用户名: 密码: 验证码:
生物基多支化聚合物制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从传统石化原料到合成树脂、化纤、橡胶等高分子材料都可以以木质纤维素、淀粉、非食用油脂等可再生资源为原料,通过各种技术路线实现石油基产品的有效替代。设计、合成来自可再生资源的新型“绿色”聚合物,使其物理、化学性质类似或优于石油基同类聚合物是当前生物基高分子材料研究的主要方向。本论文以纤维素、蓖麻油等可再生资源为原料,将甲基丙烯酸羟乙酯等石油基单体以及来源于可再生资源的松香基单体、油脂基单体以多种形式分别接枝到纤维素、蓖麻油骨干上,合成了具有刷状结构的纤维素基聚合物以及类似星状(三臂状)结构蓖麻油基聚合物,可制备出全生物基的新型高分子材料。通过FT-IR、1H-NMR、13C-NMR、GPC、TEM、TGA、AFM、力学性能测试等分析手段对纤维素、蓖麻油基引发剂的合成与聚合反应过程进行了研究,讨论了共聚物组成结构与热力学、力学等性能之间的关系。相关研究为利用可再生资源为原料,设计合成新型全生物基聚合物材料提供了理论依据和技术基础。
     1.采用LiCl/二甲基乙酰胺均相溶剂系统制备了用于纤维素修饰的纤维素基ATRP大分子引发剂,纤维素单元/2-溴代异丁酰溴的摩尔比投料为1:5时,溴含量(引发点)为4.17mmol/g,引发剂可溶于DMF、THF等多种有机溶剂中。在此基础上,使用CuBr/PMDETA催化体系,控制单体/引发剂/催化剂/配体的摩尔比,反应温度40-60℃下通过ATRP聚合反应将2-HEMA接枝到纤维素骨干上,制备的聚合物水化球形胶束半径约为80nm。TGA分析显示,纤维素引发剂及Cell-g-PHEMA聚合物与纤维素相比热稳定性降低。
     2.使用CuBr/PMDETA催化体系,通过控制单体/引发剂/催化剂/配体的摩尔比将两种不同结构的树脂酸基单体(DAEMA、DAEA)接枝到纤维素骨架上,调整单体进料比可合成不同分子量的聚合物,Cell-g-PDAEMA(或PDAEA)接枝聚合物的动力学曲线中,ln([M]0/[M])均和时间呈线性关系,显示聚合反应基本可控,DAEMA的聚合活性强于DAEA。接枝共聚物Cell-g-PDAEMA(或PDAEA)玻璃化转变温度为83.2℃(PDAEA,51.8℃),树脂酸单体的引入提高了纤维素材料的疏水性能,聚合物具有紫外吸收性能。TGA显示,纤维素接枝树脂酸单体聚合物的热稳定性较纤维素有明显的提高。
     3.合成了两个系列的刷状接枝共聚物纤维素-g-聚〔丙烯酸正丁酯-co-脱氢枞酸(β-甲基丙烯酰氧基乙基)酯〕〔Cell-g-P(BA-co-DAEMA)〕和纤维素-g-聚〔甲基丙烯酸月桂醇酯-co-脱氢枞酸(β-甲基丙烯酰氧基乙基)酯〕〔Cell-g-P(LMA-co-DAEMA)〕,通过控制单体摩尔比来调整P(BA-co-DAEMA)和P(LMA-co-DAEMA)侧链长度,制得的接枝聚合物有不同的玻璃化转变温度(-60-50℃),拉伸应力-应变和蠕变柔量测试显示了接枝共聚物具有良好的力学性能。当单体:引发剂投料摩尔比为1000:1时,接枝聚合物样品屈服应力在0-2.5MPa之间,杨氏模量最高为99MPa,测试的6个接枝共聚物样品显示弹性应变之间恢复值在50%至85%,断裂时都有大的应力形变(500%或以上),具有弹性体材料特征。通过AFM、SAXS显示聚合物没有相分离,同时聚合物显示出了很好的疏水性和热稳定性。
     4.通过2-溴代异丁酰溴与蓖麻油中的羟基进行酯化反应,制备了蓖麻油基ATRP引发剂,使用FT-IR、1H-NMR、13C-NMR等分析方法确定了引发剂的结构。通过蓖麻油ATRP接枝聚合影响因素的初步考察,结果表明在蓖麻油基的ATRP聚合接枝聚甲基丙烯酸甲酯反应体系中,溴化亚铜的催化效果要比氯化亚铜好,且溴化亚铜用量低时,ATRP聚合过程控制效果更好,溶剂用量体积百分比在70%以上可以使ATRP聚合顺利进行,其中使用极性高的溶剂有助于聚合的进行。
     5.通过合成的蓖麻油基ATRP引发剂(Cas-BiB),利用蓖麻油三官能团羟基结构合成了类似星状(三臂状)蓖麻油基接枝丙烯酸酯聚合物,聚合反应过程可控。TGA分析显示聚合物的起始分解温度和最大降解温度分别为350℃和450℃,在聚合过程当中可以调整单体MMA、BA的不同摩尔投料比来制备具有不同Tg值的共聚物。力学性能测试结果表明,在MMA单体投料摩尔含量在40%-60%之间时,当MMA含量为50%时,聚合物膜的断裂伸长率接近300%,当MMA含量为60%时屈服应力为20MPa,可以看出当MMA的含量增加时,断裂伸长变小,断裂应力增大。
The feedstock used for preparation of synthetic resin, chemical fibre, rubber and otherpolymer materials is shifting from petroleum resource to renewable resources such as woodcellulose, starch, non edible oils and fats, etc, by various technical approach, which eventuallyexpect to achieve an effective replacementof petroleum based products. Currently, the mainpurpose of the research on renewable biomass based polymer materials is to obtain a novel"green" polymers whose physical and chemical properties is similar or better than those ofpetroleum based similar polymers by concise design and synthesis strategy. In this paper, thebackbones of cellulose, castor oil or other renewable resources used as starting material, weregrafted by petroleum based monomers like hydroxyethyl methacrylate (2-HEMA), as well asby renewable monomers such as rosin based monomers and oil based monomers by atomtransfer radical polymerization (ATRP), respectively, in order to obtain cellulose basedpolymer with brush structure, and castor oil based polymer with star shaped (three arms)structure. FT-IR,1H-NMR, solubility, GPC, TEM, TGA, AFM, mechanical property test etc,were then used to characterize the structure and initiating activity of cellulose or castor oilbased initiators and as well as counterpart polymers.The relationship of the structure ofcopolymer composition and thermodynamic, dynamics, etc, were also discussed. Theseresearchs will provide a good theoretical basis for the design synthesis and application of novelbiomass based polymers by using the renewable resources as a feedstock.
