用户名: 密码: 验证码:
露天开采矿区废弃地近自然地形重塑研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土地复垦与生态重建已成为改善矿区废弃地生态环境的一项重要措施,但易受到地形或者地形重塑的影响,需要建立一个与当地自然环境相和谐的流域地貌景观。地形重塑是矿区废弃地其它复垦实践和未来土地利用的基础,也是土地复垦与生态重建重点研究的技术问题之一。而自然流域地貌形态特征给废弃矿区的生态重建提供了重要参照标准。本研究根据生态思维、可持续发展理论、流域地貌理论及其自相似原理,以流域为单元,以邻近未扰动的地形水文形态特征作为设计参照目标,利用ArcGIS技术重新规划了废弃矿区的子流域及沟道;在此基础上结合Geofluv模型重建了太行山北段东麓的典型废弃采石场的流域地形,探讨了露天开采矿区废弃地的近自然地形重塑机理与技术方法,评价了重塑后与未扰动的子流域形态特征间关系。主要研究结论如下:
     (1)提出了废弃矿区近自然地形重塑的内涵,确定了近自然地形重塑的方法和评价体系。选取沟道级别、主沟道长度、流域面积、沟道密度、流域圆度、高程差和平均坡度等7个指标作为小流域地貌形态特征评价指标体系,也基本代表了流域地貌形态的线性、面域和起伏的特征。
     (2)计算了典型废弃采石场在0.3m、O.4m、0.5m等11种水平分辨率下的流域面积、平均高程、平均坡度和剖面曲率,确定1m×1m栅格网格尺寸为研究区最佳分辨率。采用均值变点分析法,得出地势起伏度的最佳分析窗口为4.5×4.5,利用局部地形起伏度、局部高程标准差、地表粗糙度和剖面曲率等4个地形因子综合评价地形复杂度,作为重新规划研究区主次沟道的参考依据。利用水文地理数据模型ArcHydro提取和计算水文网,确定了研究区及其所在小流域水文网的汇流面积适宜阈值为O.012km2。这为后期地形重塑提供了可靠的适宜的数据。
     (3)在重新规划了典型废弃采石场的子流域及沟道基础上,参照邻近未扰动子流域地貌形态特征,通过Geofluv模型重塑地形。重塑后的Ⅱ级子流域平均沟道密度为14.521km/km2、与邻近未扰动的Ⅱ级子流域平均沟道密度13.835km/km2接近,这表明重建地形在设计时已经考虑到后期地形演变过程中的侵蚀、搬运和堆积作用。
     (4)重塑后与未扰动流域相应形态特征的平均比值在1.07和1.21之间,利用地貌系统信息熵值来判断重塑后地形起伏程度与侵蚀强度表明重塑后的地势起伏变化小,随着时间推移不会发生太大变化。利用最小二乘法对邻近未扰动Ⅰ级子流域特征参数进行回归分析,其模型通过F检验和t检验,均达到显著水平,经检验重建后Ⅰ级子流域的沟道密度的残差值在回归方程的变化范围内。以未扰动流域特征为标准,利用相对值法和加权平均值对重塑前后的相似度进行评价,重塑后的对应未扰动的相似度为10.5%。
     以邻近未扰动流域特征作为参照标准,在重新规划废弃矿区沟道基础上,重塑后子流域地貌形态是相对稳定的、自然的,地势起伏变化小,并与未扰动的子流域形态特征相似,符合所处环境地貌形成过程中的侵蚀,使重建地形相对稳定并与周围景观相和谐。本文研究成果可为露天开采矿区废弃地的地形重塑研究提供一种新思路,同样也可以运用在排土场的规划设计中。
Topographic reconstruction is a crucial part of land reclamation and ecological rehabilitation because the resulting geography landscapes are the foundations for all subsequent reclamation practices and the surfaces for future land uses. It is also ranked among the most important research technical problems. Nature can provide analogues for mined or mining landscapes during disturbed-land reclamation according to landscape stability and according to the reconstructed structure blending in with the surrounding undisturbed landscape. The connotation of close-to-nature topography reshaping is based on the sustainable development and eco-thinking theory in accordance with watershed geomorphology and the theory of restoration ecology.In terms of the watershed geomorphology and the principle of self-similarity theory, the sub-catchments and channels of abandoned mines were re-planned by using ArcGIS soft technology and a practical survey in this paper.
     The topography characteristics of adjacent, undisturbed catchments were calculated by applying an ArcGIS Hydrologic analysis tool, which was taken as the following simulation reference standard. Then the topography in a sub-watershed unit in the Northeast Taihang Mountain typical abandoned quarry project in Beijing city was reconstructed by using a Geofluv module driven by geomorphic principles, in which this module simulated the function of the natural landscape that would evolve over time under the physical and climatic conditions present at the site to water and sediment from the land surface in a stable hydrologic equilibrium.
     The selected geomorphologic characteristics index were first and second order sub-watershed, the average sub-watershed area, main channel, drainage density, watershed roundness, average elevation difference, and average slope, which provided targets for topographic reconstruction. Moreover, the theory and technical method of the reconstructed topography were studied.
