的铀。
     纳米零价铁成功负载在蒙脱石上,有效解决纳米零价铁的团聚问题和易氧化的问题。pH对蒙脱石负载纳米零价铁去除铀的影响显著:在pH=2时,蒙脱石负载纳米零价铁去除铀的效果较差,去除率仅为5.13%;当pH=3时,去除率高达97.8%;蒙脱石负载纳米零价铁去除铀最佳pH范围是3-5,去除率在95.11-97.8%;当pH在6-9时,随pH升高去除率下降。离子强度对蒙脱石负载纳米零价铁去除铀的效果没有影响。去除率随固液比的增加而升高。随着铀初始浓度的升高,铀的平衡吸附量升高。蒙脱石负载纳米零价铁去除的等温吸附模型与Langmuir方程描述的等温吸附模型最为符合。温度不影响蒙脱石负载纳米零价铁对铀的去除,证明此反应受化学反应控制,不受温度的影响控制。反应初始pH=2,反应后的pH基本没有变化,反应后溶液中铁元素含量33.79mg/L;初始pH=3,反应后的pH变为5.15,反应后溶液中铁元素含量为4.67ng/L;pH=4-9,反应后的pH变为8.9左右,铁元素在溶液中的释放量非常少(17-53ug/L)。
     通过加入不同的共存离子(EDTA、HA和FA),研究其对铀去除率的影响。实验结果表明EDTA的存在使蒙脱石负载纳米零价铁对铀的去除率降低,原因在于EDTA与铀络合作用形成U(Ⅵ)-EDTA复合物,此复合物抑制了铀在蒙脱石负载纳米零价铁上的去除反应。不同浓度EDTA和EDTA加入顺序的不同对蒙脱石负载纳米零价铁去除铀反应后的pH变化是相同的:相同初始pH下,低浓度(0.001mol/L)比高浓度(0.01mol/L)的EDTA反应后的pH值要高。结合其对铀去除率的结果,低浓度比高浓度的EDTA对铀去除率要高,反应中消耗的氢离子更多,导致反应后pH升高。共存离子HA对蒙脱石负载纳米零价铁去除铀的影响:在铀溶液依次加入HA和蒙脱石负载纳米零价铁,铀与HA先形成U(VI)-HA复合物在酸性条件下(pH2-7)阻碍蒙脱石负载纳米零价铁对铀的去除;在碱性条件下(pH8-9)促进蒙脱石负载纳米零价铁对铀的去除。共存离子FA对蒙脱石负载纳米零价铁去除铀的影响:在酸性条件下(pH2-6)抑制蒙脱石负载纳米零价铁对铀的去除:在碱性条件下(pH8-9)促进蒙脱石负载纳米零价铁对铀的去除。
     蒙脱石负载纳米零价铁与铀反应后的产物通过XRD鉴定为FeOOH;扫描电镜可以看见表面纳米零价铁铁颗粒消失,被黑色物质覆盖;EDS结果显示反应后铁含量减少而氧含量增加;XPS对比反应前后发现,零价铁的峰在反应后消失,铁氧化物与铁氢氧化物的含量增大。综上所述,蒙脱石负载纳米零价铁去除铀的反应机理主要是氧化还原沉淀作用:零价铁(Fe0)与U(Ⅵ)发生氧化还原反应,在蒙脱石负载纳米零价铁的表面生成FeOOH。
     本文创新点:1、制备羟基铝柱撑蒙脱石负载纳米零价铁材料。2、将羟基铝柱撑蒙脱石负载纳米零价铁材料应用于放射性元素铀的吸附研究。
Actinides are of great interest in terms of radioactive waste disposal because of their longevity. Uranium occurs naturally as U isotopes,238U(99.28%),235U(0.711%),234U(0.006%), and they exist as hexavalent uranyl complex in the natural environment. The use of uranium at industrial and military sites has resulted in very high uranium contamination, and dangerous to human healthy and environmental protection because of its long half-life (such as238Ut1/2=4.51×109years).Uranium, an actinide element, has been released into the environment through mining operations, nuclear testing, nuclear fuel, nuclear weapons production sites and accidental spill, and therefore, it is a major contaminant in soils, sediments, and groundwater. A provisional drinking water maximum contaminant level (MCL) for uranium of15μg/L has been established by the World Health Organization (WHO2004). However, it is discussed worldwide that10or5μg/L would be more reasonable. Geochemical processes occurring naturally, including dissolution/precipitation, redox reactions, and sorption/desorption reactions at the water-rock interface, control the mobility and transport of uranium in the subsurface system, such as aquifer sediments, soils, and groundwater.
