用户名: 密码: 验证码:
不同开采条件下煤岩损伤演化与煤层瓦斯渗透机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤矿开采历程中,长期以来将煤层瓦斯视作煤矿井下安全生产第一灾害,提高煤层渗透率,从而增强煤层瓦斯抽采效果,减少安全生产隐患,并抽采出来作为清洁能源加以利用,因此,煤岩损伤演化及其渗透机理一直是我国煤矿安全研究领域的重点和难点。为增强对煤岩损伤演化及渗透性的认识,本文以重庆松藻煤电有限责任公司松藻煤矿K1煤层、K2煤层和山西晋城无烟煤业集团有限责任公司赵庄矿3#煤层的煤为研究对象,从煤岩三轴应力状态、周期性采掘扰动及煤层降压瓦斯抽采等条件出发,采用实验室测试和理论研究结合的方法,系统地开展了煤岩孔裂隙特征及其吸附解吸特性、三轴应力状态下煤岩损伤演化与渗透机理、周期性采掘扰动下煤岩损伤演化与渗透机理、煤层降压瓦斯抽采过程中煤岩损伤演化与渗透机理、多场耦合渗透率模型及渗透率敏感性分析等方面的研究,并结合岩石力学、渗流力学及损伤力学从理论层面上进行了一系列有益的探讨。通过本文研究,在以下方面取得了一些进展:
     1)分析了煤岩原生孔裂隙结构特征,并利用HCA型高压容量法吸附装置对其吸附瓦斯特性进行了试验研究,得到了不同温度下的等温吸附曲线及吸附常数a、b值随温度的变化规律。
     2)开展了三轴应力状态下不同温度、不同粒径、不同瓦斯压力条件下(温度)的力学特性及渗流特性试验研究,并在不同开采方式下的加卸载试验中进行了三种不同卸载速率条件下的试验研究,分别探讨了煤岩的变形特性、渗透特性等损伤演化规律及其煤岩变形与渗透率关系。
     3)利用统计损伤的概念和方法,建立了考虑三轴应力状态及温度的煤岩统计损伤本构模型,并通过试验所测得数据对其实用性及合理性进行了验证,结果表明,考虑温度的煤岩统计损伤本构模型的理论曲线能够较好地反映实测煤岩损伤演化趋势,其统计损伤本构模型理论计算数据能够较好与实验测定曲线吻合。
     4)通过不同温度、不同粒径和不同稳定时间条件下的煤岩周期性荷载试验研究了周期性采掘扰动下煤岩损伤演化与渗透机理,系统地探讨了煤岩加、卸载阶段的主应力差、渗透率与轴向应变关系,并分析了3种条件下的单次循环变形及渗透特性,变形、渗透率随时间和循环次数关系等变化规律;探讨了不同稳定时间条件下煤岩渗透率变化滞后于体积应变。
     5)通过不同温度条件下周期性荷载试验,探讨了煤变形的能量演化机制,从能量角度出发,突出了煤在不同温度条件下循环荷载作用过程中的能量转化关系及应变能转化速率的研究,分析了吸收能、弹性应变能、耗散能随循环次数及温度的变化规律;基于能量耗散分析建立的煤岩损伤演化方程进行了验证,测定了相关参数指标,较好地描述煤岩在压缩时的损伤演化过程,探讨了能量耗散与损伤的关系。
     6)通过不同应力、不同温度条件下(CH4、He)的气体压力降低渗流试验,分析了煤层降压瓦斯抽采过程中煤岩变形特性和渗透特性,并探讨了不同应力条件下煤岩的吸附膨胀、解吸基质收缩变形和有效应力对渗透率影响、不同温度下煤岩应变随气体压力和温度的变化趋势、煤岩渗透率随气体压力下降呈先减小后增大的趋势、煤岩渗透率随温度的升高呈现先减小后增大的趋势以及渗透率和体积应变关系,研究了煤岩割理压缩系数的可变性。
     7)基于Jishan Liu模型、Shi-Durucan模型以及煤岩多孔介质均质、各向同性热弹性的有效应力与应变关系,在考虑应力、温度和瓦斯的吸附解吸等因素以及改进其算法和条件的基础上,建立了多场耦合渗透率模型,通过试验数据验证和及其与P&M模型和S&D模型的对比分析,证明所构建的渗透率模型能够较好地反映实测渗透率的变化趋势;通过定义气体压力敏感性系数和温度敏感性系数,推导了基于敏感性系数的煤岩渗透率与气体压力、温度的函数关系式开展了不同气体压力和不同温度条件下煤层渗透性的敏感性分析。
During the safety production of coal mining history, the gas has long been regardedas first one of all disasters. Improving permeability of coal seam is very important toenhance the effect of coal seam gas extraction and to reduce safety risks as well as toextract the gas as a clean energy. Therefore, the damage evolution and the penetrationmechanism of coal and rock have been the focus and difficulty of coal mine safetyresearch in China. In order to know more about the damage evolution and permeabilityof coal, using coal from Songzao K1, K2seam of Chong qing Songzao LLC and ShanxiJincheng Anthracite Coal Industry Group Co., Ltd. affiliated Zhaozhuang mine3#coalseam as the reseach objects to conduct experiments. Based on coal and rock triaxialstress state, cyclical mining disturbance, and gas extraction from coal seam step-downconditions, the coal and rock pore fracture characteristics and its adsorption desorptioncharacteristics, damage evolution and penetration mechanism under triaxial stress state,the periodic mining disturbing and gas step-down extraction process weresystematically studied, multi-field coupling permeability model and the permeabilitysensitivity was also systematically analysed by conbining the laboratory test andtheoretical research. And a series of useful disscussion was made from the theoreticallevel by combining with rock mechanics, seepage mechanics and damage mechanics.Through the research, some progresses were made in the following aspects:
     1) The native bore and fractures of coal were analysized. By using HCA-pressurevolumetric method, the gas adsorption characteristics of coal at different temperaturesand the variation law of adsorption constants a, b with temperature were experimentalstudied.
     2) Mechanics and seepage characteristics tests were carried out at differenttemperatures, particle sizes, gas pressures (temperature) under triaxial stress state and atthree different unloading rates under loading-unloading stress state in different miningmethods. The deformation characteristics, permeability during the evolution of damageand the relationship between deformation and permeability of coal were discussedrespectively.
     3) Using the concept and method of damage statistics, a statistical damageconstitutive model considering triaxial stress state and temperature was established itspracticality and rationality were verified by test data. The results show that the theoretical curve considering the temperature of coal and rock statistical damageconstitutive model can better reflect the actual trend of coal and rock damage evolution.The theoretical calculations data of the statistical damage constitutive model can bebetter fitted with experimental measurement data.
     4) The coal and rock damage evolution and penetration mechanism under cyclicalmining disturbance were studied by experiments at different temperatures, particle sizes,stabilization time. The relationship between main stress, permeability and axial strainduring load-unload stage were systematically discussed. The deformation andpermeability characteristics and their relationship with time under three conditions in asingle-cycle were anlyzed. Permeability changes lags volumetric strain changes atdifferent stability time.
     5) Through the periodic load tests under different temperature conditions, energyevolution mechanism of coal deformation were discussed.From the perspective ofenergy, study on energy conversion relationship and strain energy conversion rate atdifferent temperature during the periodic load were highlighted. The changing law ofabsorbed energy, elastic strain energy and dissipation energy with cycles andtemperatures were analyzed. The damage evolution equation of coal and rock based onthe analysis of energy dissipation was verified, and the related parameters were tested.And this equation describes the damage evolution process of coal and rock duringcompression. The relationship between energy dissipation and damage was discussed.
     6) The deformation and seepage features during the reducing of gas pressure wereanalyzed by gas pressure reducing seepage tests at different stresses and temperatures(CH4, He). Influence from the adsorption expansion and desorption matrix shrinkagedeformation of coal and rock, effective stress on permeability under different stressstates was discussed. Trend of coal and rock strain with the gas pressure droping andtemperature under different temperatures was analyzed. Coal and rock permeabilitydecreases first and then increases with the gas pressure droping, and also does with thetemperature increasing. The relationship between volumetric strain and permeabilitywas also analysed. Variability of coal and rock cleat compression coefficient wasstudied.