     In this case, watershed area, average elevation, average slope degree and profile curvature under11resolutions such as0.3,0.4,0.5and so on were computed, and lmxlm grid was confirmed as the optimal resolution. The initial study of the sub-watershed on the undisturbed landform in the project's vicinity were selected and calculated to develop a stable channel design and reconstruction guidelines by using GIS spatial analysis tools. The average second order drainage density that represented the stable sub-watershed size for the local condition was13.84km/km2. Moreover, the average second order drainage density of the reconstructed topography which simulated the natural landform evolution to the stage in balance with the local environmental condition was14.52km/km2on the basis of are-planning of reconstruction sub-watershed and main channel, which achieved the desired design goals. A topographic reconstruction simulated a relatively stable sub-watershed performed by geomorphic processes with the creation of a basin composed of slope and channels in orderly spatial arrangements and functioning for the transportation of water and sediment.
     The average rate of reconstruction to the original drainage basin was from1.07to1.21by considered the time-consuming of erosion process. Characteristic parameters of level I sub basin were analyzed with multiple linear regression through least square method. The model passed F and t test and reached significant level. Drainage density of reconstructed basin had the same residual with the regression equation. The results showed that the reconstructed typical abandoned quarry topography in which the hydrologic and fluvial geomorphic analyses and stable channel parameters were determined, and based on site-specific data, were relatively economical, stable, and natural, which was similar to the undisturbed catchments' geomorphology. Finally, the relationship of geomorphologic characteristics between the reconstructed sub-watershed and the undisturbed ones was analyzed and the ratio of the index was almost similar.
     The geomorphic information entropy analysis showed that the geomorphology changed very slowly after topographic reconstruction and the erosions on watershed were also gradually reduced. This study provided a novel viewpoint for the topographic reconstruction of an abandoned mine.
引文
[1]艾南山,岳天祥..再论流域系统的信息熵[J].水土保持学报,1988,2(4):1-7.
    [2]艾南山.侵蚀流域系统的信息熵[J].水土保持学报,1987,1(2):1-7.
    [3]白中科,贺振伟,李晋川,等.矿区土地复垦与生态产业链总体规划设计[J].山西农业科学,2010,38(1):51-55
    [4]白中科,王文英,李晋川,等.黄土区大型露天煤矿剧烈扰动土地生态重建研究[J].应用生态学报,1998,9(6):621-626.
    [5]白中科,赵景逵,王治国,等.黄土高原大型露天采煤废弃地复垦与生态重建[J].能源环境保护,2003,17(1):13-16.
    [6]北京市气象局气象资料室.北京气候志[M].北京:北京出版社,1987.
    [7]毕如田,白中科,李华,等.基于RS和GIS技术的露天矿区土地利用变化分析[J].农业工程学报,2008,24(12):201-204
    [8]毕如田,白中科,李华,等.基于3S技术的大型露天矿区复垦地景观变化分析[J].煤炭学报,200732(11):1157-1161
    [9]卞正富.我国煤矿区土地复垦与生态重建研究[J].资源产业,2005,7(2):18-24
    [10]陈浩.陕北黄土高原沟道流域地态特征分析[J].地理研究,1986,5(1):82-91.
    [11]曾红伟,李丽娟,柳玉梅等.Arc Hydro Tools及多源DEM提取河网与精度分析——以洮儿河流域为例[J].地球信息科学学报,2011,13(1):22-31.
    [12]陈俊明,林广发,杨志海等.数字水文网提取的影响参数优化分析[J].地球信息科学学报,2011,13(2):32-37.
    [13]陈秋计,张洪波,党熙凯,等.基于Arc View 3D Analyst的土地复垦三维景观模拟[J].金属矿山,2006,(4):67-69.
    [14]陈勇.关于可持续发展理论产生的背景[J].国土经济,2000,(2):27-28
    [15]承继成,江美球.流域地貌数学模型[M].北京:科学出版社,1986:136-162.
    [16]承继成.地表侵蚀的基本原理及其所造成的地貌现象[M].黄河水利委员会水土保持径流研究训练班讲义,1963
    [17]代宏文.澳大利亚矿山复垦现状[J].中国土地科学,1995,9(4):23-24
    [18]邓国春,朱建新.谈煤矿矿区生态修复规划[J].资源环境与工程,2008,22(2):254-256.
    [19]丁晶,王文圣.水文相似和尺度分析[J].水电能源科学,2004,1:1-4.
    [20]董哲仁.河流治理生态工程学的发展沿革与趋势[J].水利水电技术,2004,35(1):3941.
    [21]付梅臣,陈秋计.矿区生态复垦中表土剥离及其工艺[J].金属矿山,2004,8:63-65.
    [22]高甲荣.近自然治理——以景观生态学为基础的荒溪治理工程[J].北京林业大学学报, 1999,21(1):80-85
    [23]高晓晶.北京市房山区土壤质量评价研究[D].首都师范大学,2007
    [24]高阳,高甲荣,陈子珊,等.京郊河溪近自然治理环境效应分析.水土保持研究,2008,15(5):102-108.
    [25]高占平,何永,龙瀛,等.北京寨口矿区生态修复规划[J].矿业快报,2008(4):70-73.
    [26]格默尔RP工业废弃地的植物定居[M].倪彭年译.科学出版社,1987
    [27]关淡珠.地方环境立法应遵循可持续发展原则[J].中国人口资源环境.2002,2(2):16-18
    [28]关君蔚.水土保持原理[M].北京:中国林业出版社,1996.
    [29]郭利刚.我国煤矿、金属矿损毁土地复垦潜力研究[D].中国地质大学(北京),2011.