     Montmorillonite-supported zero-valent iron nanoparticles (M-nZVI) was synthesized by sodium borohydride reduction and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and field emission scanning electron microscopy (FE-SEM). The interaction of uranium with montmorillonite, zero-valent iron nanoparticles and M-nZVI were studied using batch technique under different experimental conditions such as pH, ionic strength, initial U(Ⅵ) concentration, solid-to-liquid ration (m/V), EDTA, humic acid, fulvic acid and temperature. An effluent solution with a low level of uranium, i.e.,4.2x10-7mol/L(100μg/L) was used in the experiments to avoid precipitation of amorphous uranium-hydroxides. Uranium occurs naturally in low concentrations below100μg/L in soil, rock, as well as in surface and groundwater. The research contents of this thesis are summarized as follows:
     1. Removal of uranium from aqueous solution using montmorillonite
     The SSA for montmorillonite was10.23m2/g and the layer spacing was1.28nm. The chemical composition was determined by X-Ray Fluorescence spectrometer:Al2O319.0%, SiO259.5%, MgO3.9%, Fe2O31.7%, K2O0.6%, Na2O3.6%and CaO2.3%.The removal efficiency of U(Ⅵ) using montmorillonite was strongly dependent on the pH values. The removal rate increases with the increase of pH value when the pH range was about2-6.5. The removal efficiency of U(Ⅵ) using montmorillonite was48.05%at pH6.5. The removal rate decreases with the increase of pH value when the pH range was about6.5-9. The concentration of NaNO3had significant effect on the U(Ⅵ) adsorption using the montmorillonite. The removal rate decreases with the increase of ions strength when the pH range was about2-7. The removal rate increases with the increase of ions strength when the pH range was about7-9. The removal percentage of U(Ⅵ) from the aqueous solution using montmorillonite increases with increasing solid content. The results show that the adsorption amount of U(Ⅵ) using the montmorillonitel was increased with increasing the initial U(Ⅵ) concentration at C[U(Ⅵ)]initial<100ppb. The isotherm of U(Ⅵ) on montmorillonite were fitted to non-linear models of Langmuir and Freundlich, and the equilibrium data were best described by the Langmuir isotherm model. The results showed that temperature has a significant effect on the reduction of U(Ⅵ) using montmorillonite in aqueous solution. The U(Ⅵ) removal percentage increased when the temperature increased initially. Hence, it is proposed that the mechanism of U(Ⅵ) removal efficiency using montmorillonite should include both ion exchange and surface complexation. When the pH<7, the main mechanism of U(Ⅵ) removal efficiency using montmorillonite is ion exchange adsorption. When the pH>9, the main mechanism of U(Ⅵ) removal efficiency using montmorillonite is inner-sphere surface complexation.
     2. Removal of uranium from aqueous solution using zero-valent iron nanoparticles (nZVI)
     The SSA for nZVI was26.6m2/g. The particles are oxidation resistant well with iron core-iron oxide shell structure. The core, consisting of zero-valent iron, forms an electron source that might reduce ions possessing higher standard reduction potential than that of iron. Attempts to form shell coating iron core have also been applied to protect the iron core from further oxidation. The removal efficiency of U(Ⅵ) using nZVI was strongly dependent on the pH values. The removal efficiency of U(Ⅵ) using nZVI was strongly dependent on the pH values. Results indicated that when pH is pH2, it produced less removal efficiently of U(Ⅵ). The removal efficiency of U(Ⅵ) using nZVI was73-78%at pH3-5. The results indicated that the optimum removal efficiency of U(Ⅵ) using M-nZVI was78%at pH5.0. The removal rate decreases with the increase of pH value when the pH range was about6-9. The concentration of NaNO3had a insignificant effect on the U(Ⅵ) adsorption using the nZVI. The removal percentage of U(Ⅵ) from the aqueous solution using nZVI increases with increasing solid content at m/v<0.1g/L. The removal efficiency of U(Ⅵ) using0.125g/L of nZVI was99%. The results show that the adsorption amount of U(Ⅵ) using the nZVI was decreased with increasing the initial U(Ⅵ) concentration at C[U(Ⅵ)]initial<100ppb. The isotherm of U(Ⅵ) on montmorillonite were fitted to non-linear models of Langmuir and Freundlich, and the equilibrium data were best described by the Langmuir isotherm model. The results showed that temperature has a insignificant effect on the reduction of U(Ⅵ) using nZVI in aqueous solution. These results are consistent with the hypothesis that the removal of U(Ⅵ) from aqueous solution is not only an adsorption process but also a reduction process in which U(Ⅵ) ions are reduced concomitantly by nZVI. The pH did not change after the reaction at the pH2. The pH was5.57after the reaction at the initial pH3. The pH was about9after the reaction at the initial pH4-8. The pH did not change after the reaction at the pH9. The iron content of the reaction solution was65.8mg/L at pH2. The iron content of the reaction solution was18.9mg/L at pH3. The iron content of the reaction solution was4.22mg/L at pH4. The iron content of the reaction solution was22-37ug/L at pH5-9. The main mechanism of U(Ⅵ) removal efficiency using nZVI is redox mechanisms, namely, the oxidation of iron, adsorption of U(VI) to nZVI, formation of oxide and hydroxide precipitates of U(Ⅳ) and Fe(Ⅲ) that coated the surface of the nZVI.
