用户名: 密码: 验证码:
陆相火山岩型铁矿床矿石组构学特征及其成因意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宁芜盆地、庐枞盆地及攀西地区是我国陆相火山岩型铁矿研究的重要基地,而此类矿床中的矿石是在特定的地质条件下经过漫长的成矿过程演化而形成的,记录着成矿作用的相关信息。宁芜-庐枞地区铁矿床的赋矿岩体为一套晚侏罗世-早白垩世的中酸性次火山岩,其中以出露于地表-30m以下的宁芜梅山铁矿和地表-600m以下庐枞泥河铁矿为典型代表;而攀西地区平川铁矿的赋矿岩体为一套晚二叠世-早三叠世基性-超基性的次火山岩,矿体出露地表。泥河→梅山→平川铁矿的赋矿次火山岩体依次为偏酸性→中性→基性-超基性。三个矿床虽然都是陆相火山岩型铁矿,但是产出的地质背景、赋矿岩体、控矿构造、成矿作用、成矿流体及矿石组构等方面都有所差异。
     本次研究,以宁芜盆地梅山铁矿床、庐枞地区泥河铁矿床以及攀西地区平川铁矿床为研究对象,在矿相学理论指导基础上,进行系统的矿石组构学研究,并结合矿床地球化学和流体地质学等理论知识,选择具代表性的标型矿物组合通过探寻其物理性质、化学成分、流体性质及同位素组成在不同成矿环境的指纹信息,反馈不同成矿地质作用对标型矿物形成的制约作用,旨在揭示不同陆相火山岩系列的铁矿床在成矿作用过程中的共性及差异性。本次研究对深入认识陆相火山岩铁矿成矿作用,总结完善该类型铁矿床的成矿规律研究及推动深部找矿具有重要的意义。本次研究成果如下:
     (1)矿石组构学
     梅山铁矿早阶段伴随有网脉浸染状磁铁矿矿化,形成浸染状、网脉状贫矿体,晚阶段发生富矿流体的充填,形成块状富矿体;中期蚀变作用阶段磁铁矿发生赤铁矿化等,形成假象-半假象赤铁矿。典型矿石结构主要有自形-半自形粒状结构、它形粒状结构、交代结构、脉状-网脉状结构、格状结构、共结边结构、生长环边结构等。
     泥河铁矿矿石构造主要有浸染状构造、块状构造、斑杂状构造、细脉浸染状构造、网脉状构造,矿石结构主要有自形-半自形粒状结构、它形粒状结构、交代结构、格状结构、脉状-网脉状结构等。
     平川铁矿矿山梁子矿段和道坪子矿段的矿石构造主要有致密块状构造、浸染状构造、角砾状构造、脉状-网脉状构造,矿石结构主要有自形-半自形粒状结构、似海绵陨铁结构、交代结构、包含结构、碎裂结构。
     总体来说,陆相火山岩型铁矿床金属矿物主要为磁铁矿,其次赤铁矿、黄铁矿及菱铁矿。泥河铁矿床以次火山热液交代作用为主;梅山铁矿床以次火山热液交代作用为主,充填作用为辅;平川地区道坪子-矿段梁子矿段以充填成矿为主,交代作用为辅;平川烂纸厂矿段为火山沉积-变质成矿。
     (2)成矿期及成矿阶段的划分
     泥河铁矿和梅山铁矿都经历了三个成矿期,包括晚期岩浆结晶分异期,气水-热液成矿期和表生氧化期。泥河铁矿床的气水-热液成矿期可分为碱交代作用阶段、硬石膏-透辉石-磁铁矿化阶段、铁硫-钙充填交代阶段及硅化-泥化水热交代阶段。梅山铁矿在岩浆成矿期已经开始富集成矿物质,可进一步划分为岩浆结晶分异阶段、碱性长石化阶段及硬石膏-(磷灰石)-磁铁矿-透辉石/石榴石阶段;气水-热液成矿期划分为硬石膏-(磷灰石)-黄铁矿-磁铁矿阶段、石英-黄铁矿-磁铁矿阶段、含水硅酸盐矿物叠加作用阶段、硬石膏-黄铁矿化阶段及硅化-泥化-碳酸盐化阶段。
     平川铁矿在不同矿段表现出不同的成矿类型。基本上,成矿期可划分为岩浆分异期(大杉树矿段)、火山喷发-沉积期(烂纸厂)、次火山热液期(矿山梁子、道坪子矿段)和后生改造期。
     (3)磁铁矿的成因特征
     ①磁铁矿至少可分为三个世代:早期为细粒它形磁铁矿,呈稀疏浸染状分布于赋矿次火山岩体中;中期为硬石膏-透辉石-磷灰石-磁铁矿化阶段(梅山、泥河)或(金云母)(蛇纹石)-磷灰石-磁铁矿化阶段(平川)以浸染状-块状构造产出的磁铁矿石,磁铁矿呈细粒它形粒状结构:晚期为以硬石膏-石英/碳酸盐-磷灰石-磁铁矿阶段脉状-网脉状构造产出的粗粒-伟晶状磁铁矿(泥河)、致密块状磁铁矿(梅山)或细粒碳酸盐-(硫化物)-磁铁矿阶段以梳状构造(矿山梁子)产出的中粗粒磁铁矿。根据其产出组构特征,一般早期为岩浆结晶分异的产物;中期为次火山岩热液交代作用的产物,为主矿体的主要组成部分;晚期为热液充填成矿。
     ②磁铁矿晶胞参数:梅山及泥河铁矿床的晶胞参数(ao为8.38892-8.39057nm和8.38630-8.38965nm)分布在接触交代和热液交代型磁铁矿范围内,应为热液交代成因。而平川铁矿(包括矿山梁子和道坪子)磁铁矿的晶格常数ao分别为8.392-8.395nm和8.391-8.398nm,显示磁铁矿主体为热液交代成因,部分可能为岩浆作用形成。
     ③梅山铁矿早期深部辉长闪长玢岩中的磁铁矿属于富钛低镁型-富钛富钒型;而后期接触交代作用下形成的磁铁矿属于低钛富镁型-低钛富钒型。泥河铁矿早期磁铁矿颗粒为富钛低镁型-富钛富钒型;泥河铁矿中期浸染状磁铁矿为低钛低镁型-低钛富钒型;晚期粗粒脉状磁铁矿Ti02含量在1%左右波动,比较偏过渡类型。矿山梁子及道坪子主矿体磁铁矿石矿山梁子以低钛、低铝、高镁含量为特征。电子探针数据显示由泥河→梅山→平川,磁铁矿的TFeO、Fe2O3含量及Fe2O3/FeO值明显增加,FeO含量明显降低,这可能与成矿溶液中铁质含量、成矿作用形式及矿质沉淀的空间位置有关。
     ④梅山铁矿磁铁矿TiO2、Al2O3、MgO和MnO的对数分布图显示,A1203略负向偏倚分布,MgO、TiO2和MnO均呈较明显的负向偏倚特征,与岩浆型磁铁矿相似,可能为该区后期磁铁矿继承了部分岩浆结晶分异期的元素。泥河铁矿磁铁矿MnO、MgO略具对数负向偏倚分布,整体与火山岩型磁铁矿较为相似。平川铁矿道坪子矿段整体与矽卡岩型磁铁矿较为相似,可能与成矿期后大量的碳酸盐交代作用有关。
     ⑤磁铁矿TiO2-Al2O3-MgO, TiO2-Al2O3-(MgO+MnO)成因图解显示,平川矿山梁子及道坪子主矿体磁铁矿具明显的热液交代和接触交代作用特征,而烂纸厂为沉积变质作用而成;泥河铁矿特征值分布集中,为与中性岩浆有关的火山岩型-热液型过渡类型;梅山铁矿特征值分布非常分散,为明显的过渡性成矿。
     ⑥不同类型矿床、不同矿石结构和构造产出的磁铁矿TiO2-Al2O3-(MgO+MnO)成因图解也具有一定规律性。梅山铁矿磁铁矿为与火山岩有关的岩浆期后热液作用成矿,脉状矿石为岩浆期后矿质充填形成,以它形细粒结构集合体为特征;角砾状矿石及块状矿石则是早期热液交代萃取围岩中的铁质,晚期矿质大规模沉淀而成,该作用过程中发育区内最广泛的浸染状磁铁矿化,磁铁矿受后期热液作用的影响而被交代溶蚀呈残余结构。泥河铁矿磁铁矿主要分布于Ⅱ、Ⅲ、Ⅳ区的过渡区间,角砾状构造→浸染状构造→斑杂状构造→伟晶状构造→致密块状构造→网脉浸染状磁铁矿石中磁铁矿由火山岩型→岩浆型→热液型逐渐过渡,但浸染状磁铁矿石、伟晶状磁铁矿石及块状磁铁矿石受热液交代混染分布略分散。从磁铁矿产出结构特征来看,细粒它形结构与交代残余结构磁铁矿主要为火山岩型,粗粒自形-它形粒状结构磁铁矿偏向于热液成因,与区内以次火山岩-热液成矿特征较为一致。平川矿山梁子及道坪子矿段磁铁矿几乎都分布于矽卡岩型区域内,仅道坪子矿段发育的浸染状、细脉状磁铁矿石受地层混染而有向热液型过渡的趋势,矿山梁子矿段应该为富铁质矿浆沿本区火山机构及区内构造薄弱面充填成矿,受区内碳酸盐围岩影响。烂纸厂矿段磁铁矿为典型的沉积变质成因类型。
     ⑦磁铁矿H-O稳定同位素:梅山磁铁矿H-O同位素特征显示成矿热液总体显示岩浆水(5DH2O=-73-84%o,δ18OH2O=6.68-8.9‰)的特征,大气降水混入不明显。泥河磁铁矿H-O同位素特征表明主成矿阶段的流体主要为岩浆水,成矿晚阶段则主要为天水。
     平川磁铁矿δ18OMt介于5.6-10.3‰之间,明显区别于岩浆型磁铁矿和沉积变质型磁铁矿,与辉长质岩浆(δ180=5.5~7.4‰)相近,说明形成磁铁矿的氧与深部岩浆源具有亲缘关系。成矿热液中的水主要来源于岩浆体系,和区内岩浆活动密切相关,但因碳酸盐脱碳作用而具有低δD和高δ180特征。
     (4)蚀变-矿化分带规律
     梅山铁矿围岩蚀变空间上,自下而上,分为岩体深部浅色蚀变带、接触带附近深色蚀变带和上部安山质火山岩中浅色蚀变带,磁铁矿化开始于岩体深部浅色蚀变带,在接触带附近深色蚀变带富集。
     泥河铁矿床矿体,自下而上分为①下部浅色蚀变带、②深色蚀变带、③叠加蚀变带及④上部浅色蚀变带。分别对应钠长石化、紫色硬石膏-透辉石-(磷灰石)-磁铁矿化、含石英-赤铁矿-(菱铁矿)-浅色硬石膏-黄铁矿化及硅化-泥化。次生石英岩化是磁铁矿化的远程指示性蚀变,膏辉岩化出现在近矿和容矿蚀变带,钠长石化大规模发育标志铁矿化作用的开始,亦即深部找矿勘探的终止。
     平川铁矿的道坪子矿段V号矿体产于辉长岩体与碳酸盐岩接触带,具充填交代成因,围岩蚀变相对较为发育,可划分为4个蚀变带:①蛇纹石化大理岩带、②金云母-蛇纹石-磁铁矿化带、③金云母-透闪石化带、及④绿帘石-阳起石-透辉石化带。各蚀变带渐变过渡,向接触带两侧蚀变程度逐渐减弱。金云母-蛇纹石-磁铁矿带是主要赋矿部位,主要发育在细粒辉绿辉长岩中,金云母和蛇纹石是近矿围岩蚀变标志。
     (5)蚀变-矿化作用过程中的元素迁移
     本次研究的陆相火山岩型铁矿中泥河铁矿具有保存最完整及最典型的蚀变分带特征,因此选取其作为研究对象,对蚀变-矿化作用过程进行探讨,分析元素迁移规律。针对泥河铁矿床蚀变矿化带对蚀变岩主量元素分析,以早期蚀变岩石为原岩与稍晚期蚀变岩石的不活动元素拟合最佳等浓度方程,采用改良后的等浓度图法(The Isocon Diagram)来定量探讨蚀变过程中元素迁移特征。
