用户名: 密码: 验证码:
湘西—鄂西地区震旦系—寒武系层控铅锌矿成矿规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湘西-鄂西地区位于扬子陆块中部,北部以襄(樊)-广(济)断裂带为界与秦岭造山带相邻,东南以安化-溆浦断裂带为界与湘桂陆块相邻,往南止于湖南与贵州交界,西部与四川盆地以齐岳山断裂带为界,东与江汉-洞庭坳陷相邻。该区是扬子陆块重要组成部分,亦是我国重要的铅锌多金属成带之一。区内铅锌矿床(点)多、面广,成矿地质条件优越。本文在系统分析成矿地质背景的基础上,通过典型矿床解剖,探讨了盆地演化与成矿作用的关系,初步总结了区域成矿作用特点,应用流体包裹体和多种同位素示踪技术对铅锌矿成矿流体和成矿物质来源进行了详细研究,探讨了成矿流体和成矿元素的迁移富集规律,采用Rb-Sr法开展了成矿时代研究,建立了湘西-鄂西地区铅锌矿区域成矿演化模式。
     湘西-鄂西地区具有以中太古代-早元古结晶基底和中元古代变质沉积-火山岩系组成的过渡性基底(褶皱基底),新元古界-中三叠统的海相沉积盖层和上三叠统-新生界陆相沉积盖层构成的“双基双盖”结构。自新元石代以来,该区经历了晋宁运动、加里东运动、印支-燕山运动和喜马拉雅运动等构造变形,形成了以北东、北北东向为主的构造。
     通过对震旦系陡山沱组中的冰洞山铅锌矿床、灯影组中的凹子岗锌矿床和下寒武统清虚洞组中的狮子山铅锌矿床研究,发现赋矿围岩差异明显,冰洞矿床产于黑色岩系所夹的白云岩中,凹子岗矿床则产于发育古岩溶孔隙的白云岩中,狮子山矿床严格受藻灰岩控制,但是它们都具有明显的后生充填、交代特点,而且均含有沥青、发育热液矿床的典型矿石组构和低温热液成因的矿物组合。
     冰洞山矿床底板黑色岩系形成时有热水参与,赋矿白云岩为埋藏白云岩化的产物;流体包裹体分析表明:闪锌矿以气相流体包裹体为主,次为单相盐水溶液包裹体和两相盐水溶液包裹体,显示富气相和富液相的包裹体共生组合特点,均一温度(Th)为80~235℃,盐度为(6.44~20.43)%NaCleq;围岩白云石Th为146~193℃,盐度为(17.74~17.92)%NaCleq,主成矿期脉石矿物白云石和石英以两相盐水溶液包裹体为主,Th为109~193℃,盐度为(13.99-21.95)%NaCleq。流体密度为(0.880~1.103)g/cm3,属中等密度流体,成矿压力为22~44MPa,成矿深度0.82~1.63km。成矿流体为含少量CH4、N2的NaCl-CaCl2-H2O体系。铅同位素组成相对均一,为上地壳与造山带铅的混合铅,与赋矿地层的铅同位素组成明显不同;硫化物的δ34S值在13.03‰~34.57‰之间,平均为26.07‰,具有明显富重硫的特点和双峰式特征,硫主要来源于地层中的硫酸盐,是海水硫酸盐热化学还原反应的产物。流体包裹体水的δ18OH2O(SMOW)值为9.14%o~17.19‰,显示有大气水的参与。闪锌矿Rb-Sr等时线年龄为(506±14)Ma(MSWD=2.00),相应的Sr初始值(87Sr/86S)i为0.70926,地质时代为中寒武世。Sr初始值大于陡山沱组白云岩的87Sr/86Sr值,暗示成矿物质可能主要源自下伏地层或基底岩石。该矿床为后生浅成低温热液矿床,与MVT矿床相似。
     凹子岗锌矿床闪锌矿中发育单相盐水溶液包裹体、两相盐水溶液包裹体和单气相包裹体,以单相类型为主,两相包裹体含量低。主成矿期脉石矿物白云石的包裹体与闪锌矿相似,以单相类型为,同时还出现了含石盐子矿物包裹体,偶见气相烃包裹体;围岩白云石以两相盐水溶液包裹体主。包裹体的气相成分以水蒸汽为主,激光拉曼光谱分析,显示有CH4。白云石流体包裹体Th主要集中于110~190℃,盐度多为12%~32.31%NaCleq,流体密度为0.939-1.107g/cm3,矿床形成压力为26-56MPa,矿床形成深度为0.95-2.08km,平均深度为1.60km。成矿流体属含CH4的NaCl-CaCl2-H2O体系。在207Pb/204Pb-206Pb/204Pb图解和△p—△γ图解样品点比较分散,显示出混合铅特征,反映源区可能为黄陵基底。硫化物的δ34S值在4.97%‰-14.52%‰之间,以低正值为特点,同时,闪锌矿的δ34S还存在26.43%-27.42%0高值。白云石的δ13c值为1.76%o~3.77‰,平均为2.16‰,δ18O值为-6.04%‰~-12.63%‰,平均为-11.29‰;白云石化流体的δ18OH2O(SMOW)为3.42‰±12.42%‰,显示有大气水的加入。白色脉状白云石的87Sr/86Sr为0.71064±0.71165,平均为.071091,反映白云石化流体可能来自下伏地层和基底。绿色闪锌矿的Rb-Sr等时线年龄为(434±15)Ma(MS WD=0.19),地质时代为早志留世早期;红色闪锌矿的Rb-Sr等时线年龄为(409.6±9.7)Ma(MSWD=0.95),地质时代为早泥盆世晚期。为后生浅成低热液矿床。
     狮子山铅锌矿床产于藻灰岩中,闪锌矿与方解石均发育为两相盐水溶液包裹体、单相盐水溶液包裹体和单气相包裹体,其中以前者为主。闪锌矿Th主要为120~170℃,盐度为14%~21%NaCleq,方解石的Th为100~170℃,盐度为12%-26%NaCleq,属低温中高盐度流体。流体密度为0.771~1.125g/cm3,成矿压力为25-45MPa,平均压力为35MPa,成矿深度为0.94±1.68km,平均深度为1.28km。成矿流体中阳离子以Ca2+为主,其次为Mg+、Na+同时含少量的K+、Li+等,Na+/K+比值为11~18,平均为15,Na+/(Ca2++Mg2+)比值为0.07±0.50,属典型的热卤水成因。Na/Br值和C1/Br值分别为5-18和11~41。在矿田内铅位素组成比较一致,207Pb/204Pb-206Pb/204Pb图上,样品点分布于造山带与上地壳演化线之间,在△p-△γ图上,样品点靠近上地壳铅区域,μ值介于9.43~9.75之间,平均为9.60,显示铅主要来源于基底浅变质地层。黄铁矿的δ34s值为26.87‰~34.66‰,平均为30.81‰,闪锌矿的634s值介于20.32‰~33.88‰,平均为31.02%‰,方铅矿的δ34S值为22.40‰~27.35‰,平均为25.23‰,重晶石的634s值为31.13%-31.55%‰,平均为31.36%‰。矿石硫主要来源于盆地热卤水萃取下伏地层中的硫化物/硫酸盐,通过TSR形成H2S和CO2,提供给矿床形成硫化物的硫源和部分方解石的碳源。δ13C值和δ18O值的变化范围分别为-5.32‰~1.35%‰和-12.45‰~-5.63%‰,平均值为-0.24%‰和-9.43!,δ13C值和δ18O值均低于赋矿围岩藻灰岩的813C值(0.46‰)和δ18O值(-9.09‰),成矿流体的δ18OH2O(SMOW)介于0.38%‰~11.70‰;主成矿期闪锌矿的Rb-Sr等时线年龄为(412±12)Ma(MSWD=2.2),地质时代为早盆世中期,(87Sr/86Sr)i为0.70916。为后生浅成低热液矿床。
     研究认为,区域上碳酸台地边缘是最重要的赋矿部位;在矿田内,岩性和地层对铅锌矿有明显控制作用,褶皱与断层的交汇部位最有利于形成富矿。湘西-鄂西地区铅锌矿床的形成与低温高盐度热卤水活动有关,成矿时代晚于赋矿围岩,属后生浅成低温热液矿床,与MVT矿床相似,区域成矿作用发生于加里东期,且具有多期性,成矿与伸展断陷构造环境有关。成矿过程中普遍发生过TSR反应和流体沸腾现象。
     在典型矿床成矿模式分析的基础上,提出了湘西-鄂西地区铅锌矿的两阶段成矿模式,即成矿流体形成阶段和成矿热液运移富集阶段。成矿流体形成阶段发生于盆地埋藏和构造挤压时期,大气降水、地层水与深部流体混合,并发生广泛的水/岩反应,形成富含成矿物质的热卤水;成矿流体运移富集阶段发生于伸展构造环境,成矿流体发生大规模迁移,并在台地边缘等有利部位沉淀富集成矿。
The Northwestern Hunan and Western Hubei area is located at the middle of the Yangtze plate. It is north to the Qinling orogenic belt, south to the Xianggui block, east to the Jianghan-Dongting depression basin, and is an important component of the Yangtze plate. It hosts many Pb-Zn deposits. In this paper, the Bingdongshan Pb-Zn deposit, the Aozigang Pb-Zn deposit and the Shizishan Pb-Zn deposit are detailed studied. On the basis of fluid inclution and isotopic analysis, ore-forming fluids, ore-forming materials and metallogenic regularity have been evaluated.