     3. Removal of uranium from aqueous solution using montmorillonite-supported zero-valent iron nanoparticles (M-nZVI)
     The SSA for as-synthesized M-nZVI was91.42m2/g. The isoelectric point (IEP) of M-nZVI was at pH5.6. These images clearly demonstrate that the aggregation of nZVI was eliminated and the nZVI was well dispersed on the M surface. The results indicate that the removal efficiency of U(Ⅵ) using M-nZVI was strongly dependent on the pH values. Results indicated that when pH is low (pH2), it produced less removal efficiently of U(Ⅵ). The removal efficiency of U(Ⅵ) was97.8%at pH3.0. The optimum pH values were in the range3.0to5.0. Therefore, pH3.0was selected for subsequent experiments. It can be seen that the pH solution did not significantly influence on the removal of U(Ⅵ) at pH of3-5. The removal rate decreases with the increase of pH value when the pH range was about6-9. The removal efficiency of U(Ⅵ) using M-nZVI was9.5%at pH9. The concentration of NaNO3had insignificant effect on the U(Ⅵ) adsorption using the M-nZVI. The removal percentage of U(Ⅵ) from the aqueous solution using M-nZVI increases with increasing solid content at m/v<0.1g/L. The removal efficiency of U(Ⅵ) using0.1g/L of M-nZVI was97.8%. However, the removal efficiency of U(Ⅵ) reached a steady state above0.1g/L of M-nZVI. The results show that the adsorption amount of U() using the M-nZVI was increased with increasing the initial U(Ⅵ) concentration at C[U(vi)]initiai<100ppb. The isotherm of U(Ⅵ) on M-nZVI were fitted to non-linear models of Langmuir and Freundlich, and the equilibrium data were best described by the Langmuir isotherm model. The results showed that temperature has a insignificant effect on the reduction of U(Ⅵ) using M-nZVI in aqueous solution.
     The presence of EDTA decreases U(Ⅵ) sorption at pH2-9. After pre-equilibrium of EDTA sorbed on U(Ⅵ), and subsequent sorption of M-nZVI. The presence of EDTA decreases U(Ⅵ) sorption on M-nZVI at pH2-9. The EDTA-U(Ⅵ) complexes is formed in solution and thereby reduce U(Ⅵ) sorption pH2-9. After pre-equilibrium of U(Ⅵ) sorbed on M-nZVI, and subsequent sorption of EDTA. The presence of EDTA decreases U(Ⅵ) sorption on M-nZVI at pH2-9. Different concentration of EDTA and EDTA to join order of M-nZVI removal of uranium pH change after the reaction is the same. The pH of0.001mol/L EDTA is higher than0.01mol/L EDTA after reaction at pH2-9. The U(Ⅵ)-HA complexes is formed in solution and thereby reduce U(Ⅵ) sorption pH2-7and enhances U(Ⅵ) sorption on M-nZVI at pH8-9. After pre-equilibrium of U(Ⅵ) sorbed on M-nZVI, and subsequent sorption of HA.The U(Ⅵ)-FA complexes is formed in solution and thereby reduce U(Ⅵ) sorption pH2-6and enhances U(Ⅵ) sorption on M-nZVI at pH8-9.