     1. By using LiCl/dimethyl amine solvent system, cellulose based macroinitiators used forthe ATRP were prepared. In this case, a macroinitiators with bromide content (initiating point)of4.17nmol/g, which can dissolve in DMF, THF and others solventss, was synthesized withfeeding molar ratio of cellulose unit and2-bromo isobutyryl bromine feeding of1:5, and usedto prepare the cellulose-g-poly(2-hydroxyethyl methacrylate)(Cell-g-PHEMA) applyingCuBr/Pentamethyldiethylenetriamine (PMDETA) as catalytic system. By controlling the molarratio of monomer, initiator, catalyst and ligand, as well as the reaction temperature rangingfrom40℃to60℃, poly(2-HEMA) was grafted on the cellulose backbone by ATRPpolymerization. The radius of hydration spherical micelles of prepared polymer was about80nm. The TGA analysis showed that the thermal stability of cellulose initiator andCell-g-PHEMA polymer and decreased, while compared raw material cellulose.
     2. By using the CuBr/PMDETA catalyst system and controlling the molar ratio ofmonomer, initiator, catalyst and ligand, two kinds of resin acid monomers(DAEMA、DAEA)with different structures wereapplied to conduct the "graft from" ATRP on the cellulosebackbone. Varying the monomer feed ratio could lead to the polymers with different molecularweight. In the kinetics curve of Cell-g-PDAEMA(or PDAEA)graft polymer, the linearrelation of ln([M]0/[M]) with the timeshowed that polymerization was basically controllable,and the polymerization activity of DAEMA was higher than that of DAEA. The glass transitiontemperature of the graft copolymer Cell-g-PDAEMA(or PDAEA)was83.2℃(PDAEA,51.8℃). It was found that hydrophobic properties, as well asUV absorption properties of theresulting cellulose polymers increased after the introduction of resin monomers. TheTGAanalysis indicated that the thermal stability of the resin acid monomer graft cellulosepolymers were obviously higher than that of cellulose.
     3. Two series of brush graft copolymers cellulose-g-poly (n-butyl acrylate-co-dehydroabietic acid ethyl methacrylate)(Cell-g-P (BA-co-DAEMA)) and biological basis ofcellulose-g-poly (methacrylic acid ethyl Laurate alcohol ester-co-dehydroabietic acid methylacrylic acid)(Cell-g-P (LMA-co-DAEMA)) were synthesizedby “grafting from” atom transferradicalpolymerization (ATRP). By manipulating the molar ratios in the P(BA-co-DAEMA)andP(LMA-co-DAEMA) side chains, graft copolymers with varying glass transition temperatures(-60-50℃) were obtained.. Tensile stress-strain and creep testing showed that the graftcopolymers had good mechanical properties. When the molar ratio of monomer and initiatorwas1000:1, the yield stress of the grafted polymer samples was0~2.5MPa, and the maximumof Young's modulus was99MPa. All graft copolymers showed elastic strain recovery valuesbetween50%and85%, and manifested remarkable elasticity at strain deformation (500%ormore) beforeexperiencing failure, which were indicative of rubber-like elasticity. AFM andSAXS analysis confirmed that copolymers had no phase separation and wasdisordered.Meanwhile,all copolymers also showed a good hydrophobicity and thermal stability.
     4. Castor oil based ATRP initiator was prepared by the fast and efficientesterificationreaction between2-bromoisobutyryl bromideandhydroxyl group in castor oil. The structure ofthe initiator was then confirmed by FT-IR,1H-NMR, and13C-NMR. Sequently, theinfluencing factors on ATRP graft polymerization of castor oil were investigated. In these cases,poly(methyl methacrylate)(PMMA) was used to graft castor oil by ATRP. It was found that thecatalytic effect of copper bromide was better than that of CuCl, and when the dosage of copperbromide was low, ATRP polymerization process achieve a good control. The amount of solvent percentage which was at more than70%could make the polymerization of ATRP runsmoothly.Additionally, the use of high polar solvent could be helpful to polymerization.
     5. Based on the previous work, castor oil based star shape (three arms) copolymers withunique structure were synthesized by "graft from " ATRP of methyl methacrylate (MMA) andbutyl acrylate (BA). These polymerizations were indicative of well-controlled. TGA analysisshowed that the onset decomposition and maximum decomposition occurred in the temperatureranging from350oC to450oC. By varying the molar ratio of MMA and BuA, the copolymerswith different glass transition temperature were obtained. The mechanical analysis showed thatthe optimum usage of MMA was ranging from40%to60%. When the content of MMA was50%, the copolymer showed a elongation of approximate300%and a maximum stress. Inaddition, when the content of MMA increased, the fracture strain decreased and fracture stressincreased.
引文
[1]欧阳平凯,姜岷,李振,等.生物基高分子材料[M].北京:化学工业出版社,2012.
    [2]我国生物基聚合物领域的发展现状[J].纺织导报,2013(2),29-30
    [3]陈庆,刘宏.生物降解塑料的市场竞争研究分析[J].塑料工业.2011(01),5-8
    [4]唐赛珍.生物基塑料发展前景展望[J].新材料产业,2013(1),2-8
    [5]生物基化学品带来的无限机遇[J].流程工业,2013(07),34-37
    [6]郑璐.生物基产品:突破产业化高成本的桎梏[J].中国石油和化工,2013(05)22-23
    [7]全球生物基聚合物材料的市场发展[J].纺织导报,2013(2),26-28
    [8]生物基聚合物领域主要生产企业(部分)的发展动态[J].纺织导报,2013(2),28-29
    [10]彭卫东,单宏业.农作物秸秆综合利用110问.北京:中国农业科学技术出版社,2013
    [11] G. W. Coates, M. A. Hillmyer, Polymers from Renewable Resources[J]. Macromolecules,2009,42,7987-7989
    [12] M. Okada, Chemical Syntheses of Biodegradable Polymers [J]. Progress in Polymer Science,2002,27,87-133
    [13] A. J. Ragauskas, C. K. Williams, B. H. Davison, et al. The Path Forward for Biofuels andBiomaterials[J]. Tschaplinski, Science,2006,311,484-489
    [14] R. T. Mathers, How well can renewable resources mimic commodity monomers and polymers?[J].Journal of Polymer Science Part A: Polymer Chemistry,2012,50,1-15.