     In the Northwestern Hunan and Western Hubei area, Mesoarchean-Paleoproterozoic crystalline basement, Mesoproterozoic metamorphic volcanic sedimentary rock, Neoproterozoic-Middle Triassic marine sedimentary rocks and Late Triassic-Cenozoic continental sedimentary rocks are exposed. Jinning movement,Caledonian movement,Indosinian-Yanshan movement and Himalayan movement have been experienced in these area, NE and NNE trending faults are well developed.
     The Bingdongshan deposit is hosted in the dolomite. The fluid inclusions in the dolomite have low homogenization temperature (146℃to193℃), and intermediate salinity (17.74%to17.92%NaCl). Three main types of fluid inclusions in the sphalerite are recognized:(1) two-phase gas-rich inclusions,(2) monophase vapor inclusions, and (3) monophase liquid inclusions, with low homogenization temperature (80℃to235℃), and intermediate salinity (6.44%to20.43%NaCl). In the main mineralizing stage, two-phase inclusions are well developed. And they have homogenization temperature of109℃to193℃), and intermediate salinity13.99%to21.95%NaCl. Fluid pressures are ca.22MPa to ca.44MPa. It belongs to the NaCl-CaCl2-H2O hydrothermal system, with a small amount of CH4and N2. Measured δ34S values for sulfide minerals range from13.03%o to34.57%o, suggesting the S source from the strata, result of hermochemical sulfate reduction (TSR). The sphalerite Rb-Sr isochron ages are506±14Ma(MSWD=2.00) and510±33Ma(MSWD=1.90), with (87Sr/86S)1is0.70926±0.00018 and0.70916±0.00044, respectively. These indicate the ore-forming materials source of underlying strata. The Bingdongshan Pb-Zn deposit is similar to MVT deposit.
     The fluid inclusions of the Aozigang Zn deposit have well studied. Three main types of fluid inclusions in the sphalerite are recognized:(1) monophase vapor inclusions,(2) monophase liquid inclusions,(3) two-phase inclusions. In the main mineralizing stage, the fluid inclusions in the dolomite have homogenization temperatures and salinities varying from110℃to190℃,12.00%to32.31%NaCl equivalent. Fluid pressures are ca.26MPa to ca.56MPa. It belongs to the NaCl-CaCl2-H2O hydrothermal system, with a small amount of CH4. Most sulfur isotope values of the sulfides give a δ34S interval of4.97%o to14.52%o, and some have a high δ34S interval of26.43‰to27.42%o. On the207Pb/204Pb vs206Pb/204Pb diagram and Δβ vs Δγ diagram, the samples plot in the mixing area. Measured δ13C values for dolomite range from1.76%o to3.77%o, with a average δ13C value of2.16%o. The green sphalerite Rb-Sr isochron age is434±15Ma(MSWD=0.19), while the red sphalerite Rb-Sr isochron age is409.6±9.7Ma(MSWD=0.95). The deposit belongs to the epithermal deposit.
     The Shizishan Pb-Zn deposit is strictly controlled by algal limestone. Three main types of fluid inclusions in the sphalerite and calcite are recognized:(1) monophase vapor inclusions,(2) monophase liquid inclusions, and (3) two-phase inclusions. The homogenization temperatures of these fluid inclusions range from120℃to170℃and their salinities range from12%to26%NaCl equivalent. Fluid pressures are ca.25MPa to ca.45MPa. The compositions of fluid inclusions are mainly H2O, Ca2+, Mg2+, Na+, K+, Li+, Cl-and Br-.The values of Na+/Br-and Cl-/Br-are5to18and11to41, respectively. On the207Pb/204Pb vs206Pb/204Pb diagram and Δβ vs Δγ diagram, the samples plot near the upper crust area. Measured834S values for sulfide minerals range from20.32%o to34.66%o, suggesting the S source from the strata, result of hermochemical sulfate reduction (TSR). Measured δ13C values and δ18O values range from-5.32%o to1.35%o and-12.45%o to-5.63%o, respectively. The sphalerite Rb-Sr isochron age is412±12Ma(MSWD=2.2), suggesting the deposit formed in the early Devonian. And the deposit belongs to the epithermal deposit.