    [30]韩建刚,李占斌.紫色土区流域泥沙输出过程对雨型和空间尺度的响应[J].水利学报,2006,37(1):58-62
    [31]和太平,李玉梅,文祥凤.城市近自然园林植物景观营造探讨[J].广西科学院学报,2006,22(2):97-99.
    [32]洪淑惠.房山县山区植被及其利用[J].北京师院学报(自然科学版).1984(2):90-100.
    [33]胡振琪,杨秀红,鲍艳等.论矿区生态环境修复[J].科技导报,2005.1:38-41
    [34]胡振琪,赵艳玲,毕银丽.美国矿区土地复垦[J].中国土地,2001(6):43-44
    [35]胡振琪,赵艳玲,程玲玲.中国土地复垦目标与内涵扩展[J].中国土地科学,2004,18(3):3-8
    [36]胡振琪.中国土地复垦与生态重建20年:回顾与展望[J].科技导报,2009,27(17):26-29.
    [37]黄光宇,陈勇.生态城市理论与规划设计方法[M].北京:科学出版社,2003
    [38]霍亚贞.北京自然地理[M].北京:北京师范学院出版社,1989.
    [39]贾敦新,汤国安,王春,等.DEM数据误差与地形描述误差对坡度精度的影响[J].地球信息科学,2009(1):43-49.
    [40]金丹,卞正富.国内外土地复垦政策法规比较与借鉴[J].中国土地科学,2009,23(10):66-73.
    [41]景跃军.中国矿产资源与经济可持续发展研究[J].人口学刊,2002(5):13-17
    [42]孔凡哲,李莉莉.利用DEM提取河网时集水面积阈值的确定[J].水电能源科学,2005,23(4):65-67.
    [43]孔凡哲,芮孝芳.基于地形特征的流域水文相似性[J].地理研究,2003,22(6):709-715
    [44]赖格英,于革,桂峰.河网自动提取技术中DEM的几种预处理算法及应用[J].河海大学学报(自然科学版),2005,33(4):386-390.
    [45]李保杰,顾和和,纪亚洲.矿区土地复垦景观格局变化和生态效应[J].农业工程学报,2012,28(3):251-256.
    [46]李昌峰,冯学智,赵锐.流域水系自动提取的方法和应用[J].湖泊科学,2003,15(3):205-212.
    [47]李春娇,贾培义,董丽.近自然园林植物群落及其评价指标体系初探[c].//张启祥主编.2007年 中国园艺学会观赏园艺专业委员会年会论文集.北京:中国林业出版社,2007:560-562.
    [48]李红霞.无径流资料流域的水文预报研究[D].大连理工大学,2011
    [49]李晋川,白中科,柴书杰,等.平朔露天煤矿土地复垦与生态重建技术研究[J].科技导报,2009,27(17):30-34
    [50]李军锋,李天文,汤国安等.基于DEM的沟谷网络节点水流累积量研究[J].山地学报,2005,23(2):228-234.
    [51]李丽,郝振纯.基于DEM的流域特征提取综述[J].球科学进展,2003,18(2):251-256
    [52]李苓苓.3S技术在矿山废弃地生态修复中的应用研究[D].首都师范大学,2008.
    [53]李应振.从农业文明到生态文明:走向人与自然的和谐发展[J].阜阳师范学院学报:社会科学版,2006(2):71-73.
    [54]李永庚,蒋高明.矿山废弃地生态重建研究进展[J].生态学报,2004,24(1):95-100
    [55]梁留科,常江,吴次芳,等.德国煤矿区景观生态重建/土地复垦及对中国的启示[J].经济地理,2002,22(6):711-715.
    [56]梁宗锁,左长清.简论生态修复与水土保持生态建设[J].中国水土保持,2003,4:12-13.
    [57]刘春,孙伟伟,吴杭彬.DEM地形复杂因子的确定及与地形描述精度的关系[J].武汉大学学报(信息科学版),2009,34(9):1015-1020.
    [58]刘抚英.中国矿业城市工业废弃地协同再生对策研究[D].清华大学,2007
    [59]刘光,李叔德,张亮.基于DEM的沟谷系统提取算法综述[J].地理与地理信息科学,2003(19):11-15
    [60]刘海龙.采矿废弃地的生态恢复与可持续景观设计[J].生态学报,2004,24(2):323-329.
    [61]刘黎明,林培.黄土高原丘陵沟壑区土壤侵蚀定量方法与模型的研究[J].水土保持学报,1993,7(3):73-79.
    [62]刘少峰,王陶,张会平等.数字高程模型在地表过程研究中的应用[J].地学前缘,2005,12(1):303-309
    [63]刘喜韬,鲍艳,胡振琪,等.闭矿后矿区土地复垦生态安全评价研究[J].农业工程学报,2007,23(8):102-106.
    [64]刘新华,杨勤科,汤国安.中国地形起伏度的提取及在水土流失定量评价中的应用[J].水土保持通报,2001,21(1):57-59
    [65]刘学军,王永君,龚健雅,等.DEM流域网络提取算法的误差特性分析[J].测绘学报,2007(36):224-230.
    [66]刘振东,涂汉明.中国地势起伏度统计单元的初步研究[J].热带地理,1989,9(1):31-38.
    [67]卢华兴,刘学军,汤国安.地形复杂度的多因子综合评价方法[J].山地学报,2012,30(5):616-621.
    [68]陆元昌,甘敬.21世纪的森林经理发展动态[J].世界林业研究,2002,15(1):1-11.