    [15] S. A. Miller, Sustainable Polymers: Opportunities for the Next Decade[J]. ACS Macro Letters,2013,2,550-554.
    [16] K. Yao and C. Tang, Controlled Polymerization of Next-Generation Renewable Monomers andBeyond[J].Macromolecules,2013,46,1689-1712.
    [17] P. Wilbon, F. Chu and C. Tang, Progress in Renewable Polymers from Natural Terpenes[J].Macromolecular Rapid Communications,2013,34,8-37.
    [18] A. Corma, S. Iborra and A. Velty, Chemical Routes for the Transformation of Biomass into Chemicals[J].Chemical Reviews,2007,107,2411-2502.
    [19] D. R. Dodds, R. A. Gross, Chemicals from Biomass[J]. Science,2007,318,1250-1251.
    [20] C. K. Williams, M. A. Hillmyer, Polymers from renewable resources: a perspective for a special issue ofpolymer reviews[J]. Polymer Reviews,2008,48,1-10.
    [21] A. Gandini,Polymers from Renewable Resources: A Challenge for the Future of MacromolecularMaterials[J]. Macromolecules,2008,41,9491-9504.
    [22] S. Mecking, Nature or Petrochemistry?—Biologically Degradable Materials[J]. Angewandte ChemieInternational Edition,2004,43,1078-1085.
    [23] M. A. R. Meier, J. O. Metzger, U. S. Schubert, Plant oil renewable resources as green alternatives inpolymer science[J]. Chemical Society Reviews,2007,36,1788-1802.
    [24] F. Seniha Güner, Y. YagcI and A. Tuncer Erciyes, Polymers from triglyceride oils[J]. Progress InPolymer Science,2006,31,633-670.
    [25] A. K. Bhowmick and H. Stephens, Handbook of Elastomers, Second Edition[J], Taylor&Francis,2000.
    [26]肖九梅.探索热塑性弹性体橡塑高分子材料市场及应用发展[J],橡塑机械时代,2013(9),7-16.
    [27]钱伯章.世界热塑性弹性体的现状和发展趋势[J].世界橡胶工业,2005,32(5):40-46.
    [28]霍尔登G,莱格NR,夸克R,et a1.热塑性弹性体[M].北京:化学工业出版,2000:48.
    [29]岳献云.热塑性弹性体研究进展[J].特种橡胶制品,2005,26(1):51-58.
    [30]金关泰,金日光,汤宗汤.热塑性弹性体[M].北京:化学工业出版社,1983.
    [31]李金刚,贾林才,韩红青,等.聚醚酯弹性体的研究进展[J].化工中间体,2010,6(6):1-6.
    [32]李汉堂.热塑性弹性体的现状和未来展望[J].世界橡胶工业,2013, Vol.40No.3:48~56.
    [33] P. R. Lewis and C. Price, Electron Microscopy of sym-SBS block polymers[J]. Polymer,1972,13,20-26.
    [34] D. McIntyre,E. Campos-Lopez, The Macrolattice of a Triblock Polymer[J]. Macromolecules,1970,3,322-327.
    [35] E. Campos-Lopez, D. McIntyre and L. J. Fetters, Thermodynamic and Structural Properties ofPolystyrene-Polybutadiene-Polystyrene Block Copolymers[J]. Macromolecules,1973,6,415-423.
    [36] A. Nese, J. Mosnáce k, A. Juhari, et al. Synthesis Characterization and Properties of StarlikePoly(n-butyl acrylate)-b-poly(methyl methacrylate) Block Copolymers[J]. Macromolecules,2010,43,1227-1235.
    [37] J. D. Tong, G. Moineau, P. Leclère, et al. Synthesis, Morphology and Mechanical Properties ofPoly(methyl methacrylate)-b-poly(n-butyl acrylate)-b-poly(methyl methacrylate) Triblocks. LigatedAnionic Polymerization vs Atom Transfer Radical Polymerization[J]. Macromolecules,1999,33,470-479.
    [38] K. Matyjaszewski,J. Xia, Atom Transfer Radical Polymerization[J]. Chemical Reviews,2001,101,2921-2990.
    [39] N. V. Tsarevsky,K. Matyjaszewski,“Green” Atom Transfer Radical Polymerization: From ProcessDesign to Preparation of Well-Defined Environmentally Friendly Polymeric Materials[J]. ChemicalReviews,2007,107,2270-2299.
    [40] K. Matyjaszewski, Atom Transfer Radical Polymerization (ATRP): Current Status and FuturePerspectives[J]. Macromolecules,2012,45,4015-4039.
    [41] K. Matyjaszewski,N. V. Tsarevsky, Nanostructured functional materials prepared by atom transferradical polymerization[J].. Nat Chem,2009,1,276-288.
    [42] B. Dufour, C.Tang, K. Koynov, et al.Polar Three-Arm Star Block Copolymer Thermoplastic ElastomersBased on Polyacrylonitrile[J]. Macromolecules,2008,41,2451-2458
    [43]刘小青,朱锦.有关“环境友好塑料”几个概念的澄清[J].高分子通报,2011(6):100-102
    [44]谭天伟,苏海佳,杨晶.生物基材料产业化进展[J].中国材料进展,2012,31(2):1-6.
    [45]李彤.生物降解型聚氨酯材料的研究进展[J].热固性树脂,2000(2):34-36.
    [46]陈海良,代金辉,曹小伟.环保型双组分聚氨酯弹性体的研制[J].聚氨酯工业,2004,19(2):31-33.
    [47]刘全勇,冯予星,丁涛,等.聚酯型可生物降解弹性体的表征及其降解[J].合成橡胶工业,2005,28(5):340-344.
    [48] Mehta R,Kumar V,Bhunia H,et al.Synthesis of poly(lactic acid):areview[J].Journal ofMacromolecular Science-Polymer Reviews,2005,45(4):325-349.