     Though these research above, I propose that the carbonate platform edge is one of the most important ore-bearing area, intersections of fold and fault are conducive to mineralization. The ore-forming is relate to the low homogenization temperatures, high salinity brine. And these deposits in the Northwestern Hunan and Western Hubei area, such as the Bingdongshan Pb-Zn deposit, the Aozigang Pb-Zn deposit and the Shizishan Pb-Zn deposit, are similar to the MVT. Fluids boiling and hermochemical sulfate reduction (TSR) are happened during the ore-forming process.
     Two-stage metallogenic model of the Pb-Zn deposits in this area have been put forward in this paper. The early stage is the ore-bearing fluid formation stage, forming in a basin buried and compressed setting. Fluid-rock interaction and fluids mixing happened during this stage. The late stage is hydrothermal migration stage, forming in a extensional setting. In the late stage, the aqueous transport and Pb, Zn position at the carbonate platform edge.
引文
[1]刘文均,郑荣才,李元林,等.1999.花垣铅锌矿床中沥青的初步研究——MVT铅锌矿床有机地化研究(Ⅰ).沉积学报,17(1):19-23.
    [2]刘文均,郑荣才.1999.花垣铅锌矿床包裹体气相组份研究——MVT矿床成矿作用研究(Ⅱ).沉积学报,17(4):608-614.
    [3]刘文均,郑荣才.2000.花垣铅锌矿床成矿流体特征及动态.矿床地质,19(2):173-181.
    [4]杨绍祥,劳可通.2007.湘西北铅锌矿床碳氢氧同位素特征及成矿环境分析.矿床地质,26(3):330-340.
    [5]龙宝林,刘忠明.2005.鄂西地区铅锌矿基本特征与找矿方向.地质与勘探,41(3):16-21.
    [6]刘圣德,李方会,廖宗明,等.2008.鄂西铅锌矿成矿规律及区域成矿模式.资源环境与工程,22(4):417-422.
    [7]汤朝阳,邓峰,李堃,等.2012.湘西-黔东地区早寒武世沉积序列及铅锌成矿制约.大地构造与成矿学,36(1):111-117.
    [8]汤朝阳,邓峰,李堃,等.2013.湘西-黔东地区寒武系都匀阶清虚洞期岩相古地理与铅锌成矿关系研究.地质与勘探,49(1):19-27.
    [9]李思田,2000.盆地动力学与能源资源——世纪之交的回顾与展望.地学前缘,7(3):1-9.
    [10]Sangster D F.1995.Mississippi Valley-Type lead-zinc deposits. In:Eckst rand O R, Sinclair W D and Thorpe R I, eds. Geology of Canadian Mineral Deposit Types. Geological Survey of Canada, Geology of Canada, No.8:253-261.
    [11]Cathles L M, Smith A T.1983.Thermal constraints on the formation of Mississippi Valley-type lead-zinc deposits, and their implications for episodic dewatering and deposit genesis. Economic Geology,78:948-956.
    [12]Bethke C M.1986.Hydrologic constraints on the genesis the upper Mississippi Valley mineral district from Illinois basis brines. Economic Geology,81:233-249.
    [13]Bethke C M, Marshak S.1990.Brine migrations across North America---the plate tectonic of grand water[J]. Annual Review of Earth and Planet ary Science i,18:287-315.
    [14]Leach D L, Sangster D F.1993.Mississippi Valley-type lead-zinc deposits. In: Mineral Deposit Modeling (eds. Kirkham R V, Sinclair W D, Thorpe R I). Geological Association of Canada. Spec. Papers,40:289-314.
    [15]Garven G 1995.Continental scale groundwater flow and geologic processes. Annual Review of Earth and Planet ary Science,23:89-117.
    [16]Sverjensky D A 1986.Genesis of Mississippi Valley-type lead-zinc desposits. Annual Review of Earth and Planetary Sciences,14:177-199.
    [17]刘建明,赵善仁,沈洁,等.1998.成矿流体活动的同位素定年方法评述.地球物理学进 展,13(3):46-54.
    [18]刘建明,刘家军.1997.滇黔桂金三角区微细浸染型金矿床的盆地流体成因模式[J].矿物学报,17(4):448-456.
    [19]刘建明.2000.沉积盆地动力学与盆地流体成矿.矿物岩石地球化学通报,19(2):76-85.
    [20]邓军,杨立强,翟裕生,等.2000.构造流体成矿系统及其动力学的理论格架与方法体系.地球科学,25(1):71-78.
    [21]李发源,顾雪祥,付绍洪,等.2002.有机质在MVT铅锌矿床形成中的作用[J].矿物岩石地球):272-276.
    [22]Oliver J.1986. Fluid expelled tectonically from orogenic bekts:Their role in hydrocarbon migration and other geologic phenomena. Geology,14:99-102.
    [23]Nakai S, Halliday A N, Kesler S E, et al.1990. Rb-Sr dating of sphalerites from Tennessee and the genesis of Mississippi Valley-type ore deposits. Nature,346:354-357.
    [24]Nakai S, Halliday A N, Kesler S E, et al.1993. Rb-Sr dating of sphalerites form Mississippi Valley-type (MVT) ore deposits. Geochimica et Cosmochimica Acta,57:417-427.
    [25]Sangster D F.1996. Mississippi Valley-type lead-zinc. In: Eckstrand O R, Sinclair W D and Thorpe R I. eds. Geology of Canadian Mineral Deposit Types, Geology of Canada, No.8: Geological Survey of Canada,253-261.
    [26]Christensen J N, Halliday A N.1995. Direct dating of sulfides by Rb-Sr: A critical test using the Polaris Mississippi Valley-type Zn-Pb deposit. Geochimica et Cosmochimica Acta, 59(24):5191-5197.
    [27]Christensen J N, Halliday A N, Vearncombe J R, et al.1995. Testing models of large-scale crustal fluid flow using direct dating of sulfides:Rb-Sr evidence for early dewatering and formation of Mississippi Valley-type deposits, Canning Basin, Australia. Economic Geology, 90:877-884.
    [28]Brannon J C, Podosek F A, McLimans R K.1992. Alleghenian age of the upper Mississippi Valley zinc-lead deposit determined by Rb-Sr dating of sphalerite. Nature,356:509-511.
    [29]李文博,黄智龙,陈进,等.2004.会泽超大型铅锌矿床成矿时代研究.矿物学报,24(2):112-116.
    [30]王彦斌,唐索寒,王进辉,等.安徽铜陵新桥铜金矿床黄铁矿Rb-Sr同位素年龄数据——燕山晚期成矿作用的证据.地质论评,50(5):538-542.
    [31]李厚民,陈毓川,王登红,等.2007.陕西南郑地区马元锌矿的地球化学特征及成矿时代.地质通报,26(5):546-552.
