用户名: 密码: 验证码:
三价铬镀铬惰性复合阳极材料的电沉积制备及电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统六价铬镀铬工艺因其具有高污染、高能耗等致命弱点,已逐步被三价铬镀铬工艺所取代。目前,三价铬镀铬工艺中通常使用的阳极是铅合金(如铅银合金等)材料,该类阳极存在耐蚀性差、催化活性低、析氧电位高,无法有效抑制六价铬导致镀液稳定性差等固有缺陷。近年,研究和开发能够抑制六价铬的产生、提高镀液稳定性、降低阳极析氧电位和降低能耗等方面有明显改善的新型三价铬镀铬阳极材料成为热点。
     论文针对铅合金阳极的固有缺点,采用直流和脉冲复合电沉积的方法阳极氧化制备了三价铬镀铬用惰性复合阳极材料——不锈钢基/SnO2-Sb2O3/β-PbO2-CeO2-ZrO2。通过系列电化学方法的测量,系统研究了电极制备影响因素与其电化学性能的规律和作用机理;分析了电极材料的腐蚀行为和沉积过程,探讨了电极材料耐蚀性机理、复合电沉积机理;应用于硫酸盐体系三价铬镀铬工艺,考察了该电极材料在镀铬过程的综合性能,探究了惰性复合阳极在降低槽电压、抑制六价铬产生等方面的本质原因。主要完成工作及获得结论如下:
     (1)不锈钢基/SnO2-Sb2O3/β-PbO2-CeO2-ZrO2复合电极材料的制备及性能研究
     采用热分解法制备不锈钢基/SnO2-Sb2O3中间层,热分解温度500℃,热分解次数4次制备的SnO2-Sb2O3中间层结合力优良,耐蚀性、电催化活性和节能性良好。对β-PbO2-CeO2-ZrO2电极活性层的电化学性能与改性物质研究表明,Ce02具有细化晶粒和减少电极材料晶格缺陷的作用,Zr02能够细化晶粒和提高电极材料导电性,同时Zr02微粒产生的氧空穴能形成保护性氧化膜,分散剂具有的空间位阻效应使Ce02和Zr02均匀分散在镀液中形成稳定的胶体溶液,促进固体微粒的共沉积。镀液中改性物质CeO216g·L-1, ZrO230g·L-1,分散剂30mL·L-1时可以有效改善β-PbO2-CeO2-ZrO2电极材料的电化学性能和细化晶粒尺寸。直流工艺对β-PbO2-CeO2-ZrO2电极材料电化学性能的影响主要体现在适宜的施镀温度和搅拌速度能够增大固体微粒的动能,促进微粒向阳极表面迁移和吸附,合适的电流密度使金属氧化物有效包覆纳米颗粒形成具有一定厚度的致密、平整镀层,由此得到电流密度20mA cm-2,温度80℃,搅拌速度350r·min-1可以有效促进β-PbO2-CeO2-Zr02电极材料的沉积过程,提高电极材料性能。对不同脉冲工艺制备的β-PbO2-CeO2-Zr02电极材料的电化学性能研究表明,适宜的脉冲平均电流密度、占空比和脉冲工作时间可以有效促进晶核的形成,抑制晶粒的快速长大,消除阳极附近的浓差极化,由此确定脉冲平均电流密度0.3A·cm-2,占空比30%,脉冲工作时间100ms。
     结合表面形貌和电化学性能分析可知;制备的不锈钢基/SnO2-Sb2O3/β-PbO2-CeO2-ZrO2复合电极材料晶粒细致,结构致密均匀,具有良好的耐蚀性和节能性,催化活性高且微观活性分布均匀,可显著提升电极材料的性能。相比于直流技术,采用脉冲技术制备的电极材料表面颗粒排列更平整有序、孔隙率更低,在耐腐蚀性和节能性方面都有明显改善。通过交流阻抗图谱对复合电极材料腐蚀过程分析确定:复合电极材料的腐蚀过程都存在弥散效应;不同分散剂浓度、电流密度、温度、搅拌速度、脉冲平均电流密度、占空比和脉冲工作时间制备的电极材料的腐蚀过程主要由电荷转移步骤控制;不同Ce02和ZrO2浓度制备的电极材料的腐蚀过程前期由电荷转移步骤控制,后期由扩散步骤控制。通过扫描电化学显微镜测试结合扫描电镜和能谱分析可知:最佳工艺条件制备可以有效促进复合电极材料中的纳米颗粒含量,使电极表面形貌细化和平整均匀,电极的电催化活性和活性分布均一性显著提升。
     (2)惰性复合电极材料沉积机理探讨
     采用循环伏安曲线考察复合电极材料的沉积过程,确定沉积机理为:Pb2+与羟基自由基生成中间产物Pb(OHads)2+后逐渐转变为Pb02,中间产物向Pb02转变的过程为决速步骤;改性添加物能促进β-PbO2-CeO2-ZrO2的晶粒形核,延缓晶粒长大,使晶粒尺寸更加细小,镀液中CeO216g·L-1, ZrO230g·L-1,分散剂50mL·L-1时最有利于β-PbO2-CeO2-Zr02的沉积;β-PbO2-CeO2-ZrO2的生成反应是稳定、不可逆的过程。
     (3)三价铬镀铬阳极性能研究
     采用电化学方法研究表明,较之β-PbO2和Pb-Ag(0.75)合金电极,β-PbO2-CeO2-ZrO2复合电极表现出更为优异的耐腐蚀性和节能性;Ce02和Zr02的加入改变了Pb02结晶的生长取向,改善了镀层的组织结构和晶粒尺寸。对电极材料在三价铬镀铬过程的综合性能考察发现,β-PbO2-CeO2-ZrO2复合电极材料能够有效降低槽电压,提高耐腐蚀,抑制六价铬的生成。当ZrO2浓度为30g·L-1时,制备的电极材料中Zr含量高,氧气优先析出,可降低和稳定槽电压,有效抑制镀液中的六价铬浓度,保证镀铬过程的节能和镀液的稳定性。
For heavy pollution, high energy consumption and other important drawbacks, conventional hexavalent chromium plating has been replaced by trivalent chromium plating gradually. Currently, lead-based alloys (e.g. lead-silver alloy or the like) as anode materials are widely used in trivalent chromium plating. However, lead-based alloys have many inherent defects, such as poor corrosion resistance, low catalytic activity, high oxygen evolution potential and ineffective in restraining poor stability of plating bath caused by hexavalent chromium. In recent years, the research and development of new trivalent chromium plating anode materials that can improve the stability of plating bath, inhibit the formation of hexavalent chromium, decrease oxygen evolution overpotential of anode and energy consumption significantly have become one of the hottest issue.