     早期碱交代作用阶段以Na质富集为主,代表着铁矿化作用的开始。Fe质迁移与Na质富集为负相关,与P富集呈正相关关系。深色蚀变带以铁、镁、钙交代作用为主,膏辉岩以强烈富集Ca、Mg,弱富集Fe、Si为特征,为磁铁矿化过程富集Fe、P提供物质基础。叠加蚀变带以铁、硫、钙充填交代作用为主,早期赤铁矿-(菱铁矿)-硬石膏-黄铁矿化过程伴随强烈的硅酸盐矿物绿泥石化、绿帘石化水解,富集Fe、P、S和LOI,强烈亏损Ca、Mg;黄铁矿-硬石膏化蚀变岩以强烈富集Ca、Sr和Ba,强烈亏损Al、Si、K、Mg和Na,较亏损P为特征,Ba、Sr等大离子亲石元素富集可能与硬石膏大规模沉淀有关。上部浅色蚀变带以硅、钾、铝水热交代作用为主,水云母-高岭土带富集K、Al,而早期蚀变迁移出的Si质则在次生石英岩化带沉淀形成硅质岩壳,磁铁矿化强度与硅化强度呈正相关关系,区内硅质的大规模沉淀标志着铁矿成矿作用过程全部结束。在整个矿化作用过程中Ti仅在磁铁矿大规模沉淀时发生类质同象置换而迁移,在其它蚀变过程中均以不活动组分存在。
     钠长石化的大量出现标志着铁矿化的开始;膏辉岩化是近矿和容矿蚀变;次生石英岩化是远程指示性蚀变。
     泥河铁矿床早期发育于辉石粗安玢岩体中的蚀变矿化过程微量稀土元素未发生明显的迁移。由辉石粗安玢岩内带至砖桥组粗安岩,微量-稀土元素逐渐降低,指示着稀土元素由内带向外带运移,亦指明了热液流体的运移方向。
     综上所述,陆相火山岩型铁矿床矿石组构学特征、磁铁矿成因标型特征及蚀变-矿化分带特征显示,铁质来源与岩浆岩密切相关。中性和基性-超基性火山岩系列铁矿床产出于火山岩体内部或接触带部位,铁矿体以交代充填成矿为主,均发育浸染状矿化、块状矿化及脉状-网脉状矿化,局部发育角砾状矿化。由于矿体产出位置及成矿环境差异导致产出不同类型矿石组构特征及磁铁矿类型。磁铁矿化学成分特征表明浸染状细粒它形磁铁矿颗粒具有火山岩型或岩浆型-热液型过渡特征,说明其对火山岩中的铁质具有继承性特征。通过研究泥河铁矿各蚀变矿化带的元素迁移规律结合区内成矿流体特征,探讨了陆相火山岩型铁矿床成矿作用过程及矿床形成机制,并建立了蚀变-矿化模型。
The Ningwu Mesozoic volcanic basin, Luzong Mesozoic volcanic basin, and Pan-Xi region widely developed continental volcanic rock-hosted iron deposit.
     This type of iron deposit suffered a long metallogenic evolution under multiple specific geological conditions. Study its metallogenesis can provide information that is helpful for us better understandind the mechanism of continental volcanic rock-hosted iron deposit.
     The host rocks in Ningwu-Luzong basin are a group of intermediate to acid subvolcanic rocks formed in late Jurassic to early Cretaceous, of which are well outcropped in Meishan deposit and Nihe deposit. By contrast, the host rocks of Pingchuan deposit in Pan-Xi region are a group of basic-ultrabasic subvolcanic rocks which formed in late Permian to early Triassic. The lithology of ore host subvolcanic rock in Nihe, Meishan and Pingchuan ranges from acidic to ultrabasic type. The three deposits differences in geological setting, host rocks, ore-controlling structures, mineralization, ore-forming fluids and ore structures.
     This paper takes Meishan iron deposit in Ningwu basin, Nihe Fe deposit in Luzong basin, Pingchuan Fe deposit in Pan-Xi region as the main research targets. Base on the mineralogy, geochemistry, ore-forming fluids, and typomorphic mineral assembles, this paper focus in the different metallogenic environment, including chemical compositions, physical and chemical properties, fluids features and isotopic compositions, which constrain from typomorphic minerals. Studies of continental volcanic rock-hosted iron deposit and explore their metallogenic commonness and differences_are vital to conclude the metallogenic regularities. It is also valuable in promoting the mineral prediction and deep mineral exploration. Major achievements are as follows:
     (1) Ore fabric
     In the early stage, the Meishan Fe deposit is accompanied by disseminated magnetite stockwork mineralization and forming disseminated, stockwork lean ore; in the late stage, ore-forming fluids filling and massive ores; during interim alteration stage, hematitization happened and produce martite. The typical ore textures mainly consist of euhedral-subhedral grain, anhedral grain, metasomatic texture, vein-stockwork texture, trellis texture, growth rim texture and so on.
     The structure of Nihe Fe deposit mainly includes disseminated, massive, mottled, veinlet and stockwork. Textures mainly consist of euhedral-subhedral grain, anhedral grain, metasomatic texture, trellis texture, vein-stockwork texture and so on.
     There are several ore blocks in the Hirakawa Fe deposit, including the kuangshanliangzi, the daopingzi and so on. Ore structures in this deposit mainly include dense massive, disseminated, brecciated, and vein-stockwork structures. Ore textures mainly consist of euhedral-subhedral grain, sponge iron meteorite-like, metasomatic, containing and fragmentation textures.
     Overall, the metallic minerals of continental volcanic-type iron deposits include magnetite, hematite, pyrite and siderite. The Nihe Fe deposit is mainly related to subvolcanic hydrothermal metasomatism; the Meishan Fe deposit is mainly related to subvolcanic metasomatism with cavity filling; the daopingzi-kuangshanliangzi ore block in Hirakawa area is mainly related to cavity filling with metasomatism.