    [32]张长青,李向辉,余金杰,等.2008.四川大梁子铅锌矿床单颗粒闪锌矿铷-锶测年及地质意义.地质论评,54(4):532-538.
    [33]戴自希,盛继福,白冶,等2005.世界铅锌矿资源的分布与潜力.北京:地震出版社.
    [34]谢家荣.1963.中国矿床学总论.北京:学术期刊出版社.
    [35]张位及.1984.试论滇东北Pb-Zn矿床的沉积成因和成矿规律.地质与勘探,(7):11-16.
    [36]刘忠明,余立新,韩培光,等.2007.高罗-西坪地区南津关组底部沉积型铅锌矿基本特征及找矿方向.资源环境与工程,21(增刊):47-52.
    [37]廖文.1984.滇东、滇西Pb-Zn金属区S、Pb同位素组成特征与成矿模式探讨.地质与勘探,(1):1-6.
    [38]陈士杰.1986.黔西滇东北铅锌矿床的沉积成因探讨.贵州地质,8(3):41-48.
    [39]赵准.1995.滇东、滇东北地区铅锌矿床的成矿模式.云南地质,14(4):350-354.
    [40]陈进.1993.麒麟厂铅锌硫化物矿床成因及成矿模式探讨.有色金属矿床与勘探,2(2):85-89.
    [41]柳贺昌,林文达.1999.滇东北铅锌银矿床规律研究.昆明:云南大学出版社.
    [42]刘文周,徐新煌.1996.论川滇黔铅锌成矿带矿床与构造的关系成都理工学院学报,23(1):71-77.
    [43]柳贺昌.1996.滇川黔铅锌成矿区的成矿模式.云南地质,15(1):41-51.
    [44]管士平,李忠雄.1999.康滇地轴东缘铅锌矿床铅硫同位素地球化学研究.地质地球化学,27(4):45-54.
    [45]黄智龙,陈进,刘丛强,等.2001.峨眉山玄武岩与铅锌矿床成矿关系初探——以云南会泽铅锌矿床为例.矿物学报,21(4):681-688.
    [46]王小春.1992.天宝山铅锌成因分析.成都地质学院学报,19(3):10-20.
    [47]周朝宪.1998.滇东北麒麟厂铅锌矿床成矿金属来源、成矿流体特征和成矿机理研究.矿物岩石地球化学通报,17(1):34-36.
    [48]芮宗瑶,叶锦华,张立生,等.2004.扬子克拉通周边及其隆起边缘的铅锌矿床.中国地质,31(4):337-346.
    [49]张长青,毛景文,吴锁平,等.2005.川滇黔地区MVT铅锌矿床分布、特征及成因.矿床地质,24(3):336-348.
    [50]王奖臻,李朝阳,李泽琴,等.2001.川滇地区密西西比河谷型铅锌矿床成矿地质背景及成因探讨.地质地球化学,29(2):41-45.
    [51]王奖臻,李朝阳,李泽琴,等.2002.川、滇、黔交界地区密西西比河谷型铅锌矿床与美国同类矿床的对比.矿物岩石地球化学通报,21(2):127-132.
    [52]黄智龙,李文博,陈进,等.2004.云南会泽超大型铅锌矿床C、O同位素地球化学.大地构造与成矿学,28(1):53-59.
    [53]韩润生,刘丛强,黄智龙,等.2001.论云南会泽富铅锌矿床成矿模式.矿物学报,21(4):674-680.
    [54]张振亮,黄智龙,饶冰,等.2005.会泽铅锌矿床成矿流体浓缩机制.地球科学——中国地质大学,30(4):443-449.
    [55]夏新阶,舒见闻.1995.李梅铅锌矿地质特征及其成因.大地构造与成矿学,19(3):197-204.
    [56]陈延生,李元.2005.会泽铅锌矿床成因问题探讨.矿山工程,3(6):14-16.
    [57]薛步高.2006.超大型会泽富锗铅锌矿复合成因.云南地质,25(2):143-159.
    [58]齐文,侯满堂,王根宝.2006.上扬子地台震旦系铅锌矿床类型及找矿方向.地球科学与环境学,28(2):30-36.
    [59]谢家荣.1961.成矿理论与找矿.中国地质,(12):13-34.
    [60]周圣生.1964.地层与找矿.中国地质,(1):13-22.
    [61]孟宪民,周圣生,郑直,等.1966.某些金属矿的找矿方向和方法的初步经验.地质论 评,24(1):34-41.
    [62]舒见闻.1985.湖南渔塘铅锌矿床成矿构造初步分析.大地构造与成矿学,9(1):75-81.
    [63]刘宝珺,王剑.1989.一个与生物丘有关的成岩成矿模式.四川地质学报,9(1):39-44.
    [64]刘文均,郑荣才,李元林,等.1997.花垣铅锌矿床流体包裹体中的子矿物.成都理工学院学报,24(2):65-69.
    [65]凌文黎,高山,张本仁,等.2000.扬子陆核古元古代晚期构造热事件与扬子克拉通演化.科学通报,45(21):2343-2348.
    [66]Qiu Y M, Gao S, McNaugyton N J, et al.2000. First evidencse of>3.2Ga continental crust in the Yangtze craton of South China and its implications for Archean crustal evolution and Phanerozoic tectonics. Geology,28(1):11-14.
    [67]高山,Yumin,凌文黎,等.2001.崆岭高级变质地体单颗粒锆石SHRIMP U-Pb年代学研究——扬子克拉通>3.2Ga陆壳物质的发现.中国科学(D辑),31(1):27-35.
    [68]马大铨,杜绍华,肖志发.2002.黄陵花岗岩基的成因[J].岩石矿物学杂志,21(2):151-161.
    [69]Qiu X F, Ling W L, Liu X M, et al.2011. Recongnition of Grevilian volcanic suite in the Shennongjia region and its tectonic significance for the South China Craton. Precambrian Research,191(3-4):101-119.
    [70]高林志,刘燕学,丁孝忠,等.2012.江南古陆中段沧水铺群锆石U-Pb年龄和构造演化意义.中国地质,39(1):12-19.
    [71]罗泰义,张欢,李晓彪,等,2003.遵义牛蹄塘组黑色岩系中多元素富集层的主要矿化特征.矿物学报,23(4):296-302.
    [72]朱正杰,朱长生,程礼军,等.2010.重庆城口地区下寒武统黑色岩系元素地球化学特征及其成因.地球科学——中国地质大学学,36(6):947-958.
    [73]KennedyM J, Runnegar B, Prave A R, et al.1998. Two or four Neoproterozoic glaciations?. Geology,26:1059-1063.
    [74]Hoffman P F, Schrag D P.2002. The snowball Earth hypothesis:testing the limits of global change. Terra Nova,14:129-155.