    [69]陆元昌,奕慎强,张守攻,等.从法正林转向近自然林:德国多功能森林经营在国家、区域和经营单位层面的实践[J].世界林业研究,2010,23(1):1-1 1
    [70]罗明,王军.双轮驱动有力量—澳大利亚土地复垦制度建设与科技研究对我国的启示[J].中国土地,2012,4:51-53
    [71]罗明良.基于DEM的地形特征点簇研究[M].中科院成都山地灾害与环境研究所博士学位论文,成都:中国科学院,2008.
    [72]吕春娟,白中科,陈卫国.黄土区采煤排土场生态复垦工程实施成效分析[J].水土保持通报,2011,31(6):232-236
    [73]马世骏.中国农业生态工程[M].北京:科学出版社,1987
    [74]潘明才.德国土地复垦和整理的经验与启示[J].国土资源,2002(1):50-51.
    [75]彭少麟,陆宏芳.恢复生态学焦点问题[J].生态学报,2003,23(7):1249-1257
    [76]戚晓明,陆桂华,吴志勇等.水文相似度及其应用[J].水利学报,2007,38(3):355-360
    [77]祁新华,陈烈,洪伟等.近自然园林研究[J].建筑学报,2005,8:53-55
    [78]钱宁,张仁周志德.河床演变学[M].北京:科学出版社,1987
    [79]乔丽.矿区生态文明理论、方法与实证研究[D].中国地质大学(北京),201O.
    [80]秦富仓,郑明军,孙旭.流域地貌要素相关关系的研[J].水土保持研究,1998,5(3):30-33.
    [81]邵青还.德国:接近自然的林业-技术政策和技术路线[J].世界林业研究,1993,6(3):63-72.
    [82]邵青还.第二次林业革命-接近自然的林业在中欧兴起[J].世界林业研究,1991,4(4):8-15.
    [83]沈清基,傅博.生态思维与城市规划[J].规划师,2002,18(11):73-76.
    [84]沈清基.论城市规划的生态思维[J].城市规划汇刊,2000(6):7-12.
    [85]沈玉昌,龚国元.河流地貌学概论[M].科学出版社,1986.
    [86]沈中原,李占斌,李鹏,等.流域地貌形态特征多重分形算法研究[J].水科学进展,2009,20(3):385-391.
    [87]苏光全,何书金,郭焕成.矿区废弃土地资源适宜性评价[J].地理科学进展,1998,4:39-46
    [88]孙岩.济宁煤矿塌陷区的生态恢复与治理研究[M].济南:山东大学,2006.
    [89]汤国安,杨勤科,张勇,等.不同比例尺DEM提取地面坡度的精度研究—以在黄土丘陵沟壑区的试验为例[J].水土保持通报,2001,21(1):53-56
    [90]汤国安,赵牡丹,李天文等.DEM提取黄土高原地面坡度的不确定性[J].地理学报,2003,58(6):824-830.
    [91]汤惠君.土地复垦与生态重建[J].衡阳师范学院学报(自然科学版),2004,25(3):85-88
    [92]唐从国,刘丛强.基于Arc Hydro Tools的流域特征自动提取——以贵州省内乌江流域为例[J].地球与环境,2006,34(3):30-37.
    [93]涂汉明,刘振东.中国地势起伏度最佳统计单元的求证[J].湖北大学学报(自然科学 版),1990,12(3):266-271.
    [94]涂汉明,刘振明.中国地势起伏度研究[J].测绘学报,1991,20(4):311-319.
    [95]王鸿斌,刘斌,田杏芳,等.黄土高原沟壑区典型流域高精度DEM制作及其应用研究[J].水土保持通报,2004,24(3):34-36
    [96]王军,傅伯杰,陈利顶.景观生态规划的原理和方法[J].资源科学,1999,21(2):71-76
    [97]王军,李正,白中科,等.土地整理对生态环境影响的研究进展与展望[J].农业工程学报,2011,27(增刊1):340-345.
    [98]王雷,汤国安,刘学军等.DEM地形复杂度指数及提取方法研究[J].水土保持通报,2004,24(4):55-58.
    [99]王礼先,张有实,李锐,等.关于我国水土保持科学技术的重点研究领域[J].中国水土保持科学,2005,3(1):1-6
    [100]王乃静,李国锋.基于EVIEWS软件的计量经济学建模检验案例解读[J].数量经济技术经济研究,2001,18(10),94-97
    [101]王培法.栅格DEM的尺度与水平分辨率对流域特征提取的分析:以黄土岭流域为例[J].江西师范大学学报:自然科学版,2004,28(6):549-554
    [102]王秋原.台湾河川流域自然特性之研究[J].台大地理学报,1974,8:73-91.
    [103]王向荣,任京燕.从工业废弃地到绿色公园[J].中国园林,2003(3):11-18.
    [104]王晓朋,潘懋,任群智.基于流域系统地貌信息熵的泥石流危险性定量评价[J].北京大学学报:自然科学版,2007,43(2):211-215.
    [105]王仰麟,韩荡.废弃矿区复垦的景观生态规划与设计[J].生态学报,1998,19(5):455-463.
    [106]王永生,黄洁,李虹.澳大利亚矿山环境治理管理、规范与启示析[J].中国国土资源经济,2006(11):36-37
    [107]危廷林.近自然林业与水土保持[J].福建水土保持,2001,13(1):20-23.