     7) Based on the permeability model of Jishan Liu and Shi-Durucan as well as therelationship between the effective stress and the strain of homogeneous porous mediuand isotropic thermoelastic, considering stress, temperature, adsorption and desorptionof gas and improving its algorithm and conditions, multi-field coupling permeability model was established. The new permeability model is proved to reflect the changingtrend of the measured permeability well by verifying the test data and making a contrastwith P&M and S&D models. By defining the gas pressure sensitivity coefficient andtemperature sensitivity coefficient, the function relation between the permeability andgas pressure, temperature based on the sensitivity coefficient was deduced. Andsensitivity analysis of permeability under different gas pressures and temperatures werestudied.
引文
[1] Barenblatt, I.P., Zheltov, Kochina, N. Basic concepts in the theory of seepage of homogeneousliquids in fissured rocks [J]. Prikl. Mat. Mekh.1960,24(5):852-864.
    [2]张占涛,王黎,张睿等.煤的孔隙结构与反应性关系的研究进展[J].煤炭转化,2005,28(4):62-85.
    [3]吴俊.中国煤成烃基本理论与实践[M].北京:煤炭工业出版社,1994.
    [4] Taske K. An investigation into the pore size distribution of coal using mereury porosimetryand the effect that stress has on this distribution[D]. Queensland:The University ofQueensland,2000.
    [5]张慧.煤孔隙的成因类型及其研究[J].煤炭学报,2001,26(1):41-45.
    [6]张素新,肖红艳.煤储层中微孔隙和微裂隙的扫描电镜研究[J].电子显微学报,2000,19(4):531-532.
    [7]王欣.煤微孔隙结构特征及其对吸附解吸性能影响的实验研究[D].中国矿业大学(北京),2011.
    [8] Neimark,A.V. Determination of surface fractal dimension from the results of an adsorptionexperiment[J]. Russian Journal of Physical Chemistry.1990,64:1398-1403.
    [9] Song, H., Min, L., Jun, X., et al. Fractal characteristic of three Chinese coals[J]. Fuel.2004,83(10):1307-1313.
    [10] Yao, Y., Liu, D., Tang, D., et al. Fractal characterization of adsorption-pores of coals fromNorth China: An investigation on CH4adsorption capacity of coals[J]. International Journalof Coal Geology,2008,73(1):27-42.
    [11]秦跃平,傅贵.煤孔隙分形特性及其吸水性能的研究[J].煤炭学报.2000,25(1):55-59.
    [12]傅雪海,秦勇,薛秀谦,等.煤储层孔、裂隙系统分形研究[J].中国矿业大学学报(自然科学版),2001,30(3):225-228
    [13]傅雪海,秦勇,张万红,等.基于煤层气运移的煤孔隙分形分类及自然分类研究[J].科学通报,2005,S1:51-55.
    [14]刘俊亮,田长安,曾燕伟,等.分形多孔介质孔隙微结构参数与渗透率的分维关系[J].水科学进展.2006,17(6):812-817.
    [15]马晓丹,同登科,马华伟.变形双重介质分形油藏非达西流动分析[J].计算物理,2007,24(2):197-202.
    [16]孔祥言,李道伦,卢德唐.分形渗流基本公式及分形油藏样板曲线[J].西安石油大学学报(自然科学版),2007,22(2):1-5.
    [17] Warren, J. E., Root, P. J.. The behavior of naturally fractured reservoirs[J]. Society ofPetroleum Engineering,1963,3:245-255.
    [18] Kazemi, H., Seth, M. S., Thomas, G.W.. The interpretation of interference tests in naturallyfractured reservoirs with uniform fracture distribution[J]. SPE Journal,1969,9(4):463-472.
    [19] De Swann, A. Analytical solutions for determining naturally fractured reservoir properties bywell testing [J]. Soc. Petrol. Eng. J.1977,16:117-122.
    [20] Collins, R. E.. New theory for gas adsorption and transport in coal[J]. In: ProceedingS of the1991Coalbed Methane Symposium, Tuscaloosa,1991:25-32.
    [21] Moffat, D.H., Weale, K. E.. Sorption by coal of methane at high pressures[J]. Fuel,1955,34:449-462.
    [22]张群,杨锡禄.平衡水条件下煤对甲烷的吸附特性研究[J].煤炭学报,1999,24(6):566-57.
    [23] Fowler, Gayer R. A.. The association between tectonic deformation, inorganic compositionand coal rank in the bitutninous coals from the South Wales coalfield, United Kingdom[J].International Journal of Coal Geology,1999.42:1-31.
    [24]隆清明,赵旭生,孙东玲,等.吸附作用对煤的渗透率影响规律实验研究[J].煤炭学报,2008,33(9):1030-1034.
    [25] Bratek, K, Bratek, W, Gerus-Piaseckal, et al. Properties and structure of different rankanthracites[J]. Fuel,2002,80:97-108.
    [26]刘常洪.煤的孔隙结构及其对甲烷的吸附特征[D].淮南:淮南矿业学院,1991.
    [27] Clarkson, C, R., Bustin, R. M.. Binary gas adsorption-desorption isotherms: effect of moistureand coal composition upon dioxide selectivity over methane[J]. International Journal of CoalGeology,2000,42:241-271.
    [28]刘建军.非等温情况下煤层瓦斯流动规律的研究[D].阜新:辽宁工程技术大学,1998.
    [29]鲜学福,辜敏.有关间接法预测煤层气含量的讨论[J].中国工程科学,2006,8(8):15-22.
    [30] Ettinger, I.L.. Systematic Handbook for the Determination of the Methane Content of CoalSeams from the Seam Pressure of the Gas and the Methane Capacity of Coal[J]. NationalCoal Board, Moscow,1958, Translation No. A16O6/SHE.
    [31]马东民.煤储层的吸附特征实验综合分析[J].北京科技大学学报,2003,35(3):1-4.
    [32]马东民.煤层气井采气机理分析[J].西安科技学院学报,2003,27(4):25-28.
    [33]马东民.煤对甲烷气体吸附-解吸的可逆性实验研究煤层气井采气机理分析[J].天然气工业,2005,27(1):35-39.
    [34]马东民.煤层气解吸机理研究现状与进展,煤层气成藏理论[M].北京:科学出版社,2005.
    [35] Evans I, Pomeroy C D, et al. The compressive strength of coal[J]. Colliery Engineering,1961,(38):75.
    [36] Hobbs, P,W.. The strength and stress-strain characteristics of coal in triaxial compression[J].Journal of Geology,1964,(72):214-231.
    [37] Bieniawaski, Z. T.. The effect of specimen size on compression strength in coal[J].International Journal of Rock Mechanics and Mining Sciences,1968,(5):325-333.
    [38] Atkinson, R. H., Ko HonYim. Strength characteristics of US coal[A]. In:Proc.18th.Symp.Rock Mech., Colorado School of Mines Press Golden,1977,(2B):3-1.
    [39] Ettinger, I. L., Lamba, E. G.. Gas medium in coal breaking process[J]. Fuel,1957,36:298-302.
    [40] Tankard, H.G.. The effect of sorbed carbon dioxide upon the strength of coals[A].M.Sci.Thesis, The University of Sydney, Australia,1957.
    [41] White J M. Mode of deformation of Rosebud coal, Colstrip, Montana: room temperature,102.0MPa[J]. International Journal of Rock Mechanics and Mining Sciences andGeomechanics Abstracts,1980,17:129-130.
    [42]氏平增之.瓦斯突出的机理与防治[R].日本北海道大学氏平增之来华讲学材料,1986.
    [43]王佑安.在瓦斯介质中煤的强度降低及其变形的初步研究[A].抚顺煤岩所第一研究室,1964.
    [44]周世宁,林伯泉.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社,1999.
    [45]林柏泉,周世宁.含瓦斯煤体变形规律的实验研究[J].中国矿业大学学报,1986,(3):9-16.
    [46]姚宇平,周世宁.含瓦斯煤的力学性质[J].中国矿业大学学报,1988,(1):1-7.
    [47]鲜学福.煤与瓦斯突出潜在危险区的预测方法[R].煤与瓦斯突出预测资料汇编,煤炭科学研究总院重庆分院,1987.
    [48]许江,鲜学福,杜云贵,等.含瓦斯煤的力学特性的实验分析[J].重庆大学学报,1993,16(9):42-47.
    [49]尹光志.岩石力学中的非线性理论与冲击地压预测的研究[D].重庆:重庆大学,1999.