     Hence, it is proposed that the mechanism of U(Ⅵ) removal efficiency using M-nZVI was redox mechanisms, namely, the oxidation of iron, adsorption of U(Ⅵ) to M-nZVI, formation of oxide and hydroxide precipitates of U(Ⅳ) and FeOOH that coated the surface of the M-nZVI. It can be concluded that the iron hydroxide were formed as a result of Fe0corrosion reaction, where Fe0first oxidizes to Fe(Ⅱ) and then to Fe(Ⅲ). This resulted in the formation of U(Ⅳ) hydroxide precipitates which gradually coated the surface of the M-nZVI particles. The Fe content in the M-nZVI after reacting with U(VI) decreased from43.13to11.90wt%, while the oxygen content increased from41.18to63.28wt%. This result may be explained on the basis of the corrosion of Fe0to Fe(Ⅱ), Fe(Ⅲ), iron oxide or hydroxide on the surface of M-nZVI, and therefore, a decrease in the Fe content and increase in the oxygen content were observed.
     There is one novel point of this theses:(1) Preparation of Al-montmorillonite-supported zero-valent iron nanoparticles (M-nZVI).(2) Development of M-nZVI for uranium removal.
引文
[1]孙长顺.无机柱撑膨润土的制备、表征、吸附特性及其在废水处理中的应用研究[D].西安建筑科技大学博士学位论文,2008.
    [2]张红霞.U(Ⅵ)、Th(Ⅳ)在几种吸附剂上的吸附机理研究[D].兰州大学博士学位论文,2011.
    [3]史维浚.铀水文地球化学原理[D].北京:原子能出版社,1990.
    [4]张东.铀在地下水中化学形态及地球化学工程屏障研究[D].中国工程物理研究院博士学位论文,2005.
    [5]钱丽娟.铀(Ⅵ)、钍(Ⅳ)和铕(Ⅲ)在磷酸盐上的吸附研究[D].兰州大学博士学位论文,2010.
    [6]徐花花,周启及熊文祥.原子弹理论及原料[D].科学出版社:北京,2011.
    [7]王剑锋.铀地球化学教程[D].北京:原子能出版社,1998.
    [8]刘金辉,孙占学.确定砂岩型铀矿体定位新方法——水岩体系Eh-pH法[J].吉林大学学报(地球科学版),2004(01):p.44-48.
    [9]黄麟杰,易发成,红层水中铀的化学形态分析及Eh-pH相图绘制[J].西南科技大学学报,2011(01):p.1-5.
    [10]Bachmaf, S. and B. Merkel, Sorption of uranium(VI) at the clay mineral-water interface[J]. Environmental Earth Sciences,2011.63(5):p.925-934.
    [11]蒋海燕.不溶性腐殖酸及腐殖酸修饰的凹凸棒处理废水中铀(Ⅵ)的试验研究[D].南华大学,2013.
    [12]柏云.含铀废水微生物处理方法研究[D].四川大学博士学位论文,2003.
    [13]刘岳林.Cu2+对硫酸盐还原菌处理低浓度含铀废水的影响与机理试验研究[D].南华大学博士学位论文,2011.
    [14]李银.固定化纳米a-Fe2O3微球对铀(Ⅵ)的吸附特性研究[D].南华大学博士学位论文,2012.
    [15]高伟硅藻土和膨润土对铀的吸附研究[D].南华大学博士学位论文,2006.
    [16]严森.厌氧条件下纳米铁还原水中六价铀的反应动力学和机理研究[D].中国地质大学博士学位论文,2010.
    [17]陈曦等.纳米零价铁对多氯联苯还原脱氯的初步研究.持久性有机污染物论坛2012暨第七届持久性有机污染物全国学术研讨会.中国天津,2012.
    [18]张巍等负载纳米零价铁/钯(ZVI/Pd)双金属活性炭去除水中三氯乙烯(TCE)的研究[J].净水技术,2013(01):p.67-73.
    [19]柳听义等.纳米零价铁去除垃圾渗滤液中铬(Ⅵ)的性能及机理研究[J].环境化学,2010(03):p.429-433.
    [20]冯婧微.纳米零价铁及铁(氢)氧化物去除水中Cr (VI)和Cu-(2+)的机制研究[D].沈阳 农业大学博士学位论文,2012.
    [21]王宜成等.零价铁去除水中钼的研究[J].环境科学与技术,2007(06):p.69-71+119.