    [75]Jiang G Q,Kennedy M J,Christie-Blick N.2003. Stable isotopic evidence form ethane seeps in Neoproterozoic post glacial cap carbonates. Nature,426:822-826.
    [76]Porter S M, Knoll A H, Affaton P.2004. Chemostratigraphy of Neoproterozoic cap carbonates from the Volta Basin, West Africa. Precambrian Research,130:99-112.
    [77]雍自权,张旋,邓海波,等.2012.鄂西地区陡山沱组页岩段有机质富集的差异性.成都理工大学学报(自然科学版),39(6):567-574.
    [78]Condon D, Zhu M, Bowring S, et al.2005. U-Pb ages from the Neoproterozoic Doushantuo Formation, China. Science,308:95-98
    [79]Yin C, Tang F, Liu Y, et al.2005. U-Pb zircon age from the base of the Ediacaran Doushantuo Formation in the Yangtze Gorges, South China: Constraint on the age of Marinoan glaciation. Episodes,28(1):48-49
    [80]Zhang S, Jiang G, Zhang J, et al.2005.U-Pb sensitive high-resolution ion microprobe ages from the Doushantuo Formation in South China: Constraints on late Neoproterozoicglaciations.Geology,33(6):473-476.
    [82]陈卫锋,陈培荣,黄宏业,等.2007.湖南白马山岩体花岗岩及其包体的年代学和地球化学研究.中国科学(D辑),37(7):873-893.
    [82]方维萱,胡瑞忠,苏文超,等.2002.大河边-新晃超大型重晶石矿床地球化学特征及形成的地质背景.岩石学报,18(2):247-256.
    [83]贾宝华.1994.湖南雪峰隆起区构造变形研究.中国区域地质,(1):65-71,
    [84]丘元禧,张渝昌,马文璞.1998.雪峰山陆内造山带的构造特征与演化.高校地质学报,4(4):432-443.
    [85]周小进,杨帆.2009.中国南方大陆加里东晚期构造——古地理演化.石油实验地质,31(2):128-136.
    [86]刘运黎,周小进,廖宗庭,等.2009.华南加里东期相关地块及其汇聚过程探讨.石油实验地质,31(1):19-25.
    [87]马力,陈焕疆,甘克文,等.2004.中国南方大地构造和海相油气地质(上).北京:地质出版社.
    [88]胡召齐,朱光,张必龙,等.2010.雪峰隆起北部加里东事件的K-Ar年代学研究.地质论评,56(4):490-500.
    [89]胡召齐,朱光,刘国生,等.2009.川东“侏罗山式”褶皱带形成时代:不整合面的证据.地质论评,55(1):32-42.
    [90]夏文杰,杜森官,徐新煌,等.1994.中国南方震旦系岩相古地理与成矿作用北京:地质出版社.
    [91]骆学全,1990.湖南沅陵一带黄铁、铅锌矿床的地质特征及成矿地质条件.矿物岩石,10(3):78-86.
    [92]曾勇,李成君.2007.湘西董家河铅锌矿地质特征及成矿物质来源探讨.华南地质与矿产,(3):24-30.
    [93]吕向志,戴绍杰,徐泽秀,等.2009.湖北花椒树坪锌矿床同位素地球化学特征.资源环境与工程,23(6):779-783.
    [94]祝敬明,颜代蓉,张汉金,等.2009.神农架冰洞山锌矿矿床模型.23(2):89-94.
    [95]戴绍杰,吕向志,肖红梅.2010.湖北花椒树坪锌矿床主要矿石矿物特征研究.资源环境与工程,24(6):659-664.
    [96]方冬生,吕向志,戴绍杰,等.2011.湖北省冰洞山锌矿床成因浅析.资源环境与工程,25(3):197-200.
    [97]张汉金,祝敬明,颜代蓉,等.2010.神农架冰洞山铅锌矿床岩相古地理条件与找矿方向.资源环境与工程,234(6):631-634.
    [98]汤朝阳,段其发,邹先武,等.2009.鄂西-湘西地区震旦系灯影期岩相古地理与层控铅锌矿关系初探.地质论评,55-59.
    [99]颜代蓉,祝敬明,张汉金,等.2010.扬子地块北缘冰洞山铅锌矿床地质及地球化学特征.地质科技情报,29(6):35-40.
    [100]Gregg J M, Sibley D M.1984. Epigenetic dolomiteization the origin of xenotopic dolomite texture. J Sediment Petrol,54:907-931.
    [101]Smith P A, Cronan D S,1983. T he geochemistry of metalliferous sediments and waters associated with shallow submarine hydrothermal activity(Santorini, Aegean Sea). Chemical Geology,39(3-4):241-262.
    [102]Peter J M, Scott S D.1988. Mineralogy, composition, and fluid inclusion microthermometry of seafloor hydrothermal deposits in the southern trough of Guaymas basin, gulf of California. Canadian Mineralogist,26:567-587.
    [103]刘源骏,金光富,谢发鹏,等.1996.一个大型黑色岩系银钒矿床成矿作用及成矿环境的讨论.湖北地质,10(2):22-37.
    [104]刘鹏举,尹崇玉,高林志,等.2009.湖北宜昌樟村坪埃迪卡拉系陡山沱组微体化石新材料及锆石SHRIMP U-Pb年龄.中国科学(D辑),54(6):774-780.
    [105]王浩,凌文黎,段瑞春,等.2012.扬子克拉通峡东地区新元古代-寒武纪黑色岩系Os同位素地球化学特征及其地质意义.地球科学——中国地质大学学报,37(3):451-462.
    [106]胡古月,范昌福,万德芳,等.2013.湖北峡东地区“盖帽碳酸盐岩”中燧石条带的地球化学特征及其古环境意义.地质学报,87(9):1469-1676.
    [107]毕献武.胡瑞忠.1998.哀牢山金矿带成矿流体稀土元素地球化学.地质论评,44(3):264-269.
    [108]陈骏,王鹤年.1997.成矿流体作用过程的REE示踪研究.南京大学学报(自然科学版),33(3):28-35.
    [109]Fleet A J.1983. Hydrothermal and hydrogeneous ferromanganese deposit. Rona P A, Bost rom K, Laubier L, et al. Hydrothermal Processes at seafloor spreading centers. New York: Plenum Press,537-570.
    [110]李胜荣,高振敏.1995.湘黔地区牛蹄塘组黑色岩系稀土特征——兼论海相热水沉积岩稀土模式.矿物学报,15(2):225-229.
    [111]杨剑,易发成,刘涛,等.2005.黔北黑色岩系稀土元素地球化学特征及成因意义.地质科学,40(1):84-94.
    [112]谭满堂,丁振举,姚书振,等.2013.鄂西白果园银钒矿床地球化学特征与成矿作用.地质科技情报,32(2):50-57.
