用户名: 密码: 验证码:
煤层气开采中煤储层参数动态演化的物理模拟试验与数值模拟分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭开采中瓦斯灾害频发,煤层气开采利用无疑对煤炭资源综合利用、改善能源结构和煤矿安全高效生产意义重大。然而,我国煤层气产业面临着“三高一低”等一系列技术开发瓶颈,且目前对于煤层气运移特性尚不明晰,尤其是对煤层气高渗富集和低渗运移规律的研究成为技术攻关的难点和重点。为进一步探索复杂地质条件下煤层气的运移规律,本文以重庆石壕煤矿K3煤层为研究对象,采用实验室测试与理论研究、物理模拟试验与数值模拟分析及工程应用相结合的方法,系统地开展了煤基本物理力学特性、煤层气开采中煤储层参数的动态演化特性、煤层气开采中钻孔喷孔演化过程及其动力效应等方面的研究,并结合岩石力学、多孔介质渗流力学和传热学等理论知识,对多场耦合煤储层系统中的煤层气运移规律进行了有益的探讨。基于上述研究,取得的主要研究成果与结论如下:
     1)基于相似理论,自主研发了“多场耦合煤层气开采物理模拟试验系统”,该系统填补了煤层气开采物理模拟试验装置的空白,并基于所开展的煤层气开采物理模拟试验研究,提出了煤层气开采物理模拟试验方法,为开展煤层气开采过程中煤储层参数动态演化规律研究提供了一种新的手段。
     2)开展了不同储层压力和不同钻孔位置条件下的煤层气开采物理模拟试验研究,探讨了煤层气开采中煤储层参数的时空演化特性,初步探明了储层压力和钻孔位置对煤储层参数演化和开采效率的影响作用机制,提出了预测和评价煤层气开采效率的Weibull分布函数方法。
     3)开展了不同气体压力、不同钻孔直径和不同煤储层含水率条件下的钻孔喷孔动力现象物理模拟试验,研究了钻孔破坏失稳演化过程及其动力效应,揭示了钻孔喷孔过程中气体压力、温度、喷孔倾向性、喷口强度、喷出煤粉破碎性等的变化规律及其受气体压力、钻孔直径和含水率的影响特性和作用机制。
     4)基于线性热弹性假设,推导了包括热应变、瓦斯压力压缩煤体引起的应变、煤体吸附瓦斯膨胀引起的应变及有效应力导致应变的含瓦斯煤总应变表达式,建立了含瓦斯煤系统孔隙率、裂隙率动态演化模型和考虑滑脱效应的孔隙、裂隙渗透率动态演化模型,进一步构建了考虑气体滑脱效应的含瓦斯煤系统THM耦合方程,给出了该耦合方程的定解条件,并通过实验室试验和数值模拟分析相结合的方法验证了多尺度煤样和多场耦合条件下所建模型的正确性。
     5)以重庆石壕煤矿K3煤层为实际工程背景,采用数值模拟分析方法计算了多场耦合条件下煤层气开采过程,分析了储层压力、有效应力、渗透率、滑脱效应、开采量等参数的时空演化规律和联动特性,初步探明了气体滑脱效应、孔口负压和钻孔直径对煤层气开采效率的影响机制和作用效果。
Gas disasters happen frequently in coal mining, consequently, coalbed methane(CBM) recovery is of great significance for comprehensive utilization, optimizedenergy structure and safe and efficient production of coal. However, in china, CBMindustry is faced with a series of technical development bottlenecks just like "three highand one low" etc. furthermore the migration characteristics of CBM is a little equivocalespecially the mechanism of high-permeability aggregation and low-permeabilitytransport. For a further exploration on migration law of CBM under complicatedgeological conditions, this paper took K3seam of Chongqing coal mine as the researchobject to research systematically on the physical and mechanical properties of coal,dynamic parameters of coal reservoir in CBM recovery process and dynamicalphenomena of the blowout process in CBM recovery engineering by the combinedmeans of the laboratory test, the theoretical analysis, the numerical simulation and theengineering application. And the migration law of CBM in multi-field couplingreservoir system was effectively discussed based on the basic theory such as RockMechanics, Advanced Mechanics of Fluids in Porous Media, Heat Transfer Theory, etc.The main conclusions of the research are as follows:
     1) The “Multi-field Coupling test System for CBM Exploitation” wasindependently developed based on the similarity theory, which is the first test device ofphysical simulation for coalbed methane exploitation. And then, a new test method ofphysical simulation for CBM exploitation was proposed, which provide a new researchmethod for the dynamic evolution of coal reservoir parameters in CBM exploitation.
     2) A series of physical simulations of CBM exploitation were conducted underdifferent reservoir pressures and variously spatial locations of the drill hole to discussspatial-temporal evolution of reservoir parameters in the process of CBM recover. Andthe mechanism of influence of reservoir pressures and spatial locations of the drill holeon reservoir parameters and CBM exploitation efficiency was preliminarily ascertained.Then the Weibull distribution was proposed to predict and evaluate CBM productivity.
     3) A series of physical simulations of drilling blowout were conducted underdifferent gas pressures, different drilling diameters and different moisture content tostudy the instability and failure evolution process of the drill hole and its dynamic effect, analysis of which revealed the variation laws of gas pressure, temperature, blowouttendentiousness, blowout intensity and fragmentation degrees of coal particle. And themechanism of influence of gas pressure, drilling diameter and moisture content on theabove-mentioned parameters.
     4) Based on the assumption of linear and thermal elastic, the total strain expressionof coal containing gas was derived including thermal strain, compressive strain causedby gas pressure, strain due to gas adsorption/desorption, strain induced by effectivestress. Then, the dynamic evolution models of porosity and fracture as well as thedynamic evolution models of porosity permeability and fracture permeabilityconsidering gas slippage effect were established, and then THM coupling model wasdeveloped with boundary conditions. Finally, the established model was provedcorrectness under multi-scale system and multi-field coupling conditions by means ofphysical simulation experiment in cooperation with numerical simulation analysis.