    [22]Gu, B., et al., Reductive precipitation of uranium(VI) by zero-valent iron[J].Environmental Science & Technology,1998.32(21):p.3366-3373.
    [23]吴平霄,叶代启及明彩兵.柱撑粘土矿物层间域的性质及其环境意义[J].矿物岩石地球化学通报,2002(04):p.228-233.
    [24]钱丽娟等.pH、富里酸和温度对铀酰在ZrP207上的吸附影响[J].中国科学:化学,2010(11):p.1712-1720.
    [25]魏广芝与徐乐昌.低浓度含铀废水的处理技术及其研究进展[J].铀矿冶,2007(02):p.90-95.
    [26]唐志坚,张平及左社强.低浓度含铀废水处理技术的研究进展[J].工业用水与废水,2003(04):p.9-12.
    [27]马腾,王焰新及郝振纯.粘土对地下水中U(Ⅵ)的吸附作用及其污染控制研究[J].华东地质学院学报,2001(03):p.181-185.
    [28]闵茂中.放射性废物处置原理[D].北京:原子能出版社,1998.
    [29]苑士超.厌氧活性污泥及厌氧污泥胞外聚合物(EPS)除铀试验研究[D].南华大学博士学位论文,2012.
    [30]高亮.U(Ⅵ)和Th(Ⅳ)在高岭土上的吸附研究[D].兰州大学博士学位论文,2010.
    [31]熊正为,王清良及郭成林,蒙脱石吸附铀机理实验研究[J].湖南师范大学自然科学学报,2007.30(3):p.75-79.
    [32]刘艳,易发成及王哲.膨润土对铀的吸附研究[J].非金属矿,2010(01):p.52-53+57.
    [33]宋金如等.凹凸棒石粘土吸附铀的性能研究及应用[J].华东地质学院学报,1998(03):p.66-73.
    [34]张金流,凹凸棒粘土对铀吸附性能的研究[J].净水技术,2006(05):p.66-68.
    [35]陈朝猛,曾光明及汤池.羟基磷灰石吸附处理含铀废水的研究[J].金属矿山,2009(05):p.135-137.
    [36]唐文清等.合成碳羟基磷灰石对铀的吸附规律[J].桂林工学院学报,2008(04):p.554-557.
    [37]张纯.零价铁和赤铁矿去除污染水体中U(Ⅵ)的试验研究[D].南华大学博士学位论文,2007.
    [38]张纯等.用零价铁渗滤墙技术修复我国铀尾矿地下水的探讨[J].铀矿冶,2007(01):p.44-47.
    [39]赵素芬等.零价铁处理含铀废水的试验研究[J].工业水处理,2011(07):p.71-73+77.
    [40]易正戟等.零价铁腐蚀产物对硫酸盐还原沉淀铀的影响[J].采矿技术,2009(03):p.129-132.
    [41]贾继云.Fe304磁流体的制备及对溶液中铀(Ⅵ)的吸附研究[D].南华大学博士学位论文,2011.
    [42]Afkhami, A. and R. Norooz-Asl, Removal, preconcentration and determination of Mo (VI) from water and wastewater samples using maghemite nanoparticles[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2009.346(1):p.52-57.
    [43]Hu, J., G.H. Chen, and I.M.C. Lo, Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles[J]. Water Research,2005.39(18):p.4528-4536.
    [44]胡军等.纳米氧化铁对铀(Ⅵ)吸附性能的研究[J].光谱实验室,2011(02):p.718-722.
    [45]凌辉.过氧化氢/铁负载膨润土协同处理废水中铀(Ⅵ)的试验研究[D].南华大学博士毕业论文,2012.
    [46]黄芬.18-冠-6/LA/Fe_3O_4复合磁性纳米粒子的制备及对铀(Ⅵ)、钍(Ⅳ)的吸附性能研究[D].南华大学博士毕业论文,2012.
    [47]万小岗与王东文.四钛酸钾晶须处理含铀废水实验研究[J].环境科学与技术,2007(10):p.67-70+119.
    [48]樊耀亭等.水溶液中二氧化锰对铀的吸附[J].环境科学学报,1999(01):p.44-48.
    [49]罗明标,刘淑娟及余亨华.氢氧化镁处理含铀放射性废水的研究[J].水处理技术,2002(05):p.274-277.
    [50]McKinley, J.P., et al., The influence of uranyl hydrolysis and multiple site-binding reactions on adsorption of U(VI) to montmorillonite[J]. Clays and Clay Minerals,1995.43(5):p. 586-598.