    [113]Davidson C J.1992. Hydrothermal geochemistry and oregenesis of seafloor volcanogenic copper-bearing oxide ores. Economic Geology.87(3):889-912.
    [114]Loftus H G.1967. Cobalt nicked and selenium in sulfide as indications of genesis. Mineralium Deposit,:228-243.
    [115]Bralia A, Sabatini G, Troja F.1979. Revaluation of the Co/Ni ratio in pyrite as geochemical toll in ore genesis problems: evidences from southern Tuscany pyritic deposits. Mineralium Deposta,14(3):353-374.
    [116]毛光周,华仁民,高剑峰,等.2006.江西金山金矿床含金黄铁矿的稀土元素和微量元素特征.矿床地质,25(4):412-426.
    [117]Bau M, Dulski P.1995. Comparative study of yttrium and rare-earth element behaviours in fluorine-rich hydrothermal fluids. Contributions to Mineralogy and Petrology,119:213-223.
    [118]Yaxley G M, Green D H, Kamenetsky V.1998. Carbonatite metasomatism in the southeastern Australian lithosphere. Journal of Petrology,39:1917-1930.
    [119]Elderfield H.1986. Strontium isotope stratigraphy. Palaeogeogr.Palaeoclimatol. Palaeoecol, 57:71-90.
    [120]Denison R E, Koepick R B, Burkew H, et al.1998. Construction of the Cambrian and Ordovician seawater 87Sr/86Sr curve. Chemica Geology,152:325-340
    [121]Melezhik V A, Gorokhov I M, Fallick A E, et al.2002. Isotopic stratigraphy suggests Neoproterozoic ages and Laurentian ancestry for high-grade marbles from the North-Central Norwegian Caledonides. Geological Magazine,139(4):375-393.
    [122]Veizerr J, Holser W T, Wilgus C K.1980. Correlation of 13C/12C and 34S/32S secular variation. Geochimica et Cosmochimica Acta,44:579-588.
    [123]Dowling K, Morrison G.1989. Application of quartz textures to the classification of gold deposits using North Queensland examples. Economic Geology Monograph,6:342-355.
    [124]陈衍景,倪培,范宏瑞,等.2007.不同类型热液金矿系统的流体包裹体特征.岩石学报,23(9):2085-2108.
    [125]张文淮,陈紫英.1993.流体包裹体地质学.武汉:中国地质大学出版社.
    [126]Bodnar R J.1993. Reviced equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica Acta,57:683-684.
    [127]Hall D L, Sterner S M, Bodnar R J.1988. Freezing point depression of NaCl-KCl-H2O solutions. Economic Geology,83(1):197-202.
    [128]刘斌,沈崑.1999.流体包裹体热力学.北京:地质出版社.
    [129]邵洁涟.1988.金矿找矿矿物学.武汉:中国地质大学出版社.
    [130]卢焕章,范宏瑞,倪培,等2004.流体包裹体.北京:科学出版社.
    [131]Shepherd T J, RaKin Arl, Alderton D H M.1985. A practical guide to fluid inclusion studies. Blackie & Son Limited.
    [132]Sibson R H.1994. Crustal stress, faulting and fluid flow. Parnell J, ed, Geological Society Special Publications, (78):69-84.
    [133]孙丰月,金巍,李碧乐,等.2000.关于脉状热液金矿床成矿深度的思考.长春科技大学学报,30(增刊):27-30.
    [134]张德会.1997.流体的沸腾和混合在热液成矿中的意义.地球科学进展,12(6):546-552.
    [135]Cox S F, Knackstedt M A, Braun J.2001. Principles of structural control on permeability and fluid hydrothermal system. SEG Reviews,14:1-24.
    [136]Hagemann S G, Liiders V.2003. P-T-X conditions of hydrothermal fluids and precipitation mechanism of stibnite-gold mineralization at the Wiluna lode-gold deposits, Western Australia: Conventional and infrared microthermometric constraints. Mineralium Deposita, 38(8):936-952.
    [137]张理刚.1985.稳定同位素在地质科学中的应用——金属活化热液成矿作用及找矿.西安:陕西科学技术出版社.
    [138]Zartman R E, Doe B R.1981. Plumbotectonics-the model. Tectonophysiscs,,75(1/2): 135-162.
    [139]朱炳泉,李献华,戴谟,等.1998.地球科学中同位素体系理论应用——兼论中国大陆壳幔演化.北京:学出版社.
    [140]吴开心,胡瑞忠,毕献武.2002.矿石铅同位素示踪成矿物质来源.地质地球化学30(3):73-81.
    [141]孟祥金,汤吉芳,付太安,等.2004.鄂西神农架地区铜矿床地质地球化学特征.地质与勘探,40(2):23-27.
    [142]Faure G, Mensing T M.2005. Isotopes: Principles and Applications.3rd ed. New York: John Wiley & Sons,256-283.
    [143]Hoefs J.1997. Stable isotope geochemistry.4thed., Berlin: Spriinger Verlag,119-120.
    [144]张乾,董振生,战新志.1995.鄂西白果园黑色页岩型银钒矿床地球化学特征.矿物学报,15(2):185-191.
    [145]李铨,冷坚.1987.神农架上前寒武系.天津:天津科学技术出版社.
    [146]Ohmoto H, Rye R O.1979. Isotope of sulfur and carbon. Barnes H L. Geochemistry of hydrothermal ore deposits(2nd). New York: John Wiley and Sons,509-567.
    [147]Dixon G, Davidson G J.1996. Stable isotope evidence for thermochemical sulfate reduction in the Dugald River (Australia) strata bound shale-hosted zinc-lead deposit. Chemical Geology,129:227-246.
    [148]Machel H G, Krouse H R, Sassen R.1995. Products and distingueishing criteria of bacterial and thermoch- emical sulphate reduction. Applied Geochemitry,10:373-389.
    [149]郑永飞,陈江峰.2000.稳定同位素地球化学.北京:科学出版社.
    [150]张同钢,储雪蕾,张启锐,等.2003.陡山沱期古海水的硫和碳同位素变化.科学通报,48(8):850-855.
    [151]Spangenberg J, Fontbote J, Sharp Z D, et al.1996. Carbon and oxygen isotope study of hydrthemal carbonate in the zinc-lead deposits of the San Vicente district, central Peru: aquantitative modeling on mixing processes and CO2 degassing. Chemical Geology,133: 289-135.
    [152]郑永飞.2001.稳定同位素体系理论模式及其矿床地球化学应用.矿床地质,20(1):57-70,85.
    [153]Taylor B E.1986. Magmatic volatiles:Isotope variation of C, H and S. Reviews in mineralogy. In: Stable isotopes in high tem peratu re geological process. Mineralogical Society of America,16:185-226.
    [154]Ohmoto H.1972. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Economic Geology,67:551-578.