     5) Taking the K3seam of Shihao Mine in Chongqing as engineering background,we calculated and discussed the spatio-temporal evolution and linkage characteristics ofreservoir pressure, effective stress, permeability, slippage effect, recover production, etc.during CBM drainage process under the Multi-field coupling condition. And theinfluence and its mechanism of slippage effect, negative pressures and the drillingdiameter on CBM recovery productivity were also preliminarily ascertained
引文
[1] Radlinski, A.P.,Mastalerz, M., Hinde, A.L., Hainbuchner, M., Rauch, H., Baron, M., Lin, J.S.,Fan, L., Thiyagarajan, P.. Application of SAX and SANS in evaluation of porosity, pore sizeand surface area of coal [J]. International Journal of Coal Geology,2004(59),245-271.
    [2] Radovic, L.R., Menon, V.C., Leon, Y., Leon, C.A., Kyotani, T., Danner, R.P., Anderson, S.,Hatcher, P.G.. On the porous structure of coals: evidence for an interconnected but constrictedmicropore system and implications for coalbed methane recovery[J]. Adsorption,1997(3),221-232
    [3] Mares, T.E., Radlinski, A.P.,Moore, T.A., Cookson, D., Thiyagarajan, P., Ilavsky, J., Klepp,J.. Assessing the potential for CO2adsorption in a subbituminous coal, Huntly Coalfield, NewZealand, using small angle scattering techniques[J]. International Journal of Coal Geology,2009(77),54-68.;
    [4] enel, I.G., Gürüz, A.G., Yücel, H.. Characterization of pore structure of Turkish coals[J].Energy&Fuels,2001(15),331-338.;
    [5] T.A. Moore. Coalbed methane: A review[J]. International Journal of Coal Geology,2012(101),36-81
    [6] Gan, H., Nandi, S.P.,Walker Jr., P.L.. Nature of the porosity in American coals[J]. Fuel,1972(51),272-277.
    [7] Milewska-Duda, J., Duda, J., Nodze ski, A., Lakatos, J.. Absorption and adsorption ofmethane and carbon dioxide in hard coal and active carbon[J]. Langmuir,2000(16),5458-5466.
    [8] Ozdemir, E., Morsi, B.I., Schroeder, K.. Importance of volume effects to adsorption isothermsof carbon dioxide on coals[J]. Langmuir,2003(19),9764-9773.
    [9] St. George, J.D., Barakat, M.A.. The change in effective stress associated with shrinkage fromgas desorption in coal[J]. International Journal of Coal Geology,2001(45),105-113.
    [10] Levine, J.R.. Model study of the influence of matrix shrinkage on absolute permeability ofcoal bed reservoirs. In: Gayer, R., Harris, I.(Eds.), Coalbed Methane and Coal Geology:Geological Society Special Publication,1996(109),197-212.
    [11] Gürdal, G., Yal in, M.N.. Pore volume and surface area of the Carboniferous coals from theZonguldak basin (NWTurkey) and their variations with rank and maceral composition[J].International Journal of Coal Geology,2001(48),133-144.
    [12] Pan, Z., Connell, L.D., Camilleri, M., Connelly, L.. Effects of matrix moisture on gasdiffusion and flow in coal[J]. Fuel,2010(89),3207-3217.
    [13] Lu, M., Connell, L.. A dual-porosity model for gas reservoir flow incorporating adsorptionbehaviour—part I. Theoretical development and asymptotic analyses. Transport in PorousMedia,2007,68(2),153-173
    [14] Andreas Busch, Yves Gensterblum. CBM and CO2-ECBM related sorption processes in coal:A review[J]. International Journal of Coal Geology,2011(87),49-71.
    [15] Hol, S., Peach, C.J., Spiers, C.J.. A new experimental method to determine the CO2sorptioncapacity of coal[J]. Energy Procedia,2011(4),3125-3130
    [16] Pone, J.D.N., Halleck, P.M., Mathews, J.P.. Sorption capacity and sorption kineticmeasurements of CO2and CH4in confined and unconfined bituminous coal[J]. Energy&Fuels,2009,23(9),4688-4695.
    [17] Rice, D.D.. Composition and origins of coalbed gas. In: Law, B.E., Rice, D.D.(Eds.),Hydrocarbons from Coal.: AAPG Studies in Geology,38. American Association ofPetroleum Geologists, Tulsa, Oklahoma,1993,159-184.
    [18] Nelson, J.R.. Determination of molecular weight between crosslinks of coals from solvent-swelling studies. Fuel,1983(62),112-116.
    [19] Bustin, R.M., Clarkson, C.R.. Geological controls on coalbed methane reservoir capacity andgas content. Int. J. Coal Geol.,1998(38),3-26.
    [20] Clarkson, C.R., Bustin, R.M.. The effect of pore structure and gas pressure upon the transportproperties of coal: a laboratory and modeling study:1. Isotherms and pores volumedistributions. Fuel,1999(78),1333-1344.
    [21] Cui, X., Bustin, R.M., Dipple, G.. Selective transport of CO2, CH4, and N2in coals: insightsfrom modeling of experimental gas adsorption data. Fuel,2004(83),293-303.
    [22] Mastalerz, M., Gluskoter, H., Rupp, J.. Carbon dioxide and methane sorption in high volatilebituminous coals from Indians, USA. Int. J. Coal Geol.,2004(60),43-55.
    [23] Chikatamarla Laxminarayana, Peter J. Crosdale. Role of coal type and rank on methanesorption characteristics of Bowen Basin, Australia coals. International Journal of CoalGeology,1999(40):309-325
    [24] Bustin, A.M.M., Bustin, R.M.. Coal reservoir saturation: impact of temperature and pressure.AAPG Bulletin,2008(92),77-86.
    [25] Crosdale, P.J., Moore, T.A., Mares, T.E.. Influence of moisture content and temperature onmethane adsorption isotherm analysis for coals from a low-rank, biogenically-sourced gasreservoir. International Journal of Coal Geology,2008(76),166-174.
    [26] Langmuir, I.. The adsorption of gases on plane surfaces of glass, mica and plati-num. Journalof the American Chemical Society,1918(40),1361-1403.