    [50]尹光志,王登科,张东明,等.两种含瓦斯煤样变形特性与抗压强度的实验分析[J].岩石力学与工程学报,2009,28(2):410-417.
    [51]章梦涛,潘一山,梁冰,等.煤岩流体力学[M].北京:科学出版社,1995.
    [52]梁冰.煤和瓦斯突出固流耦合失稳理论[M].北京:地质出版社,2000.
    [53]梁冰,章梦涛,王泳嘉.含瓦斯煤的内时本构模型[J],岩土力学,1995,(3):22-28.
    [54]梁冰,章梦涛,潘一山,等.瓦斯对煤的力学性质及力学响应影响的试验研究[J].岩土工程学报,1995,17(5):12-18.
    [55]梁冰,孙可明.低渗透煤层气开采理论及其应用[M].北京:科学出版社,2006.
    [56]张国华,梁冰.煤岩渗透率与煤与瓦斯突出关系理论探讨[J].辽宁工程技术大学学报,2002,21(4):414-417.
    [57]靳钟铭,赵阳升,贺军.含瓦斯煤层力学特性的实验研究[J].岩石力学与工程学报,1991,3(10):271-280.
    [58]赵阳升,胡耀青,赵宝虎,等.块裂介质岩体变形与气体渗流的耦合数学模型及其应用[J].煤炭学报,2003,28(1):41-45.
    [59]唐春安.岩石破裂过程中的灾变[M].北京:煤炭工业出版社,1993.
    [60]唐春安,王述红,傅宇方.岩石破裂过程数值试验[M].长春:吉林大学出版社,2002.
    [61]徐涛.煤岩破裂过程固气耦合数值试验[D].沈阳:东北大学,2004.
    [62]徐涛,唐春安,宋力,等.含瓦斯煤岩破裂过程流固耦合数值模拟[J].岩石力学与工程学报,2005,24(10):1667-1673.
    [63]李树刚,钱鸣高,石平五.煤样全应力应变过程的渗透系数-应变方程[J].煤田地质与勘探,2001,29(1):22-24.
    [64]李树刚,徐精彩.软煤样渗透特性的电液伺服试验研究[J].岩土工程学报,2001,23(1):68-70.
    [65]卢平,沈兆武,朱贵旺,等.含瓦斯煤的有效应力与力学变形破坏特性[J].中国科学技术大学学报,2001,31(6):686-693.
    [66] Grover H.J., Dehlinger P., McClure, G.M..Investigation of Fatigue Characteristics ofRock.Reported by Battelle Memorial Institute to Drilling Research. Incorporated, Nov.30,1950.
    [67]葛修润,蒋宇,卢允德,等.周期荷载作用下岩石疲劳变形特性试验研究[J].岩石力学与工程学报,2003,22(10):1581-1585.
    [68]章清叙,葛修润,黄铭,等.周期荷载作用下红砂岩三轴疲劳变形特性试验研究[J].岩石力学与工程学报,2006,25(3):473-478.
    [69]蒋宇,葛修润,任建喜.岩石疲劳破坏过程中的变形规律及声发射特性[J].岩石力学与工程学报,2004,23(11):1810-1814.
    [70]任建喜,蒋宇,葛修润.单轴压缩岩石疲劳寿命影响因素试验分析[J].岩土工程学报,2005,27(11):1282-1285.
    [71] M.N.Bagde,V.Petros.Fatigue properties of intact sandstone samples subjected to dynamicuniaxial cyclical loading [J].International Journal of Rock Mechanics and Mining Sciences,2005,42(2):237-250.
    [72]葛修润,卢应发.循环荷载作用下岩石疲劳破坏和不可逆变形问题的探讨[J].岩土工程学报,1992,14(3):56-60.
    [73]葛修润,任建喜,蒲毅彬等.岩石疲劳损伤扩展规律CT细观分析初探[J].岩土工程学报,2001,23(2):191-195.
    [74]葛修润.周期荷载作用下岩石疲劳破坏及变形发展规律研究[A].第八次全国岩石力学与工程学术大会论文集[C].2004:23-31.
    [75]葛修润.岩石疲劳破坏的变形控制律、岩土力学试验的实时X射线CT扫描和边坡坝基抗滑稳定分析的新方法[J].岩土工程学报,2008,30(1):l-20.
    [76]山下秀,杉木文男,今井忠南,等.岩石蠕变及疲劳破坏过程和破坏极限研究[J].辽宁工程技术大学学报(自然科学版),1999,18(5):452-455.
    [77] McCall, K. R., Guyer, R. A.. Equation of state and wave propagation in hysteretic nonlinearelastic material[J]. Journal of Geophysical Research,1994,99(B12):23-30.
    [78] Memory, Holcomb, D. J.. Relaxation and microfracturing in dilatant rock[J]. Journal ofGeophysical Research,1981,86(B7):6-11.
    [79] Tutuncu, A. N, Podio, A. L., Sharma M M. Nonlinear viscoelastic behavior of sedimentaryrocks, Part II: Hysteresis effects and influence of type of fluid on elastic moduli[J].Geophysics,1998,63(1):195-203.
    [80]席道瑛,陈运平,陶月赞等.岩石的非线性弹性滞后特征[J].岩石力学与工程学报,2006,25(6):1086-1093.
    [81]席道瑛,刘小燕,张程远.由宏观滞回曲线分析岩石的微细观损伤[J].岩石力学与工程学报,2003,22(2):182-187.
    [82]陈运平,王思敬,王恩志.岩石应力-应变滞后现象的定量研究[J].岩石力学与工程学报,2007,27(S2):4066-4073.
    [83]陈运平,席道瑛,薛彦伟.循环荷载下饱和岩石的滞后和衰减[J].地球物理学报,2004,47(4):672-679.
    [84]席道瑛,王少刚,刘小燕,等.岩石的非线性弹塑性响应[J].岩石力学与工程学报,2002,21(6):772-777.
    [85]陈运平,席道瑛,薛彦伟.循环荷载下饱和岩石的应力–应变动态响应[J].石油地球物理勘探,2003,38(4):409–413.
    [86]席道瑛,薛彦伟,宛新林.循环荷载下饱和砂岩的疲劳损伤[J].物探化探计算技术.2004,26(3):193-198.
    [87]席道瑛,王春雷,田象燕.滞回曲线对应力振幅和频率的响应[J].物探化探计算技术,2001,23(2):121-124.
    [88]席道瑛,刘云平,刘小燕等.疲劳载荷对岩石物理力学性质的影响[J].岩土工程学报,2001,23(3):292-295.
    [89]席道瑛,刘斌,田象燕.饱和岩石的各向异性及非线性黏弹性响应[J].地球物理学报,2002,45(1):109-118.
    [90]席道瑛,田象燕,高尔根.低频衰减特性及理论模型的发展[J].岩石力学与工程学报,2004,2(5):851-856.
    [91]刘小燕,席道瑛,张程远.低围压和疲劳载荷下砂岩的波速、模量及疲劳损伤(I):岩石的声学特性[J].岩石力学与工程学报,2004,23(13):2164-2167.
    [92]刘小燕,席道瑛,张程远.低围压和疲劳载荷下砂岩的波速、模量及疲劳损伤(II):岩石的力学特性[J].岩石力学与工程学报,2004,23(13):2168-2171.
    [93]席道瑛,王鑫,陈运平.描写岩石非线性弹性滞后和记忆的宏观模型[J].岩石力学与工程学报,2005,24(13):2212-2219.
    [94]刘云平,席道瑛,张程远等.循环应力作用下大理岩砂岩的动态响应[J].岩石力学与工程学报,2001,20(2):216-219.
    [95]席道瑛,唐杰,陶月赞等.岩石的微细缺陷对外载响应概率的实验与模拟[J].中国科学技术大学学报,2007,37(8):904-910.
    [96]席道瑛,刘小燕,张程远.应力控制疲劳载荷作用下循环硬化的应变响应[J].岩石力学与工程学报,2003,22(11):1807-1810.
    [97]许江,杨秀贵,王鸿等.周期性载荷作用下岩石滞回曲线的演化规律[J].西南交通大学学报,2005,40(6):754-758.
    [98]许江,鲜学福,王鸿等.循环加、卸载条件下岩石类材料变形特性的实验研究[J].岩石力学与工程学报,2006,25(Sl):3040-3045.
    [99]许江,大久保誠介,鲜学福.循环载荷对三城目安山岩变形特性的影响[J].重庆大学学报(自然科学版),2000,23(6):35-41.