    [51]Catalano, J.G. and GE. Brown, Uranyl adsorption onto montmorillonite:Evaluation of binding sites and carbonate complexation[J]. Geochimica Et Cosmochimica Acta,2005.69(12):p. 2995-3005.
    [52]Kornilovich, B.Y., G.N. Pshinko, and I.A. Koval'chuk, Effect of Fulvic Acids on Sorption of U(VI) on Clay Minerals of Soils[J]. Radiochemistry,2001.43(5):p.528-531.
    [53]Kowal-Fouchard, A., et al., Use of spectroscopic techniques for uranium (Ⅵ)/montmorillonite interaction modeling[J]. Environmental Science & Technology,2004.38(5):p.1399-1407.
    [54]Campos, B., et al., Adsorption of uranyl ions on kaolinite, montmorillonite, humic acid and composite clay material[J]. Applied Clay Science,2013.85(0):p.53-63.
    [55]Yang, W. and A. Zaoui, Behind adhesion of uranyl onto montmorillonite surface:A molecular dynamics study[J]. Journal of Hazardous Materials,2013.261(0):p.224-234.
    [56]Yan, S., et al., Uranium (Ⅵ) removal by nanoscale zerovalent iron in anoxic batch systems[J]. Environmental science\& technology,2010.44(20):p.7783-7789.
    [57]Wang, Y. and K. Salvage, Immobilization of uranium in the presence of Fe0(s):Model development and simulation of contrasting experimental conditions[J]. Applied Geochemistry, 2005.20(7):p.1268-1283.
    [58]Klimkova, S., et al., Zero-valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching[J]. Chemosphere,2011.82(8):p.1178-1184.
    [59]Crane, R.A., et al., Magnetite and zero-valent iron nanoparticles for the remediation of uranium contaminated environmental water[J]. Water Research,2011.45(9):p.2931-2942.
    [60]Dickinson, M. and T.B. Scott, The application of zero-valent iron nanoparticles for the remediation of a uranium-contaminated waste effluent[J]. Journal of hazardous materials, 2010.178(1):p.171-179.
    [61]Zhang, X., et al., Removal of Pb(Ⅱ) from water using synthesized kaolin supported nanoscale zero-valent iron[J]. Chemical Engineering Journal,2010.163(3):p.243-248.
    [62]Zhang, X., et al., Kaolinite-supported nanoscale zero-valent iron for removal of Pb2+from aqueous solution:Reactivity, characterization and mechanism[J]. Water Research,2011. 45(11):p.3481-3488.
    [63]Uezuem, C, et al., Synthesis and characterization of kaolinite-supported zero-valent iron nanoparticles and their application for the removal of aqueous Cu2+ and Co2+ ions[J]. Applied Clay Science,2009.43(2):p.172-181.
    [64]Kim SA, et al., Removal of Pb(II) from aqueous solution by a zeolite-nanoscale zero-valent iron composite[J]. Chemical Engineering Journal,2013.217:p.54-60.
    [65]Wang, W., et al., Novel NaY zeolite-supported nanoscale zero-valent iron as an efficient heterogeneous Fenton catalyst[J]. Catalysis Communications,2010.11(11):p.937-941.
    [66]Shi, L.-n., et al., Synthesis, characterization and kinetics of bentonite supported nZVI for the removal of Cr(VI) from aqueous solution[J]. Chemical Engineering Journal,2011.171(2):p. 612-617.
    [67]Chen, Z.-x., et al., Removal of methyl orange from aqueous solution using bentonite-supported nanoscale zero-valent iron[J]. Journal of Colloid and Interface Science, 2011.363(2):p.601-607.
    [68]Shi, L.-n., X. Zhang, and Z.-1. Chen, Removal of Chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Research,2011.45(2):p.886-892.
    [69]Li, Y.M., J.F. Li, and Y.L. Zhang, Mechanism insights into enhanced Cr(VI) removal using nanoscale zerovalent iron supported on the pillared bentonite by macroscopic and spectroscopic studies[J]. Journal of Hazardous Materials,2012.227-228(0):p.211-218.
    [70]何英华.油田化学驱结垢与控制技术研究[D].大庆石油学院博士毕业论文,2010.
    [71]李爽.锶、铯、铀在绵阳某地紫色土中的吸附性能及机理研究[D].成都理工大学博士毕业论文,2007.