    [49] Nampoothiri K M,Nair N R,John R P.An overview of the recentdevelopments in polylactide (PLA)research[J]. Bioresource Technology,2010,101(22):8493-8501.
    [50]王宁,于九皋,马骁飞.生物降解热塑性材料的研究进展[J].石油化工,2007,36(1):1-8.
    [51] Martello M T,Hillmyer M. Polylactide-poly(6-methyl-ε-caprolactone)-polylactide thermoplasticelastomers[J].Macromolecules,2011,44(21):8537-8545.
    [52] Wanamaker C L,Bluemle M J,Pitet L M,et al.Consequences ofpolylactide stereochemistry on theproperties of olylactide-polymenthidepolylactidethermoplastic elastomers[J]. Biomacromolecules,2009,10(10):2904-2911.
    [53] Bhowmick A K,Stephens H L,Handbook of elastomers.吴棣华,刘大华,王德充.第二版.北京:中国石化出版社,2005,290-312.
    [54]贾连昆,宫理想,江一明,阚成友.利用环氧化和开环反应制备植物油基聚醚多元醇[J].粘接,2011,32(6):77~81
    [55]生物基合成纤维的发展趋势[J].纺织导报,2013(2),30-32
    [56]全球加快生物基聚合物发展[J].合成材料老化与应用,2013(1),56-57
    [57]朱永康.全球热塑性弹性体需求将稳定增长[J].橡胶科技,2013(6),17
    [58]张立生,熊竹,朱锦.生物基弹性体研究进展[J].高分子通报,2012(8),50-57
    [57]0gunniyi D.S.Bioresour TechnoI,2006,97(9):1086~1091
    [58]张猛,周永红,潘青良,等.蓖麻油基聚酯多元醇的制备及表征[J].聚氨酯工业,2012,27(5),15-18
    [59]杜辉,殷宁,赵雨花,等.蓖麻油基聚醚多元醇的制备及其表征[J].聚氨酯工业,2008,23(5),39-41.
    [60] Oprea S.Synthesis and properties of polyurethane elastomers with castor oil as crosslinker[J]. J Am OilChem Soc,2010,87(3):313~320.
    [61] Xu Y,Petrovic Z,Das S,et al.Morphology and properties of thermoplastic polyurethanes with danglingchains in ricinoleate-based soft segments[J]. Polymer,2008,49(19):4248~4258.
    [62] Pfister D P,Xia Y,Larock R C.Recent Advances in Vegetable Oil‐Based Polyurethanes[J].Chemsusehem,20l1,4(6):703~717.
    [63]吴一鸣,黄东平,沈小勇。小桐子油生物基多元醇的合成及其在硬质聚氨酯泡沫中的应用[J].化学工业与工程技术,2013,34(4),49-52
    [64] KiatsimkuI P,Suppes G,Hsieh F h,et al.Preparation of high hydroxyl equivalent weight polyols fromvegetable oils[J]. Ind Crop Prod,2008,27(3):257~264.
    [65] Wang C S,Yang L T,Ni B-L,et al.Polyurethane networks from different soy‐based polyols by thering opening of epoxidized soybean oil with methanol, glycol, and1,2‐propanediol[J]. J Appl PolymSci,2009,114(1):125~131.
    [66] Dai H,Yang L,Lin B,et al.Synthesis and characterization of the different soy-based polyols by ringopening of epoxidized soybean oil with methanol,1,2-ethanediol and1,2-propanediol[J]. J Am OilChem Soc,2009,86(3):261~267.
    [67] Jia L K,Gong L X,JiW J,et al.Synthesis of vegetable oil based polyol with cottonseed oil and sorbitolderived from natural source[J]. Chinese Chem Lett,2011,22(11):1289~1292.
    [68] Guo A,Demydov D,Zhang W,et al.Polyols and Polyurethanes from Hydroformylation of SoybeanOil[J]. J Polym Environ,2002,10(1):49~52.
    [69] Kandanarachchi P,Guo A,Petrovic Z.The hydroformylation of vegetable oils and model compoundsby ligand modified rhodium catalysis[J]. J Mol Catal A:Chem,2002,184(1~2):65~71.
    [70] Petrovic Z S.Polyurethanes from vegetable oils[J]. Polym Rev,2008,48(1):109~155.
    [71] Petrovi~Z S,Cvetkovie I,Hong D,et al.Vegetable oil-based triols from hydroformylated fatty acidsand polyurethane elastomers[J]. Eur J Lipid Sei Technol,2010,112(1):97~102.
    [72] Corcuera, M. A.; Rueda, L.; et al.. Microstructure and properties of polyurethanes derived from castoroil[J]. Polymer Degradation and Stability,2010,95(11):2175~2184.
    [73] Ebata H,Yasuda M,Toshima K,et al.Poly (Ricinoleic Acid) based novel thermosetting elastomer[J].J Oleo Sci,2008,57(6):315~320.
    [74] Tran P,Graiver D,Narayan R.Ozone-mediated polyol synthesis from soybean oil[J]. J Am On ChemSoc,2005,82(9):653~659;
    [75] Omonov T,Kharraz E,Curtis J.Ozonolysis of canola oil: a study of product yields and ozonolysiskinetics in different solvent systems[J]. JournaI of the American On Chemists' Society,2011,88(5):689~705.
    [76] Hojabri L,Kong X,Narine S S.Functional Thermoplastics from Linear Diols and DiisocyanatesProduced Entirely from Renewable Lipid Sources[J]. Biomacromolecules,2010,l1(4):9l1~918.
    [77] Hojabri L,Kong X,Narine S S.Novel long chain unsaturated diisocyanate from fatty acid: Synthesis,characterization, and application in bio-based polyurethane[J]. J Polym Sci, Part A: PolymChem,2010,48(15):3302~3310.
    [78]国内外生物基聚酯的开发及应用[J].纺织导报,2013(2),32-33
    [79]生物基聚酯发展的障碍[J].纺织导报,2013(2),34
    [80] Wang Y,Ameer G A,Sheppard B J,et al. A tough biodegradable elastomer[J]. NatBiotechno1,2002,20(6):602~606.
    [81]刘全勇,吴瑁碉,石锐,等.可降解生物弹性体的研究进展〔J〕.特种橡胶制品,2007,28(002):47~53.