    [100]张立强,许江,蒋长宝.不同饱和度时砂岩材料循环载荷特性曲线实验[J].矿业安全与环保,2007,34(1):20-24.
    [101]王鸿,许江,李树春等.不同水饱和度下岩石滞回曲线演化的实验研究[J].矿业研究与开发,2007,27(3):18-21.
    [102]许江,尹光志,王鸿等.不同应力水平时砂岩滞回曲线演化的实验研究[J].重庆建筑大学学报,2006,25(2):40-42.
    [103]许江,冯涛,鲜学福等.低应力水平下循环载荷对岩石杨氏模量影响的研究[J].湘潭矿业学院学报,2001,16(1):14-16.
    [104]张立强,许江,蒋长宝等.砂岩在循环载荷下不同饱和度时的变形特征[J].中国矿业,2006,15(10):109-112.
    [105]许江,王维忠,杨秀贵等.细粒砂岩在循环加、卸载条件下变形实验[J].重庆大学学报(自然科学版),2004,27(12):60-62.
    [106]王鸿,许江,杨秀贵.循环载荷条件下岩石塑性滞回环的演化规律[J].重庆大学学报(自然科学版),2006,29(4):80-82.
    [107]许江,鲜学福,王鸿.循环载荷作用下周期充水岩石变形规律的研究[J].地下空间与工程学报,2006,2(4):556-560.
    [108]周尚志,党发宁,陈厚群,等.岩石类材料疲劳破坏裂纹扩展分析的数值方法[J].岩土力学,2008,29(3):769-774
    [109]樊秀峰,简文彬.砂岩疲劳特性的超声波速法试验研究[J].岩石力学与工程学报,2008,27(3):557-563
    [110]王德玲,沈疆海,葛修润.岩石疲劳扰动模型的研究[J].水利与建筑工程学报,2006,4(2):32-33,58.
    [111] ZHANG Ping,XU Jian-guang,LI Ning. Fatigue properties analysis of cracked rock based onfracture evolution process[J]. Journal of Central South University of Technology,2008,15(1):95-99.
    [112] W. C. Kowalski. Mechanical fatigue of rocks and atmospheric pressure changes[J]. Bulletinof Engineering Geology and the Environment,1993,48(1):77-82.
    [113] T. Wichtmann, A. Niemunis, Th. Triantafyllidis. Strain accumulation in sand due to cyclicloading: Drained cyclic tests with triaxial extension[J]. Soil Dynamics and EarthquakeEngineering,2007,27(1):42-48.
    [114] T. Wichtmann, A. Niemunis, Th. Triantafyllidis. On the influence of the polarization and theshape of the strain loop on strain accumulation in sand under high-cyclic loading[J]. SoilDynamics and Earthquake Engineering,2007,27(1):14-28.
    [115]王桂萱,桑野二郎,竹村次朗.砂质混合粘土的孔隙水压力和残余变形特性研究[J].岩土力学,2005,26(3):62-68.
    [116]邵龙潭,洪帅,郑卫锋.循环孔隙水压力作用下饱和砂土变形的试验研究[J].岩土工程学报,2006,28(4):428-431.
    [117]杨永杰,宋扬,楚俊.循环荷载作用下煤岩强度及变形特征试验研究[J].岩石力学与工程学报,2007,26(1):201-205.
    [118]李晓泉,尹光志,蔡波.循环载荷下突出煤样的变形和渗透特性试验研究[J].岩石力学与工程学报,2007,29(增刊):3498-3505.
    [119]吴立新.煤岩强度机制及矿压红外探测基础试验研究[博士学位论文][D].北京.中国矿业大学,1997.
    [120] Bustin, R. M., Cui, X., Chikatamarla, L.. Impacts of Volumetric Strain on CO2Sequestrationin Coals and Enhanced CH4Recovery[J]. AAPG Bulletin,2008,92(1):15-29.
    [121] Harpalani, S., and Chen, G.. Gas slippage and matrix shrinkage effects on coalpermeability[C]//Proeeedings of the1993International Coal bed Methane Symposium.Tusealoosa, AL, USA: University of Alabama,1993:285-294.
    [122] Chikatamarla, L., Xiaojun, C., Bustin, R. M.. Implications of Volumetric Swelling/Shrinkageof Coal in Sequestration of Acid Gases[A]. In:2003International Coalbed MethaneSymposium[C]. Tuscaloosa, Alabama,2004.
    [123] Clarkson, C. R., Pan, Z., Palmer, I., et al. Predicting Sorption-Induced Strain andPermeability Increase with Depletion for CBM Reservoirs[A]. In: SPE Annual TechnicalConference and Exhibition[C]. Denver, Colorado.2008.
    [124] Cook, N. G. W.. Natural Joints in Rock: Mechanical, Hydraulic and Seismic Behavior andProperties under Normal Stress[J]. International Journal of Rock Mechanics Mining Scienceand Geomechanics Abstracts.1992,29(3):198-223.
    [125] Darcy, H.. Les Fontaines Publique de la Ville de Dijon Dalmante[M]. Paris: Dalmont,1856.
    [126] Engelder, T., and Scholz, C. H.(1987). Fluid Flow along Very Smooth Joints at EffectivePressures Up To200Megapascals[J]. In Mechanical behavior of crustal rocks,1981(24):147-152.
    [127] Fatt, I., Davis, D. H.. Reduction in Permeability with Overburden Pressure. AIME PetroleumTransactions,1952,195:329.
    [128] Jerrald Saulsberry, eds. A Guide to Coalbed Methane Reservoir Engineering[M]. Chieago:Gas Researeh Institute,1996.
    [129] Geertsma, J.. Problems of Rock Mechanics in Petroleum Production Engineering[A]. InProceedings of International Society of Rock Mechanics[C]. Lisbon,1966:585-594.
    [130] Gilman, A., Beckie, R.. Flow of Coalbed Methane to a Gallery[J]. Transport in Porous Media,2000,41(1):1-16.
    [131] Gray, I.. The Mechanism of and Energy Release Associated with Outbursts[A]. InProceedings, Symposium on the Occurrence, Prediction, and Control of Outbursts in CoalMines[C], Southern Queensland Branch, Brisbane: Australasian Institute of Mining andMetallurgy,1980:111-125.
    [132] Jones Jr., Frank O.. A Laboratory Study of the Effects of Confining Pressure on FractureFlow and Storage Capacity in Carbonate Rocks[J]. Journal of Petroleum Technology,1975,27(1):21-27.
    [133] Shi, J. Q. and Durucan, S.. Drawdown Induced Changes in Permeability of Coalbeds: A NewInterpretation of the Reservoir Response to Primary Recovery[J]. Transport in Porous Media,2004,56(1):1-16.
    [134] Siriwardane, H. J., Smith, D. H., Gorucu, F., et al. Influence of Shrinkage and Swelling, ofCoal on Production of Coalbed Methane and Sequestration of Carbon Dioxide[A]. In:2006SPE Annual Technical Conference and Exhibition, San Antonio,2006.
    [135] Walsh, J. B.. The Effect of Pore Pressure and Confining Pressure on Fracture Permeability[J].International Journal of Rock Mechanics Mining Science and Geomechanics Abstracts,1981,18(5):429-435.
    [136] Somerton, W. H., Soylemezoglu, I. M., Dudley, R. C.. Effect of Stress on Permeability ofCoal[J]. International Journal of Rock Mechanics Mining Science and GeomechanicsAbstracts,1975,12(5-6):129-145.
    [137] Harpalani, S., McPherson, M. J.. Effect of Stress on Permeability of Coal[A]. In: the26th USSymposium on Rock Mechanics[A], Rapid City, South Dakota: South Dakota School ofMines and Technology,1985.
    [138] Harpalani, S.. Gas Flow through Stressed Coal[D]. PhD dissertation, University of California,Berkeley,1985.
    [139] Durucan, S., Edwards, J. S.. The Effect of Stress and Fracturing on Permeability of Coal[J].Mining Science and Technology,1986,3(3):205-216.
    [140] Gray, I.. Reservoir Engineering in Coal Seams: Part1. The Physical Process of Gas Storageand Movement in Coal Seams[J]. SPE Reservoir Engineering,1987,2(1):28-34.
    [141] Seidle, J. P., Jeansonne, M. W., Erickson, D. J.. Application of Matchstick Geometry to StressDependent Permeability in Coals[A]. In: the SPE Rocky Mountain Regional Meeting[C].Casper, Wyoming,1992.