    [108]文康,金管生,等.地表径流过程的数学模型[M].北京:水利电力出版社,1990
    [109]邬建国.景观生态学——概念与理论[J].生态学杂志,2000,19(1):42-52
    [110]吴险峰,刘昌明,王中根.栅格DEM的水平分辨率对流域特征的影响分析[J].自然资源学报,2003,18(2):148-154.
    [111]项静恬,史久恩.非线性系统中数据处理的统计方法[M].北京:科学出版社,1997.
    [112]谢顺平,都金康,罗维佳等.基于DEM的复杂地形流域特征提取[J].地理研究,2006,25(1):96-102.
    [113]熊立华,郭生练.基于DEM的数字河网生成方法的探讨[J].长江科学院院报,2003,20(4):4-17.
    [114]许新桥.西方近自然林业理论研究及其应用问题探讨[D].北京:中国林业科学研究院,2007
    [115]闫浩,孙世国,金松丽,等.布沼坝露天矿生态复垦工程[J].地理学报,12013,44(1):150-152.
    [116]杨翠霞,赵廷宁,刘育成,等.基于DEM的废弃矿山流域地形特征分析[J].水土保持通报,2013,33(3):170-174
    [117]杨翠霞,赵廷宁,谢宝元,等.基于流域自然形态的废弃矿区地形重塑模拟[J].农业工程学报,2014,30(1):236-244
    [118]杨伦,范海英,刘茂华,等.矿区废弃土地资源评价因子及其权重的确定[J].矿山测量,2005,2:1-3
    [119]杨勤科,赵牡丹,刘咏梅,等.DEM与区域土壤侵蚀地形因子研究[J].地理信息世界,2009(1):25-31
    [120]杨学云.浅议我国人工林的近自然经营[J]冲南林业调查规划,2005,24(4):7-10
    [121]杨玉萍,周志翔.城市近自然园林的理论基础与营建方法[J].生态学杂志,2009,28(3):516-522.
    [122]伊恩·伦诺克斯·麦克哈格著,黄经纬译,设计结合自然[M].天津大学出版社,2006
    [123]易红伟.基于DEM的黄土高原沟壑信息挖掘研究[D].西安:西北大学硕士论文,2004
    [124]易卫华,张建明,匡永生,等.水平分辨率对DEM流域特征提取的影响[J].地理与地理信息科学,2007,23(2):34-38
    [125]尹国康,陈钦峦.黄土高原流域特征性指标与产沙统计模式[J].地理学报,1989,44(1):32-44
    [126]俞孔坚,李迪华,吉庆萍.景观与城市的生态设计,概念与原理[J].中国园林,2001,6:3-10.
    [127]俞孔坚.追求场所性:景观设计的几个途径及比较研究[J].建筑学报,2000,2:45-48
    [128]张成梁,B Larry Li.美国煤矿废弃地的生态修复[J].生态学报,2011,31(1):276-285.
    [129]张凤麟,孟磊.矿业城市可持续发展与环境保护问题[J].中国矿业,2004,13(12):52-56
    [130]张前进,白中科,李晋川,等.矿区生态重建过程中的土地利用/覆被变化[J].山西农业大学学报,2004,24(2):143-147.
    [131]张少文,王文圣,丁晶,等.分形理论在水文水资源中的应用[J].水科学进展,2005,16(1):141-146.
    [132]张硕新,雷瑞德,陈存根,等.近自然林——一种有发展前景的人工天然林[J].西北林学院学报,1996,11(增):157-162.
    [133]张文杰.“近自然”城市园林理论研究[J].山东林业科技,2008,3:94-97
    [134]张召,白中科,贺振伟,等.基于RS与GIS的平朔露天矿区土地利用类型与碳汇量的动态变化[J].农业工程学报,2012,28(3):230-236.
    [135]章超.城市工业废弃地的景观更新研究[D].南京林业大学,2008.
    [136]章异平,徐军亮,康慕谊.近自然林业的研究进展[J].水土保持研究,2007,14(3):214-217.
    [137]赵洪壮,李有利,杨景春.基于DEM数据的北天山地貌形态分析[J].地理科学,2009,29(3):445-449.
    [138]赵进勇,孙东亚,董哲仁.河流地貌多样性修复方法[J].水利水电技术,2007,38(2):78-83.
    [139]赵仕玲.国外矿山环境保护制度及对中国的借鉴[J].中国矿业,2007,16(10):35-38.
    [140]郑新奇.基于GIS的城镇土地优化配置与集约利用评价研究[D].解放军信息工程大学,2004.
    [141]郑子彦,张万昌,邰庆国.基于DEM与数字化河道提取流域水文网的不同方案比较研究[J].资源科学,2009,31(10):1730-1739.
    [142]周侗,龙毅,汤国安等.面向DEM地形复杂度分析的分形方法研究[J].地理与地理信息科学,2006,22(1):26-30.
    [143]周锦华,胡振琪,高荣久.矿山土地复垦与生态重建技术研究现状与展望[J].金属矿山,2007,(10):11-13.
    [144]周锦华,胡振琪,王乐杰,等.景观生态学在矿山地质环境治理中的应用煤炭工程[J].2007,10:24-27
    [145]周进生,李兰,刁椒丽.澳大利亚恢复废弃矿区,走可持续生态矿业之路[J].国土资源,2005(5):51-52
    [146]周启鸣,刘学军.数字地形分析[M].科学出版社,2006.