    [82]刘全勇,冯予星,丁涛,等.聚酯型可生物降解弹性体的表征及其降解[J].合成橡胶工业,2005,28(5):340-344.
    [83]东为富,吴畏,陈明清,等.广东化工,2010,37(012):193~194.
    [84] Yang J,W ebb A R,Ameer G A.Novel Citric Acid‐Based Biodegradable Elastomers for TissueEngineering[J]. Adv Mater,2004,16(6):511~516.
    [85] Wu Y,Shi R,Chen D F,et al.Nanosilica filled poly(glycerol-sebacate-citrate) elastomers with improvedmechanical properties, adjustable degradability, and better biocompatibility[J]. J Appl PolymSci,2012,123(3):l612~1620.
    [86] Pasupuleti S, Avadanam A, MadrasG. Synthesis, characterization, and degradation of biodegradablepoly (mannitol citric dicarboxylate) copolyesters[J]. Polym Eng Sci,2011,51(10):2035~2043.
    [87] Pasupuleti S, Madras G.Synthesis and degradation of sorbitol‐based polymers[J]. J Appl PolymSci,2011,121(5):2861~2869.
    [88] Hiki S, Miyamoto M, Kimura Y. Synthesis and characterization of hydroxy-terminated
    [RS]-poly(3-hydroxybutyrate) and its utilization to block copolymerization with l-lactide to obtain abiodegradable thermoplastic elastomer[J]. Polymer,2000,41(20):7369~7379.
    [89] Frick E M, Hillmyer M A. Synthesis and characterization of polylactide-block-polyisoprene-block-polylactide triblock copolymers: new thermoplastic elastomers containing biodegradablesegments[J]. MacromolRapid Comm,2000,21(18):1317~1322.
    [90] Martello M T, Hillmyer M A.Polylactide-poly(6-methyl-ε-caprolactone)-polylactide thermoplasticelastomers[J]. Macromolecules,2011,44(21):8537-8545.
    [91] Wanamaker C L, Bluemle M J, Pitet L M, et al.Consequences ofpolylactide stereochemistry on theproperties of olylactide-polymenthidepolylactidethermoplasticelastomers[J].Biomacromolecules,2009,10(10):2904-2911.
    [92] Zhong Q, Ren J, Wang Q F. Preparation and characterization of polylactide-block-poly (butyleneadipate) polyurethane thermoplastic elastomer[J]. Polym Eng Sci,2011,51(5):908~916.
    [93] Zeng J B, Li Y D, He Y S, et al.Improving Flexibility of Poly(l-lactide) by Blending with Poly(l-lacticacid) Based Poly(ester-urethane): Morphology, Mechanical Properties, and CrystallizationBehaviors[J]. Ind Eng Chem Res,2011,50(10):6124~6131.
    [94] Harrane A, Leroy A, Nouailhas H, et al.PLA-based biodegradable and tunable soft elastomers forbiomedical applications[J]. Biomed Mater,2011,6(6).
    [95] Kobayashi T, Matsumura S. Enzymatic synthesis and properties of novel biodegradable and biobasedthermoplastic elastomers[J]. Polymer Degradation and Stability,2011,96(12):2071~2079.
    [96] Wanamaker C L, O'Leary L E, Lynd N A, et al. Renewable-Resource Thermoplastic Elastomers Basedon Polylactide and Polymenthide[J]. Biomacromolecules,2007,8(11):3634~3640.
    [98]季栋,方正,欧阳平凯等,生物基聚酰胺研究进展[J].生物加工过程,2013(2),72-80.
    [99]戴军,尹乃安.生物基聚酰胺的制备及性能[J]..塑料科技,2011,395):72-75.
    [100] Ogunniyi D S. Castor oil: a vital industrial raw material[J].Bioresour Technol,2006,97(9):1086-1091.
    [101] Miao X, Fischmeister C, Dixneuf P H,et al. Polyamide precursorsfrom renewable10-undecenenitrileand methyl acrylate via olefincross-metathesis[J].Green Chem,2012,14(8):2179-2183.
    [102] Pardal F, Salhi S, Rousseau B, et al. Unsaturated polyamides frombio-based Z-octadec-9-enedioic acid[J].Macromol Chem Phys,2008,209(1):64-74.
    [103] Hablot E,Matadi R,Ahzi S,et al. Renewable biocomposites of dimer fatty acid-based polyamides withcellulose fibres: thermal,physical and mechanical properties[J].Compos Sci Technol,2010,70(3):504-509.
    [104] Hablot E, Tisserand A, Bouquey M, er al. Accelerated artificialageing of new dimer fatty acid-basedpolyamides[J].Polym Degrad Stab,2011,96():1097-1103.
    [105] Lange J P,Vestering J Z,Haan R J. Towards bio-based nylon:conversion of γ-valerolactone to methylpentenoate under catalytic distillation conditions[J]. Chem Comm,2007(33):3488-3490.
    [106]赵黎明,刘旭勤,纪念,等.一种生物基尼龙聚丁内酰胺的制备方法:中国,101974151A[P].2011-02-16.
    [107] Duuren J B J H,Brehmer B,Mars A E,et al. A limited LCA of bio-adipic acid: manufacturing thenylon-6,6precursor adipic acid using the benzoic acid degradation pathway fromdifferentfeedstocks[J]. Biotechnol Bioeng,2011,108(6):1298-1306.
    [108] H. Iatrou, J. W. Mays, N. Hadjichristidis. Regular Comb Polystyrenes and GraftPolyisoprene/Polystyrene Copolymers with Double Branches (“Centipedes”). Quality of(1,3-Phenylene)bis(3-methyl-1-phenylpentylidene)dilithium Initiator in the Presence of PolarAdditives[J]. Macromolecules,1998,31,6697-6701.
    [109] Y. Zhu, E. Burgaz, S. P. Gido, et al.Morphology and Tensile Properties of Multigraft Copolymers withRegularly Spaced Tri-, Tetra-, and Hexafunctional Junction Points[J]. Macromolecules,2006,39,4428-4436.
    [110] Y. Duan, M. Thunga, R. Schlegel, et al. Morphology and Deformation Mechanisms and TensileProperties of Tetrafunctional Multigraft Copolymers[J]. Macromolecules,2009,42,4155-4164.