    [142] Harpalani, S., and Schraufnagel R. A.. Influence of Matrix Shrinkage and Compressibility onGas Production from Coalbed Methane Reservoirs[A]. In: the65th Annual TechnicalConference and Exhibition of the Society of Petroleum Engineers[C]. New Orleans,Louisiana,1990.
    [143] Harpalani, S., Schraufnagel, R. A.. Shrinkage of Coal Matrix with Release of Gas and itsImpact on Permeability of Coal[J]. Fuel,1990,69(5):551-556.
    [144] Harpalani, S., Chen, G.. Influence of Gas Production Induced Volumetric Strain onPermeability of Coal[J]. International Journal of Geotechnical and Geological Engineering,1997,15(4):303-325.
    [145] Robertson,E.P., R.L.Christiansen. Optically-based Strain Measurement of Coal Swelling andShrinkage[A]. In:2004International Coalbed Mcthane Symposium[A]. Tusealoosa, Alabama,2004.
    [146] Sereshki, F., Bruggemann, D., Aziz, N. I., et al. Change in Effective Stress Associated withCoal Shrinkage and Gas Sorption[J]. Journal of the Mine Ventilation Society of South Africa,2005,58(1):28-31.
    [147] Singh, K.. Establishing permeability trends for Illinois coals[MS Thesis][D]. Carbondale:Southern Illinois University,2008.
    [148] Briggs, H.. Shrinkage of Coal and its Relation to Discharge of Gas from Coal Seams[J].Colliery Engineering,1933,10(113):223-225.
    [149] Seidle, J.R., Huitt, L.G.,1995. Experimental measurement of coal matrix shrinkage due togas desorption and implications for cleat permeability increases[A]. International Meeting onPetroleum Engineering. Society of Petroleum Engineers[C]. Beijing,1995:575-582.
    [150] Pan, Z., Connell, L. W.. A Theoretical Model for Gas Adsorption-Induced Coal Swelling[J].International Journal of Coal Geology,2007,69(4):243-252.
    [151] Wang G.X., Wang Z.T., Rudolph V., et al. An analytical model of the mechanical properties ofbulk coal under confined stress[J]. Fuel,2007,(86):1873-1884.
    [152] Clarkson, C. R., McGovern, J. M.. A New Tool for Unconventional Reservoir Explorationand Development Applications[A]. In:2003International Coalbed Methane Symposium[C].Tuscaloosa,2003.
    [153] Gierhart, R., Clarkson, C., Seidle, J.. Spatial Variation of San Juan Basin Fruitland CoalbedMethane Pressure Dependent Permeability: Magnitude and Functional Form[A]. In:International Petroleum Technology Conference[C], Dubai,2007:1-3.
    [154] Wang, G.X., Wei, X.R., Wang, K., et al.. Sorption-induced swelling/shrinkage andpermeability of coal under stressed adsorption/desorption conditions[J]. International Journalof Coal Geology,2010,83(1):46-54.
    [155] Levine, J. R.. Model Study of the Influence of Matrix Shrinkage on Absolute Permeability ofCoal Bed Reservoirs[A]. In: Gayer, R. and Harris, I., Coalbed Methane and Coal Geology[C].London: Geologic Society Special Publication,1996:197-212.
    [156] McKee, C. R., Bumb, A. C., Koeing, R. A.. Stress-dependent Permeability and Porosity ofCoal[A]. In:1987Coalbed Methane Symposium[C]. Tuscaloosa,1987.
    [157] Sawyer, W.K., Paul, G.W., Schraufnagel, R.A.. Development and application of a3D coalbedsimulator. International Technical Meeting Hosted Jointly by the Petroleum Society of CIMand the Society of Petroleum Engineers[J]. CIM/SPE,1990,90-1119:1-9.
    [158] Palmer, I., and Mansoori, J.. How Permeability Depends on Stress and Pore Pressure inCoalbeds: A New Model[A]. In: SPE71st Annual Technical Conference[C]. Denver,Colorado,1996.
    [159] Palmer, I., Mansoori, J.. How Permeability Depends on Stress and Pore Pressure in Coalbeds:A New Model[J]. SPE Reservoir Engineering,1998,1(6):539-544.
    [160] Palmer, I., Mavor, M., Gunter, B.. Permeability Changes in Coal Seams during Productionand Injection[A]. In:2007International Coalbed Methane Symposium[C]. Tuscaloosa,2007.
    [161] Palmer, I.. Permeability Changes in Coal: Analytical Modeling[J]. International Journal ofCoal Geology,2009,77(1-2):119-126.
    [162] Shi,J.Q., Durucan,S.. Changes in Permeability of Coalbeds during Primary Recovery-Part l:Model Formulation and Analysis[A]. In: the2003International Coalbed MethaneSymposiurn[C].Tuscaloosa,2003.
    [163] Shi,J.Q., Durucan,S.. Changes in Permeability of Coalbeds during Primary Recovery-Part2:Model Formulation and Analysis[A]. In: the2003International Coalbed MethaneSymposiurn[C].Tuscaloosa,2003.
    [164] Shi, J. Q., Durucan, S.. A Model for Changes in Coalbed Permeability during Primary andEnhanced Methane Recovery[J]. SPE Reservoir Evaluation and Engineering,2005,8(4):291-299.
    [165] Liu, S., Harpalani, S., Pillalamarry, M.. Laboratory measurement and modeling of coalpermeability with continued methane production: part2-modeling results[J]. Fuel,2012,94:117-124.
    [166] Cui, X., Bustin, R. M.. Volumetric Strain Associated with Methane Desorption and its Impacton Coalbed Gas Production from Deep Coal Seams[J]. AAPG Bulletin,2005,89(9):1181-1202.
    [167] Cui, X., Bustin, R.M., Chikatamarla, L.. Adsorption-induced coal swelling and stress,implications for methane production and acid gas sequestration into coal seams[J]. Journal ofGeophysical Research-Solid Earth,2007,112, B10202:1-16.
    [168] Robertson, E. P.. Measurement and Modeling of Sorption-Induced Strain and PermeabilityChanges in Coal[D]. PhD dissertation, Colorado School of Mines,2005.
    [169] Robertson, E. P. and Christiansen, R. L.. A Permeability Model for Coal and Other Fractured,Sorptive-Elastic Media[A]. In:2006SPE Eastern Regional Meeting[C], Ohio.2006,1-12.
    [170] Gu, F., Chalaturnyk, R. J..Numerical Simulation of stress and Strain due to GasSorption/Desorption and their Effects on In Situ Permeability of Coalbeds[A]. In: PetroleumSociety’s Canadian International Petroleum Conference[C]. Calgary,2005.
    [171] Gu, F., Chalaturnyk, R. J.. Sensitivity Study of Coalbed Methane Production with Reservoirand Geomechanic Coupling Simulation[J]. Journal of Canadian Petroleum Technology,2005,44(10):23-32.
    [172] Gu, F., Chalaturnyk, R. J.. Analysis of Coalbed Methane Production by Reservoir andGeomechanical Coupling Simulation[J]. Journal of Canadian Petroleum Technology,2005,44(10):33-42.
    [173] Gu, F., Chalaturnyk, R. J.. Numerical Simulation of Stress and Strain due to GasSorption/Desorption and Their Effects on In Situ Permeability of Coalbeds[J]. Journal ofCanadian Petroleum Technology,2006,45(10):52-62.
    [174] Liu, H.-H., Rutqvist, J.. A new coal-permeability model, internal swelling stress andfracture-matrix interaction[J]. Transport in Porous Media,2010,82(1):157-171.
    [175] Liu, J., Chen, Z., Elsworth, D., et al. Linking gas-sorption induced changes in coalpermeability to directional strains through a modulus reduction ratio[J]. International Journalof Coal Geology,2010,83(1):21-30.
    [176] Chen, Z., Liu, J., Elsworth, D., et al. Impact of CO2injection and differential deformation onCO2injectivity under in-situ stress conditions[J]. International Journal of Coal Geology,2010,81(2):97-108.
    [177] Liu, J., Chen, Z., Elsworth, D., et al. Evaluation of stress-controlled coal swellingprocesses[J]. International Journal of Coal Geology,2010,83(4):446-455.