    [27] Harpalani, S., Prusty, B.K., Dutta, P.. Methane/CO2sorption modeling for coalbed methaneproduction and CO2Sequestration. Energy&Fuels,2006(20),1591-1599.
    [28] Greaves, K.H., Owen, L.B., McLennan, J.D., Olszewski, A.. Multi-component gasadsorption-desorption behavior of coal. Proc.1993Int. coalbed Methane Symp. The Univ. ofAlabama, Tuscaloosa, AL,1993,197-205.
    [29]中国煤田地质总局.中国煤层气资源[M],徐州:中国矿业大学出版社,1998:1-91
    [30]常锁亮,刘大锰,林玉成,陈强.频谱分解技术在煤田精细构造解释及煤含气性预测中的应用[J].煤炭学报,2009,08:1015-1021.
    [31]王国玲,秦勇.煤储层含气性特征及其地质动力学控制因素[J].中国煤炭地质,2009,02:18-23.
    [32]秦勇,叶建平,林大扬,焦思红,李贵中.煤储层厚度与其渗透性及含气性关系初步探讨[J].煤田地质与勘探,2000,01:24-27.
    [33]魏思民.煤阶与煤层含气性关系研究[J].中州煤炭,2009,11:17-19.
    [34]朱绍兵.滇东煤层含气性的控制地质因素[J].甘肃冶金,2004,03:11-13.
    [35]王凤国,李兰杰,徐德红.华北地区煤层含气性影响因素探讨[J].焦作工学院学报(自然科学版),2003,02:88-90.
    [36]徐磊,张华,桑树勋,范炳恒.淮南地区煤储层含气性总体特征[J].中国煤田地质,2002,02:29-31.
    [37]秦胜飞,宋岩,唐修义,傅国友.流动的地下水对煤层含气性的破坏机理[J].科学通报,2005,S1:99-104.
    [38]傅雪海,秦勇,韦重韬,汪吉林,周荣福.QNDN1井煤层气排采的流体效应分析[J].天然气工业,2010,06:48-51+126-127.
    [39]陈天宇,梁冰,孙维吉,赵芳芳,刘蓟南.复杂地质条件煤层气藏群井排采压力分布规律研究[J].煤炭学报,2011,04:603-608.
    [40]陈金刚,秦勇,傅雪海.高煤级煤储层渗透率在煤层气排采中的动态变化数值模拟[J].中国矿业大学学报,2006,01:49-53.
    [41]马东民,李卫波,蔺亚兵.降压解吸关系式在中高阶煤煤层气排采中的应用[J].西安科技大学学报,2010,06:697-701.
    [42]郭春华,周文,孙晗森,杨勇.考虑应力敏感性的煤层气井排采特征[J].煤田地质与勘探,2011,05:27-30.
    [43]杨秀春,李明宅.煤层气排采动态参数及其相互关系[J].煤田地质与勘探,2008,02:19-23+27.
    [44]杜严飞,吴财芳,邹明俊,王聪,姜伟,雷波.煤层气排采过程中煤储层压力传播规律研究[J].煤炭工程,2011,07:87-89.
    [45]罗振兴,李铁军,郭大立,许雷.煤层气排采曲线类型划分及排采因素分析[J].重庆科技学院学报(自然科学版),2012,04:56-59.
    [46]刘升贵,郝耐,王建强.煤层气水平井降压漏斗扩展规律研究[J].辽宁工程技术大学学报(自然科学版),2012,01:8-11.
    [47]孙可明,潘一山,梁冰.流固耦合作用下深部煤层气井群开采数值模拟[J].岩石力学与工程学报,2007,05:994-1001.
    [48]张先敏,同登科.顶板含水层对煤层气井网产能的影响[J].煤炭学报,2009,05:645-649.
    [49]乔磊,申瑞臣,黄洪春,王开龙,鲜保安,鲍清英.煤层气多分支水平井钻井工艺研究[J].石油学报,2007,03:112-115.
    [50]秦学成,段永刚,谢学恒,曹亚芹,康如坤.煤层气井产气量控制因素分析[J].西南石油大学学报(自然科学版),2012,02:99-104.
    [51]吕玉民,汤达祯,李治平,邵先杰,许浩.煤层气井动态产能拟合与预测模型[J].煤炭学报,2011,09:1481-1485.
    [52]吴晓东,席长丰,王国强.煤层气井复杂水力压裂裂缝模型研究[J].天然气工业,2006,12:124-126+206-207.
    [53]杨焦生,王一兵,王宪花.煤层气井井底流压分析及计算[J].天然气工业,2010,02:66-68+141-142.
    [54]李金海,苏现波,林晓英,郭红玉.煤层气井排采速率与产能的关系[J].煤炭学报,2009,03:376-380.
    [55]刘新福,綦耀光,胡爱梅,赵培华,刘春花.煤层气井气水两相流入动态关系研究[J].中国矿业大学学报,2011,04:561-565+591.
    [56]徐刚,彭苏萍,邓绪彪.煤层气井水力压裂压力曲线分析模型及应用[J].中国矿业大学学报,2011,02:173-178.
    [57]陈振宏,王一兵,孙平.煤粉产出对高煤阶煤层气井产能的影响及其控制[J].煤炭学报,2009,02:229-232.
    [58]刘新福,綦耀光,刘春花,李延祥,赵培华.气水两相煤层气井井底流压预测方法[J].石油学报,2010,06:998-1003.
    [59]李国富,侯泉林.沁水盆地南部煤层气井排采动态过程与差异性[J].煤炭学报,2012,05:798-803.
    [60]陈振宏,王一兵,杨焦生,王宪花,陈艳鹏,赵庆波.影响煤层气井产量的关键因素分析——以沁水盆地南部樊庄区块为例[J].石油学报,2009,03:409-412+416.
    [61]黄盛初,刘文革,赵国泉.中国煤层气开发利用现状及发展趋势[J].中国煤炭,2009,01:5-10.
    [62]宋岩,秦胜飞,赵孟军.中国煤层气成藏的两大关键地质因素[J].天然气地球科学,2007,18(4):545-552.