     Aiming at eliminating inherent defects of lead-based alloys, stainless steel-based/SnO2-Sb2O3/β-PbO2-CeO2-ZrO2inert composite electrode materials used for trivalent chromium plating were prepared by direct-current and pulse-current composite electrodeposition methods with anodic oxidation. Through a series of electrochemical measurement, the laws and action mechanism between influence factors of electrode preparation and its electrochemical properties were studied systematically; analyzing corrosion behavior and deposition process; exploring the mechanism of corrosion resistance and composite electrodeposition of the electrode. The comprehensive performance of the new anode materials were investigated while they were applied to trivalent chromium plating in sulfate bath. The essential reason of inert composite anode in reducing cell voltage and restraining the formation of hexavalent chromium were explored. The mainly work and conclusions are as follows:
     (1) Preparation and performance study of stainless steel-based/SnO2-Sb2O3/β-PbO2-CeO2-ZrO2composite materials
     The process conditions for preparing SnO2-Sb2O3intermediate with thermal decomposition method:thermal decomposition temperature is500℃, thermal decomposition number is4times. The bonding force, corrosion resistance, electrocatalytic activity and energy conservation of SnO2-Sb2O3intermediate are improved significantly. The studies on electrochemical properties of β-PbO2-CeO2-ZrO2coating under different concentration of modified substances showed that:CeO2particles can refine grains and reduce lattice defects of electrode materials; ZrO2particles can refine grains and increase electrical conductivity of electrode material; meanwhile, oxygen vacancies produced by ZrO2particles can form protective oxidation film; the dispersant agent with steric-hinerance effect accelerate dispersion of CeO2and ZrO2uniformly forming a stable colloidal solution and promoting co-deposition of solid particles. When the modified substances of CeO2,ZrO2and dispersant agent concentration is16g·L-1,30g·L-1,30mL·L-1respectively, the electrochemical properties of β-PbO2-CeO2-ZrO2electrode is improved effectively and its grain size is refined. The influence of direct-current(DC) process on electrochemical properties of β-PbO2-CeO2-ZrO2electrode are mainly reflected in three aspects: appropriate plating temperature and stirring rate can increase kinetic energy of solid particles that promoting the particles to migrate and adsorb on anode surface; appropriate current density can accelerate metal oxide to coat nano-particles effectively forming a compact and smooth coating with a certain thickness. It follows that the optimum conditions for preparing β-PbO2-CeO2-ZrO2electrode materials by DC electrodeposition:current density is20mA·cm-2, temperature is80℃, stirring rate is350r·min-1. The researches on electrochemical properties of P-PbO2-CeO2-ZrO2electrode materials prepared under different pulse conditions showed that appropriate pulse average current density, duty cycle and pulse work time can promote the formation of crystal nucleus effectively, prevent the grains growing excessively and eliminate concentration polarization around the anode. Thereby the optimum conditions for preparing β-PbO2-CeO2-ZrO2electrode materials by pulse electrodeposition:pulse average current density is0.3A-cm-2, duty cycle is30%, pulse work time is100ms.
     Combined with the surface morphology and electrochemical performance analysis, it is obvious that the stainless steel-based/SnO2-Sb2O3/β-PbO2-CeO2-ZrO2materials have many advantages, such as grain refinement, compact and uniform structure, excellent corrosion resistance and energy conservation, high catalytic activity and even distribution of the micro activity, which can improve comprehensive properties of electrode materials significantly. Compared to direct-current technology, the electrode prepared by pulse technology with lower porosity, better corrosion resistance and energy saving is more smooth and orderly arrangement of surface particles. Through AC impedance spectroscopy analysis of corrosion process of composite electrode, it showed that:dispersion effect was existed in corrosion process of composite electrode; the corrosion process of composite electrode prepared under different concentration of dispersant agent, current density, temperature, stirring rate, pulse average current density, duty cycle and pulse work time was mainly controlled by charge transfer; However, that of electrode prepared under different concentration of CeO2and ZrO2was controlled by charge transfer in early stage, the late stage was controlled by diffusion step. Combining scanning electrochemistry microscope (SECM) with SEM and energy spectrum testing showed that:the composite electrode materials prepared under optimum conditions contained more nanometer particles, the surface morphology of them were level and electrocatalatic activity and its uniformity distribution were improved.
     (2) Investigating of deposition mechanism of inert composite electrode
     By analyzing CV curves, the deposition process of composite electrode was investigated. The deposition mechanism is proposed:Pb2+and hydroxyl radicals formed intermediate product Pb(OHads)2+and then it transformed into PbO2. The process of intermediate product Pb(OHads)2+transformed into PbO2was rate-determining step. The modified substances can accelerate grain nucleation, delay grain growth and refine grain size. It is favorable toward promoting co-deposition of β-PbO2-CeO2-ZrO2when plating bath component:CeO2concentration is16g·L-1, ZrO2concentration is30g·L-1and dispersant agent concentration is50mL·L-1. The formation reaction of β-PbO2-CeO2-ZrO2was steady and irreversible process.
     (3) The study of anode properties for trivalent chromium plating
     Through electrochemical studies, it is easy to conclude that the p-PbO2-CeO2-ZrO2composite electrode showed excellent corrosion resistance and energy conservation compared to P-PbO2and Pb-Ag alloy. The addition of CeO2and ZrO2changed growth orientation of PbO2grains and improved texture structure and grain size of coating. Through the comprehensive performance investigation of electrode in trivalent chromium plating, it was found that β-PbO2-CeO2-ZrO2composite electrode can effectively reduce cell voltage, improve corrosion resistance and inhibit formation of hexavalent chromium. When the concentration of ZrO2is30g·L-1in bath, the Zr concentration in prepared electrode materials is high, which can reduce and stabilize cell voltage, reduce hexavalent chromium concentration effectively and ensure energy conservation and the stability of plating bath.
引文
[1]梁奇峰.镀铬工艺及其研究进展[J].广东化工,2007,34(11):67-68,109.
    [2]James H, Lind S. Decorative and hard chromium plating [J]. Plating and Surface Finishing, 2004,91(8):16-17.
    [3]Bao S L, An L, Fu X G. Preparation and characterization of Cr-P coatings by electrodeposition from trivalent chromium electrolytes using malonic acid as complex[J]. Surface and Coatings Technology,2006,6(201):2578-2586.