    [178] Liu, J., Chen, Z., Qu, H.. Multiphysics of coal-gas interactions: the scientific foundation forCBM extraction[A]. SPE Asia Pacific Oil and Gas Conference and Exhibition, Brisbane,2010:1-16.
    [179] Liu, J., Wang, J.G., Chen, Z., et al. Impact of transition from local swelling to macro swellingon the evolution of coal permeability[J]. International Journal of Coal Geology,2011,88(1):31-40.
    [180] Liu, J., Chen, Z., Elsworth, D., et al. Interactions of multiple processes during CBMextraction: a critical review[J]. International Journal of Coal Geology,2011,87:175-189.
    [181] Liu, J., Chen, Z., Elsworth, D., et al. Evolution of coal permeability from stress-controlled todisplacement-controlled swelling conditions[J]. Fuel,2011,90(10):2987-2997.
    [182] Qu, H., Liu, J., Chen, Z., et al. Complex evolution of coal permeability during CO2injectionunder variable temperatures[J]. International Journal of Greenhouse Gas Control,2012,9:281-293.
    [183] Chen, Z., Liu, J., Elsworth, D., et al. Roles of coal heterogeneity on evolution of coalpermeability under unconstrained boundary conditions[J]. Journal of Natural Gas Scienceand Engineering,2013,15:38-52.
    [184] Wang, J.G., Liu, J., Kabir, A. Combined effects of directional compaction, non-Darcy flowand anisotropic swelling on coal seam gas extraction[J]. International Journal of CoalGeology,2013,109-110:1-14.
    [185] Connell, L. D.. Coupled Flow and Geomechanical Processes during Gas Production fromCoal Seams[J]. International Journal of Coal Geology,2009,79(1-2):18-28.
    [186] Connell, L.D., Lu, M., Pan, Z.. An analytical coal permeability model for tri-axial strain andstress conditions[J]. International Journal of Coal Geology2010,84(2),103-114.
    [187] Ma, Q., Harpalani, S., Liu, S.. A simplified permeability model for coalbed methanereservoirs based on matchstick strain and constant volume theory[J]. International Journal ofCoal Geology,2011,85(1):43-48.
    [188] Gu, F., Chalaturnyk, R.J.. Permeability and porosity models considering anisotropy anddiscontinuity of coalbeds and application in coupled simulation[J]. Journal of PetroleumScience and Engineering,2010,74(3-4):113-131.
    [189] Wang, G.X., Massarotto, P., Rudolph, V.. An improved permeability model of coal forcoalbed methane recovery and CO2geosequestration[J]. International Journal of CoalGeology,2009,77(1-2):127-136.
    [190] Wu, Y., Liu, J., Elsworth, D., et al. Dual poroelastic response of a coal seam to CO2injection[J]. International Journal of Greenhouse Gas Control,2010,4(4):668-678.
    [191] Wu, Y., Liu, J., Elsworth, D., et al. Development of anisotropic permeability during coalbedmethane production[J]. Journal of Natural Gas Science and Engineering2010,2(4),197-210.
    [192] Wu, Y., Liu, J., Chen, Z., et al. A dual poroelastic model for CO2-enhanced coalbed methanerecovery[J]. International Journal of Coal Geology,2011,86(2-3):177-189.
    [193] Pan, Z., Connell, L.D.. Modelling of anisotropic coal swelling and its impact on permeabilitybehaviour for primary and enhanced coalbed methane recovery[J]. International Journal ofCoal Geology.2011,85(3-4):257-267.
    [194] Izadi, G., Wang, S., Elsworth, D., et al. Permeability evolution of fluid-infiltrated coalcontaining discrete fractures[J]. International Journal of Coal Geology2011,85(2),202-211.
    [195] Wang, S., Elsworth, D., Liu, J.. A mechanistic model for permeability evolution in fracturedsorbing media[J]. Journal of Geophysical Research,2012,117,1-17.
    [196]俞启香.矿井瓦斯防治技术[M].徐州:中国矿业大学出版社,1990.
    [197]于不凡,王佑安.煤矿瓦斯灾害防治及利用技术手册[M].北京:煤炭工业出版社,2005.
    [198]肖晓春,潘一山.考虑滑脱效应和温度场的煤层气渗流数值模拟[J].中国地质灾害与防治学报,2006,17(3):91-95.
    [199]肖晓春,潘一山.考虑滑脱效应的煤层气渗流数学模型及数值模拟[J].岩石力学与工程学报,2005,24(16):2966-2970.
    [200]周军平,鲜学福,姜永东,等.考虑有效应力和煤基质收缩效应的渗透率模型[J].西南石油大学学报(自然科学版),2009,31(l):4-8.
    [201]杨永国,秦勇.煤层气产能预测随机动态模型及应用研究[J].煤炭学报,2001,26(2):122-125.
    [202]张力,何学秋,李侯全.煤层气渗流方程及数值模拟[J].天然气工业,2002,22(l):23-26.
    [203]李培超,孔祥言,曾清红,等.煤层渗透率影响因素综述与分析[J].天然气工业,2002,22(5):45-49.
    [204]张健,汪志明.煤层应力对裂隙渗透率的影响[J].中国石油大学学报(自然科学版),2008,32(6):92-95.
    [205]隆清明.煤的吸附作用对瓦斯渗透特性的影响[D].重庆:煤炭科学研究总院重庆研究院,2008.
    [206]周世宁,孙辑正.煤层瓦斯流动理论及应用[J].煤炭学报,1965,2(1):24-37.
    [207]郭勇义.煤层瓦斯一维流场流动规律的完全解[J].中国矿业大学学报,1984,2(2):19-28.
    [208]孙培德.煤层瓦斯流场流动规律的研究[J].煤炭学报,1987,12(4):74-82.
    [209]余楚新,鲜学福.煤层瓦斯流动理论及渗流控制方程的研究[J].重庆大学学报(自然科学版),1989,12(5):1-10.
    [210]邓英尔,谢和平,黄润秋,等.低渗透孔隙-裂隙介质气体非线性渗流运动方程[J].四川大学学报(工程科学版),2006,38(4):1-4.
    [211]谭学术,鲜学福,张广洋,等.煤的渗透性研究[J].西安矿业学院学报,1994,(1):22-25.
    [212]张广洋,谭学术,鲜学福.煤层瓦斯运移的数学模型[J].重庆大学学报(自然科学版),1994,17(4):53-57.
    [213]姜德义,张广洋,胡耀华,等.有效应力对煤层气渗透率影响的研究[J].重庆大学学报(自然科学版),1997,20(5):22-25.
    [214]梁冰,章梦涛,王泳嘉.煤层瓦斯渗流与煤体变形的耦合数学模型及数值解法[J].岩石力学与工程学报,1996,15(2):135-142.
    [215]孙可明,梁冰,潘一山.流固耦合作用下注气开采煤层气增产规律研究[J].科学技术与工程,2006,6(7):802-806.
    [216]胡耀青,赵阳升,魏锦平.三维应力作用下煤体瓦斯渗透规律实验研究[J].西安矿业学院学报,1996,16(4):308-311.
    [217]赵阳升,胡耀青,杨栋,等.三维应力下吸附作用对煤岩体气体渗流规律影响的实验研究[J].岩石力学与工程学报,1999,18(6):651-653.
    [218]傅雪海,李大华,秦勇,等.煤基质收缩对渗透率影响的实验研究[J].中国矿业大学学报,2002,31(2):129-131.
    [219]傅雪海,秦勇,张万红.高煤级煤基质力学效应与煤储层渗透率耦合关系分析[J].高校地质学报,2003,9(3):373-377.
    [220]吴世跃,赵文.含吸附煤层气煤的有效应力分析[J].岩石力学与工程学报,2005,24(10):1674-1678.
    [221]付玉,郭肖,贾英,等.煤基质收缩对裂隙渗透率影响的新数学模型[J].天然气工业,2005,25(2):143-145.
    [222]陈金刚,秦勇,傅雪海,等.高煤级煤储层渗透率在煤层气排采中的动态变化数值模拟[J].中国矿业大学学报,2006,35(1):50-53.
    [223]唐巨鹏,潘一山.有效应力对煤层气解吸渗流的影响的试验研究[J].岩石力学与工程学报,2006,25(8):1546-1568.
    [224]李祥春,郭勇义,吴世跃,等.煤体有效应力与膨胀应力之间关系的分析[J].辽宁工程技术大学学报,2007,26(8):535-537.