     (2) Division of mineralization period and mineralization stage
     The Nihe and Meishan Fe deposits have experienced three mineralization periods:The late magmatic period, gas-water hydrothermal period and epigenetic oxidation period. The gas-water hydrothermal period occurs in Nihe Fe ore deposit can be divided into alkali metasomatism stage, anhydrite-diopside-magnetite stage, Fe-sulfur-calcium filling-metasomatic stage and silicification-argillization hydrothermal stage. During magmatic period, Meishan Fe deposit begun to have enrichment of metallogenic materials, and it can be divided into magmatic crystallization differentiation stage, alkaline feldspathization stage and anhydrite-(apatite)-magnetite-diopside±garnet) stage. Gas-water hydrothermal period can be divided into anhydrite-(apatite)-pyrite-magnetite stage, quartz-pyrite-magnetite stage, hydrous silicate minerals stage, anhydrite-pyritization stage and silicification-argillization-carbonation stage.
     The Pingchuan Fe deposit in different ore block showed different mineralization types. The mineralization period can be divided into magmatic differentiation stage (Dashanshu ore block), volcanic eruption-depositional stage (Lanzhichang ore block) and subvolcanic hydrothermal stage (Kuangshanliangzi and Daopingzi ore block) and epigenetic transformation stage.
     (3) Genetic features of magnetite
     ①At least three stages of magnetite have been recognized:Anhedral fine-granular magnetite at Stage1was formed during the magmatic crystallization differentiation period, and mainly occur as sparsely disseminated in subvolcanic host rocks; disseminated and massive magnetite at Stage2was formed during the anhydrite-diopside-apatite-magnetite stage (e.g. the Meishan deposit and Nihe deposit) or (flogopite)-(serpentine)-apatite-magnetite stage (e.g. the Pingchuan deposit); course-granular vein-stockwork magnetite at Stage3was formed during the anhydrite-quartz (or carbonate)-apatite-magnetite stage (e.g. the Nihe deposit), dense blocky magnetite (e.g. the Meishan deposit) or medium-coarse granular pectinate structure were formed at fine-granular carbonate-(sulphide)-magnetite stage. Generally, according to the fabrics, Stage1was formed during magmatic crystallization differentiation period, Stage2was formed during the subvolcanic metasomatism and occupy the majority of the ore body; and Stage3was formed by hydrothermal filling.
     ②Crystal cell parameters of magnetite:Crystal cell parameters of magnetite from the Meishan deposit (a0ranges from8.38892to8.39057nm) and the Nihe deposit (a0ranges from8.38630to8.38965nm) fall into the field of hydrothermal metasomatic type magnetite, which indicate its hydrothermal metasomatic genesis. By contrast, crystal cell parameters of magnetite from the Pingchuan Fe deposit (including Kuangshanliangzi and Daopingzi) ranges from8.392to8.395nm and from8.391to8.398nm, which suggest that the magnetite manily belong to hydrothermal metasomatic genesis, with a lesser amount of magmatic genesis.
     ③Magnetite in diorite porphyry at deep depth of the Meishan Fe deposit at the early stage exhibit the high-Ti,-V and low-K characters, but magnetites which were formed during the contact metasomatism are characterized by high-Mg,-V and low-Ti characters. In the Nihe Fe deposit, magnetite at Stage1exhibits high-Ti,-V and low Mg characters; and high-V and low-Ti and-Mg at Stage2. But TiO2in course-granular magnetite fluctuated around1%, which is typical of the transitional type.
     ④In the TiO2, A12O3, MgO and MnO logarithmic distribution diagram showing spot analyses of magnetite from the Meishan Fe deposit, A12O3compositions exhibit a slightly negative biased distribution, while TiO2, MgO and MnO compositions are negative biased distributed apparently, which are similar to the magmatic type magnetite. By contrast, the diagram of magnetite from the Nihe Fe deposit illustrate that MnO and MgO are negative biased distribution, which are similar to volcanic type magnetite in general. The distribution patterns in Daopingzi Fe deposit are similar to skarn type magnetite, which indicate the association between quantities carbonated metasomatism at late stage.
     ⑤In the ternary plot of TiO2-Al2O3-MgO and TiO2-Al2O3-(MgO+MnO) discriminant diagram of magnetite, data from Kuangshanliangzi and Daopingzi tend to fall in the hydrothermal metasomatic and contact metasomatic region. Data from the Nihe Fe deposit are intensive, while those from the Meishan Fe deposit are dispersion.
     ⑥Different types of ore deposits, ore texture and structure output of magnetite has a certain regularity in the ternary plot of TiO2-Al2O3-(MgO+MnO) discriminant diagram. The magnetite from the Meishan Fe deposit was magmatic hydrothermalism subsequently after the subvolcanic activity. Vein-stockwork structure ores were mineral filling during postmagmatic stage, which characterized by anhedral fine-granular aggregation; hydrothermal fluid in the early stage went through a composition exchange with the wall rock, which led to the precipitation of large quantities of iron and formed brecciated and massive ore, this stage is characterized by ubiquitous disseminated magnetite, most of the magnetite were residual dissolution as the consequence of late-stage hydrothermal metasomatism.
     Magnetite are mainly distributed in the transition zone of Ⅱ, Ⅲ, Ⅳ area in the Nihe Fe deposit. The genetic type of the magnetic gradually transform from volcanic type→magmatic type→hydrothermal type in breccia structure, disseminated structure, taxitic structure, pegmatitic structure, dense block structure and net vein disseminated iron ore. Disseminated, pegmatitic and dense block structure iron ore is heated fluid metasomatism contamination, and the distribution of the data is slightly scattered. From output texture characteristics, anhedral fine-granular and metasomatic relict texture magnetites were volcanic type. Genetic type of coarse grain structure magnetite towards hydrothermal origin, which was successively appear in the volcanic rock-hydrothermal ore-forming features. Magnetite in the ternary plot of TiO2-Al2O3-(MgO+MnO) discriminant diagram almost all distributed in the skarn type areac in Pingchuan Kuangshanliangzi and Daopingzi ore block. Kuangshanliangzi should be for the rich iron ore pulp filling mineralization along the volcanic mechanism and regional tectonic weak surface, which is affected by the carbonate rock in the area. Magnetite is a typical sedimentary metamorphism type in Lanzhichang ore block.
     ⑦Stable isotope of Magnetite:Oxygen and hydrogen isotope analyses of magnetite from Meishan Fe deposit show the charecteristic of primary magmatic waters with little evolving of meteoric waters. The oxygen and hydrogen isotope results from the Nihe Fe deposit imply that primary magmatic waters contribute to the the hydrothermal fluid at the main metallogenic stage, while meteoric waters play an important role at the late stage. The δ18OMt values fall between5.6%o and10.3%o, which differ from magmatic type magnetite and sedimentary metamorphogenic type magnetite but similar to that of gabbroic magma (δ180=5.5-7.4%o). These results suggest that magnetite and deep magma chamber have similar source origin. Waters in metallogenic hydrothermal fluids are mainly from magmatic system, probably related to magmatic activity in the area. In addition, the metallogenic hydrothermal fluids tend to be low δD and high δ18O, due to decarbonization process.
     (4) Regularity of alteration-ore tumble belt
     The wall rock alteration of Meishan Fe deposit can be divided into three parts from the bottom up, including light colored alteration belt at the deep of the rock, dark alteration belt near the contact zone, and light colored alteration belt in the andesitic volcano rock spatially. The magnetite begins in the light colored alteration belt at the deep of the rock, enriched in the dark alteration zone near the contact belt.
     The ore bodies of Nihe Fe deposit fall into lower light colored alteration belt, dark alteration belt, superimposed alteration belt and upper light colored alteration belt, from the bottom up, corresponding to albitization, purple anhydritization-diopsidization-(apatitization)--magnetite, quartz-hematitization-(sideritization)-light anhydritization-pyritization and silicide-argillization. Secondary quartzite is an indicative alteration of magnetite. Anhydrite pyroxenitization in the alteration zone is close to or contain the ore body. Large-scaled development of albitization marks the beginning of the iron ore mineralization, which implies the termination of deep ore exploration.
     The V ore body of Daopingzi ore block from the Pingchuan Fe deposit is located in the contact zone between gabbro and carbonatite, which is filling metasomatic genesis. The wall rock alteration is well developed, which can be divided into four alteration belts:serpentinization marble belt, phlogopite-serpentinization-magnetite belt, phlogopite-tremolitization belt, and epidotization-actinolitization-diopsidization belt. The four alteration belts change gradually, and the alteration degree show much weak on the marginal area of contact zone. The main ore-bearing are is the phlogopite-erpentinization-magnetite belt, which is situated in fine grained diabase-gabbro and is marked by phlogopite and serpentine alteration.