    [4]Bao S L, An L, Xu W, Zhang Y M, Gan F X. Electrodeposition and characterization of Fe-Cr-P amorphous alloys from trivalent chromium sulfate electrolyte [J]. Journal of Alloys and Compounds,2008,453(1-2):93-101.
    [5]Jafari S, Rozati S M. Characterization of black chrome films prepared by electroplating technique[C]. World Renewable Energy Congress. Sweden:Linkoping University Electronic Press,2011:3999-4005.
    [6]Kenneth R N. Functional chromium plating [J]. Metal Finishing,2007,105(10):182-191.
    [7]沈品华.现代电镀手册(上册)[M].北京:机械工业出版社,2010.
    [8]Claudio F, Roberto G, Maria C, Ercole S. Chromium electrodeposition from Cr (VI) low concentration solutions [J]. Journal of Applied Electrochemistry,2008,38(4):425-436.
    [9]Sohi M H, Kashi A A, Hadavi S M M. Comparative tribological study of hard and crack-free electrodeposited chromium coatings [J]. Journal of Materials Processing Technology,2003, 138(1-3):219-222.
    [10]Surviliene S, Jasulaitiene V, Nivinskiene O, Cesuniene A. Effect of hydrazine and hydroxylaminophosphate on chrome plating from trivalent electrolytes[J]. Applied Surface Science,2007,253(16):6738-6743.
    [11]黄和仁.镀铬液中三价铬离子和铁离子含量对镀液、镀层性能的影响[J].材料保护,2005,38(9):78.
    [12]Bayramoglu M, Onat B, Geren N. Statistical optimization of process parameters to obtain maximum thickness and brightness in chromium plating[J]. Journal of Materials Processing Technology,2008,203(1-3):277-286.
    [13]Kushwaha S, Sreedhar B, Sudhakar P P. A spectroscopic study for understanding the speciation of Cr on palm shell based adsorbents and their application for the remediation of chrome plating effluents [J]. Bioresource Technology,2012,116:15-23.
    [14]Michele D N, Roberto G, Dino M. Permeable Adsorbing Barriers for groundwater remediation from hexavalent chrome pollution [J]. International Journal of Environmental Technology and Management,2007,7(1-2):39-55.
    [15]李家柱,林安,甘复兴.六价铬电镀替代技术研究现状及其应用[J].科技进展,2002,2(5):101-104.
    [16]刘建平,胡耀红,詹益腾.三价铬电镀的研究与发展[J].表面技术,2003,32(3):5-7,18.
    [17]吴慧敏,康健强,左正忠,梁国柱,赵国鹏.全硫酸盐体系三价铬电镀铬的研究[J].武汉大学学报,2004,50(2):187-191.
    [18]Protsenko V S, Danilov F I, Gordiienko V O, Kwon S C, Kim M, Lee J Y. Electrodeposition of hard nanocrystalline chrome from aqueous sulfate trivalent chromium bath [J].Thin Solid Films,2011,520(1):380-383.
    [19]Sik C K, Hak J L, Jong K K. Plasma processing for surface modification of trivalent chromium as alternative to hexavalent chromiumlayer[J]. Surface and Coatings Technology, 2007,201(15):6601-6605.
    [20]Li B, Lin A, Gan F. Preparation and characterization of Cr-P coatings by electrodeposition from trivalent chromium electrolytes using malonic acid as complex[J]. Surface and Coatings Technology,2006,201(6):2578-2586.
    [21]Song Y B, Chin D T. Current efficiency and polarization behavior of trivalent chromium electrodeposition process [J].Electrochemica Acta,2002,48(4):349-356.
    [22]Protsenko B Y, Gordiienko V O, Danilov F I. Thick chromium electrodeposition from trivalent chromium bath containing carbamide and formic acid [J]. Metal Finishing,2011, 109(4-5):33-37.
    [23]Protsenko V S, Gordiienko V O, Danilov F I, Kwon S C, Kim M, Lee J Y. Unusually high current efficiency of nanocrystalline Cr electrodeposition process from trivalent chromium bath [J]. Surface Engineering,2011,27(9):690-692.
    [24]崔廷昌,张素兰.三价铬电镀[J].电镀与环保,2008,28(3):41-42.
    [25]郑剑,屠振密,李宁.三价铬电镀装饰铬工艺及特性研究[J].材料保护,2008,41(1):24-27.
    [26]Laura S, Erno K, Katalin P, Colin U C, Mahmoud R E, Karoly Havancsak. Electrochemical behaviour of amorphous electrodeposited chromium coatings [J]. Materials Chemistry and Physics,2012,133(2-3):1092-1100.
    [27]Zeng Z X, Zhang J Y. Correlation between the structure and wear behavior of chromium coatings electrodeposited from trivalent chromium baths [J]. Tribology Letters,2008, 30(2):107-111.
    [28]Danilov F I, Protsenko V S, Gordiienko V O. Nanocrystalline hard chromium electrodeposition from trivalent chromium bath containing carbamide and formic acid: Structure, composition, electrochemical [J]. Applied Surface Science,2011,257(18):8048-8053.
    [29]Hrussanova A, Mirkova L, Dobrev T, Vasilev S. Influence of temperature and current density on oxygen overpotential and corrosion rate of Pb-Co3O4, Pb-Ca-Sn, and Pb-Sb anodes for copper electrowinning:Part I [J]. Hydrometallurgy,2004,72(3-4):205-213.
    [30]Hrussanova A, Mirkova L, Dobrev T, Vasilev S. Influence of temperature and current density on oxygen overpotential and corrosion rate of Pb-Co3O4, Pb-Ca-Sn, and Pb-Sb anodes for copper electrowinning:Part II [J]. Hydrometallurgy,2004,72(3-4):215-224.
    [31]Hrussanova A, Mirkova L, Dobrev T. Electrochemical Properties of Pb-Sb, Pb-Ca-Sn and Pb-Co3O4 anodes in copper electrowinning [J]. Journal of Applied Electrochemistry,2002, 32(5):505-512.
    [32]胡耀红,陈力格,赵国鹏,刘建平,洪榕.三价铬镀铬阳极的研究[J].材料保护,2006,39(4):26-28.
    [33]徐金法.电积锌阳极材质的发展[J].有色金属(冶炼部分),2005,26(1):39-41.