    [63]胡殿明,林柏泉.煤层瓦斯赋存规律及防治技术[M].徐州:中国矿业大学出版社,2006:91-92.
    [64]王魁军,张兴华.中国煤矿瓦斯抽采技术发展现状与前景[J].中国煤层气,2006,01:13-16+39.
    [65]唐爱东.煤矿瓦斯抽采技术研究及应用[J].中国煤层气,2006,03:37-39.
    [66]林柏泉,周世宁.煤样瓦斯渗透率的实验研究[J].中国矿业学院学报,1987,01:24-31.
    [67]彭担任,罗新荣,隋金峰.煤与岩石的渗透率测试研究[J].煤,1999,8(1):16-18.
    [68]谭学术,鲜学福,张广洋,等.煤的渗透性研究[J].西安科技学院学报,1994,(1):22-25.
    [69]刘保县,熊德国,鲜学福.电场对煤瓦斯吸附渗流特性的影响[J].重庆大学学报(自然科学版),2006,29(2):83-85.
    [70]易俊,姜永东,鲜学福.应力场、温度场瓦斯渗流特性实验研究[J].中国矿业,2007,16(5):113-116.
    [71]鲜学福,辜敏,杜云贵.变形场、煤化度和外加电场对甲烷在煤层中渗流的影响[J].西安石油大学学报(自然科学版),2007,22(2):89-91.
    [72]胡耀青,赵阳升,魏锦平.三维应力作用下煤体瓦斯渗透规律实验研究[J].西安科技学院学报,1996,16(4):308-311.
    [73]刘建军,刘先贵.有效压力对低渗透多孔介质孔隙度、渗透率的影响[J].地质力学学报,2001,7(1):41-44.
    [74]唐巨鹏,潘一山,李成全,等.有效应力对煤层气解吸渗流影响试验研究[J].岩石力学与工程学报,2006,25(8):1563-1568.
    [75]隆清明,赵旭生,孙东玲,等.吸附作用对煤的渗透率影响规律实验研究[J].煤炭学报,2008,33(9):1030-1034.
    [76]彭永伟,齐庆新,邓志刚,等.考虑尺度效应的煤样渗透率对围压敏感性试验研究[J].煤炭学报,2008,33(5):509-513.
    [77]许江,彭守建,尹光志,陶云奇,杨红伟,王维忠.含瓦斯煤热流固耦合三轴伺服渗流装置的研制及应用[J].岩石力学与工程学报,2010,05:907-914.
    [78]霍多特,煤与瓦斯突出[M],宋士钊、王佑安译,1966
    [79]氏平增之,煤与瓦斯突出机理的模型研究及其理论探讨,《第21届国际煤矿安全研究会议论文集》,1985年.
    [80]邓全封,栾永祥,王佑安.煤与瓦斯突出模拟试验[J].煤矿安全,1989,11:5-10.
    [81]蒋承林.煤与瓦斯突出延期发生的原因探讨──“球壳失稳”假说的解释性研究之一[J].中国安全科学学报,1994,04:28-32.
    [82]蒋承林,俞启香.煤与瓦斯突出机理的球壳失稳假说[J].煤矿安全,1995,02:17-25.
    [83]孟祥跃,丁雁生,陈力,白蓉裳,谈庆明.煤与瓦斯突出的二维模拟实验研究[J].煤炭学报,1996,01:57-62.
    [84]蔡成功.煤与瓦斯突出三维模拟试验研究[J].煤炭学报,2004,29(1):66-69.
    [85]许江,陶云奇,尹光志,李树春,王维忠.煤与瓦斯突出模拟试验台的研制与应用[J].岩石力学与工程学报,2008,11:2354-2362.
    [86]许江,陶云奇,尹光志,李树春,程明俊,彭守建.煤与瓦斯突出模拟试验台的改进及应用[J].岩石力学与工程学报,2009,09:1804-1809.
    [87]许江,刘东,彭守建,吴鑫,陆漆.煤样粒径对煤与瓦斯突出影响的试验研究[J].岩石力学与工程学报,2010,06:1231-1237.
    [88]许江,刘东,尹光志,陆漆,彭守建.非均布荷载条件下煤与瓦斯突出模拟实验[J].煤炭学报,2012,05:836-842.
    [89]许江,刘东,彭守建,周文杰,程明俊.不同突出口径条件下煤与瓦斯突出模拟试验研究[J].煤炭学报,2013,01:9-14.
    [90]赵志刚,胡千庭,耿延辉.煤与瓦斯突出模拟试验系统的设计[J].矿业安全与环保,2009,05:9-11+97.
    [91]赵志刚,胡千庭,耿延辉.煤与瓦斯突出模拟试验系统[A].中国煤炭学会煤矿安全专业委员会.中国煤炭学会煤矿安全专业委员会2009年学术研讨会交流论文(部分)[C].中国煤炭学会煤矿安全专业委员会:,2009:5.
    [92]袁瑞甫,李怀珍.含瓦斯煤动态破坏模拟实验设备的研制与应用[J].煤炭学报,2013,S1:117-123.
    [93] Tsang, Y.W.. The effect of tortuosity on fluid flow through a single fracture. Water ResourcesResearch,1984,20(9),1209-1215.
    [94] Brown, S.R.. Fluid flow through joints: the effect of surface roughness. Journal ofGeophysical Research,1987,92(B2),13337-13347.
    [95] Somerton, W.H., S ylemezoglu, I.M., Dudley, R.C.. Effect of stress on permeability of coal.International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts,1975,12(5-6),129-145.
    [96] Laubach, S.E., Marrett, R.A., Olson, J.E., Scott, A.R.. Characteristics and origins of coal cleat,a review. International Journal of Coal Geology,1998,35(1-4),175-207.
    [97] Harpalani, S., Chen, G.. Influence of gas production induced volumetric strain onpermeability of coal. Geotech. Geol. Eng.,1997(15),303-325.
    [98] Gorucu, F.B., Jikich, S.A., Sams, W.N., et al.. Matrix shrinkage and swelling effects oneconomics of enhanced coalbed methane production and CO2sequestration in coal. PaperSPE97963, SPE Eastern Regional Meeting,14-16September2005, Morgantown, WestVirginia.