    [155]Keith M L, Weber J N.1964. Carbon and oxygen isotopic composition of selected limestone and fossils. Geochimica et Cosmochimica Acta,28(11):1787-1816.
    [156]Friedman I, O'Neil J R.1977. Complication of stable isotope fractionation factors of geochemical interest. In: Data of geochemistry(sixth edition). Washington D.C. U. S. Gov. Printing Office.
    [157]Leach D L, Bradley D C, Lewchuk M, et al.2001. Mississippi Valley-type lead-zinc deposits through geological time:implications from r ecent age-dating research. Mineralium Deposita,36:711-740.
    [158]Leach D L, S angster D F, Kelley K D, et al.2005. Sedement-hosted lead-zinc deposits:A global perspective. In: Hedenquist J W, Thompson J F H, Goldfarb R J, Richards J P. Eds. Economic Geology 100th Anniversary Volume,561-607.
    [159]李文博,黄智龙,许德如,等.2002.铅锌矿床Rb-Sr定年研究综述.大地构造与成矿学,26(4):434-441.
    [160]蔺志永,王登红,张长青.2010.四川宁南跑马铅锌矿床的成矿时代及其地质意义.中国地质,37(2):488-494.
    [161]朱飞霖,陶琰,胡瑞忠,等.2011.云南镇康芦子园铅-锌矿的成矿年龄.矿物岩石地球化学通报,30(1):73-79.
    [162]王晓虎,侯增谦,宋玉财,等.2011.兰坪盆地白秧坪铅锌铜银多金属矿床:成矿年代及区域成矿作用.岩石学报,27(9):2625-2634.
    [163]胡乔青,王义天,王瑞廷,等.2012.陕西凤太矿集区二里河铅锌矿床的成矿时代:来自闪锌矿Rb-Sr同位素年龄的证据[J].岩石学报,28(1):258-266.
    [164]杜国民,蔡红,梅玉萍.2012.化物矿床中闪锌矿Rb-Sr等时线定年方法研究——以湘西新晃打狗洞铅锌矿床为例.华南地质与矿产,28(2):175-180.
    [165]徐贻赣,吴淦国,王长明,等.2013.江西冷水坑银铅锌矿田闪锌矿铷-锶测年及地质意义.地质学报,87(5):621-633.
    [166]Ludwig K R.2001. User's manual for isoplot/Ex version 2.49:A geochronological toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center Special Publication, No. la, 1-55.
    [167]张自超.1995.我国某些元古宙及早寒武世碳酸盐岩石的锶同位素组成.地质论评,41(4):349-354.
    [168]张国伟,张宗清,董云鹏.1995.秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义.岩石学报,11(2):101-114.
    [169]张成立,高山,张国伟,等.2002.南秦岭早古生代碱性岩墙群的地球化学及其地质意义.中国科学(D辑),32(10):819-828.
    [170]张成立,高山,袁洪林,等.2007.南秦岭早古生代地幔性质:来自超镁铁质、镁铁质岩脉及火山岩的Sr-Nd-Pb同位素证据.中国科学(D辑),37(7):857-865.
    [171]张本仁.2001.秦岭地幔柱源岩浆活动及其动力学意义.地学前缘,8(3):57-66.
    [172]倪世钊,杨德骊.1994.东秦岭东段南带古生代地层和沉积相.武汉:中国地质大学出版社.
    [173]李强,王晓虎.2009.扬子北缘震旦系铅锌矿床成矿地质特征及成矿模式.资源环境与工程,23(1):1-6.
    [174]黄思静,张雪花,刘丽红,等.2009.碳酸盐成岩作用研究现状与前瞻.地学前缘,16(5):219-231.
    [175]刘宝珺,许效松.1994.中国南方岩相古地理图集(震旦纪-三叠纪).北京:科学出版社.
    [169]汪建国,陈代钊,王清晨,等.2007.中扬子地区晚震旦世-早寒武世转折期台-盆演化及烃源岩形成机理.地质学报,81(8):1102-1110.
    [177]梁传茂.1984.鄂西震旦纪陡山沱期沉积格局及其对确矿的控制作用.长春地质学院学报,(3):46-57.
    [178]邹先武,杨晓君,罗林,2007.湖北省凹子岗锌矿地质特征及找矿标志.华南地质与矿产,(3):31-36.
    [179]刘怀仁,刘明星,胡登新,等.1991.川西南上震旦统灯影组沉积期的暴露标志及其意义.岩相古地理,(5):1-10.
    [180]陈明,许效松,万方,等.2002.上扬子台地晚震旦世灯影组中葡萄状-雪花状白云岩的成因意义.矿物岩石,22(4):33-37.
    [181]施泽进,梁平,王勇,等.2011.川东南地区灯影组葡萄石地球化学特征及成因分析.岩石学报,27(8):2263-2271.
    [182]郑文忠,东野脉兴,胡络兰.1992.鄂西震旦纪陡山沱组磷块岩稀土元素地球化学.地球论评,38(4):352-358.
    [183]柳永清,尹崇玉,高林志,等.2003.峡东震旦系层型剖面沉积相研究地质论评,49(2):187-194.
    [184]Parsapoor A, Khalili M, Mackizadeh M A.2009. The behavior of trace and rare earth elements(REE) during hydrothermal alteration in the Rangan area(Central Iran). Jounal of Asian Earth Sciences,34(2):123-134.
    [185]陈多福,陈光谦,陈先沛.2002.贵州瓮福新元古代陡山沱期磷矿床铅同位素特征及来源探讨.地球,31(1):49-54.
    [186]张庆华,张伦尉,鲍淼.2012.贵州下寒武统黑色岩系多金属矿层成矿物质来源的铅同位素示踪.矿产与地质,26(2):144-147.
    [187]Andrew A, Godwin C I, Sinclair A J.1984. Mixing line isochrones:A new interpretation of galena lead isotope data from southeastern British Columbia. Economic Geology,79: 919-932.
    [188]姜永果,崔银亮,吴静,等.2011.滇东北地区渔户村组铅锌矿稳定同位素地球化学特征.矿产与地质,25(5):417-422.
    [189]张同钢,储雪蕾,张启锐,等.2004.扬子地台灯影组碳酸盐岩中的硫和碳同位素记录.岩石学报,20(3):717-724.
    [190]Chang Z, Large R R, Maslennikov V.2008. Sulfur isotopes in sediment-hosted orogenic gold deposits: Evidence for an early timing and a seawater sulfur source. Geology,36(12): 971-974.
    [191]黄志诚,陈智娜,杨守业,等.1999.中国南方灯影峡期海洋碳酸盐岩原始613C和6180组成及海水.古地理学报,](3):1-5.
    [192]Qing H, Mountjoy E W.1994. Formstion of coarsely crystalline hydrothermal dolomite reserveoirs in the Presquile Barrier, Western Canada edimentary Basin. AAPG Mulletin, 78(1):55-77.