    [34]Ivanov I, Stefanov Y, Noncheva Z, Petrova M, Dobrev T, Mirkova L, Vermeersch R, Demaerel J P. Insoluble anodes used in hydrometallurgy:Part I.Corrosion resistance of lead and lead alloy anodes [J].Hydrometallurgy,2000,57(2):109-124.
    [35]Ivanov I, Stefanov Y, Noncheva Z, Petrova M, Dobrev T, Mirkova L, Vermeersch R, Demaerel J P. Insoluble anodes used in hydrometallurgy:Part II.Anodic behaviour of lead and lead-alloy anodes [J].Hydrometallurgy,2000,57(2):125-139.
    [36]Stefanov Y, Dobrev T. Potentiodynamic and electron microscopy investigations of lead-cobalt alloy coated lead composite anodes for zinc electrowinning [J]. Transactions of the Institute of Metal Finishing,2005,83(6):296-299.
    [37]Rashkov S, Doberev T, Noneheva Z, Stefanov Y, Rashkova B, Petrova M. Lead-cobalt anodes for electrowinning of zinc from sulphate electrolytes[J]. Hydrometallurgy,1999, 52(3):223-230.
    [38]Petrova M, Stefanov Y, Noneheva Z, Dobrev T, Rashkov, S. Electrochemical behavior of lead alloys as anodes in zinc electrowinning[J]. British Corrosion Journal,1999,34(3):198-120.
    [39]张玉萍.锌电积用阳极的研究与发展[J].湿法冶金,2001,20(4):169-171.
    [40]Lupi C, Pilone D. New lead alloy anodes and organic depolariser utilization in zinc electrowinning [J]. Hydrometallurgy,2005,44(3):347-358.
    [41]杜文明.低银铅钙多元合金阳极板的制造[J].有色金属(冶炼部分),2003,31(6):46-47.
    [42]Klaus H, Thomas S. Oxygen overvoltage at insoluble anodes in the system Pb-Ag-Ca [J]. Erzmetal,2004,44(9):447-451.
    [43]Zeng J M, Zhu H X, Kong J Y. Effect of the current density on oxygen overpotential and corrosion rate of the Al/Pb-Ag-Co anodes for zinc electrowinning [J]. Advanced Materials Research,2013,637-638:1718-1723.
    [44]王恒章.四元合金阳极板在湿法炼锌中的应用[J].有色冶炼,2001,30(6):18-20.
    [45]郑瑞庭.镀铬阳极选用[J].电镀与涂饰,2004,23(3):51-52.
    [46]Jari A,Olof F. Evaluation of the electrochemical activity of a Ti-RuO2-TiO2 permanent anode[J]. ElectrochimicaActa,2006,51(27):6104-6110.
    [47]Zhi G Y, Hui M M, Dong B S. New degradation mechanism of Ti/IrO2+MnO2 anode for oxygen evolution in 0.5M H2SO4 solution [J]. Electrochimica Acta,2008,53(18):5639-5643.
    [48]Zhiguo Y, Hui M M, Dong B S. Electrochemical impedance spectroscopic (EIS) investigation of the oxygen evolution reaction mechanism of Ti/IrO2+MnO2 electrodes in 0.5M H2SO4solution[J].Journal of Electroanalytical Chemistry,2008,621(1):49-54.
    [49]Hu J M, Meng H M, Zhang J Q. Degradation mechanism of long service life Ti/IrO2-Ta2O5 oxide anodes in sulphuric acid[J]. Corrosion Science,2002,44(8):1655-1668.
    [50]Panic V V, Jovanovic V M, Terzic S I, Barsoum M W, V.D. Jovic V D, Dekanski A B. The properties of electroactive ruthenium oxide coatings supported by titanium-based ternary carbides [J]. Surface & Coatings Technology,2007,202(2):319-324.
    [51]谢香兰.脉冲电沉积制备Ti基复合阳极材料及其性能的研究[D].昆明:昆明理工大学2010.
    [52]经志宏,李明杰.在三价铬盐水溶液中电沉积铬工艺新型阳极材料的研究(Ⅱ)[J].延边大学学报(自然科学版),1994,20(4):34-37.
    [53]张招贤.涂层钛阳极的研究和应用[J].金属学报,2002,38:596-599.
    [54]张招贤.Ir,Ta氧化物涂层钛阳极恶化原因的分析[J].稀有金属快报,2004,23(10):17-22.
    [55]Devilliers D, Dinh M T, Mahe E. Cr(Ⅲ) oxidation with lead dioxide-based anodes[J].Electrochimica Acta,2003,48(28):4301-4309.
    [56]王峰,裴燕,俞斌.一种新型二氧化铅电极的研制[J].应用化学,2002,19(2):193-195.
    [57]张招贤.钛电极工学[M].北京:冶金工业出版社,2000.
    [58]孙凤梅.含氧化铱中间层的钛基二氧化铅阳极[J].云南大学学报,2005,27(5A):371-373.
    [59]Kong H S, Lu H Y, Zhang W L, Lin H B, Huang W M. Performance characterization of Ti substrate lead dioxide electrode with different solid solution interlayers [J]. Journal of Materials Science,2012,47(18):6709-6715.
    [60]魏敏,李国防,李贯良,王淑英.电沉积制备铁基β-Pb02电极[J].化学世界,2007,38(6):337-339.
    [61]Shao P T, Chu N M, Hui F A. Novel PbO2 electrode preparation and its application in organic degradation [J]. Electrochimica Acta,2008,53:3002-3006.
    [62]周明华,戴启洲,雷乐成,吴祖成,马淳安,汪大翠.新型二氧化铅阳极电催化降解有机污染物的特性研究[J].物理化学,2004,20(8):871-876.
    [63]Velichenko A B, Amadelli R, Benedetti A, Girenko D V, Kovalyov S V, Danilov F I. Electrosynthesis and physicochemical properties of PbO2 films [J]. Journal of Electrochemical Society,2002,149:445-449.
    [64]Guo A H, Tang X J, Zhang B G. Electrodialysis production of hypophosphorous acid with Ti-PbO2 anode[J]. Advanced Materials Research,2010,178(133):133-136.
    [65]Schfimann U, Grtindler P. Electrochemical degradation of organic substances at PbO2 anodes:monitoring by continuous CO2 measurements [J]. Water Research,2006 (32):2835-2842.
    [66]Amadelli R. Electrochemical oxidation of trans-3-4-di-hydroxycinnamic acid at PbO2 electrodes:direct electrolysis and ozone mediated reactions compared[J].Electrochimica Acta,2001(46):341-347.
    [67]郑一雄.二氧化铅电极在电解锰中的应用[J].无机盐工业,2005,31(2):13-15.