    [225]张先敏,同登科.考虑基质收缩影响的煤层气流动模型及应用[J].中国科学E辑:技术科学,2008,38(5):790-796.
    [226]聂百胜,何学秋,李祥春,等.真三轴应力作用下煤体瓦斯渗流规律实验研究[A].第四届深部岩体力学与工程灾害控制学术研讨会论文集[C],2009,345-347.
    [227]李相臣,康毅力,罗平亚.应力对煤岩裂缝宽度及渗透率的影响[J].煤田地质与勘探,2009,37(1):29-32.
    [228] Guo, P., Cheng, Y., Jin, K., et al. Impact of effective stress and matrix deformation on the coalfracture permeability[J]. Transport in Porous Media,2014,103(1):99-115.
    [229]许江,彭守建,尹光志,等.含瓦斯型煤热流固耦合三轴伺服渗流装置的研制与应用[J].岩石力学与工程学报,2010,29(5):907-914.
    [230]彭守建.含瓦斯煤岩破坏失稳力学作用机理及其应用研究[博士学位论文][D].重庆:重庆大学,2011.
    [231]何满潮,谢和平,彭苏萍,等.深部开采岩体力学研究[J].岩石力学与工程学报,2005,24(16):2803-2813.
    [232]尹光志,李广治,赵洪宝,等.煤岩全应力-应变过程中瓦斯流动特性试验研究[J].岩石力学与工程学报,2010,29(1):170-175.
    [233]蒋长宝,尹光志,李晓泉,等.突出煤型煤全应力-应变全程瓦斯渗流试验研究[J].岩石力学与工程学报,2010,29(增2):3482-3487.
    [234]马占国,茅献彪,李玉寿,等.温度对煤力学特性影响的试验研究[J].矿山压力与顶板管理,2005,3:46-48.
    [235]许江,张丹丹,彭守建,等.温度对含瓦斯型煤力学性质影响的试验研究[J].岩石力学与工程学报,2011,30(增1):2730-2735.
    [236]张天军,许鸿杰,李树刚,等.温度对煤吸附性能的影响[J].煤炭学报,2009,34(6):802-805.
    [237]杨新乐,张永利.气固耦合作用下温度对煤瓦斯渗透率影响规律的试验研究[J].地质力学学报,2008,14(4):374-379.
    [238]傅雪海,秦勇,韦重韬.煤层气地质学[M].徐州:中国矿业大学出版社,2007,143-144.
    [239]孟磊.含瓦斯煤体损伤破坏特征及瓦斯运移规律研究[博士学位论文][D].北京:中国矿业大学(北京),2013.
    [240]钟蕴英,关梦缤,崔开仁,等.煤化学[M].北京:中国矿业大学出版社,1989.
    [241]杨永杰,楚俊,郇冬至,等.煤岩固液耦合应变-渗透率试验[J].煤炭学报,2008,33(7):760-764.
    [242]冯子军,万志军,赵阳升,等.高温三轴应力下无烟煤、气煤煤体渗透特性的试验研究[J].岩石力学与工程学报,2010,29(4):689-696.
    [243]李志强,鲜学福,隆清明.不同温度应力条件下煤体渗透率试验研究[J].中国矿业大学学报,2009,38(4):523-527.
    [244]李志强,鲜学福.煤体渗透率随温度和应力变化的试验研究[J].辽宁工程技术大学学报,2009,28(增刊):156-159.
    [245]杨新乐,张永利,李成全,等.考虑温度影响下煤层气解吸渗流规律试验研究[J].岩土工程学报,2008,30(12):1811-1814.
    [246]曹树刚,李勇,郭平,等.型煤与原煤全应力-应变过程渗流特性对比研究[J].岩石力学与工程学报,2010,29(5):899-906.
    [247]胡雄,梁为,侯厶靖,等.温度与应力对原煤、型煤渗透特性影响的试验研究[J].岩石力学与工程学报,2012,31(6):1222-1229.
    [248]尹光志,李小双,赵洪宝,等.瓦斯压力对突出煤瓦斯渗流影响试验研究[J].岩石力学与工程学报,2009,28(4):697-702.
    [249]俞缙,李宏,陈旭,等.渗透压-应力耦合作用下砂岩渗透率与变形关联性三轴试验研究[J].岩石力学与工程学报,2013,32(6):1203-1213.
    [250]谢和平,周宏伟,刘建峰,等.不同开采条件下采动力学行为研究[J].煤炭学报,2011,36(7):1067-1074.
    [251]高玉春,徐进,何鹏.大理岩加卸载力学特性的研究[J].岩石力学与工程学报,2005,24(3):456-460.
    [252]李宏哲,夏才初,闫子舰,等.锦屏水电站大理岩在高应力条件下的卸荷力学特性研究[J].岩石力学与工程学报,2007,26(10):2104-2109.
    [253]李宏哲,夏才初,肖维民.锦屏水电站大理岩加卸荷本构模型研究[J].岩石力学与工程学报,2010,29(7):1489-1495.
    [254]汪斌,朱杰兵,邬爱清,等.锦屏大理岩加、卸载应力路径下力学性质试验研究[J].岩石力学与工程学报,2008,27(10):2138-2145.
    [255]黄润秋,黄达.卸荷条件下花岗岩力学特性试验研究[J].岩石力学与工程学报,2008,27(11):2205-2213.
    [256]黄润秋,黄达.高地应力条件下卸荷速率对锦屏大理岩力学特性影响规律的试验研究[J].岩石力学与工程学报,2010,29(1):21-33.
    [257]裴建良,刘建锋,徐进.层状大理岩卸荷力学特性试验研究[J].岩石力学与工程学报,2009,28(12):2496-2502.
    [258]吕颖慧,刘泉声,胡云华.基于花岗岩卸荷试验的损伤变形特征及其强度准则[J].岩石力学与工程学报,2009,28(10):2096-2103.
    [259]张黎明,王在泉,孙辉,等.岩石卸荷破坏的变形特征及本构模型[J].煤炭学报,2009,34(12):1626-1631.
    [260]邱士利,冯夏庭,张传庆,等.不同卸围压速率下深埋大理岩卸荷力学特性试验研究[J].岩石力学与工程学报,2010,29(9):1807-1817.
    [261]王在泉,张黎明,孙辉,等.不同卸荷速度条件下灰岩力学特性的试验研究[J].岩土力学,2011,32(4):1045-1050.
    [262]蒋长宝,尹光志,黄启翔,等.含瓦斯煤岩卸围压变形特征及瓦斯渗流试验[J].煤炭学报,2011,36(5):802-807.
    [263]赵洪宝,王家臣.卸围压时含瓦斯煤力学性质演化规律试验研究[J].岩土力学,2011,32(S1):270-274.
    [264]薛东杰,周宏伟,唐咸力,等.采动工作面前方煤岩体积变形及瓦斯增透研究[J].岩土工程学报,2013,35(2):328-336.
    [265]谢和平,高峰,周宏伟,等.煤与瓦斯共采中煤层增透率理论与模型研究[J].煤炭学报,2013,38(7):1101-1108.
    [266]左建平,刘连峰,周宏伟,等.不同开采条件下岩石的变形破坏特征及对比分析[J].煤炭学报,2013,38(8):1319-1324.
    [267]薛东杰.不同开采条件下采动煤岩体瓦斯增透机理研究[博士学位论文][D].北京:中国矿业大学(北京),2013.
    [268]尤明庆.岩石试样的杨氏模量与围压的关系[J].岩石力学与工程学报,2003,22(1):53-60.
    [269]谢和平,彭瑞东,鞠杨.岩石变形破坏过程中的能量耗散分析[J].岩石力学与工程学报,2004,23(21):3565-3570.
    [270]曹文贵,赵明华,刘成学.基于Weibull分布的岩石损伤软化模型及其修正方法研究[J].岩石力学与工程学报,2004,23(19):3226-3231.
    [271]刘泉声,许锡昌.温度作用下脆性岩石的损伤分析[J].岩石力学与工程,2000,19(4):408-411.
    [272] LEMAITRE, J. A..延性断裂中的连续损伤力学[J].材料与技术,1985:83-107.
    [273]李树春,许江,李克钢.基于初始损伤系数修正的岩石损伤统计本构模型[J].四川大学学报:工程科学版,2007,39(6):41-44.
    [274]曹文贵,赵明华,刘成学.岩石损伤统计强度理论研究[J].岩土工程学报,2004,26(6):820-823.