    [111] R. Weidisch, S. P. Gido, D. Uhrig, et al. Tetrafunctional Multigraft Copolymers as NovelThermoplastic Elastomers[J]. Macromolecules,2001,34,6333-6337.
    [112] Y. Schneider, N. A. Lynd, E. J. Kramer, et al.Novel Elastomers Prepared by Grafting n-Butyl Acrylatefrom Polyethylene Macroinitiator Copolymers[J]. Macromolecules,2009,42,8763-8768.
    [113] Jiang F., Wang Z., Qiao Y., et al. A Novel Architecture toward Third-Generation ThermoplasticElastomers by a Grafting Strategy[J]. Macromolecules(2013)46,4772-80.
    [114] Yi, Fan X., Wan X., et al.ABA Type Triblock Copolymer Based on Mesogen-Jacketed LiquidCrystalline Polymer: Design, Synthesis, and Potential as Thermoplastic Elastomer[J].Macromolecules (2004)37,7610-8.
    [115] Cui L, Tong X.,Yan X., et al. Photoactive Thermoplastic Elastomers of Azobenzene-ContainingTriblock Copolymers Prepared through Atom Transfer Radical Polymerization[J].Macromolecules,2004,37,7097-104.
    [116] Chatterjee D.P.,Mandal B.M. The ATRP Synthesis of the Potential Thermoplastic ElastomerPoly(methyl methacrylate)–b-(lauryl methacrylate)-b-(methyl methacrylate) Hitherto Unrealized byIonic Polymerization[J]. Macromolecular Symposia,2006,240,224-31.
    [117] Chatterjee D.P.,Mandal B.M. Triblock Thermoplastic Elastomers with Poly(lauryl methacrylate) as theCenter Block and Poly(methyl methacrylate) or Poly(tert-butyl methacrylate) as End Blocks.Morphology and Thermomechanical Properties[J]. Macromolecules,2006,39,9192-200.
    [118] Schneider Y., Lynd N.A., Kramer E.J, et al. Novel Elastomers Prepared by Grafting n-Butyl Acrylatefrom Polyethylene Macroinitiator Copolymers[J]. Macromolecules,2009,42,8763-8.
    [119] Dufour B., Koynov K., Pakula T., et al.PBA–PMMA3-Arm Star Block Copolymer ThermoplasticElastomers[J]. Macromolecular Chemistry and Physics,2008,209,1686-93.
    [120] Dufour B., Tang C., Koynov K., et al. Polar Three-Arm Star Block Copolymer ThermoplasticElastomers Based on Polyacrylonitrile[J]. Macromolecules,2008,41,2451-8.
    [121] Juhari A., Mosná ek J., Yoon J.A., et al. Star-like poly (n-butyl acrylate)-b-poly(α-methylene-γ-butyrolactone) block copolymers for high temperature thermoplastic elastomersapplications[J]. Polymer (2010)51,4806-13.
    [122] Klemm, D.; Heublein, B.; Fink, H.-P.; et al. Cellulose: Fascinating Biopolymer andSustainable RawMaterial[J]. Angewandte Chemie International Edition2005,44,(22),3358-3393.
    [123]张俐娜,天然高分子改性材料及应用[J].化学工业出版社:北京,2006.
    [124]马隆龙;王铁军;吴创之;袁振宏,木质纤维素化工技术及应用.科学出版社:北京,2010.
    [125] Fox, S. C.; Li, et al. Regioselective Esterification and Etherification ofCellulose: A Review[J].Biomacromolecules2011,12,(6),1956-1972.
    [126]王璟;周雪松;肖惠宁, ATRP在纤维素基材上接枝共聚的应用[J].高分子通报2011,(02),92-101.
    [127]李刚;于海鹏;富艳春;刘一星,原子转移自由基聚合在纤维素表面改性方面的应用研究进展[J].化工进展2011,(06),1270-1276+1289.
    [128] Shen, D.; Yu, et al. Synthesis of graft copolymer of ethyl cellulose through livingpolymerization andits self-assembly[J]. Cellulose2006,13,(3),235-244.
    [129] Siegwart, D. J.; et al.ATRP in the design of functional materialsfor biomedical applications[J].Progress in Polymer Science2012,37,(1),18-37.
    [131] Zhong, J.; Chai, et al.Homogeneous grafting poly (methyl methacrylate) on celluloseby atom transferradical polymerization[J]. Carbohydrate Polymers2012,87,(2),1869-1873.
    [132] Yuan, W.; Zhang, et al. Amphiphilic ethyl cellulose brush polymerswith mono and dual side chains:Facile synthesis, self-assembly, and tunable temperature-pHresponsivities[J]. Polymer2012,53,(4),956-966.
    [133] Vlcek, P.; Janata, et al. Controlled grafting ofcellulose diacetate[J]. Polymer2006,47,(8),2587-2595.
    [134]Liu, W.; Liu, et al.Self-assembly of ethylcellulose-graft-polystyrene copolymers in acetone[J]. Polymer2009,50,(1),211-217.
    [135] Yi, J.; Xu, et al. Chiral-nematic self-ordering of rodlike cellulose nanocrystalsgrafted with poly(styrene)in both thermotropic and lyotropic states[J]. Polymer2008,49,(20),4406-4412.
    [136] Lin, C.; Zhan, et al. Preparation of cellulose graft poly(methylmethacrylate) copolymers by atomtransfer radical polymerization in an ionic liquid[J]. CarbohydratePolymers2009,78,(3),432-438.
    [137] Sui, X., Yuan, et al. Synthesis ofellulose-graft-Poly(N,N-dimethylamino-2-ethyl methacrylate)Copolymers via HomogeneousATRP and Their Aggregates in Aqueous Media[J]. Biomacromolecules2008,9,(10),2615-2620.
    [138] Yang, R, Liu,, et al. Synthesis ofHydroxyethylcellulose-graft-Poly(N,N-dimethylacrylamide)Copolymer by ATRP and as Dynamic Coating in CapillaryElectrophoresis[J].Journal of Applied Polymer Science2010,116,(6),3468-3472.