    [68]Casellato U, Cattarin S, Musiani M. Preparation of porous PbO2 electrodes by electrochemical deposition of composites [J]. Electrochimica Acta,2003,48(27):3991-3998.
    [69]韦国林,张利.Pb02电极制备及性能测试[J].上海大学学报,2002,21(3):302-305.
    [70]Cao J L, Zhao H Y, Cao F H, Zhang J Q. The influence of F doping on the activity of PbO2 film electrodes in oxygen evolution reaction [J]. Electrochimica Acta,2007,52(28):7870-7876.
    [71]周海晖,陈范才,赵常就.环氧板二氧化铅电极的制备及其性能测试[J].表面技术,2000,28(2):15-18.
    [72]王桂清,刘敏娜.聚丙烯塑料板基体二氧化铅电极的制备[J].材料保护,2005,28(3):18-19.
    [73]郑一雄.石墨基二氧化铅阳极的制备和应用[J].华桥大学学报(自然科学版),2003,19(4):358-361.
    [74]Mario H P S, Luiz A D, Julien F C B. Investigationof the Properties of Ti/IrO2-Nb2O5 electrodes for simultaneous oxygen evolutionand eleetroehemical ozone production[J]. Electrochimica Acta,2004,49:1925-1935.
    [75]余逸男.添加剂对铁基Pb02电极制备影响的研究[J].东华大学学报,2001,27(1):66-69.
    [76]孙凤梅,潘建跃.Pb02阳极材料的研究进展[J].兵器材料科学与工程,2004,27(1):68-73.
    [77]Pei K S, Xiao L W. Morphologic study of electrochemically formed lead dioxide [J]. Electrochimica Acta 2003,48(12):1743-1747.
    [78]Devilliers D, Dinh T M T, Mahe E, Dauriac V, Lequeux N. Electroanalytical investigations on electrodeposited lead dioxide[J]Journal of Electroanalytical Chemistry,2004, 573(2):227-239.
    [79]Pavlov D, Kirchev A, Stoycheva M, Monahov B. Influence of H2SO4 concentration on the mechanism of the processes and on the electrochemical activity of the Pb/PbO2/PbSO4 electrode[J].Journal of Power Sources,2004,137(2):288-308.
    [80]Amadelli R, Maldotti A, Molinari A, Danilov F I, Velichenko A B. Influence of the electrode history and effects of the electrolyte composition and temperature on O2 evolution at β-PbO2 anodes in acid media[J]. Journal of Electroanalytical Chemistry,2002,534(1):1-12.
    [81]蔡天晓,鞠鹤.电极的改性制备及其性能[J].表面技术,2002,31(5):22-23.
    [82]Velichenko A B, Amadelli R, Baranova E A, Girenko D V, Danilov F I. Electrodeposition of Co-doped lead dioxide and its physicochemical[J]. Journal of Electroanalytical Chemistry,2002,527(1-2):56-64.
    [83]黄文沂,南峰.改性二氧化铅阳极的研究[J].无机盐工业,2006,4(5):16-18.
    [84]陈光华,王光信.电化学方法与应用[J].北京:化学工业出版社,2001.
    [85]薛彩霞,梁镇海.Ti/SnO2+Sb204+CF/PbOx电极的制备及其性能研究[J].太原理工大学学报,2007,38(5):431-434.
    [86]王雅琼.含Sb-SnO2中间层的钛基金属氧化物电极的结构与性能研究[D].南京理工大学,2008.
    [87]益小苏,杜善义,张立同.复合材料手册[M].北京:化学工业出版社,2009.
    [88]沈品华.现代电镀手册(上册)[M].北京:机械工业出版社,2010.
    [89]Zhi X Z, Jun Y Z. Electrodeposition and tribological behavior of amorphous chromium-alumina composite coatings [J]. Surface and Coatings Technology,2008,202(12):2725-2730.
    [90]Marco M. Electrodeposition of composites:an expanding subject in electrochemical material science [J]. Electrochimica Acta,2000,45(20):3397-3402.
    [91]Cai T X, Ju H, Wu H R, Kang X T, Zhang Y P. The property of β-PbO2 electrode by adding of nanograde TiO2 powders [J]. Rare Metal Materials and Engineering,2003,32(7):558-560.
    [92]赵乃勤,王玉林,周复刚.复合电沉积技术制备颗粒增强耐磨复合材料及其在汽车轴瓦中的应用展望[J].材料导报,2000,14(2):28-30.
    [93]Shahram G, Hassan K. Synthesis and morphological investigation of pulsed current formed nano-structured lead dioxide [J]. Electrochemistry Communications,2005,7(12):1257-1264.
    [94]郭忠诚,杨显万.电沉积多功能复合材料的理论与实践[M].北京:冶金工业出版社,2002.
    [95]许维源.近年来脉冲电镀发展概况[J].电镀与涂饰,2003,22(6):41-44.
    [96]Saravanan G, Mohan S. Corrosion behavior of Cr electrodeposited from Cr (VI) and Cr (Ⅲ)-baths using direct (DCD) and pulse electrodeposition (PED) techniques [J]. Corrosion Science,2009,51(1):197-202.
    [97]李开华,罗江山,唐永建,刘颖.泡沫镍制备中脉冲电沉积镍研究[J].稀有金属材料与工程,2008,37(8):1451-1455.
    [98]刘勇,罗义辉,魏子栋.脉冲电镀的研究现状[J].电镀与精饰,2005,27(5):25-28.
    [99]王静毅,胡熙恩.脉冲电镀制备钛基二氧化铅电极[J].过程工程学报,2003,3(6):540-543.
    [100]Mulleu C, Sarret M, Andreu T. Electrodeposition of Zn-Mn alloys using pulse plating [J]. Journal of the Electrochemical Society,2007,150(11):772-776.
    [101]Vatistas N, Cristofaro S. Lead dioxide coating obtained by pulsed current technique [J]. Electrochemistry Communications,2000,2(5):334-337.
    [102]李雪松,吴化.脉冲电沉积Ni-Al2O3纳米复合镀层品体结构的变化[J].金属热处理,2008,33(6):59-60.
    [103]吴化,陈颖,李雪松.脉冲参数对Ni-SiC纳米复合镀层的影响[J].电镀与环保,2006,26(1):8-10.
    [104]邹忠,李劫,丁凤其,张文根,肖劲,叶绍龙,刘业翔.稀土Eu掺杂对金属氧化物涂层阳极电催化性能的影响[J].中国有色金属学报,2001,11(1):91-94.