     (5) Elements migration in the process of alteration and mineralization
     The Nihe Fe deposit, as one of the research objects of this thesis and showing the well preserved wall rock alteration with clear and typical zoning, was selected for further study on the main and trace elements migration during the mineralization and alteration process. Based on the major elements analysis of alteration rocks, this study employed the alteration rocks in earlier stage as original rocks and then fitted the best concentration equation between slightly late alteration rock with immobile elements by Isocon Diagram method, to quantitatively reveal the main and trace elements migration in the process of hydrothermal alteration.
     The earlier alkali metasomatism stage was characterized by the enrichment of Na and represented the start of iron mineralization. The migration of Fe shows negative correlation with the enrichment of Na and positive correlation with enrichment of P. The dark color alteration zoning mainly includes the metasomatism of Fe, Mg, and Ca. The anhydrite-diopside alteration zone is characterized by strong enrichment of Ca and Mg, and slight enrichment of Fe and Si, which supply the material for the enrichment of Fe and P in the iron mineralization stage. The superimposed alteration zone mainly includes the filling and metasomatism of Fe, S, and Ca. The earlier mineralization stage of hematite-(siderite)-anhydrite-pyrite of the superimposed alteration accompanied strong hydrolysis alteration with chlorite and epidote of the silicate minerals, and showed enrichment of Fe, P, S, and LOI, and strong loss of Ca and Mg. The pyrite-anhydrite alteration rocks show strong enrichment of Ca, Sr, and Ba, and strong loss of Al, Si, K, Mg, and Na, and slight loss of P. The loss of Ba and Sr which are the large ion lithophile elements was probably caused by the formation of abundant anhydrite. The top light color alteration belt mainly consists of metasomatism of Si, K, Al, in which the hydromica-kaolin zone is characterized by the enrichment of K and Al. The abundant Si as the migration of earlier alteration formed the secondary quartzite shell. Fe mineralization shows positive correlation with the secondary quartzite. The formation of the abundant secondary quartzite indicates the finish of the Fe mineralization. In the whole hydrothermal alteration process, the Ti just migrated in the form of isomorphous substitution during the formation of abundant magnetite, and kept as immobile components in the other alteration processes.
     The formation of abundant albite indicates the beginning of Fe mineralization; the anhydrite-diopside alteration exists near the Fe orebodies, and the secondary quartzite alteration is the indicative alteration of long-distance.
     The trace and rare earth elements in the earlier alteration zones hosted in the trachyandesite porphyrite did not show apparent migration. However from the trachyandesite porphyrite to the trachyandesite of Zhuanqiao volcanic cycle, the trace and rare earth elements decreased gradually, indicating the migration of the hydrothermal fluid from inner to outer.
     In summary, the ore fabric, the magnetite typomorphic characteristics, and the alteration mineralization assemblage of the continental volcanic type iron ore deposit show that the source of iron is closely related to magmatic rocks. Neutral and basic-ultrabasic volcanic rock series iron ore deposits occur within the volcanic rock mass or contact with iron ore body, which is given priority to with metasomatic filling mineralization. They are dominated by magnetic iron ore with disseminated mineralization, block mineralization, vein-net mineralization, and locally breccia mineralization. Different occurence location and ore-forming environment resulted in different types of ore fabrics and magnetite ores. The chemical compositions characteristics of magnetite show that disseminated fine-grained granular magnetite has characteristics of volcanic type, or magma-hydrothermal type. The iron of the disseminated fine-grained magnetite in the volcanic rocks has characteristics of inheritance. Based on the iron ore element migration rule in the altered mineralization belt, in combination with characteristics of ore-forming fluid in the mineralization process, the alteration and mineralization model is set up. By studying element migration regularity of the altered mineralization belt, in combination with characteristics of ore-forming fluid of Nihe Fe ore deposit, and exploring the metallogenic process and formation mechanism of continental volcanic type iron ore deposit, the altered mineralization model is established.
引文
[1]宁芜研究项目编写小组.宁芜玢岩铁矿[M].北京:地质出版社,1978.
    [2]张荣华.长江中下游玢岩铁矿围岩蚀变的地球化学分带[J].地质学报.1979,53(2):137-152
    [3]张荣华,盛继福,陆成庆.庐枞火山岩盆地的矿化蚀变与矿质来源[A].中国地质科学院矿床地质研究所文集(4)[C],1982:14.
    [4]陈毓川,张荣华,盛继福,等.玢岩铁矿矿化蚀变作用及成矿机理[Z].1982:1-207.
    [5]常印佛,刘湘培,吴言昌.长江中下游铜铁成矿带[M].北京:地质出版社,1991.134-147.
    [6]邢凤呜.宁芜地区中生代岩浆岩的成因——岩石学与Nd、Sr、Ph同位素证据[J].岩石矿物学杂志,1996,15(2):126-137.
    [7]王元龙,张旗,王焰.宁芜火山岩的地球化学特征及其意义[J].岩石学报,2001.17(4):565-575.
    [8]Yu Jinjie and Mao Jingwen.40Ar-39Ar dating of albite and phlogopite from porphyry iron deposites in the Ningwu basin in East-Central China and its significance[J]. Acta Geologica Sinica,2004,78(2):435-442.
    [9]Yu J J, Zhang Q, Mao J W et al. Geochemistry of apatite from the apatite-rich iron deposits in the Ningwu Region, East Central China[J]. Acta Geologyical Sinica,2007,81(4):637-648
    [10]马芳,蒋少涌,姜耀辉,等.宁芜盆地凹山和东山铁矿床流体包裹体和氢氧同位素研究[J].岩石学报,2006,22(10):2581-2589.
    [11]马芳,蒋少涌,姜耀辉,等.宁芜地区玢岩铁矿Pb同位素研究[J].地质学报,2006,80(02):279-286.
    [12]马芳,蒋少勇,薛怀民.宁芜盆地凹山和东山铁矿床中阳起石的激光-(39)Ar--(40)Ar年代学研究[J].矿床地质.2010(2):283-289.
    [13]范裕,周涛发,袁峰,等.宁芜盆地闪长玢岩的形成时代及对成矿的指示意义[J].岩石学报.2010,26(9):2715-2728.
    [14]段超,李延河,毛景文.宁芜矿集区成岩成矿作用:来自花岗闪长斑岩锆石U-Pb年龄的证据[J].矿物学报,2011,S1:574-575.
    [15]段超.宁芜矿集区凹山玢岩型铁矿床成矿作用研究[D].中国地质大学(北京),2012.
    [16]周涛发,范裕,袁峰,等.长江中下游成矿带火山岩盆地的成岩成矿作用[J].地质学报,2011,85(5):712-730.
    [17]周涛发,范裕,袁峰,钟国雄.长江中下游成矿带地质与矿产研究进展[J].岩石学报,2012,10:3051-3066.
    [18]周涛发,范裕,袁峰.长江中下游成矿带成岩成矿作用研究进展[J].岩石学报,2008,24(08):1665-1678.
    [19]周涛发,范裕,袁峰,等.安徽庐枞(庐江-枞阳)盆地火山岩的年代学及其意义[J].中国科学(D辑),2008,38(11):1342-1357.
    [20]周涛发,范裕,袁峰,等.庐枞盆地侵入岩的时空格架及其对成矿的制约[J].岩石学报.2010,26(9):2694-2714.
    [21]周涛发,范裕,袁峰,等.宁芜(南京-芜湖)盆地火山岩的年代学及其意义[J].中国科学:地球科学,2011,07:960-971.
    [22]周涛发,王彪,范裕,袁峰,张乐骏,钟国雄.庐枞盆地与A型花岗岩有关的磁铁矿-阳起石-磷灰石矿床—— 以马口铁矿床为例[J].岩石学报,2012,10:3087-3098.
    [23]范裕,周涛发,袁峰,等.安徽庐江-枞阳地区A型花岗岩的LA-ICP-MS定年及其地质意义.岩石学报,2008.24(8):1715-1724.
    [24]范裕,周涛发,袁峰,等.宁芜盆地玢岩型铁矿床的成矿时代:金云母-(40)Ar--(39)Ar同位素年代学研究[J].地质学报.2011(5):810-820.
    [25]范裕,周涛发,郝麟,袁峰,张乐骏,王文财.安徽庐枞盆地泥河铁矿床成矿流体特征及其对矿床成因的指示[J].岩石学报,2012,10:3113-3124.
    [26]吕庆田,韩立国,严加永,等.庐枞矿集区火山气液型铁、硫矿床及控矿构造的反射地震成像[J].岩石学报,2010,26(09):2598-2612.
    [27]张荣华,张雪彤,胡书敏.庐枞火山盆地深部岩石与成矿过程明.岩石学报.2010,26(9):2665-2680.
    [28]董树文,项怀顺,高锐,等.长江中下游庐江-枞阳火山岩矿集区深部结构与成矿作用[J].岩石学报.2010,26(9):2529-2542.
    [29]赵文广,吴明安,张宜勇,等.安徽省庐江县泥河铁硫矿床地质特征及成因初步分析[J].地质学报,2011,85(5):789-801.
    [30]吴明安,汪青松,郑光文,等.安徽庐江泥河铁矿的发现及意义[J].地质学报.2011(5):802-809.