    [139] Xu, F. J.; Zhu, et al.Comb-Shaped Conjugates ComprisingHydroxypropyl Cellulose Backbones andLow-Molecular-Weight Poly(N-isopropylacryamide)Side Chains for Smart Hydrogels: Synthesis,Characterization, and BiomedicalApplications[J]. Bioconjugate Chemistry2010,21,(3),456-464.
    [140] Xu, F. J.; Ping, Y.; et al. Comb-Sbaped Copolymers Composed of Hydroxypropyl Cellulose Backbonesand CationicPoly((2-dimethyl amino)ethyl methacrylate) Side Chains for Gene Delivery[J].BioconjugateChemistry2009,20,(8),1449-1458.
    [141] Raus, V.; těpánek, et al.Cellulose-based graft copolymers with controlled architectureprepared in ahomogeneous phase[J]. Journal of Polymer Science Part A: Polymer Chemistry2011,49,(20),4353-4367.
    [142] Tang, X.; Gao, et al, Controlled grafting of ethyl cellulose with azobenzene-containingpolymethacrylates via atom transfer radical polymerization[J]. Journal of PolymerScience Parta-Polymer Chemistry2007,45,(9),1653-1660.
    [143] Ma, L, Kang, et al.Smart Assembly Behaviors of Hydroxypropyl cellulose-graft-poly(4-vinyl pyridine)Copolymers in Aqueous Solution by Thermo and pH Stimuli[J].Langmuir2010,26,(23),18519-18525.
    [144] Kang H, Liu W, Liu R, et al. A Novel, Amphiphilic Ethyl Cellulose Grafting Copolymer with Poly(2‐Hydroxyethyl Methacrylate) Side Chains and Its Micellization[J]. Macromolecular Chemistry andPhysics,2008,209(4):424-430.
    [145] Mu oz-Bonilla,S Ali,A del Campo, et al, Block Copolymer Surfactants in Emulsion Polymerization:Influence of the Miscibility of the Hydrophobic Block on Kinetics, Particle Morphology, and FilmFormation[J]. Macromolecules2011,44,4282-4290.
    [146] Kang, H., Liu, et al.Synthesis of amphiphilic ethyl cellulose grafting poly(acrylic acid) copolymersand their self-assembly morphologies in water[J]. Polymer2006,47,7927–7934.
    [147] Liu W, Liu Y, Hao X, et al. Backbone-collapsed intra-and inter-molecular self-assembly ofcellulose-based dense graft copolymer[J]. Carbohydrate Polymers,2012,88,290-298.
    [24] W. Yuan, J. Zhang, H. Zou, et al.Amphiphilic ethyl cellulose brush polymers with mono and dual sidechains: Facile synthesis, self-assembly, and tunable temperature-pH responsivities[J]. Polymer2012,53,956-966.
    [148] Wang J, Yao K, Korich A L, et al. Combining Renewable Gum Rosin and Lignin: TowardsHydrophobic Polymer Composites by Controlled Polymerization[J]. Journal of Polymer Science PartA: Polymer Chemistry,2011,49,3728-3738.
    [149] L. Yan, K. Ishihara. Graft copolymerization of2‐methacryloyloxyethylphosphorylcholine tocellulose in homogeneous media using atom transfer radical polymerization for providing newhemocompatible coating materials[J]. Journal of Polymer Science Part A: Polymer Chemistry2008,46,3306-3313.
    [150] Kang, H.; Liu, W.; Liu, R.; Huang, Y., A Novel, Amphiphilic Ethyl Cellulose Grafting Copolymer withPoly (2‐Hydroxyethyl Methacrylate) Side Chains and Its Micellization[J]. Macromol. Chem. Phys.2008,209,424-430)
    [151] Sui X, Yuan J, Zhou M, Zhang J, Yang H, Yuan W, et al.Synthesis of cellulose-graft-poly (N,N-dimethylamino-2-ethyl methacrylate) copolymers via homogeneous ATRP and their aggregates inaqueous media[J].Biomacromolecules2008,9,2615–2620
    [152]宋湛谦,松香的精细化工利用(Ⅰ)——松香的组成与性质[J].林产化工通讯2002,(4),29-33.
    [153] Maiti, S.; Ray, S. S.; Kundu, A. K., Rosin: a renewable resource for polymers and polymerchemicals[J].Progress in Polymer Science1989,14,(3),297-338.
    [154]王基夫;储富祥;王春鹏;林明涛,可自由基聚合松香基高分子单体及其聚合物的研究进展[J].材料导报2010,(13),71-74.
    [155] Wang, J.; Lin, M.; Wang, C.; Chu, F., Study on the Synthesis, Characterization, and Kineticof BulkPolymerization of Disproportionated Rosin (beta-Acryloxyl Ethyl) Ester[J]. Journal ofAppliedPolymer Science2009,113,(6),3757-3765.
    [156] Zheng, Y.; Yao, K.; Lee, J.; Chandler, D.; Wang, J.; Wang, C.; Chu, F.; Tang, C.,Well-DefinedRenewable Polymers Derived from Gum Rosin[J]. Macromolecules2010,43,(14),5922-5924.
    [157]王能,丁恩勇,薛锋,等.棒状纳米微晶纤维素的表面疏水改性研究[J].2007年全国高分子学术论文报告会论文摘要集(上册),2007
    [158]宋强.纤维素脂肪酸酯的制备及其吸附有机污染物[D].南京林业大学,2011.
    [159] J. Mosnác ek and K. Matyjaszewski, Atom Transfer Radical Polymerization of Tulipalin A: A NaturallyRenewable Monomer[J]. Macromolecules,2008,41,5509-5511.
    [160] J. Mosná ek, J. A. Yoon, A. Juhari, K. Koynov and K. Matyjaszewski, Synthesis, morphology andmechanical properties of linear triblock copolymers based on poly(α-methylene-γ-butyrolactone)[J].Polymer,2009,50,2087-2094.
    [161] A. Juhari, J. Mosná ek, J. A. Yoon, A. Nese, K. Koynov, T. Kowalewski and K. Matyjaszewski,Star-like poly (n-butyl acrylate)-b-poly (α-methylene-γ-butyrolactone) block copolymers for hightemperature thermoplastic elastomers applications[J].Polymer,2010,51,4806-4813.
    [162] E. M. Frick, A. S. Zalusky and M. A. Hillmyer, Characterization of Polylactide-b-polyisoprene-b-polylactide Thermoplastic Elastomers[J]. Biomacromolecules,2003,4,216-223.