    [105]刘金明.刘柏雄.稀土对电沉积法制备泡沫铜工艺的影响[J].材料热处理,2006,35(24):52-53.
    [106]柯跃前.La对电沉积纳米镍组织结构和耐蚀性的影响[J].泉州师范学院学报(自然科学),2008,26(4):63-66.
    [107]曹建春,郭忠诚.新型不锈钢基PbO2/PbO2-CeO2复合电极材料的研制[J].昆明理工大学学报,2004,29(5):38-42.
    [108]李勇,夏季斌.稀土对化学镀镍溶液稳定性的影响[J].电镀与涂饰,2005,24(7):5-7.
    [109]程西云,石磊.电沉积稀土改性陶瓷涂层磨损性能研究[J].润滑与密封,2006.10(10):56-59.
    [110]Zhu L Z, Chen Y F, Yu J P. Function of rare earth compounds on electrodeposition of zinc-nickel alloy[J]. Chemical Research and Application,2001,13(1):98-102.
    [111]Ai S Y, Gao M N, Zhang W, Wang Q J, Xie Y F, Jin L T. Preparation of Ce-PbO2 modified electrode and its application in detection of anilines[J]. Talanta,2004,62(3):445-450.
    [112]艾德生,戴遐明,李庆丰.纳米ZrO2粉的表面电性研究[J].中国粉体技术,2001,7(4),34-37.
    [113]Guo D J, Qiu X P, Zhu W T, Chen L Q. Synthesis of sulfated ZrO2/MWCNT composites as new supports of Pt catalysts for direct methanol fuel cell application[J]. Appl Catal:B, 2009,89(3-4),597-601.
    [114]Bai Y X, Wu J J, Xi J Y, Wang J S, Zhu W T, Chen L Q, Qiu X P. Electrochemical oxidation of ethanol on Pt-ZrO2/C catalyst [J]. Electrochemistry Communications,2005, 7(11):1087-1090.
    [115]苗治广,郭忠诚.新型不锈钢基PbO2-WC-ZrO2复合电极材料的研制[J].电镀与涂饰,2007,26(4):15-19.
    [116]陈步明.新型节能阳极材料制备技术及电化学性能研究[D].昆明:昆明理工大学,2009.
    [117]张文峰,朱荻.Ni-ZrO2纳米复合电镀层的制备及其耐蚀性研究[J].腐蚀科学与防护技术,2006,18(5):325-328.
    [118]任俊,沈健,卢寿慈.颗粒分散科学与技术[M].北京:化学工业出版社,2005.
    [119]郑仕远,吴奇财,周朝霞,刘刚,熊邦虎.超细粉体的水性超分散剂研究进展[J].涂料工业,2001,41(5):74-79.
    [120]梁建超,肖建中,罗志安,杨一凡.分散剂对ZrO2料浆及陶瓷性能的影响[J].硅酸盐通报,2005,(2):45-47.
    [121]周雅宁,万亚珍,刘金盾.二氧化铅电极的制备及应用现状[J].无机盐工业,2006,38(10):8-11.
    [122]Veliehenko A B, Devilliers D. Eletrodeposition of fluorine-doped lead dioxide [J]. Journal of Fluorine Chemistry,2007,128(4):269-276.
    [123]Veliehenko A B, Girenko D V, Danilov F I. Mechanism of lead dioxide electrodeposition[J]. Journal of Electroanalytical Chemistry,1996,405(1-2):127-132.
    [124]姜亚昌,王巧梅.纳米Ce02的制备技术及其催化领域的应用[J].材料导报,2004,18(2):131-141.
    [125]Velichenko A B, Baranova E A, Girenko D V, Amadelli R, Kovalev S V, Danilov F I. Mechanism of electrodeposition of lead dioxide from nitrate solutions[J]. Russian Journal of Electrochemistry,2003,39(6):615-621.
    [126]李广志,殷恒波,李海霞.硫酸铬(Ⅲ)生产工艺开发及在电镀中应用研究[J].江苏环境科技,2007,20(2):11-14.
    [127]胡会利,李宁.电化学测量[M].北京:国防工业出版社,2007.
    [128]努丽燕娜,王保峰.实验电化学[M].北京:化学工业出版社,2007.
    [129]陈光华,王光信.电化学方法与应用[M].北京:化学工业出版社,2001.
    [130]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002.
    [131]彭昌盛,宋少先,谷庆宝.扫描探针显微技术理论与应用[M].北京:化学工业出版社,2007.
    [132]杨晓辉,赵瑜,谢青季,姚守拙.扫描电化学显微镜技术近期进展[J].分析科学学报,2004,20(2):210-214.
    [133]Sun P, Laforge F O, Mirkin M V. Scanning electrochemical microscopy in the 21st century [J]. Phys. Chem. Chem. Phys,2007,9(7):802-823.
    [134]Stuart A G E, Karine B, Martial B, Pascal M, Denuault G. Scanning elecrochemical microscopy(SECM):localized glucose oxidase immobilization via the direct electrochemical microspotting of polypyrrole-biotin films[J]. Electrochemistry Communications,2005,7(2):135-140.
    [135]Edwards M A, Martin S, Whitworth A L, Macpherson J V, Unwin P R. Scanning electrochemical microscopy:principles and applications to biophysical systems[J]. Physiological Measurement,2006,27(12):63-108.
    [136]Zhu R, Macfie S M, Ding Z. Cadmium-induced plant stress investigated by scanning electrochemical microscopy [J]. Journal of Experimental Botany,2005,56(421):2831-2838.
    [137]Wittstock G, Burchardt M, Pust S E, Shen Y, Zhao C. Scanning electrochemical microscopy for direct maging of reaction rates[J]. Angewandte Chemie,2007,46(10):1584-1617.
    [138]Zhang M, Becue A, Prudent M, Champod C, Girault H. SECM imaging of MMD-enhanced latent fingermarks [J]. Chemical Communications,2007, (38):3948-3950.
    [139]Zhang M, Wittstock G, Shao Y, Girault H H. Scanning electrochemical microscopy as a readout tool for protein electrophoresis[J]. Analytical Chemistry,2007,79(13):4833-4839.
    [140]乔志刚.扫描电化学显微镜技术理论及应用研究[D].兰州:西北师范大学,2011.
    [141]卢小泉,王晓强.扫描电化学显微镜及其在界面电化学研究中的应用[J].化学通报,2004,9:673-678.