    [31]吴礼彬,陈芳,柳丙全,等.安徽省庐江县罗河式铁矿床地质特征与成矿模式[J].合肥工业大学学报(自然科学版).2011(6):899-904.
    [32]张乐骏,周涛发,范裕,等.宁芜盆地陶村铁矿床磷灰石的LA-ICP-MS研究[J].地质学报.2011(5):834-848.
    [33]王崇.安徽庐江泥河铁矿床成矿流体系统数值模拟研究[D].合肥工业大学,2012.
    [34]王崇,袁峰,贾蔡,张明明,李晓晖,周涛发.庐枞盆地泥河铁矿床叠加蚀变带水岩反应数值模拟[J].现代矿业,2012,07:47-50.
    [35]毛景文,段超,刘佳林,张成.陆相火山-侵入岩有关的铁多金属矿成矿作用及矿床模型——以长江中下游为例[J].岩石学报,2012,01:1-14.
    [36]陈津华,曾键年,王思源,李锦伟,邱金亮,张燕.宁芜和庐枞火山岩盆地玢岩铁矿矿床地球化学特征及其成矿动力学背景探讨[J].地质科技情报,2012,01:86-94.
    [37]蔡本俊.长江中下游地区内生铁铜矿床与膏盐的关系[J].地球化学,1980(2):193-199.
    [38]吴思本,徐志刚.以钟九岩体为例试论熔浆成因钠长岩的存在[A]..中国地质科学院矿床地质研究所文集(4)[C].,1982:12.
    [39]胡文瑄,胡受奚.宁芜和庐枞地区钠长石化的钠质来源新探[J].地质找矿论丛.1991(2):36-46.
    [40]卢冰,胡受奚,蔺雨时,等.宁芜型铁矿床成因和成矿模式的探讨[J].矿床地质.1990(1):13-25.
    [41]胡受奚,周顺之,孙明志,任启江.论我国东部与铁、铜矿床有关的中-酸性岩类的成矿专属性[J].地质学报,1979,04:323-336.
    [42]马芳,蒋少涌.与陆相火山岩有关的铁、铜、金矿床成矿地质特征及矿床成因[J].地质找矿论丛.2005,20(4):233-241.
    [43]袁家铮,张峰,殷纯嘏,等.梅山铁矿矿浆成因的系统探讨[J].现代地质,1997,11(02):170-176.
    [44]袁顺达,侯可军,刘敏.安徽宁芜地区铁氧化物-磷灰石矿床中金云母Ar-Ar定年及其地球动力学意义[J].岩石学报,2010,26(3):797-808.
    [45]张旗,简平,刘敦一,等.宁芜火山岩的锆石SHRIMP定年及其意义[J].中国科学(D辑:地球科学).2003(4):309-314.
    [46]闫峻,刘海泉,宋传中,等.长江中下游繁昌-宁芜火山盆地火山岩锆石U-Pb年代学及其地质意义[J].科学通报,2009,12:1716-1724.
    [47]Zhou Taofa, Fan Yu, Yuan Feng, et al. Geochronology and significance of volcanic rocks in the Ning-Wu Basin of China[J]. Science China,2011,54(2):185-196.
    [48]侯可军,袁顺达.宁芜盆地火山-次火山岩的锆石U-Pb年龄、Hf同位素组成及其地质意义[J].岩石学报.2010,26(3):888-902.
    [49]薛怀民,董树文,马芳.长江中下游地区庐(江)-枞(阳)和宁(南京)-芜(湖)盆地内与成矿有关潜火山岩体的SHRIMP锆石U-Pb年龄[J].岩石学报.2010,26(9):2653-2664.
    [50]翟裕生,姚书振,林新多,等.长江中下游地区铁铜(金)成矿规律[M].北京:地质出版社,1992.
    [51]Mao,JW, Xie GQ, Duan C, Pirajno 1}', lshiyama D and Chen YC.2011.A tectono-genetic model for porphyry-skarn-stratabound Cu-Au-Mo-Fe and magnetite-apatite deposits along the Middle-Lower Yangtze River Valley, Eastern China. Ore Geology Reviews,43 (1):294-314
    [52]Phipotts A.R.. Origin of certain iron-titanium oxide and apatite rocks[J]. Economic Geology,1967, 62(3):303-315.
    [53]Frietsch R. On the magmatic origin of iron ores of the Kiruna type[J]. Economic Geology,1978,73:478-485.
    [54]陈毓川,盛继福,艾永德.梅山铁矿——一个矿浆热液矿床[J].中国地质科学院院报.1981:26-48.
    [55]宋学信,陈毓川,盛继福,艾永德.论火山-浅成矿浆铁矿床[J].地质学报,1981,01:41-54+84.
    [56]李秉伦,谢奕汉.宁芜地区宁芜型铁矿的成因、分类和成矿模式[J].中国科学(B辑),1984(1):80-86.
    [57]Bookstron A.A.. The magnetite deposits of El Romeral, Chile[J]. Economic Geology,1977,72:1101-1130.
    [58]Hilderband R S. Kiruna-type Deposits:Their origin and relationship to intermediate subvolcanic plutons in the Great Bear magmatic zone, Northwest Canada[J]. Economic Geology.1986,81:640-659
    [59]Barton M D, Johnson D A. Evaporitic-source model for igneous-related Fe oxide-(REE-Cu-Au-U) mineralization[J]. Geology,1996,24 (3):259-262
    [60]林新多.岩浆-热液过渡型矿床的若干特征[J].现代地质.1998(4):30-37.
    [61]余金杰.宁芜地区凹山和太山铁矿床中磷灰石Sr同位素特征及意义[J].地质论评.2003(3):272-276.
    [62]lshihara S. Li W.Shibata K et al. Characteristics of Crelacrous magmatism and related mineralization of the Nanjing-Wuhu basin, Lower Yangtze area eastern China[J]. Bulletin of the Geological Survey of Japan, 1986,37 (5):207-231.
    [63]Pan Y, Dong P.The Lower Changjiang (Yangzi/Yangtze River) metallogenic belt, east central China: intrusion-and wall rock-hosted Cu-Fe-Au, Mo, Zn, Pb, Ag deposits[J].Ore Geology Reviews,1999,15(4): 177-242
    [64]袁见齐,朱上庆,翟裕生.矿床学[M].北京:地质出版社,1986.
    [65]姚凤良.矿床学教程[M].北京:地质出版社,2006.
    [66]邢凤鸣.安徽沿长江地区中生代岩浆岩的碱质来源[J].安徽地质,1996.6(1):15-18.
    [67]汤家富,陆三明,李建设,等.安徽庐枞火山岩盆地与邻区基底构造变形、形成演化及其对矿床分布的控制[J].岩石学报.2010,26(9):2587-2597.
    [68]于学元,白正华.庐枞地区安粗岩系[J].地球化学,1981(01):56-64.
    [69]任启江,刘孝善,徐兆文,等.吴启志.安徽庐枞中生代火山构造洼地及其成矿作用[M].北京:地质出版社,1991.1-206.
    [70]Wang Q, DerekA W, Xu JF, Zhao ZH, Jian P, Xiong XL, Bao ZW, Li CF and Bai ZH.2006.Petrogenesis of Cretaceous adakitic and shoshonitic igneous rock in the Luzong area, Anhui Province (eastern China): Implications for geodynamics and Cu-Au mineralization. Lithos,89(3-4):424-446.
    [71]周涛发,宋明义,范裕,等.安徽庐枞盆地中巴家滩岩体的年代学研究及其意义[J].岩石学报.2007(10):2379-2386.
    [72]Zhou TF, Fan Y, Yuan F, et al., Sebastien Meflre and Guochun Zhao. Geochronology of the volcanic rocks in the Lu-Zong(Lujiang-Zongyang)basin and itssignificance. Science in China (D),2008.51(10):1470-1482.
    [73]袁峰,周涛发,范裕,等.庐枞盆地中生代火山岩的起源、演化及形成背景[J].岩石学报,2008(8):1691-1702.
    [74]薛怀民,董树文,马芳.安徽庐枞火山岩盆地橄榄玄粗岩系的地球化学特征及其对下扬子地区晚中生代岩石圈减薄机制的约束[J].地质学报.2010(5):664-681.
    [75]刘昌涛.安徽庐枞盆地硫铁矿床地质特征及控矿因素[J].化工地质.1994(3):163-171.
    [76]储国正.安徽沿江地区铜金多金属矿化系列及其相互关系[J].安徽地质,1999,01:45-53.
    [77]吴明安,侯明金,赵文广.安徽省庐枞地区成矿规律及找矿方向[J].资源调查与环境.2007(4):269-277.
    [78]江永宏.安徽庐枞地区铁-铜矿成矿规律与找矿[J].世界地质,2010,03:372-382.
    [79]储雪蕾,陈锦石,王守信.安徽罗河铁矿的硫同位素温度及意义[J].地球化学.1984(4):350-356.
    [80]储雪蕾.热液矿床共生矿物的硫同位素平衡分馏模式[J].科学通报.1984(15):923-927.