    [99] Jasinge D.; Ranjith P. G.; Choi S. K. Effects of effective stress changes on permeability oflatrobe valley brown coal[J]. FUEL,2011,90(3):1292-1300.
    [100] Huy Phung Quoc; Sasaki Kyuro; Sugai Yuichi; et al. Carbon dioxide gas permeability of coalcore samples and estimation of fracture aperture width[J].2010,83(1):1-10.
    [101] Zhang Hongbin; Liu Jishan; Elsworth D. How sorption-induced matrix deformation affectsgas flow in coal seams: A new FE model[J]. International Journal of Rock Mechanics&Mining Sciences,2008(45):1226-1236
    [102]傅雪海,秦勇,张万红.高煤级煤基质力学效应与煤储层渗透率耦合关系分析[J].高校地质学报,2003,03:373-377.
    [103]卢平,沈兆武,朱贵旺,方恩才.岩样应力应变全程中的渗透性表征与试验研究[J].中国科学技术大学学报,2002,06:45-51.
    [104]肖晓春,潘一山.滑脱效应影响的低渗煤层气运移实验研究[J].岩土工程学报,2009.10:1554-1558.
    [105]肖晓春,潘一山.考虑滑脱效应的煤层气渗流数学模型及数值模拟[J].岩石力学与工程学报,2005,16:2966-2970.
    [106] Lin, W., Tang, G.-Q., Kovscek, A.R.. Sorption-induced permeability change of coal duringgas-injection processes. SPE Reservoir Evaluation&Engineering,2008,11(4),792-802.
    [107] Gray, I.. Reservoir engineering in coal seams: part1—the physical process of gas storageand movement in coal seams. SPE Reservoir Engineering,1987,2(1),28-34.
    [108] Sawyer, W.K., Zuber, M.D., Kuuskraa, V.A., Horner, D.M.. Using reservoir simulation andfield data to define mechanisms controlling coalbed methane production.Proceedings of the1987Coalbed Methane Symposium, Alabama,1987,295-307.
    [109] Sawyer, W.K., Paul, G.W., Schraufnagel, R.A.. Development and application of a3D coalbedsimulator. International Technical Meeting Hosted Jointly by the Petroleum Society of CIMand the Society of Petroleum Engineers. Calgary, Alberta, Canada, CIM/SPE,1990,90-1119.
    [110] Pekot, L.J., Reeves, S.R.. Modeling coal matrix shrinkage and differential swelling with CO2injection for enhanced coalbed methane recovery and carbon sequestration applications.Topical report, Contract No. DE-FC26-00NT40924, U.S. DOE, Washington, DC.,2002,14-17.
    [111] Pekot, L.J., Reeves, S.R.. Modeling the effects of matrix shrinkage and differential swellingon coalbed methane recovery and carbon sequestration. Proceedings of the2003InternationalCoalbed Methane Symposium. University of Alabama, Tuscaloosa.,2003,03-28.
    [112] Seidle, J.R., Huitt, L.G.. Experimental measurement of coal matrix shrinkage due to gasdesorption and implications for cleat permeability increases. International Meeting onPetroleum Engineering. Society of Petroleum Engineers, Inc, Beijing, China,1995.
    [113] Harpalani, S., Chen, G.. Estimation of changes in fracture porosity of coal with gas emission.Fuel,1995,74(10),1491-1498.
    [114] Ma, Q., Harpalani, S., Liu, S.. A simplified permeability model for coalbed methanereservoirs based on matchstick strain and constant volume theory. International Journal ofCoal Geology,2011,85(1),43-48.
    [115] Shi, J.Q., Durucan, S.. A model for changes in coalbed permeability during primary andenhanced methane recovery. SPE Reservoir Evaluation and Engineering,2005,8(4),291-299.
    [116] Cui, X., Bustin, R.M.. Volumetric strain associated with methane desorption and its impact oncoalbed gas production from deep coal seams. AAPG Bull,2005,89,1181-1202.
    [117] Pekot, L.J., Reeves, S.R.. Modeling the Effects of Matrix Shrinkage and Differential Swellingon Coalbed Methane Recovery and Carbon Sequestration. U.S. Department of Energy,2002.
    [118] Palmer, I., Mansoori, J.. How permeability depends on stress and pore pressure in coalbeds: anew model. Paper SPE52607, SPE Reservoir Evaluation&Engineering (December),1996,539-544.
    [119] Gilman, A., Beckie, R.. Flow of coal-bed methane to a gallery. Transport in Porous Media,2000,41(1),1-16.
    [120] Shi, J.Q., Durucan, S.. Drawdown induced changes in permeability of coalbeds: a newinterpretation of the reservoir response to primary recovery. Transport in Porous Media,2004,56(1),1-16.
    [121] Cui, X., Bustin, R.M., Chikatamarla, L.. Adsorption-induced coal swelling and stress,implications for methane production and acid gas sequestration into coal seams. Journal ofGeophysical Research-Solid Earth,2007.
    [122] Klinkenberg, L. J.. The permeability of porous media to liquids and gases, Drilling andProduction Practice, American Petroleum Inst.,1941,200-213.
    [123] Baehr, A. L. and Hult, M. F.. Evaluation of unsaturated zone air permeability throughpneumatic tests, Water Resour. Res.,1991,27(10),2605-2617.
    [124] Tavares, C.A.P., Kazemi, H., Ozkan, E.. Combined effect of non-Darcy flow and formationdamage on gas-well performance of dual-porosity and dual-permeability reservoirs. SPEReservoir Evaluation and Engineering,2006,9(5),543-552.
    [125] Zeng, F., Grigg, R., Ganda, S.. Experimental study of overburden and stress influence onnon-Darcy gas flow in Dakota sandstone. SPE84069, SPE Annual Technical Conference andExhibition held in Denver, Colorado, USA,5-8October,2003.
    [126] Chin, L.Y., Raghavan, R., Thomas, L.K.. Fully coupled geomechanics and fluid-flow analysisof wells with stress-dependent permeability. SPE Journal,2000,5(1),32-45.