    [142]Zhao X, Petersen N O, Ding Z. Comparison study of live cells by atomic force microscopy, confocal microscopy, and scanning electrochemical microscopy[J]. Canadian Journal of Chemistry,2007,85(3):175-183.
    [143]Bi S, Liu B, Fan F R F, Bard A J. Electrochemical studies of guanosine in DMF and detection of its radical cation in a scanning electrochemical microscopy nanogap experiment[J]. Journal of the American Chemical Society,2005,127(11):3690-3691.
    [144]Mezour M A, Cornut R, Hussien E M, Morin M, Mauzeroll J. Detection of hydrogen peroxide produced during the oxygen reduction reaction at self-assembled thiol-porphyrin monolayers on gold using SECM and nanoelectrodes[J]. Langmuir,2010,26(15):13000-13006.
    [145]Shen Y, Trauble M, Wittstock G. Detection of Hydrogen peroxide produced during electrochemical oxygen reduction using scanning electrochemical microscopy[J]. Analytical Chemistry,2008,80(3):750-759.
    [146]Sanchez-Sanchez C M, Rodriguez-Lopez J, Bard A J. Scanning electrochemical microscopy, uantitative calibration of the SECM substrate generation/Tip collection mode and its use for the Sstudy of the oxygen reduction mechanism [J]. Analytical Chemistry, 2008,80(9):3254-3260.
    [147]Nguyen V P, Sik C K, Joo Y L. Mechanistic study on the effect of PEG molecules in a trivalent chromium electrodeposition process[J]. Microchemical Journal,2011,99(1):7-14.
    [148]Zhi X Z, Ya L S, Jun Y Z. The electrochemical reduction mechanism of trivalent chromium in the presence of formic acid [J]. Electrochemistry Communications,2009, 11(2):331-334.
    [149]Lu X, Li M, Yang C, Zhang L, Li Y, Jiang L, Li H, Jiang L, Liu C, Hu W. Electron transport through a self-assembled monolayer of thiol-end-functionalized tetraphenylporphines and metal tetraphenylporphines[J]. Langmuir,2006,22(7):3035-3039.
    [150]Zhi F, Lu X, Yang J, Wang X, Shang H, Zhang S, Xue Z. Selective anion sensing through a self-assembled monolayer of thiol-end-functionalized porphyrin[J]. The Journal of Physical Chemistry,2009,113(30):13166-13172.
    [151]Wang W, Li X, Wang X, Shang H, Liu X, Lu X. Comparative electrochemical behaviors of a series of SH-Terminated-Functionalized porphyrins assembled on a gold electrode by scanning electrochemical microscopy (SECM)[J]. The Journal of Physical Chemistry, 2010,114(32):10436-10441.
    [152]Lin C L, Rodriguez-Lopez J N, Bard A J. Micropipet Delivery-Substrate collection mode of scanning electrochemical microscopy for the imaging of electrochemical reactions and the screening of methanol oxidation electrocatalysts[J]. Analytical Chemistry,2009, 81(21):8868-8877.
    [153]Dumitrescu I, Dudin P V, Edgeworth J P, Julie V M, Patrick R U. Electron transfer kinetics at single-walled carbon nanotube electrodes using scanning electrochemical microscopy[J]. The Journal of Physical Chemistry,2010,114(6):2633-2639.
    [154]韩卫清,周刚,王连军,孙秀云,李健生.Ti/Sn02+Sb2O3/β-Pb02阳极电化学氧化异噻唑啉酮[J].过程工程学报,2006,4(6):566-570.
    [155]李荻.电化学原理(第3版)[M].北京:北京航空航天大学出版社,2010.
    [156]王森林,廖涛,纪永乐,李河昆,杨启胜.Sb-Zn合金的电沉积及其耐腐蚀性能[J].材料科学与工程学报,2008,26(5):739-742.
    [157]倪永乐,孟惠民,孙冬柏,俞宏英,樊自拴,王旭东.SbOx+SnO2中间层对Ti/MnO2阳极性能的影响[J].材料科学与工程学报,2007,25(4):529-532,549.
    [158]李耀刚,孙彦平,许文林.硫酸介质中Ti/SnO2/PbO2析氧阳极的研究[J].电化学,2003,4(4):439-453.
    [159]刘丽,毛英杰,陈志红.钛合金在不同pH值人工唾液中耐腐蚀性能的研究[J].中国生物医学工程学报,2006,25(2):166-169
    [160]Zhu L Z, Chen Y F, Yu J P. Function of rare earth compounds on electrode-position of zinc-nickel alloy[J].Chemical Research and Application,2001,13(1):98-102.
    [161]姚静.Zn/纳米Ce02复合镀层的制备及电化学性能研究[J].表面技术,2009,38(4):32-35.
    [162]Mohan S, Vijayakumar J, Saravanan G. Influence of CH3SO3H and AICl3 in direct and pulse current electrodeposition of trivalent chromium[J]. Surface Engineering,2009, 25(8):570-576.
    [163]史美伦.交流阻抗谱原理及应用[M].北京:国防工业出版社,2001.
    [164]高岩,刘鹤鸣.电化学阻抗谱在缓蚀剂研究中的应用进展[J].石油化工腐蚀与防护,2008,25(1):6-9.
    [165]程志亮,杨秀荣.电化学交流阻抗技术表征自组装多层膜[J].分析化学,2001,29(1):6-10.
    [166]赵永韬,吴建华,于辉,钱建华.交流阻抗法研究膜层的形成和破损(Ⅰ)—缓蚀剂膜层的EIS变化[J].四川化工与腐蚀控制,1999,2(4),14-17.
    [167]王新东,武世民,刘艳芳,孙根生,段淑贞.用电化学交流阻抗法研究铝合金表面稀土转化膜[J].北京科技大学学报,2001,23(4):320-323.
    [168]王留成,李晓乐,赵建宏,宋成盈,徐海升.掺杂PbO2/Ti阳极在硫酸铬电氧化过程的电极行为[J].化学研究与应用,2007,19(2):172-175.
    [169]Liu H L, Liu Y, Zhang C, Shen R S. Electrocatalytic oxidation of nitrophenols in aqueous solution using modified PbO2 electrodes[J]. Applied Electrochemistry,2008,38(1):101-108.
    [170]洪富,王磊,关杰,张翼.稀土掺杂Pb02电极的制备及催化性能研究[J].中国稀土学报,2007,25(3):299-304.