    [163] J. Shin, M. T. Martello, M. Shrestha, J. E. Wissinger, W. B. Tolman and M. A. Hillmyer,Pressure-Sensitive Adhesives from Renewable Triblock Copolymers[J]. Macromolecules,2010,44,87-94.
    [164] C. L. Wanamaker, L. E. O'Leary, N. A. Lynd, M. A. Hillmyer and W. B. Tolman, Renewable-ResourceThermoplastic Elastomers Based on Polylactide and Polymenthide[J]. Biomacromolecules,2007,8,3634-3640.
    [165] C. L. Wanamaker, M. J. Bluemle, L. M. Pitet, L. E. O’Leary, W. B. Tolman and M. A. Hillmyer,Consequences of Polylactide Stereochemistry on the Properties of Polylactide-Polymenthide-Polylactide Thermoplastic Elastomers[J]. Biomacromolecules,2009,10,2904-2911.
    [166] S. Wang, S. V. Kesava, E. D. Gomez and M. L. Robertson, Sustainable Thermoplastic ElastomersDerived from Fatty Acids[J]. Macromolecules,2013,46,7202–7212
    [167] Bonfil M,Sirkecioglu, A,Bingol-Ozakpinar, O, et al. Castor oil and PEG-based shape memorypolyurethane films for biomedical applications[J]. Journal of Applied Polymer Science,2014, DOI:10.1002/app.40590.
    [168] Echeverri D A,Perez, W A,Rios, L A. Synthesis of maleated-castor oil glycerides frombiodiesel-derived crude glycerol[J]. Industrial Crops and Products,2013,49299-303.
    [169] Firdaus M,Meier, M A R,Biermann, U, et al. Renewable co-polymers derived from castor oil andlimonene[J]. European Journal of Lipid Science and Technology,2014,116(1):31-36.
    [170] Liu C,Li, J,Lei W, et al. Development of biobased unsaturated polyester resin containing highlyfunctionalized castor oil[J]. Industrial Crops and Products,2014,52329-337.
    [171] Mehta B,Kathalewar, M,Sabnis A. Diester based on castor oil fatty acid as plasticizer for poly(vinylchloride)[J]. Journal of Applied Polymer Science,2014,131(11): DOI:10.1002/app.40354.
    [172] Meier M A R,Metzger, J O,Schubert, U S. Plant oil renewable resources as green alternatives inpolymer science[J]. Chemical Society Reviews,2007,36(11):1788-1802.
    [173] Sanchez R,Franco, J M,Delgado, M A, et al. Development of new green lubricating greaseformulations based on cellulosic derivatives and castor oil[J]. Green Chemistry,2009,11(5):686-693.
    [174] Zhang C,Xica, Y,Chen, R, et al. Soy-castor oil based polyols prepared using a solvent-free andcatalyst-free method and polyurethanes therefrom[J]. Green Chemistry,2013,15(6):1477-1484.
    [175] Zhang L,Zhang, M,Hu L, et al. Synthesis of rigid polyurethane foams with castor oil-based flameretardant polyols[J]. Industrial Crops and Products,2014,52380-388.
    [176]彭翠华,谭晓明,胡远强,等.蓖麻油TDI聚氨酯预聚体的制备[J].粘接,2008,(12):12-15.
    [177]李存燕,李为民,郭登峰,等.蓖麻油的深加工及应用进展[J].粮油加工,2010,(12):17-19.
    [178]王红娟,容敏智,章明秋,等.马来酸酐和丙烯酸改性蓖麻油基泡沫塑料[J].高分子材料科学与工程,2014,30(2):21-26.
    [179]蒋洪权,宋湛谦,商士斌.蓖麻油及其衍生物在聚氨酯中的应用研究进展[J].高分子通报,2009,(8):44-48.
    [180]鲍利红,兰云军,张淑芬.乙烯基单体改性蓖麻油基水性聚氨酯的研究[J].涂料工业,2013,43(2):43-47.
    [181] Matyjaszewski K. Atom Transfer Radical Polymerization (ATRP): Current Status and FuturePerspectives[J]. Macromolecules,2012,45(10):4015-4039.
    [182] Matyjaszewski K,Xia, J. Atom Transfer Radical Polymerization[J]. Chemical Reviews,2001,101(9):2921-2990.
    [183] Bao H,Li L,Gan, L H, et al. Thermo-and pH-Responsive Association Behavior of Dual HydrophilicGraft Chitosan Terpolymer Synthesized via ATRP and Click Chemistry[J]. Macromolecules,2010,43(13):5679-5687.
    [184]Bao H, LI,L, et al.Thermo-Responsive Association of Chitosan-graft-Poly (N-isopropylacrylamide) inAqueous Solutions[J]. The Journal of Physical Chemistry B,2010,114(32):10666-10673.
    [185] Liu P, Su, Z. Surface-initiated atom transfer radical polymerization (SI-ATRP) of n-butyl acrylate fromstarch granules[J]. Carbohydrate Polymers,2005,62(2):159-163.
    [186] Liu Y,Yao K, Chen X, et al. Sustainable thermoplastic elastomers derived from renewable cellulose,rosin and fatty acids[J]. Polymer Chemistry,2014, DOI:10.1039/C3PY01260C.
    [187] Nurmi L,Holappa, S,Mikkonen, H, et al. Controlled grafting of acetylated starch by atom transferradical polymerization of MMA[J]. European Polymer Journal,2007,43(4):1372-1382.
    [188] Yu J,Liu, Y,Liu X, et al. Integration of renewable cellulose and rosin towards sustainable copolymersby "grafting from" ATRP[J]. Green Chemistry,2014,16(4):1854-1864.
    [189] Yao K,Tang, C. Controlled Polymerization of Next-Generation Renewable Monomers and Beyond[J].Macromolecules,2013,46(5):1689-1712.
    [190] Matyjaszewski, K.; Xia, J., Atom Transfer Radical Polymerization[J]. Chemical Reviews2001,101,2921-299
    [191] Tsarevsky, N. V.; Matyjaszewski, K.,“Green” Atom Transfer Radical Polymerization: From ProcessDesign to Preparation of Well-Defined Environmentally Friendly Polymeric Materials[J]. ChemicalReviews2007,107,2270-2299

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700