    [193]邹先武,段其发,汤朝阳,等.2011.北大巴山镇坪地区辉绿岩锆石SHRIMP U-Pb定年 和岩石地球化学特征.中国地质,38(2):282-291.
    [194]王存智,杨坤光,徐扬,等.2009.北大巴基性岩墙群地球化学特征、LA-ICP-MS锆石U-Pb定年及其大地构造意义.地质科技情报,2002,28(3):19-26.
    [195]李方会,廖宗明,刘圣德,等.2009.湖北省远安县凹子岗锌矿床基本特征.资源环境与工程,23(2):97-101.
    [196]徐国盛,徐燕丽,袁海锋,等.2007.川中-川东震旦系-下古生界沥青及储层沥青的地球化学特征.石油天然气学报,29(4):45-51.
    [197]李艳霞,钟宁宁,林娟华,等.2011.中扬子南缘王村上寒武统古油藏成藏剖析.石油实验地质,33(4):408-413.
    [198]杨志坚.1987.横贯中国东南部的一条古断裂带.地质科学,(3):221-230.
    [199]尹福光,许效松,万方,等.2001.华南地区加里东期前陆盆地演化过程中的沉积响应.地球学报,22(5):425-428.
    [200]杜远生,徐亚军.2012.华南加里东运动初探.地质科技情报,31(5):43-49.
    [201]李宗发.1991.湘西黔东地区铅锌矿成因初探.贵州地质,8(4):363-371.
    [202]彭国忠.1986.湖南花垣渔塘地区层控型铅锌矿床成因初探.地质科学,(2):179-186.
    [1203]赵瞻,谢渊,刘建清,等.2011.渝东南下寒武统黑色岩系稀土元素地球化学特征与沉积环境.沉积与特提斯地,31(2):49-54.
    [204]李荣清.1995.湘南多金属成矿区方解石的稀土元素分布特征及其成因意义.矿物岩石,15(4):72-78.
    [205]王登红,李华芹,陈毓川,等.2005.桂西北南丹地区大厂超大型锡多金属矿床中发现高稀土元素方解石.地质通报,24(2):176-180.
    [206]王忠诚.1992.大巴山下寒武统黑色岩系中毒重石矿床的成因探讨[J].地质科学,27(3):237-247.
    [207]Roedder E.1972. Composit ion of fluid inclusions. U.S. Geol. S urvey Prof. Paper,440JJ. 57-58.
    [208]李泽琴,王奖臻,倪师军,等.2002.川滇密西西比河谷型铅锌矿床成矿流体来源研究:流体Na-Cl-Br体系的证据.矿物岩石,22(4):38-41.
    [209]刘海臣,朱炳泉.1994.湘西板溪群及冷家溪群的时代研究.科学通报39(4):148-150.
    [210]梁华英.1989.龙山金锑矿床成矿物质来源研究.矿床地质,8(4):39-48.
    [211]夏菲,马东升,潘家永,等.2005.天柱大河边重晶石矿床铅同位素特征及来源探讨.地球化学34(5):501-507.
    [212]王华云,施继锡.1997.贵州丹寨、三都、都匀地区低温成矿系列的成矿物质来源和分异条件.矿物学报,17(4):491-450.
    [213]李宗发.1992.湘黔边境铅锌矿带硫铅同位素组成特征.贵州地质,9(3):246-254.
    [214]Li R, Chen J, Zhang S, et al.1999. Spatial and temporal variation in carbon and sulfur isotopic compositions of Sinian sedimentary rocks in the Yangtze platform, South China. Precambrian Research,97:59-75.
    [215]储雪雷,李任伟,张同刚,等.2001.大塘坡期锰铁矿层中黄铁矿异常高δ34S值的意义.矿物岩石地球化学通报,20(4):320-322.
    [216]李任伟,张淑坤,雷加锦,等.1996.震旦纪地层黄铁矿硫同位素组成时-空变化特征及扬子地块与晚元古超大陆关系的论证.地质科学,31(3):209-207.
    [217]储雪蕾,封兰英,陈其英.1995.贵州开阳晚震旦世磷块岩的硫同位素组成及意义.科学通报,40(2):148-150.
    [218]范祖全,于明舜,钟太山,等.1986.湘西贡溪气液沉积型层状重晶石矿床特征及成因分析.矿物岩石,6(3):65-75
    [219]Barnes H L.1997. Geochemist ry of hydrothermal ore deposits.3rd. New York: John Wiley & Sons.
    [220]舒见闻,彭国忠.1986.湖南花垣县渔塘铅锌矿床——运用地洼学说成矿学找富矿的体会.大地构造与成矿学,10(4):359-367.
    [221]黄思静,石和,毛晓冬,等.2002.重庆秀山寒武系锶同位素演化曲线及全球对比.地质论评,48(5):509-516.
    [222]朱笑青,王甘露,卢焕章,等.2006.黔东南金矿形成时代的确定——兼论湘黔加里东金矿带.中国地质,33(5):1092-1099.
    [223]彭建堂,戴塔根.1998.雪峰山地区金矿成矿时代问题的探讨.地质与勘探,34(4):37-41.
    [224]王秀璋,梁华英,程景平.2000.华南加里东期金矿床的基本特征.矿床地质,19(1):1-18.
    [225]刘宝珺,王剑.1990.湘西花垣李梅铅锌矿区古热液卡斯特特征及其成因研究.大地构造与成矿学,14(1):57-67.
    [226]Appold M S, Garven G.1999. The hydrology of ore formation in the Southeast Missouri district: numerical models of topography-driven fluid flow during the Ouachit a orogen. Economic Geology,94:913-936.
    [227]Basuki N I, Spooner E T C.2004. A review of fluid inclusion temperatures and salinities in Mississippi Valley-type Zn-Pb deposits:Identifying thresholds for metal transport. Exploration and Mining Geology,11:1-17.
    [228]王六明.1988.一个新的矿床类型——滩羊河岩溶型菱锌矿矿床地质特征.中国岩溶,(2):87-92
    [229]鲍珏敏.万榕江,包正相.2003.湘西北菱锌矿床地质特征及形成机制.湖北地矿,17(2):8-12.
    [230]高坪仙.1996.碳酸盐型铅锌矿床成矿的构造制约因素和条件.国外前寒武纪地质,74(2):39-42.
    [231]阙梅英,罗安平,张立生,等.1993.滇东北上震旦-下寒武统层控铅锌矿.成都:四川科学技术出版社.
    [232]杨应选.1994.康滇地轴东缘铅锌矿床成因及成矿规律.成都:四川科学技术出版社.
    [233]Jackson S A, Beales F W.1967. An aspect of sedimentary basin evolution: the concentration of Mississippi Valley-type ores during late stages of diagenesis. Bulletin of Canadian Petroleum Geology,15:383-433.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700