    [127] Reda D. C.. Slip-flow experiments in welded tuff: The Knudson diffusion problem, In:Chin-Fu Tsang (ed.), Coupled Processes Associated with NuclearWaste Repositories,1987,485-493.
    [128] Persoff, P. and Hulen, J. B.. Hydrologic characterization of four cores from the Geyserscoring project, Proc. Twenty-First Workshop on Geothermal Engineering, StanfordUniversity, CA, January,1996,22-24.
    [129] Jones, S. C.. A rapid accurate unsteady-state Klinkenberg parameter, SPE Journal,1972,383-397.
    [130] Wang, X.. Influence of Coal Quality Factors on SeamPermeability Associated with CoalbedMethane Production. University of New South Wales, Sydney, Australia,2006:338.
    [131] Wang, X., Ward, C.. Experimental investigation of permeability changes with pressuredepletion in relation to coal quality. International Coalbed Methane Symposium. University ofAlabama, Tuscaloosa, Alabama,2009:31.
    [132] Close, J.C.. Natural fractures in coal. In: Law, B.E., Rice, D.D.(Eds.), Hydrocarbons fromCoal. American Association of Petroleum Geologists, Tulsa, Oklahoma,1993,119-132
    [133] Robertson, E.P.. Modeling Permeability in Coal Using Sorption-Induced Strain Data. SPEAnnual Technical Conference and Exhibition. Society of Petroleum Engineers, Dallas, Texas,2005.
    [134] Puri, R., Evanoff, J.C., Brugler,M.L.. Measurement of coal cleat porosity and relativepermeability characteristics. SPE Gas Technology Symposium. Houston, Texas,1991.
    [135] Palmer, I.. Permeability changes in coal: analytical modeling. International Journal of CoalGeology,2009,77(1-2),119-126.
    [136] Reid, G.W., Towler, B.F., Harris, H.G.. Simulation and economics of coalbed methaneproduction in power river basin. SPE Rocky Mountain Regional Meeting. Society ofPetroleum Engineers, Richardson, Texas, USA,1992.
    [137] Sparks, D.P., McLendon, T.H., Saulsberry, J.L., Lambert, S.W.. The effects of stress oncoalbed reservoir performance, BlackWarrior Basin, U.S.A. SPE Annual TechnicalConference and Exhibition. Society of Petroleum Engineers, Inc, Dallas, Texas,1995.
    [138] Wei, X.R., Wang, G.X., Massarotto, P., Golding, S.D., Rudolph, V.. A review on recentadvances in the numerical simulation for coalbed-methane-recovery process. SPE ReservoirEvaluation&Engineering,2007,10(6),657-666.
    [139] Liu, H.-H., Rutqvist, J.. A new coal-permeability model: internal swelling stress andfracture-matrix interaction. Transport in Porous Media,2010,82(1),157-171.
    [140]骆祖江,付延玲,王增辉.非饱和带水气二相渗流动力学模型[J].煤田地质与勘探.1999.10(5):40-45
    [141]孙可明,梁冰,薛强.煤层气非饱和流阶段非稳态流固耦合渗流的一维摄动解析解[J].湘潭矿业学院学报,2002.6(2):12-16
    [142]孙可明,梁冰,薛强.煤层气在非饱和水流阶段的非定常渗流摄动解[J].应用力学学报,2002.10(4):101-104
    [143]郭肖,杜志敏,疏壮志,刘建仪.低渗透气藏耦合流动模拟[J].天然气工业,2005.2(2):113-115
    [144]程瑞端,陈海焱,鲜学福,等.温度对煤样渗透系数影响的实验研究[J].煤炭工程师,1998(1):13-18.
    [145]刘亚晨,蔡永庆,刘泉声,等.岩体裂隙结构面的温度-应力-水力耦合本构关系[J].岩土工程学报,2001,23(2):196-200.
    [146]刘均荣,秦积舜,吴晓东.温度对岩石渗透率影响的实验研究[J].石油大学学报:自然科学版,2001,25(4):51-54.
    [147]梁冰,高红梅,兰永伟.岩石渗透率与温度关系的理论分析和试验研究[J].岩石力学与工程学报,2005,24(12):2009-2012.
    [148]尹光志,蒋长宝,许江,彭守建,李文璞.含瓦斯煤热流固耦合渗流实验研究[J].煤炭学报,2011,09:1495-1500.
    [149]贺玉龙,杨立中.温度和有效应力对砂岩渗透率的影响机理研究[J].岩石力学与工程学报,2005,24(14):2420-2427.
    [150]周青春,李海波,杨春和,等.南水北调西线一期工程砂岩温度、围压和水压耦合试验研究[J].岩石力学与工程学报,2005,24(20):3639-3645.
    [151] Jing L,Tsang C F,Stephansson O. V DECOVALEX—an international cooperative researchproject on mathematical models of coupled THM processes for safety analysis of radioactivewaste repositories[J]. International Journal of Rock Mechanics and Mining Sciences andGeomechanics Abstracts,1995,32(5):389-398.
    [152] Tsang C F,Stephansson O,Kautsky F,et al. An overview of the DECOVALEX Project oncoupled THM processes in fractured rock-bentonite systems[A]. In:Stepansson O,Jing L,Hudson J A ed. Proceedings of the International Conference GeoProc[C]. Stockholm,Sweden:[s. n.],2003.3-13.
    [153]周辉,冯夏庭.岩石应力-水力-化学耦合过程研究进展[J].岩石力学与工程学报,2006,25(4):855-864.
    [154]刘亚晨,吴玉山,刘泉声.核废料储存裂隙岩体耦合分析研究综述[J].地质灾害与环境保护,1999,10(3):72-78.
    [155]赖远明,吴紫汪,朱元林,等.寒区隧道温度场、渗流场和应力场耦合问题的非线性分析[J].岩土工程学报,1999,21(5):529-533
    [156]张玉军.核废物地质处置THM耦合三维有限元分析[J].地下空间与工程学报,2009,04:664-669.