    [72]郑立军.活性炭吸附技术在秦山三期放射性惰性气体处理中的应用研究[D].上海交通大学博士毕业论文,2007.
    [73]刘凯.有机蒙脱石负载纳米铁的制备、表征及去除4-氯酚的研究[D].湖南大学博士毕业论文,2012.
    [74]陈方明与陆琦.非金属矿物材料在废水处理中的应用[J].矿产保护与利用,2004(01):p.18-21.
    [75]张树芹.蒙脱土、高岭土和层状双金属氢氧化物对Pb-(2+)和对硝基苯酚的吸附研究[D].山东大学博士毕业论文,2007.
    [76]Hu, T. and L. Tan, Sorption/desorption of radionickel on/from Na-montmorillonite:kinetic and thermodynamic studies[J]. Journal of Radioanalytical and Nuclear Chemistry,2012. 292(1):p.103-112.
    [77]Freedman, Y.E., et al., Interaction of metals with mineral surfaces in a natural groundwater environment[J]. Chemical Geology,1994.116(1-2):p.111-121.
    [78]Ren, X., et al., Influence of contact time, pH, soil humic/fulvic acids, ionic strength and temperature on sorption of U(VI) onto MX-80 bentonite[J]. Journal of Radioanalytical and Nuclear Chemistry,2010.283(1):p.253-259.
    [79]张树芹.蒙脱土、高岭土和层状双金属氢氧化物对Pb(Ⅱ)和对硝基苯酚的吸附研究[D].山东大学博士毕业论文,2007.
    [80]郑伟娜.谷壳处理含铀废水的行为及机理研究[D].南华大学博士毕业论文,2011.
    [81]汪爱河.ZVI-SRB协同处理铀废水的试验研究[D].南华大学博士毕业论文,2008.
    [82]许淑媛.不同材料负载纳米零价铁去除水/土中挥发性氯代烃的实验研究[D].轻工业环境保护研究所博士毕业论文,2012.
    [83]Mueller, N., et al., Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe[J]. Environmental Science and Pollution Research,2012.19(2):p. 550-558.
    [84]李小燕等.纳米零价铁去除溶液中U(Ⅵ)的研究.核动力工程,2013(02):p.160-163.
    [85]万小岗与杨胜亚.纳米级零价铁处理含铀废水初步实验研究.工业水处理,2012(03):p.42-44.
    [86]Sun, Y.-P., et al., Characterization of zero-valent iron nanoparticles[J]. Advances in Colloid and Interface Science,2006.120(1-3):p.47-56.
    [87]邵小宇等.零价铁去除U(Ⅵ)的作用机理及其影响因素[J].核化学与放射化学,2013(01):p.1-7.
    [88]张纯,张伟及周星火,零价铁粉在含U(Ⅵ)废水处理中的应用研究[J].铀矿冶,2009(03):p.155-157.
    [89]Korichi, S. and A. Bensmaili, Sorption of uranium (VI) on homoionic sodium smectite experimental study and surface complexation modeling[J]. Journal of Hazardous Materials, 2009.169(1-3):p.780-793.
    [90]Riba, O., et al., Reaction mechanism of uranyl in the presence of zero-valent iron nanoparticles[J]. Geochimica et Cosmochimica Acta,2008.72(16):p.4047-4057.
    [91]Farrell, J., et al., Uranium Removal from Ground Water Using Zero Valent Iron Media[J]. Ground Water,1999.37(4):p.618-624.
    [92]Fiedor, J.N., et al., Understanding the Mechanism of Uranium Removal from Groundwater by Zero-Valent Iron Using X-ray Photoelectron Spectroscopy[J]. Environmental Science & Technology,1998.32(10):p.1466-1473.
    [93]Scott, T.B., et al., The extraction of uranium from groundwaters on iron surfaces[J]. Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences,2005. 461(2057):p.1247-1259.
    [94]Charlet, L., E. Liger, and P. Gerasimo, Decontamination of TCE-and U-rich waters by granular iron:Role of sorbed Fe(Ⅱ) [J]. Journal of Environmental Engineering-Asce,1998. 124(1):p.25-30.
    [95]Scott, T.B., et al., Reduction of U(VI) to U(IV) on the surface of magnetite[J]. Geochimica et Cosmochimica Acta,2005.69(24):p.5639-5646.