    [275]杨永杰,宋扬,陈绍杰.煤岩全应力-应变过程渗透性特征试验研究[J].岩土力学,2007,28(2):381-385.
    [276]胡耀青,赵阳升,杨栋,等.温度对褐煤渗透特性影响的试验研究[J].岩石力学与工程学报,2010,29(8):1585-1590.
    [277]马名杰,王永刚,周翔.煤料的粒度对型焦抗压强度的影响[J].煤炭学报,2007,32(4):441-444.
    [278]刘杰,李建林,王瑞红,等.含密实原岩充填物的宜昌砂岩裂隙渗流试验研究[J].岩石力学与工程学报,2009,28(2):366-374.
    [279]刘杰,李建林,赵宗勇,等.不同填充及加载路径下劈裂砂岩渗流特性研究[J].岩土力学,2012,33(增2):45-52.
    [280]吉登高,王祖讷,张丽娟.粉煤成型原料粒度组成的试验研究[J].煤炭学报,2005,30(1):100-103.
    [281]姜振泉,季梁军.岩石全应力-应变过程渗透特性试验研究[J].岩土工程学报,2001,23(2):153-156.
    [282]栾茂田,聂影,杨庆,等.不同波形下饱和黏土耦合循环剪切特性的对比研究[J].岩土工程学报,2008,30(9):1276-1281.
    [283]葛修润.周期荷载下岩石大型三轴试件的变形和强度特性研究[J].岩土力学,1987,8(2):11-19.
    [284]孙培德,凌志仪.三轴应力作用下煤渗透率变化规律实验[J].重庆大学学报,2000,10(23):28-31.
    [285]姜春露,孙强,姜振泉.脆性岩石全应力应变过程中渗透性突变研究[J].中南大学学报,2012,43(2):688-673.
    [286]谢和平,鞠杨,黎立云.基于能量耗散与释放原理的岩石强度与整体破坏准则[J].岩石力学与工程学报,2005,24(17):3003-3010.
    [287]谢和平,彭瑞东,鞠杨,等.岩石破坏的能量分析初探[J].岩石力学与工程学报,2005,24(15):2603-2608.
    [288]谢和平,鞠杨,黎立云,等.岩体变形破坏过程的能量机制[J].岩石力学与工程学报,2008,27(9):1729-1740.
    [289]黎立云,谢和平,鞠杨,等.岩石可释放应变能及耗散能的实验研究[J].工程力学,2011,28(3):35-40.
    [290]尤明庆,华安增.岩石试件破坏过程的能量分析[J].岩石力学与工程学报,2002,21(6):778-781.
    [291]杨圣奇,徐卫亚,苏承东.大理岩三轴压缩变形破坏与能量特征研究[J].工程力学,2007,24(1):136-142.
    [292]朱泽奇,盛谦,肖培伟,等.岩石卸围压破坏过程的能量耗散分析[J].岩石力学与工程学报,2011,30(S1):2675-2681.
    [293]黄达,谭清,黄润秋.高围压卸荷条件下大理岩破碎块度分形特征及其与能量相关性研究[J].岩石力学与工程学报,2012,31(7):1379-1389.
    [294]黄达,谭清,黄润秋.高应力强卸荷条件下大理岩损伤破裂的应变能转化过程机制研究[J].岩石力学与工程学报,2012,31(12):2483-2493.
    [295]张志镇,高峰.单轴压缩下红砂岩能量演化试验研究[J].岩石力学与工程学报,2012,31(5):953-962.
    [296]黎立云,王荣新,马旭,等.双向加压下岩石能量规律的试验研究[J].煤炭学报,2010,35(12):2033-2038.
    [297]刘建锋,徐进,李青松.循环荷载下岩石阻尼参数测试的试验研究[J].岩石力学与工程学报,2010,29(5):1036-1041.
    [298]宫凤强,李夕兵,刘希灵,等.一维动静组合加载下砂岩动力学特性的试验研究[J].岩石力学与工程学报,2010,29(10):2076-2085.
    [299]张媛,许江,杨红伟,等.循环荷载作用下围压对砂岩滞回环演化规律的影响[J].岩石力学与工程学报,2011,30(2):320-326.
    [300]彭瑞东.基于能量耗散及能量释放的岩石损伤与强度研究[博士学位论文][D].北京:中国矿业大学,2005.
    [301]谢和平.岩石混凝土损伤力学[M].徐州:中国矿业大学出版社,1998.
    [302]刘建锋,徐进,裴建良,等.盐岩损伤测试中卸载模量研究[J].四川大学学报:工程科学版,2011,43(4):57-62.
    [303]彭瑞东,谢和平,鞠杨.砂岩拉伸过程中的能量耗散与损伤演化分析[J].岩石力学与工程学报,2007,26(12):2526-2531.
    [304]吕祥锋,潘一山,刘建军,等.孔隙压力对煤岩基质解吸变形影响的实验研究[J].岩土力学,2010,31(11):3447-3451.
    [305]唐巨鹏,潘一山,李成全,等.有效应力对煤层气解吸渗流影响试验研究[J].岩石力学与工程学报,2006,25(8):1563-1568.
    [306] Fokker, P.A., van de Meer, L.G.H.. The injectivity of coalbed CO2injection wells[J]. Energy,2004,29(9,10):1423-1429.
    [307] Pan, Z., Connell, L.D., Camilleri, M.. Laboratory characterisation of coal reservoirpermeability for primary and enhanced coalbed methane recovery[J]. International Journal ofCoal Geology,2010,82:252-261.
    [308] Majewska, Z., Ceglarska-Stefanska, G., Majewski, S., et al.Binary gas sorption/desorptionexperiments on a bituminous coal: simultaneous measurements on sorption kinetics,volumetric strain and acoustic emission[J]. International Journal of Coal Geology,2009,77(1-2):90-102.
    [309] Zheng, Z., McLennan, J. M., Jones., et al. Pore Volume Compressibility and Permeability ofCoal under Different Stress Conditions[A]. In: International Gas Research Conference[C],Orlando,1992.
    [310] Mitra, A.. Laboratory investigation of coal permeability under replicated in situ stressregime[D]. PhD dissertation, Southern Illinois University Carbondale,2010.
    [311] Gierhart, R., Gip, G., Seidle, J. P.. San Juan Basin Fruitland coal pressure dependentpermeability observations[A]. SPE Applied Technology Workshop on Unconventional Gas,Keystone,2006.
    [312] Harpalani, S., Chen, G. L.. Estimation of changes in fracture porosity of coal with gasemission[J]. Fuel,1995,74:1491-1498.
    [313] Zhao, Y., Hu, Y, Wei, J. and Yang, D.(2003). The experimental approach to effective stresslaw of coal mass by effect of methane[J]. Transport in Porous Media,53(3):235-244.
    [314] Shi, J. Q. and Durucan, S.. Exponential Growth in San Juan Basin Fruitland CoalbedPermeability with Reservoir Drawdown-Model Match and New Insights[A]. In:2009SPERocky Mountain Petroleum Technology Conference[C], Denver,2009.
    [315] Zhang, H., Liu, J., Elsworth, D.. How sorption-induced matrix deformation affects gas flowin coal seams: a new FE model[J]. International Journal of Rock Mechanics and MiningSciences,2008,45(8),1226-1236.
    [316] Hudson, J.A., Fairhurst, C., et al.,. Comprehensive rock engineering: principles, practice, andprojects. Analysis and Design Method, Vol. II[M]. Pergamon Press, Oxford,1993:113-171.
    [317] Chilingar, G.V., Main, R., Sinnokrot, A.,. Relationship between porosity, permeability, andsurface areas of sediments[J]. Journal of Sedimentary Research,1963,33(3),759-765.
    [318] Bear, J., Corapcioglu, M. Y.. A mathematical model for consolidation in a theroelasticaquifer due to hot water injection or pumping[J]. Water Resources Research,1981,17(3),723-736.
    [319] Mitra, A., Harpalani, S., Liu, S.. Laboratory measurement and modeling of coal permeabilitywith continued methane production: Part1-laboratory results[J]. Fuel,2012,94,110-116.
    [320]孟召平,侯泉林.煤储层应力敏感性及影响因素的试验分析[J].煤炭学报,2012,37(3):430-437.
    [321]熊伟.流固耦合渗流规律研究[硕士学位论文][D].北京:中国科学院渗流力学研究所,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700