    [157]刘建军.煤层气热-流-固耦合渗流的数学模型[J].武汉工业学院学报,2002(02):91-94
    [158]刘建军,薛强.岩土热-流-固耦合理论及在采矿工程中的应用[J].武汉工业学院学报,2004,23(3):55-60.
    [159]刘建军,冯夏庭.我国油藏渗流-温度-应力耦合的研究进展[J].岩土力学,2003,24(增刊):645-650.
    [160]魏长霖,齐悦.双重介质非饱和两相流岩体热流固损伤模型研究[J].科学技术与工程,2012,11:2525-2527+2545.
    [161]王建省,董勤喜.热流固耦合动态边界理论研究[J].西安石油大学学报(自然科学版),2007,02:119-122+180.
    [162]翟诚,孙可明,李凯.高温岩体热流固耦合损伤模型及数值模拟[J].武汉理工大学学报,2010,03:65-69.
    [163]郭永存,王仲勋,胡坤.煤层气两相流阶段的热流固耦合渗流数学模型[J].天然气工业,2008,07:73-74+139-140.
    [164]谭贤君,陈卫忠,杨建平,杨春和.盐岩储气库温度-渗流-应力-损伤耦合模型研究[J].岩土力学,2009,12:3633-3641.
    [165]徐光苗,刘泉声,张秀丽.冻结温度下岩体THM完全耦合的理论初步分析[J].岩石力学与工程学报,2004,21:3709-3713.
    [166]孔祥言,李道伦,徐献芝,卢德唐.热-流-固耦合渗流的数学模型研究[J].水动力学研究与进展(A辑),2005,02:269-275.
    [167]张强林,王媛.多孔岩体热流固耦合有限元模拟[J].三峡大学学报(自然科学版),2008,03:18-21.
    [168]陶云奇.含瓦斯煤THM耦合模型建立[J].煤矿安全,2012,02:9-12.
    [169]陈益峰,周创兵,童富果,井兰如.多相流传输THM全耦合数值模型及程序验证[J].岩石力学与工程学报,2009,04:649-665.
    [170]贾善坡,冉小丰,王越之,肖桃李,谭贤君.变形多孔介质温度-渗流-应力完全耦合模型及有限元分析[J].岩石力学与工程学报,2012,S2:3547-3556.
    [171]盛金昌.多孔介质流-固-热三场全耦合数学模型及数值模拟[J].岩石力学与工程学报,2006,S1:3028-3033.
    [172]李连崇,唐春安,杨天鸿,王大国.岩石破裂过程THMD耦合数值模型研究[J].计算力学学报,2008,06:764-769.
    [173]赵延林,曹平,赵阳升,林杭,汪亦显.双重介质温度场-渗流场-应力场耦合模型及三维数值研究[J].岩石力学与工程学报,2007,S2:4024-4031.
    [174]杨通,刘峰.多孔介质热流固耦合有限元分析[J].河北理工大学学报(自然科学版),2011,01:12-17.
    [175]尹光志,李铭辉,李生舟,李文璞,姚俊伟,张千贵.基于含瓦斯煤岩固气耦合模型的钻孔抽采瓦斯三维数值模拟[J].煤炭学报,2013,04:535-541.
    [176]王兆丰,李炎涛,夏会辉,谭蓉晖.基于COMOSOL的顺层钻孔有效抽采半径的数值模拟[J].煤矿安全,2012,10:4-6.
    [177]王宏图,江记记,王再清,胡国忠,袁志刚.本煤层单一顺层瓦斯抽采钻孔的渗流场数值模拟[J].重庆大学学报,2011,04:24-29.
    [178]王伟有,汪虎.基于COMSOL Multiphysics的瓦斯抽采有效半径数值模拟[J].矿业工程研究,2012,02:40-43.
    [179]林萌.单一松软煤层瓦斯抽采工艺数值模拟[J].中国煤炭地质,2010,11:18-21+41.
    [180]郝天轩,宋超.数值模拟结合SF_6示踪法确定煤层钻孔瓦斯抽采有效半径[J].中国安全科学学报,2013,01:22-27.
    [181]王作启.井下煤层气抽采规律数值模拟研究[J].内蒙古石油化工,2012,07:18-19.
    [182]宁志勇,李胜.五阳煤矿低透气性松软煤层瓦斯抽采参数优化数值模拟[J].煤矿安全,2012,10:1-3.
    [183]刘桂丽,杨跃奎,撒占友.高位钻孔瓦斯抽采参数优化设计[J].西安科技大学学报,2012,04:450-458.
    [184]张春华,刘泽功.基于MATLAB的灰色预测系统及其对抽采瓦斯钻孔流量的数值模拟[J].中国安全科学学报,2007,04:52-55.
    [185]李日富,梁运培,张军.地面钻孔抽采采空区瓦斯效率影响因素[J].煤炭学报,2009,07:942-946.
    [186]沈玮,禹业挺,邓中,郭厚洋.基于埋管抽采作用下的采空区瓦斯浓度场分析研究[J].安徽建筑工业学院学报(自然科学版),2011,06:72-76.
    [187]刘清泉,程远平,王海锋,刘洪永,刘敬敬.顺层钻孔有效瓦斯抽采半径数值解算方法研究[J].煤矿开采,2012,02:5-7+37.
    [188]庞叶青,胡依鲁,史波波,熊伟.突出煤层区域性瓦斯抽采数值模拟研究[J].煤炭科学技术,2012,11:73-76.
    [189]徐挺.相似理论与模型试验[M].北京:中国农业机械出版社
    [190] M.B.基尔皮契夫.相似理论[M].科学出版社,1955.
    [191]谢和平,彭苏萍,何满潮.深部开采基础理论与工程实践[M].北京:科学出版社,2005.
    [192]钱凯,赵庆波,汪泽成,等.煤层甲烷气勘探开发理论与实验测试技术[M].北京:石油工业出版社,1996:119-142.
    [193]梁冰.温度对煤的瓦斯吸附性能影响的试验研究[J].黑龙江矿业学院学报,2000,10(1):20-22.
    [194]赵志根,唐修义,张光明.较高温度下煤吸附甲烷实验及其意义[J].煤田地质与勘探,2001,29(4):29-31.