    [171]Zhu R, Nowierski C, Ding Z, James J N, David W S. Insights into grain structures and their reactivity on grade-2 Ti alloy surfaces by scanning electrochemical microscopy[J]. Chemistry of Materials,2007,19(10):2533-2543.
    [172]Lu X, Wang T, Zhou X, Yao L, Bowan W, Liu X. Investigation of ion transport traversing the "ion channels" by scanning electrochemical microscopy (SECM) [J]. The Journal of Physical Chemistry,2011,115(11):4800-4805.
    [173]Song Y H, Wei G, Xiong R C. Structure and properties of PbO2-CeO2 anodes on stainless steel [J]. Electrochimica Acta,2007,52(24):7022-7027.
    [174]Jing P W, Xiang L, Ling H G. Effect of surface morphology of lead dioxide particles on their ozone generating performance[J]. Applied Surface Science,2008,254(20):6666-6670.
    [175]黄步松,李凝.电沉积Ni-ZrO2复合镀层的耐蚀性能研究[J].矿冶工程,2009,29(1):97-100.
    [176]李谋成,曾潮流,林海潮.参比电极体系内阻对电化学阻抗谱的影响[J].腐蚀科学与防护技术,2001,13(3):125-127.
    [177]Jung C, Sanchez-Sanchez C M, Lin C L, Joaquin R L, Allen J B. Electrocatalytic activity of Pd-Co bimetallic mixtures for formic acid oxidation studied by scanning electrochemical microscopy[J]. Analytical Chemistry,2009,81(16):7003-7008.
    [178]Minguzzi A, Alpuche-Aviles M A, Lopez J R, Sandra R, Allen J B. Screening of oxygen evolution electrocatalysts by scanning electrochemical microscopy using a shielded tip approach[J]. Analytical Chemistry,2008,80(11):4055-4064.
    [179]Kong J T, Shi S Y, Kong L C, Zhu X P, Ni J R. Preparation and characterization of PbO2 electrodes doped with different rare earth oxides[J]. Electrochimica Acta,2007, 53(4):2048-2054.
    [180]郭忠诚.稀土对复合电镀工艺及镀层性能的影响[J].金属学报,1996,32(5):516-520.
    [181]安茂忠.电镀理论与技术[M].哈尔滨:哈尔滨工业大学出版社,2004.
    [182]Gunter W, Erich H, Hermann K. Effect of current density and temperature on the morphology of electrodeposited chromium[J]. Metal Finishing,2010,108(1):19-27.
    [183]郭忠诚,曹梅.脉冲复合电沉积的理论与工艺[M].北京:冶金工业出版社,2009.
    [184]侯丛福,王菊,于桂云,杨春晖,杨哲龙,屠振密.脉冲参数对镀层微观结构及性的影响[J].材料保护,2001(1):10-11.
    [185]Mohan S, Saravanan G, Renganathan N G. Comparison of chromium coatings and electrochemical behaviour with direct current and pulse current deposition in trivalent chromium formate urea bath as alternative to conventional Cr coatings[J]. Surface Engineering,2011,27(10):775-783.
    [186]Nijjer S, Thonstad J, Haarberg G M. Cyclic and linear voltammetry on Ti/IrO2-Ta2O5-MnOx electrodes in sulfuric acid containing Mn2+ ions[J]. Electrochimica Acta,2001, 46(23):3503-3508.
    [187]Abyaneh M Y, Saez V, Gonzalez-Garcia J, Mason T J. Electrocrystallization of lead dioxide:Analysis of the early stages of nucleation and growth[J]. Electrochimica Acta, 2010,55(10):3572-3579.
    [188]Velichenko A B, Luk'yanenko T V, Nikolenko N V, Amadelli R, Danilov F I. Nafion effect on the lead dioxide electrodeposition kinetics[J].Russian Journal of Electrochemistry,2007,43(1):118-120.
    [189]Velichenko A B, Amadelli R, Gruzdeva E V, Luk'yanenko T V, Danilov F I. Electrodeposition of lead dioxide from methanesulfonate solutions[J] Journal of Power Sources,2009,19(1):103-110.
    [190]Devilliers D, Dinh T M T, Mahe E, Dauriac V, Lequeux N. Electroanalytical investigations on electrodeposited lead dioxide[J]. Journal of Electroanalytical Chemistry, 2004,573(2):227-239.
    [191]Hassan K, Bita K, Seyed N M. Effect of particle size on the cyclic voltammetry parameters of nanostructured lead dioxide[J]. Int. J. Electrochem. Sci.,2009,4:414-424.
    [192]Velichenko A B. Electrosynthesis and physicochemical properties of Fe-doped lead dioxide electrocatalysts [J].Electrochemical Acta,2000,45(25):4341-4350.
    [193]任秀斌,陆海彦,刘亚男,李伟,林海波.钛基二氧化铅电极电沉积制备过程中的立体生长机理[J].化学学报,2009,67(9):888-892.
    [194]戴长松,王振华,王殿龙,丁飞,胡信国.电沉积铅合金在硫酸中循环伏安行为的研究[J].哈尔滨工业大学学报,2005,37(4):530-532.
    [195]王雅琼,童宏扬,许文林.超声对Ti/SnO2+Sb2O3/PbO2电极材料结构及电极性能的影响[J].无机材料学报,2004,19(6):1307-1312.
    [196]王海潮,彭乔,王啸宇,李清启.电化学法研究铅阳极材料镀层的抗腐蚀性[J].腐蚀与防护,2006,27(8):391-393.
    [197]Kennedy C J, Lerber K V, Wess T J. Measuring crystallinity of laser cleaned silk by X-ray diffraction[J].e-Preserv Sci,2005,2:31-37.
    [198]郭振琪,付涛,王宁,傅恒志.一种测定晶体取向及其分布的简便XRD方法[J].无机材料学报,2002,17(3):460-461.
    [199]Yuan L, Hui L L, Jun M. Investigation on electrochemical properties of cerium doped lead dioxide anode and application for elimination of nitrophenol [J]. Electrochimica Acta, 2011,56(3):1352-1360.
    [200]Velichenko A B, Devilliers D. Electrodeposition of fluorine-doped lead dioxide [J] Journal of Fluorine Chemistry,2007,128(4):269-276.
    [201]Pei K S, Xiao L W. Morphologic study of electrochemically formed lead dioxide [J]. Electrochimica Acta,2003,48(12):1743-1747.
    [202]喻德忠,蔡汝秀,潘祖亭.纳米级二氧化锆的合成及其在六价铬污染处理中的应用[J].分析科学学报,2002,18(5):418-420.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700