    [81]储雪蕾,陈锦石,王守信.罗河铁矿的硫同位素分馏机制和矿床形成的物理化学条件的研究[J].地质科学.1986(3):276-289.[82]
    [82]黄清涛.论罗河铁矿床地质特征及矿床成因[J].矿床地质,1984.3(4):9-19.
    [83]黄清涛,尹恭沛.安徽庐江罗河铁矿[M].地质出版社,1989.
    [84]覃永军.安徽庐枞盆地燕山期成矿地球动力学背景及成矿模式[D].中国地质大学(武汉)硕士毕业论文,2010.
    [85]覃永军,曾键年,曾勇,等.安徽南部庐枞盆地罗河-泥河铁矿田含矿辉石粗安玢岩锆石LA-ICP-MSU-Pb定年及其地质意义.地质通报,2010.29(6):851-862.
    [86]吴礼彬,高曙光,赵先超,等.安徽庐枞地区铁矿资源量估算及结果对比[J].吉林大学学报(地球科学版),2013,04:1119-1128.
    [87]郝麟.安徽省庐江泥河铁矿床成矿流体研究[D].合肥工业大学,2011.
    [88]马良.安徽庐江泥河铁矿床围岩蚀变特征研究[D].合肥工业大学,2011.
    [89]刘文浩,张均,李婉婷,孙腾,江满容,王健,吴建阳,陈曹军.宁芜、庐枞盆地玢岩铁矿成矿深度及成矿后抬升、剥蚀情况:来自磷灰石裂变径迹的证据[J].地球科学(中国地质大学学报),2012,05:966-980.
    [90]Liu,W.H., Zhang,J., Sun.T, Wang,J.,2013. Application of apatite U-Pb andfission-track double dating to determine the preservation potential of magnetite-apatite deposits in the Luzong and Ningwu volcanic basins, eastern China. Journal of Geochemical Exploration.
    [91]王强,赵振华,熊小林,许继锋.底侵玄武质下地壳的熔融:来自安徽沙溪adakite质富钠石英闪长玢岩的证据[J].地球化学,2001,04:353-362.
    [92]赵振华,涂光炽等.中国超大型矿床(Ⅱ)[M].北京:科学出版社,2003.1-617
    [93]杨晓勇.郯庐断裂带南段沙溪含铜斑岩体的-(40)Ar/-(39)Ar年代学研究及意义[J].矿物岩石,2006,02:52-56.
    [94]张少斌,范永香.安徽省庐枞火山岩盆地北部玢岩型铁硫多金属矿床系列及矿床定位机制研究[J].地球科学.1992(1):24-44.
    [95]吴明安,张千明,汪祥云,等.安徽庐江龙桥铁矿[M].北京:地质出版社,1996.
    [96]段超,周涛发,范裕,等.庐枞盆地龙桥铁矿床中菱铁矿的地质特征和成因意义[J].矿床地质.2009(5):643-652.
    [97]陆三明,李建设,赵丽丽,等.庐枞矿集区龙桥式铁矿床含矿层位地球化学特征及找矿意义[J].岩石学报.2010,26(9):2577-2586.
    [98]Zhou TF, Wu MA, Fan Y, Duan C, Yuan F, Zhang LJ, Liu J, Qian B, Franco P and David RC. Geological, geochemical characteristics and isotope systematics of the Longqiao iron deposit in the Lu-Zong volcano-sedimentary basin, Middle-Lower Yangtze (Changjiang) River Valley,Eastern China. Ore Geology Reviews.2011.doi:10.1016/j.oregeorev. Key:citeulike:9265728.
    [99]Zou,H.B., Zindler,A., Xu,X.S., et al.2000. Major, trace element, and Nd, Sr and Pb isotope studies of Cenozoic basalts in SE China:Mantle sources, regional variations, and tectonic significance. Chem. Geol., 171(1-2):33-47.
    [100]谢智,李全忠,陈江峰,等.庐枞早白垩世火山岩的地球化学特征及其源区意义[J].高校地质学报.2007(2):235-249.
    [101]张乐骏.安徽庐枞盆地成岩成矿作用研究[D].合肥工业大学,2011.
    [102]Zhang,L.J., Zhou,T.F., Fan,Y., Yuan,F.,2009. Characteristics of hydrothermal alteration in the Shaxi Porphyry Cu-Au deposit, Anhui Province, China:Paragenesis and geochemical. Geochemical Et Cosmochimica Acta,73(13):A1506.
    [103]段超.安徽庐枞盆地龙桥铁矿床地质地球化学特征和矿床成因研究[D].硕士学位论文,合肥:合肥工业大学,2009.
    [104]钱兵.安徽庐枞盆地泥河铁矿床地质地球化学特征研究[D].硕士学位论文.合肥:合肥工业大学.2011.
    [105]马立成.庐—枞火山岩盆地深部构造作用与成矿[D].博士学位论文,北京:中国地质科学院,2009.
    [106]董树文,马立成,刘刚,等.论长江中下游成矿动力学[J].地质学报.2011(5):612-625.
    [107]吕庆田,侯增谦,杨竹森,等.长江中下游地区的底侵作用及动力学演化模式:来自地球物理资料的约束[J].中国科学(D辑),2004,34(09):783-794.
    [108]高锐,卢占武,刘金凯,等.庐-枞金属矿集区深地震反射剖面解释结果——揭露地壳精细结构,追踪成矿深部过程[J].岩石学报.2010(9):2543-2552.
    [109]廉玉广.庐枞盆地金属矿地震波场精细模拟及属性应用研究[D].吉林大学,2011.
    [110]匡海阳.安徽泥河铁矿深部找矿综合地质地球物理研究[D].东华理工大学.2012.
    [111]夏庆霖,成秋明,陆建培,等.便携式X射线荧光光谱技术在泥河铁矿岩心矿化蚀变信息识别中的应用[J].地球科学(中国地质大学学报).2011(2):336-340.
    [112]祁光,吕庆田,严加永,吴明安,刘彦.先验地质信息约束下的三维重磁反演建模研究——以安徽泥河铁矿为例[J].地球物理学报,2012,12:41944206.
    [113]刘彦,严加永,吴明安,赵文广,赵金花,邓震.基于重力异常分离方法寻找深部隐伏铁矿——以安徽泥河铁矿为例[J].地球物理学报,2012,12:4181-4193.
    [114]张明明,李晓晖,周涛发,袁峰,吴明安,赵文广.基于三维矿化域模型的泥河铁矿床动态储量估算[J].地质论评,2013,01:122-128.
    [115]车英丹,吴明安,袁峰.庐枞盆地泥河铁矿床浅色蚀变带特征[J].矿物学报,2013,S2:86-87.
    [116]曾祥贵,吕仲坤,闫建梅,等.四川凉山州富铁矿地质特征与找矿前景分析[J].四川地质学报,2006,26(02):79-83.
    [117]王显锋,张兴润.四川铁矿床主要成因类型及找矿方向[J].四川地质学报.2008,28(04):287-289.
    [118]杨峰利,张利松.四川省盐源县矿山梁子火山岩型铁矿床成矿地质规律及找矿方向[J].中华民居,2011,10:51-52.
    [119]曾令高.四川盐源平川铁矿床成矿规律研究[D].中国地质大学,2011.
    [120]曾令高,张均,孙腾,郭东宝.川南平川镁铁质-超镁铁质岩锆石U-Pb年龄及地质意义[J].地球科学(中国地质大学学报),2013,06:1197-1213.
    [121]孙腾.四川平川铁矿成矿规律研究[D].中国地质大学,2012.
    [123]王维华,陈庚户,李松键,郭耀文,韩定伟.四川省盐源县烂纸厂铁矿成因浅析[J].四川地质学报,2012,01:20-24.
    [124]王维华,陈庚户,柏万灵,邓辉.四川省盐源县烂纸厂铁矿区地质特征及找矿远景[J].四川地质学报,2012,S2:60-65.
    [125]王维华,陈庚户,柏万灵,邓辉.四川省盐源县烂纸厂铁矿区地质特征及找矿远景[A].四川省冶金地质勘查局建局五十年纪念文集[C].:,2012:6.
    [126]秦毅,郑伟.磁法在四川盐源县平川铁矿烂纸厂矿段找矿中的应用[J].四川地质学报,2012,S2:179-182.
    [127]攀西地质大队.1:5万区域地质调查报告(平川幅、田湾幅)[R].1990.
    [128]攀西地质大队.四川省盐源县矿山梁子铁矿区矿山梁子矿段详细勘探地质报告[R].1982.
    [129]杨时惠.四川盐源矿山梁子磁铁矿床磁铁矿特征及成因探讨[J].成都地质矿产研究所所刊,1983:33-43.
    [130]杨时惠,阙梅英.西昌-滇中地区磁铁矿特征及其矿床成因[M].重庆:重庆出版社,1987.
    [131]沈苏,金明霞,陆元法.西昌-滇中地区主要矿产成矿规律及找矿方向[M].重庆:重庆出版社,1988.
    [132]尹福光等.扬子陆块西缘构造演化及其资源效应[M].北京:地质出版社,2007.
    [133]刘增达,靳冀昆,张家富,等.四川盐源县平川地区铁矿成因类型及找矿前景探讨[J].地质找矿论丛,2008,23(增刊):1-4.