    [147]周芬,郭生练,方彬,等.区域回归法对无资料地区设计洪水的估算[J].水力发电,2004,30(7):10-13
    [148]朱永清,李占斌,崔灵周.流域地貌形态特征量化研究进展[J].西北农林科技大学学报:自然科学版,2005,33(9):149-154.
    [149]左寻,白中科.工矿区土地复垦、生态重建与可持续发展[J].中国土地科学,2002,16(2):39-42.
    [150]左长清,胡根华,张华明.红壤坡地水土流失规律研究[J].水土保持通报,2003,17(6):89-91
    [151]Andrew Brookes, F Douglas Shields JR. River Channel Restoration Guiding Principles for Sustainable Projects[M].John Wiley & Sons,1996.
    [152]Bardossy A.Calibration of hydrological model parameters for ungauged catchments[J].Hydrology and Earth System Seiences,2007,11(2):703-710.
    [153]Binder W, P Juerging, J Karl. Naturnaher Wasserbau -Merkamale Und Grenzen[J]. Garten Und Landschaft,1983,93(2):91-94
    [154]Bradshaw A D and Chadw ickM J. The Restoration of Land. Berraley:University of California Press,1980
    [155]Bugosh N. A summary of some land surface and water quality monitoring results for constructed GeoFluv landforms[C]//Joint Conference of the 26th Annual American Society of Mining and Reclamation Meeting and 11th Billings Land Reclamation Symposium, BLRS and ASMR: Lexington, KY,2009:10.
    [156]Bugosh N. Can Applalachian mine reclamation be called sustainable using current practices?[C]// Proceedings of Geomorphic Reclamation and Natural Stream Design at Coal Mines:A Technical Interactive Forum. Bristol:U.S. office of Surface Mining,2009:51-68.
    [157]Bugosh N. Computerizing the fluvial geomorphic approach to land reclamation[C]. In 2004 National Meeting of the American Society of Mining and Reclamation and The 25th West Virginia Surface Mine Drainage Task Force, Barnhisel RI (ed). ASMR:Lexington, KY; 2004. 240-258.
    [158]Bugosh N. Technology utilizes nature's design. Sustainable Land Development Today February: 2007,16-17.
    [159]Carlson Software Inc, Bugosh N. Fluvial Geomorphic Landscape Design Computer Sofware[M]. US Patent Office,2005,338-409.
    [160]CarlTroll. Landscape ecology (geocology) and biogeocenology:a terminological study[J]. Geoforum,1971,(8):43-46
    [161]Cherry D S, Currie R J, Soucek D J, etal. An integrative assessment of a watershed impacted by abandoned mined land discharges[J]. Environmental Pollution,2001,3:377-388.
    [162]Costa-Cabral M C, Burges S J. Digital elevation model networks(DEMON):a model of flow over hillslope for computation of contributing and dispersal areas[J]. Water Resources Research, 1994,30(6):1681-1692
    [163]Doornkamp, J.C. Trend-surface analysis of planation surface, with an East African case study[J]. Spatial Analysis in Geomorphology,1972:247-283.
    [164]Dunne, T, L B Leopold. Water in Environmental Planning[M]. W. H. Freeman and Company, United States,1978.
    [165]E James Nelson. WMS v6.1 Tutorials[M]. Environmental Modeling Research Laboratory, Brigham Young University, Provo, Utah,2001.
    [166]Evans KG, Loch RJ. Using the RUSLE to identify factors controlling erosion rates of mine soils[J]. Land Degradation and Rehabilitation,1996,7:267-277.
    [167]Evans KG, Saynor MJ, Willgoose R, et al. Post-mining landform evolution modelling:1. Derivation of sediment transport model and rainfall-runoff model parameters[J]. Earth Surface Processes and Landforms,2000,25(7):743-763.
    [168]Evansl. S. General Geomorphometry, In Goudie,A. (ed.):Geomophological techniques[M]. London:Allen and Unwin,1990.
    [169]EvansI.S. General geomorphometry, derivatives of altitude, and descriptive statistics,In Chorley, R.J.(eds.), Spatial Analysis in Geomorphology[M]. London:Methuen & Co,1972,17-90.
    [170]Forman, R T T, M Godron. Landscape Ecology[M]John Wiley & Sons, New York.1986.
    [171]Forman, R. T. T. Landscape Mosaics:The Ecology of Landscapes and Regions[M]. Cambridge University Press, Cambridge.1995.
    [172]Garbrecht J, Martz L W. The assignment of drainage direction over flat surfaces in raster digital elevation models[J] Journal of Hydrology,1997,193:204-213
    [173]Garbrecht J, Martz L W. Topaz overview[M]. USDA-ARS, Grazingland Research Laboratory, Oklahoma,1999.
    [174]Gardiner V. Drainage basin morphometry:review and assessment[J]. Progress in physical geography,1978,2(1):1-35.
    [175]Gregory D I. Determination of Drainage Density for Surface Mine Reclamation in the Western U.S[M]. Denver, Colorado:Office of Surface Mining,1985
    [176]Gregory E, Rafael L. Hillslope processes, drainage density, and landscape morphology [J]. Water Resources Research,1998,34(10):2751-2764
    [177]Harris MR, Denner J. UK Government Policy and Controls[A]. Hester RE, Harrison RM. Contaminated Land and its Reclamation[C]. Thomas Telford,1997
    [178]Hancock G R, Loch R J, Willgoose G R. The design of post-mining landscapes using geomorphic principles[J]. Earth Surface Processes and Landforms,2003,28(10):1097-1110.