    [96]Cantrell, K.J., D.I. Kaplan, and T.W. Wietsma, Zero-valent iron for the in situ remediation of selected metals in groundwater[J]. Journal of Hazardous Materials,1995.42(2):p.201-212.
    [97]Morrison, S.J., D.R. Metzler, and C.E. Carpenter, Uranium precipitation in a permeable reactive barrier by progressive irreversible dissolution of zerovalent iron[J]. Environmental Science & Technology,2001.35(2):p.385-390.
    [98]Liger, E., L. Charlet, and P. Van Cappellen, Surface catalysis of uranium(VI) reduction by iron(II) [J]. Geochimica et Cosmochimica Acta,1999.63(19-20):p.2939-2955.
    [99]Powell, R.M., et al., Coupled Iron Corrosion and Chromate Reduction:Mechanisms for Subsurface Remediation[J]. Environmental Science & Technology,1995.29(8):p. 1913-1922.
    [100]Scott, T., et al., The effects of vacuum annealing on the structure and surface chemistry of iron nanoparticles[J]. Journal of Nanoparticle Research,2010.12(5):p.1765-1775.
    [101]SUN, H.-m., J.-h. LUO, and S.-m. ZHANG, The Progress in Iron Nanoparticles Preparation by Liquid-phase Method[J]. Bulletin of Science and Technology,2006.6:p.018.
    [102]Zhu, L., Y. Li, and J. Zhang, Sorption of organobentonites to some organic pollutants in water[J]. Environmental science & technology,1997.31(5):p.1407-1410.
    [103]Xu, J., et al., Removal of uranium from aqueous solution using montmorillonite-supported nanoscale zero-valent iron[J]. Journal of Radioanalytical and Nuclear Chemistry,2014.299(1): p.329-336.
    [104]樊明德等.蒙脱石载体对“核-壳”结构零价铁纳米颗粒制备及其尺寸控制的影响与机理[J].科学通报,2010(09):p.827-834.
    [105]Barger, M. and C.M. Koretsky, The influence of citric acid, EDTA, and fulvic acid on U(Ⅵ) sorption onto kaolinite[J]. Applied Geochemistry,2011.26:p. S158-S161.
    [106]Anirudhan, T.S., C.D. Bringle, and S. Rijith, Removal of uranium(Ⅵ) from aqueous solutions and nuclear industry effluents using humic acid-immobilized zirconium-pillared clay[J]. Journal of Environmental Radioactivity,2010.101(3):p.267-276.
    [107]Schmeide, K., et al., Interaction of uranium (Ⅵ) with various modified and unmodified natural and synthetic humic substances studied by EXAFS and FTIR spectroscopy[J]. Inorganica chimica acta,2003.351:p.133-140.
    [108]Meunier, J., P. Landais, and M. Pagel, Experimental evidence of uraninite formation from diagenesis of uranium-rich organic matter[J]. Geochimica et Cosmochimica Acta,1990.54(3): p.809-817.
    [109]Zhao, D., et al., Impact of water quality parameters on the sorption of U(Ⅵ) onto hematite[J]. Journal of Environmental Radioactivity,2012.103(1):p.20-29.
    [110]Schnitzer, M. Recent findings on the characterization of humic substances extracted from soils from widely differing climatic zones. in Soil Organic Matter Studies [C]; Proceedings of a Symposium.1977.
    [111]Murray, K. and P. Linder, Fulvic acids:structure and metal binding[J]. Journal of Soil Science, 1984.35(2):p.217-222.
    [112]Zimmerman, A.P., Electron intensity, the role of humic acids in extracellular electron transport and chemical determination of pE in natural waters[J]. Hydrobiologia,1981.78(3):p. 259-265.
    [113]Buffle, J., Complexation reactions in aquatic systems[J]. An analytical approach.1988.
    [114]Zhang, H.X., et al., Effects of nitrate, fulvate, phosphate, phthalate, salicylate and catechol on the sorption of uranyl onto SiO2:a comparative study[J]. Journal of Radioanalytical and Nuclear Chemistry,2011.287(1):p.13-20.
    [115]Guo, Z., Y. Li, and W. Wu, Sorption of U(VI) on goethite:Effects of pH, ionic strength, phosphate, carbonate and fulvic acid[J]. Applied Radiation and Isotopes,2009.67(6):p. 996-1000.
    [116]Grosvenor, A.P., et al., Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds[J]. Surface and Interface Analysis,2004.36(12):p.1564-1574.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700