    [134]姚祖德,燕永清.四川盐源矿山梁子-牛厂铁矿成因再认识[J].四川地质学报,1991,11(02):117-125.
    [135]四川省冶金地质勘查院.四川省盐源县平川铁矿烂纸厂矿段勘探报告[R].2010.
    [136]陈光远,黎美华,汪雪芳,等.弓长岭铁矿成因矿物学专辑[J].矿物岩石.1984(2)
    [137]侯奎,陈志明,于洁.宣龙铁矿矿石组构特征及蓝藻对铁的富集作用[J].地质科学,1983,03:246-250+306.
    [138]罗小军.攀枝花钒钛磁铁矿矿床韵律层特征及其研究意义[D].成都理工大学,2003.
    [139]王艳慧.山东沂南金铜铁矿床的矿石特征及成矿期次研究[D].中国地质大学(北京),2009.
    [140]江满容,张均,曾令高.从矿石组构学特征探讨四川盐源矿山梁子铁矿床成因[J].矿床地质,2010,S1:79-80.
    [141]丁俊,张术根,徐忠发,秦新龙.印尼塔里亚布锡铁多金属矿床矿浆型磁铁矿的矿物学特征与形成机理探讨[J].矿物学报,2012,02:259-268.
    [142]丁俊,张术根.印度尼西亚塔里亚布铁矿床的磁铁矿成因矿物学特征[J].中南大学学报(自然科学版),2012,12:4778-4787.
    [143]A. F. Buddington等,钛磁铁矿在地质温度与岩石成因上的意义[J].地质出版社,1955.22-25.
    [144]A.F. Buddington & D.H.Lindsley, Iron-titanium oxide minerals and synthetic cguivalents[J]. Jour of petrol., 1964.5:310-357. 国外地质科技,1982.(3):36-45.
    [147]林师整.磁铁矿矿物化学、成因及演化的探讨[J].矿物学报.1982(3):166-174.
    [148]薛君治,白学让,陈武.成因矿物学[M].北京:中国地质大学出版社,1990.1-161.
    [149]徐建昌.金堆城钼矿床中磁铁矿赋存特征[J].有色矿山,1994.4:1-8.
    [150]Singoyi B, Danyushevsky L, Davidson G J et al. Determination of trace elements in magnetites from hydrothermal deposits using the LA ICP-MS technique. SEG Keystone Conference, Denver, USA: CD-ROM,2006
    [151]Nadoll P. Geochemistry of magnetite from hydrothermal ore deposits and host rocks:Case studies from the Proterozoic belt supergroup, Cu-Mo porphyry+skarn and climax-Mo deposits in the western United States. Ph. D. Dissertation. University of Auckland,2009,1-238.
    [152]Dupuis C and Beaudoin G Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Mineralium Deposita.2011. Doi:10.1007/x00126-011-0334-y.
    [154]徐国风,邵洁涟.磁铁矿的标型特征及其实际意义[J].地质与勘探,1979(1):30-37.
    [155]靳是琴,李鸿超.成因矿物学概论下——几种常见矿物的成因矿物学[M].长春市:吉林大学出版社,1986.
    [156]陈光远,孙岱生,殷辉安.成因矿物学与找矿矿物学[M].重庆:重庆出版社,1987.234-235.
    [157]王顺金.论磁铁矿的标型特征[A].矿物学岩石学论丛[M].武汉:中国地质大学出版社,1987.139-154.
    [158]段超,李延河,袁顺达,等.宁芜矿集区凹山铁矿床磁铁矿元素地球化学特征及其对成矿作用的制约[J].岩石学报,2012,01:243-257.
    [159]洪为,张作衡,蒋宗胜,李凤鸣,刘兴忠.新疆西天山查岗诺尔铁矿床磁铁矿和石榴石微量元素特征及其对矿床成因的制约[J].岩石学报,2012,07:2089-2102.
    [160]Gresens, R.L.,1967. Composition-volume relationships of metasomatism[J]. Chemical geology,2:47-65.
    [161]Grant, J.A.,1986, The isocon diagram; a simple solution to Gresens' equation for metasomatic alteration[J]. Economic Geology,81(8); 1976.
    [162]Salvi,S., Williams-Jones,A.E.,1996. The role of hydrothermal processes in concentrating high-field strength elements in the Strange Lake peralkaline complex, northeastern Canada[J]. Geochimica et Cosmochimica Acta,60(11):1917-1932.
    [163]Grant,J.A.,2005. Isocon analysis:A brief review of the method and applications[J]. Physics and Chemistry of the Earth,30(17-18):997-1004.
    [164]Parsapoor, A., Khalili, M., Mackizadeh, M.A.,2009. The behaviour of trace and rare earth elements (REE) during hydrothermal alteration in the Rangan area (central Iran) [J]. Journal of Asian Earth Sciences,34(2): 123-134.
    [165]Hezarkhani.A., Geochemical element mobility during alteration/mineralization in the Sungun porphyry copper deposit, Azerbaijan-Iran[J]. International Geology Review,2010,53(8):980-1002.
    [166]Nishimoto, S., Yoshida, H., Hydrothermal alteration of deep fractured granite:effects of dissolution and precipitation[J]. Lithos,2010,115(1-4):153-162.
    [167]王翠云,李晓峰,肖荣,等.德兴朱砂红斑岩铜矿热液蚀变作用及元素地球化学迁移规律[J].岩石学报.2012,28(12):3869-3886.
    [168]Saeki, Y., Date,J., Computer application to the alteration data of the footwall dacite lava at the Ezuri Kuroko deposits[J]. Akito Prefecture:Mining Geology,1980,30:241-250.
    [169]Date,C., An Introduction to Database Systems Volume 2[IVI] [J]. Addison-Wesley, Reading, MA.1983.
    [170]Large,R.R., Gemmell,J.B., Paulick.H., The aleration box plot—a simple approach to understanding the relationship between alteration mineralogy and lithogeochemistry associated with volcanic-hosted massive sulphide deposits. Econ Geol,2001,96:957-971.
    [171]Paulick, H., Herrmann, W., Gemmell, B.,2001. Alteration of felsic volcanics host in the Thelanga massive sulfide deposit (Northern Queensland, Australia) and geochemical proximity indicators to ore. Econ. Geol. 96,1175-1200.
    [172]Herrmann,W., Kimber,B.,2004. Hydrothermally altered facies of the Mount Read Vocanics-on the map. 17th AGC, Hobart February.
    [173]Sillitoe, R.H.,1995. Exploration of porphyry copper lithocaps. Australasina Institute of Mining and Metallurgy Publication Series.95(9):527-532.
    [174]Van, D.M., Weinberg, R.F., Tomkins, A.G.,2010. REE-Y, Ti, and P Remobilization in Magmatic Rocks by Hydrothermal Alteration during Cu-Au Deposit Formation. Economic Geology,105(4):763-776
    [175]Karakaya, M.C., et al.,2012. Mineralogy and geochemical behavior of trace elements of hydrothermal alteration types in the volcanogenic massive sulfide deposits, NE Turkey. Ore Geology Reviews,48:p. 197-224.
    [176]Eilu,P., Mikucki,E.J., Groves.D.L.,1997. Wallrock alteration and primary geochemical dispersion in lode-gold exploration:Notes from short course, Fourth biennial meeting of the Society for Geology Applied to Mineral Deposits, Turku, Finland,11(13):65.
    [177]Benavides, J., et al.,2008. Exploration guidelines for copper-rich iron oxide-copper-gold deposits in the Mantoverde area, northern Chile:the integration of host-rock molar element ratios and oxygen isotope compositions. Geochemistry-Exploration Environment Analysis,8(3-4):p.343-367.
    [178]Gifkins.C., Herrmann.W., Large.R.,2005. Altered volcanic rocks—A guide to description and interpretation. Centre Ore Depos Res, Univ Tasmania, Hobart
    [179]Winchester, J.A., Floyd, P.A.,1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology,20:325-343.
    [180]Hynes.A.,1980. Carbonatization and mobility of Ti, Y, and Zr in Ascot Formation metabasalts, SE Quebec. Contributions to Mineralogy and Petrology,75(1):79-87.
    [181]Eaton, P.C., Setterfield.,T.N.,1993. The relationship between epithermal and porphyry hydrothermal systems within the Tavua Caldera, Fiji. Economic Geology,88(5):1053-1083. doi: 10.2113/gsecongeo.88.5.1053
    [182]Troll,V., Sachs,P., et al.,2003. The REE-Ti mineral chevkinite in comenditic magmas from Gran Canaria, Spain:a SYXRF-probe study. Contributions to Mineralogy and Petrology,145(6):730-741.
    [183]Jiang,N., Sun,S., Chu,X., et al.,2003. Mobilization and enrichment of high-field strength elements during late-and post-magmatic processes in the Shuiquangou syenitic complex, northern China. Chemical Geology, 200(1-2):117-128.