    [179]Hobson R. FORTRAN IV programs to determine the surface roughness in topography for the CDC 3400 computer[J]. Computer Contribution State Geol,1967,14:1-28
    [180]Hobson R. Surface roughness in topography:quantitative approach[C]//Chorley, R J, editor. Spatial analysis in geomorphology,1972:25-245
    [181]Hohmann J, W Konold. Flussbaumassnahmen an der Wutach und ihre Bew ertung aus oekologischer Sicht[J].Deut Sche Wasser Wirtschaft,1992,82(9):434-440.
    [182]Horton R E. Erosional development of stream and their drainage basins, hydrophysical approach to quantitative morpholgy[J]. Geol Soc America Bull,1945,56 (2):275-370.
    [183]Horton, R.E. Drainage basin characteristics[M]. Transactions of the American Geophysical Union,1932.
    [184]Hsu Chiu—Ling. An indicator research of the terrain complexity- a classification of gully scale based on DEM[D]. Taibei:Taiwan University,2002
    [185]Hu Z Q, Bi Y Li. Relationship between the concept of rehabilitation and ecological reconstruction. Coal Ming Environmental Protection,2000,14(5):13-16
    [186]Jackson S T,Hobbs R J. Ecological restoration in the light of ecollogical history [J]. Science,2009, (325):567-568.
    [187]Jenson S K, Domingue J Q. Extraction topographic structure from digital elevation data for geographic information system analysis[J].Photogrammetirc Engineering & Remote Sensing,1988,54(11),1593-1600
    [188]Jiang Uo,W. Hierarchy and sealing:Extra Polating informationa long asealing ladder[J]. Canadian Joumal of Remote Sensing,1999(25):367-380.
    [189]Jie Shan, Muhammad Zaheer, Ejaz Hussain. Study on accuracy of 1-degree DEM versus topographic complexity using GIS zonal analysis[J].Journal of Surveying Engineering,2000, 129(2):85-89
    [190]Jordan W, Gilp in M E, A ber J D. Restoration Ecology:A Synthetic A pproach to Ecological Research. Cambridge university Press,1987
    [191]Lausitzer Bergbau Verwaltungsgesellschaft. Naturschutz in der Bergbau folgelandschaft Suedbrandenburgs[M]. Brisk:Selbstverlag.1994,4-35.
    [192]Leopold L B,M G Wolman, J P Miller. Fluvial processes in geomorphology[M].San Francisco: W.H. Freeman and Company,1964s
    [193]Loch RJ. Landform design-better outcomes and reduced costs applying science to above-and below-ground issues[C]. In Proceedings of the 22nd Annual Environmental Workshop,Minerals Council of Australia,1997:550-563.
    [194]Mark D M. Automatic detertion of drainage networks from digital elevation models[J]. Cartographica,1984,21 (2),168-178
    [195]Martz L W, Garbreeht J. Numerical definition of drainage network and subcatchment areas from digital elevation models[J].Computers & Geosciences,1992,18(6):747-76
    [196]Merz R, Bloschl G. Regionalization of catchment model parameters[J]. Journal of Hydrology, 2004,287:95-123.
    [197]Morisawa M E. Development of drainage system s on an up raised lake floor[J]. Amer Jour of Science,1964,262 (3):341-354
    [198]Morisawa M E. Quantitative geomorphology of some watersheds in the appalachian plateoa[J]. Geol Soc Amer Bull,1962,73 (9):1025-1046.
    [199]Nicolau J M. Trends in relief design and construction in opencast mining reclamation[J]. Land Degradation and Development,2003,14(2):215-226.
    [200]O'Callaghan F, Mark D M. The extraction of drainage networks from digital elevation data[J].Computer Vision, Graphics and Image Processing,1984,28:323-344
    [201]Okabe, A., Sadahiro, Y. A Statistical Method for Analyzing the Spatial Relationship between the Distribution of Activity Points and the Distribution of Activity Continuously Distributed over a Region[J]. Geographical Analysis,1994,26(2):152-167.
    [202]Oudin L,Andassian V C, Perrin C,etal. Spatial proximity, physical similarity, regression and ungaged catchments:A comparison of regionalization approaehes based on 913 French catehments[J]. Water Resources Researeh,2008,44:3413
    [203]Pabst W. Naturgemaes ser Wasserbau[J]. Schw eizer Ingenieur Und Architekt,1989,37:984-989.
    [204]Palmer M A, Filoso S. Rretoraation off ecosystem services for environmental markets[J]. Science, 2009(325):575-576.
    [205]Quinn P K, Beven K J, Planchon O. The prediction of hillslope flow paths for distributed hydrological modeling using digital terrain models[J].Hydroll Processl,1991,5 (1):59-791
    [206]Rheinbraun Aktiengesellschaft. Landwirtschaft nach dem Tagebau[M]. Koeln:Selbstverlag. 1998,3-31.
    [207]Riley SJ. Geomorphic estimates of the stability of a uranium mill tailings containment cover [J]. Land Degradation and Rehabilitation,1995,6:1-16.
    [208]Rosgen D L. Applied river morphology[M]. Wildland Hydrology,1996,50-89.
    [209]Sadahiro, Y, Masui, M. Analysis of qualitative similarity between surfaces[J]. Geographical Analysis,2004,36 (3):217-233.