    [195]杜泽生.平宝公司首山-矿己16-17煤层瓦斯抽放半径测定[J].煤矿安全,2010,41(2):40-42.
    [196]曹新奇,辛海会,徐立华等.瓦斯抽放钻孔有效抽放半径的测定[J].煤炭工程,2009,(9):88-90.
    [197]余陶,卢平,孙金华等.基于钻孔瓦斯流量和压力测定有效抽采半径[J].采矿与安全工程学报,2012,29(4):0596-0600.
    [198]刘三钧,马耕,卢杰等.基于瓦斯含量的相对压力测定有效半径技术[J].煤炭学报,2011,36(10):1715-1719.
    [199]梁冰,袁欣鹏,孙维吉等.分组测压确定瓦斯有效抽采半径试验研究[J].采矿与安全工程学报,2013,30(1):132-135,142.
    [200]孙云虎,孟鸿生.煤层注水消突及治理瓦斯、煤尘技术[J].中州煤炭,2009(7):103-104
    [201]肖知国,王兆丰.煤层注水防治煤与瓦斯突出机理的研究现状与进展[J].中国安全科学学报,2009,10(9).
    [202]胡光伟,吴拥政.煤层注水在煤巷掘进防突中的应用[J].煤矿开采,2012,17(1):91-92.
    [203]于警伟,史宗保.煤层注水在防治煤与瓦斯突出中的应用[J].中州煤炭,2008(1):71-72.
    [204]尹光志,蒋长宝,许江,彭守建,李文璞.煤层气储层含水率对煤层气渗流影响的试验研究[J].岩石力学与工程学报,2011,S2:3401-3406.
    [205]蒋承林,郭立稳,王凯.抑制突出的增压揭煤法研究[J].中国矿业大学学报,2000,29(4):381-384.
    [206]冯增朝,赵东,赵阳升.块煤含水率对其吸附性影响的试验研究[J].岩石力学与工程学报,2009,S2:3291-3295.
    [207]王俊峰,张力,赵东.温度及含水率对切削原煤吸附瓦斯特性的影响[J].煤炭学报,2011(12):2086-2091.
    [208]许江,陶云奇,等.含瓦斯煤THM耦合模型及实验研究[M],北京:科学出版社,2012
    [209] Terzaghi K. The shearing resistance of saturated soils and the angle between the planes ofshear. In: Proceedings of the first international conference on soil mechanics, vol.1.Cambridge: Harvard University;1936,54-62.
    [210] J. Liu, Z. W. Chen, et al. Evolution of coal permeability from stress-controlled todisplacement-controlled swelling conditions, Fuel,2011,90(10),2987-2997.
    [211] Carroll, M.M.,“Mechanical response of fluid-saturated porous materials”, In: Theoretical andApplied Mechanics,15th Int. Cong. Theoretical&Appl. Mech.,(eds.)F.P.J. Rimrott and B.Tabarrok,1980,251-262.
    [212] J. Liu et al. Evaluation of stress-controlled coal swelling processes, International Journal ofCoal Geology,2010(83),446-455.
    [213] Hudson, J.A., Fairhurst, C., et al.. Comprehensive rock engineering: principles, practice, andprojects. Analysis and Design Method, Vol. II. Pergamon Press, Oxford,1993,113-171.
    [214] Harpalani, S., Schraufnagel, R.A.. Shrinkage of coal matrix with release of gas and its impacton permeability of coal. Fuel,1990,69(5),551-556.
    [215] Robertson, E.P., Christiansen, R.L.. Modeling laboratory permeability in coal usingsorption-induced strain data. SPE Reservoir Evaluation&Engineering,2007,10(3),260-269.
    [216] Yu Wu, Jishan Liu, Derek Elsworth, Xiexing Miao, Xianbiao Mao, Development ofanisotropic permeability during coalbed methane production, Journal of Natural Gas Scienceand Engineering,2010,2(4),197-210.
    [217] Reiss, L.H.. The Reservoir Engineering Aspects of Fractured Formations. Gulf Publishing Co.,Houston,1980.
    [218] Chilingar, G.V.. Relationship between porosity, permeability, and grain-size distribution ofsands and sandstones. In: Straaten, L.M.J.U.v.(Ed.), Developments in Sedimentology.Elsevier,1964,71-75.
    [219] Kai Zhang, Hui Zhou, Dawei Hu, Yang Zhao, Xiating Feng. THEORETICAL MODEL OFEFFECTIVE STRESS COEFFICIENT FOR ROCK/SOIL-LIKE POROUS MATERIALS[J].Acta Mechanica Solida Sinica,2009,03:251-260.
    [220] Cui, X., Bustin, R.M.. Controls of coal fabric on coalbed gas production and compositionalshift in both field production and Canister desorption tests. SPE Journal,2006,11,111-119.
    [221] Levine, J.R.. Model study of the influence of matrix shrinkage on absolute permeability ofcoalbed reservoirs. Geological Society Special Publication,1996,109,197-212.
    [222] Zhu, W. C., Wei, C. H., Liu, J., Qu, H. Y., Elsworth, D. A model of coal-gas interaction undervariable temperatures[J]. International Journal of Coal Geology,2011(86),213-221.
    [223]孔祥言,高等渗流力学[M].合肥:中国科学技术大学出版社,1999.
    [224]盛金昌.多孔介质流-固-热三场全耦合数学模型及数值模拟[J].岩石力学与工程学报,2006,S1:3028-3033.
    [225]孔祥言,李道伦,徐献芝,卢德唐.热-流-固耦合渗流的数学模型研究[J].水动力学研究与进展(A辑),2005,02:269-275.
    [226]赵阳升.多孔介质多场耦合作用及其工程响应[M].北京:科学出版社,2010.
    [227]尹光志,王登科,张东明,王维忠.两种含瓦斯煤样变形特性与抗压强度的实验分析[J].岩石力学与工程学报,2009,02:410-417.
    [228] S.J. Peng, J. Xu, H.W. Yang, D. Liu. Experimental study on the influence mechanism of gasseepage on coal and gas outburst disaster [J]. Safety Science,2012,50(4),816-821.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700