    [210]Sanz MA, Martin-Duque JF, Martin C, etal. Silica sand slope gullying and mining in Central Spain:erosion processes and geomorphic reclamation of contour mining[C]. In Geo-Environment and Landscape Evolution III, Mander U, Brebbia CA, Martin Duque JF (eds). WIT Press:Southampton,2008:3-14.
    [211]Sawatsky L, Beckstead G Geomorphic approach for design of sustainable drainage systems for mineland reclamation[J]. International Journal of Mining, Reclamation and Environment,1996, 10(3):127-129
    [212]Sawatsky LF, Beckstead G, Long D. Integrated mine water management planning for environmental protection and mine profitability[J]. International Journal of Surface Mining Reclamation and Environment,1998.12(1):37-39.
    [213]Sawatsky LF, Cooper DL, McRoberts,E, etc. Strategies for reclamation of tailings impoundments[J]. International Journal of Mining, Reclamation and Environment,1996.10(3): 131-134.
    [214]Schlueter U. Ueberlegungen zum naturnahen Ausbau von Wasseerlaeufen[J]. Landschaft Und Stadt,1971,9(2):72-83.
    [215]Schor H J, Gray D H. Landforming:an Environmental Approach to Hillside Development, Mine Reclamation and Watershed Restoration[M]. John Wiley and Sons, Inc. Hoboken,2007:120-230.
    [216]Schumm S A, Khan H R. Experiment study on channel patterns[J]. Amer Bull,1972,83(6): 1755-1770.
    [217]Schumm S A, Rea DK. Sediment yield from disturbed earth systems[J]. Geology,1995, 23:391-394.
    [218]Schumm S A. The fluvial system[M]. New York:Wiley,1977.
    [219]Schumm S A. The role of creep and rain wash on the retreat of badland slopes[J]. Amer Jour Sci, 1956,254 (2):693-706.
    [220]Seifert A. Naturnaeherer Wasserbau[J]. Deutsche Wasserw irtschaft,1983,33(12):361-366
    [221]Shary P, Sharaya L,Mitusov A V. Fundamental quantitative methods of land surface analysis [J]. Geoderma,2002,107:1-32
    [222]Shreve,R.L. Infinite to Pologieally randome hannel networks[J]. Joumal of Geology,1967, (75):178-186.
    [223]Siegfried Lange. Der Betriebsplan-Instrumentarium fuer die Wiedernutzbarmachung. Wolfram Plug. Braunkohletagebau und Rekultivierung[M]. Berlin:Springer.1998.68-77.
    [224]Srinivasan R, Arnold J G Integration of a basin scale water quality model with GIS[J]. Water Resources Bulletin,1994,30(3):453-462
    [225]Strahler A N. Hypsometric analysis of erosional topography [J]. Geol. Soc. Am. Bull.1952, 63:1117-1142.
    [226]Strahler A N. Quantitative geomorphology of drainage basins and channel networks[J].1964,4: 39-76.
    [227]Strahler A N. Statistical analysis in geomorphic research[J]. The Journal of Geology,1954,62(1): 1-25.
    [228]Tang G. A research on the accuracy of DEM[M]. Beijing-New York:Science Press,2000
    [229]Tomain J P. Surface mining control and reclamation Act(1977). http://www.encyclopedia. com/ doc/1 G2- 3407400278. html.
    [230]Toy T J, Black J P. Topographic reconstruction:The theory and practice[C]//Barnishel R, Darmody R, Daniels W, et al. Reclamation of Drastically Disturbed Lands. Madison:American Society of Agronomy,2000:41-75.
    [231]Toy T J, Chuse W. Topographic reconstruction:A geomorphic approach[J]. Ecological Engineering,2005,24(10):29-35.
    [232]Toy T J, Black J P. Topographic reconstruction:the theory and practice. In Reclamation of Drastically Disturbed Lands[M]. American Society of Agronomy:Madison; 2000,41-75.
    [233]Toy T J, Foster G R. Guidelines for the Use of the Revised Universal Soil Loss Equation (RUSLE), version 1.06, on Mined Lands, Construction Sites, and Reclaimed Lands[M]. Office of Surface Mining, Reclamation and Enforcement:Denver,1998.
    [234]Toy T J, Griffith J J. Changing surface-mining reclamation practices in Minas Gerais, Brazil[J]. Inte rnational Journal of Surface Mining, Reclamation and Environment,2001,15(1):33-51.
    [235]Toy T J, Hadley R F. Geomorphology of Disturbed Lands[M]. Academic Press:London,1987.
    [236]Turcotte R, Fortin J P, Rousseau A N, et al. Determination of the drainage structure of a watershed using a digital elevation model and a digital river and lake network[J]. Journal of Hydrology,2001,240(3-4):225-242
    [237]Whitehouse. AE.OSM-More Scientific and less Political[C]. Proceedings of First Midestern Region Reclamation Conference, Carbondale:1990.
    [238]Wolman, M. a. (1957). River flood plains-some observations on their formation. U.S. Geological Survey Professional Paper,282-C,88-89.
    [239]Zhang Y Q,Wegehenkel M. Inte ation of MODIS data into a simple model for the spatial distributed simulation of soil water content and evapotranspiration[J].Remote Sensing of Environment,2006,104:393-408.
    [240]Zhou,Qiming, Liu, Xuejun. Analysis of errors of derived slope and aspect related to DEM data properties[J]. Computers & Geosciences,2004,30(4):369-378

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700