    [184]Franzson,H., Zierenberg,R., Schiffrnan,P.,2008. Chemical transport in geothermal systems in iceland: evidence from hydrothermal alteration. Journal of Volcanology and Geothermal Research,173(3-4): 217-229.
    [185]Kupeli,S.,2010. Trace and rare-earth element behaviors during alteration and mineralization in the Attepe iron deposits (Feke-Adana, southern Turkey). Journal of Geochemical Exploration,105(3):51-74.
    [186]董树文.长江中下游铁铜矿带成因之构造分析[J].中国地质科学院院报.1991(2):43-56.
    [187]中国科学院地球化学研究所.宁芜型铁矿床形成机理[M].北京:科学出版社,1987.
    [188]胡文瑄等.宁芜和庐枞地区陆相火山喷气沉积-热液叠加改造型铁、硫矿床[M].北京:地质出版社,1991.
    [189]徐志刚.中国东部中生代火山岩作用的构造背景[J].地学研究.1995,(28):108-110.
    [190]唐永成,吴言昌,储国正,等.安徽沿江地区铜金多金属矿床地质[M].北京:地质出版社,1998.
    [191]刘绍锋.宁芜地区凹山和吉山玢岩铁矿床特征和成因[D].北京:中国地质大学(北京).2009.
    [192]宁芜矿集区姑山铁矿床地质地球化学特征及矿床成因研究[D].中国地质大学(北京),2012.
    [193]姜波,徐嘉炜.一个中生代的拉分盆地——宁芜盆地的形成及演化[J].地质科学.1989(4):314-322.
    [194]毛建仁,赵曙良.宁镇山脉岩基岩浆的化学演化[J].中国地质科学院南京地质矿产研究所所刊,1990,01:15-28.
    [195]袁峰,周涛发,范裕,等.宁芜盆地花岗岩类的锆石U-Pb年龄、同位素特征及其意义[J].地质学报.2011(5):821-833.
    [196]薛怀民,陶奎元.南京娘娘山碱性岩中REE丰度及其在矿物中的分配系数[J].中国地质科学院南京地质矿产研究所所刊,1989,03:60-70.
    [197]邓晋福,叶德隆,赵海玲,等.下扬子地区火山作用深部过程与盆地形成[M].北京:地质出版社,1992:46-102.
    [198]邢凤鸣,徐祥.安徽沿江地区橄榄安粗岩系的特点和成因——大陆橄榄安粗岩系一例[J].安徽地质.1998(2):8-9.
    [199]陶奎元,薛怀民.论南京娘娘山碱性岩浆房的梯度及其成因机制[J].岩石矿物学杂志,1989,04:289-299.
    [200]陈上达,刘聪,陈志贵,徐德安.娘娘山碱性火山-侵入岩特征及成岩定量模拟[J].岩石矿物学杂志,1992,04:306-316
    [201]赵玉琛,陆明.宁芜碱性火山岩地质特征及开发应用探讨[J].非金属矿,1994,03:7-10.
    [202]邢凤鸣,徐祥.宁芜地区三个辉长岩的全岩和矿物Rb-Sr等时线年龄[J].地质科学,1994,29(3):309-312.
    [203]余金杰,毛景文.宁芜玢岩铁矿钠长石-(40)Ar--(39)Ar定年及意义[J].自然科学进展.2002(10):53-57.
    [204]高道明,赵云佳.玢岩铁矿再认识[J].安徽地质.2008(3):164-168.
    [205]侯龙海.浅析宁芜北段铜矿地质特征、找矿前景与方向[J].地质学刊,2008,04:263-270.
    [206]董树文,张岳桥,龙长兴,杨振宇,季强,王涛,胡建民,陈宣华.中国侏罗纪构造变革与燕山运动新诠释[J].地质学报,2007,11:1449-1461.
    [207]曾键年,覃永军,郭坤一,等.安徽庐枞盆地含矿岩浆岩锆石U-Pb年龄及其对成矿时限的约束.地质学报,2010.84(4):466-478.
    [208]邓晋福,刘翠,冯艳芳,等.安徽省庐枞与滁州盆地火山岩岩石学特征与Fe-Cu成矿的关系[J].地质学报.2011(5):626-635.
    [209]刘洪,邱检生,罗清华,等.安徽庐枞中生代富钾火山岩成因的地球化学制约[J].地球化学.2002,(1).
    [210]闫峻,陈江峰,喻钢,钱卉,周泰禧.长江中下游晚中生代中基性岩的铅同位素特征:富集地幔的证据[J].高校地质学报,2003,02:195-206.
    [211]李洪英,张荣华,胡书敏.庐枞盆地正长岩类地球化学特征及成因探讨[J].吉林大学学报(地球科学版),2009,05:839-848.
    [212]Chen J F, Yan J, Xie Z, et al.2001. Nd and Sr isotopic compositions of igneous rocks from the Lower Yangtze Region in Eastern China:constraints on sources.Physics Chemistry Earth (A),26(9-10):719-731.
    [213]安徽省地矿局327地质队.1995.南京大学地球科学系.庐江地区铜铁矿矿查研究.
    [214]四川省地质矿产局.四川省区域地质志[M].北京:地质出版社,1991.
    [215]四川省区域地层表编写组.西南地区区域地层表(四川省分册)[M].北京:地质出版社,1978.
    [216]邓晋福,赵国春,赵海玲,等.中国东部燕山期火成岩构造组合与造山-深部过程[J].地质论评,2000.46(1):41-48.
    [217]吴建阳.江苏梅山铁矿矿床地质特征及成矿规律研究[D].中国地质大学,2011.
    [218]江满容.安徽庐江泥河铁矿矿床地质特征及成矿规律研究[D].中国地质大学,2011.
    [219]安徽省地质调查院.安徽省庐江县泥河铁矿勘探地质报告.2010
    [220]Wang Sungshan, McDougaⅡ. K-Ar and 40Ar-39Ar ages on Mesozoic volcanic rocks from the Lower Yangtze Volcanic Zone, southeastern China[J]. J. Geol. Soc. Austral.,1980,27:121-128.
    [221]毛景文,张作衡,余金杰,王义天,牛宝贵.华北及邻区中生代大规模成矿的地球动力学——背景:从金属矿床年龄精测得到启示[J].中国科学(D辑:地球科学),2003,04:289-299.
    [222]岳文浙,丁保良.江苏白垩纪陆相层序地层研究[J].火山地质与矿产,1999,04:287-344.
    [223]江苏省地质矿产局.宁镇山脉地质志[M].南京:江苏科学技术出版社,1989.
    [224]闫峻,俞永飞,陈江峰.宁芜地区娘娘山组火山岩Rb-Sr同位素定年及其意义[J].地质论评,2009,01:121-125.
    [225]宋谢炎,侯增谦,曹志敏,等.峨眉大火成岩省的岩石地球化学特征及时限[J].地质学报,2001,75(04):498-506.
    [226]Zhou M. F, Malpas J, Song X. Y. A temporal link between the Emeishan large igneous province (SW China) and the end-Guadalu plan mass extinction. Earth Planet. Sci. Lett,2002,193:113-122.
    [227]Lo C H, Chung S L, Lee T Y, et al. Age of the Emeishan flood magmatism and relations to Permian-Triassic boundary events. Earth Planet. Sci. Lett,2002,198:449-458.
    [228]Boven A, Pasteels P, Punzalan L E, et al.40Ar/39Ar geochronological constraints on the age and evolution of the Permo-Triassic Emeishan Volcanic Province, Southwest China. J AsianEarth Sci,2002,20:157-175.
    [229]夏斌,刘红英,张玉泉.攀西古裂谷钠质碱性岩锆石SHRIMP U-Pb年龄及地质意义——以红格、白马和鸡街岩体为例[J].大地构造与成矿学,2004,24(2):149-154.
    [230]陶琰,罗泰义,高振敏,等.西南暗色岩铜镍硫化物矿化岩体与峨眉山玄武岩的关系——以云南金宝山岩体为例[J].地质论评,2004,40(1):9-15.
    [231]钟宏,朱维光,胡瑞忠,等.攀西地区红格岩体的年代学、地球化学特征及其与峨眉山玄武岩的联系.广州:2004.
    [232]钟宏,徐桂文,朱维光,等.峨眉山大火成岩省太和花岗岩的成因及构造意义[J].矿物岩石地球化学通报,2009,28(02):99-110.
    [233]刘红英,夏斌,张玉泉.攀西裂谷带内超基性碱性岩和层状辉长岩40Ar-39Ar年龄——以鸡街、大向坪和太和岩体为例[J].地质论评,2004,50(2):175-179.
    [234]刘红英,夏斌,张玉泉.攀西会理猫猫沟钠质碱性岩锆石SHRIMP定年及其地质意义[J].科学通报,2004,49(14):1431-1438.
    [235]侯增谦,陈文,卢记仁.四川峨嵋大火成岩省259Ma大陆溢流玄武岩喷发事件:来自激光40Ar/39Ar测年证据[J].地质学报,2006(8):1130.
    [236]林清茶,夏斌,张玉泉.川南德昌地区茨达碱性岩锆石SHRIMP U-Pb定年[J].地质通报.2006,25(3):398-401.
    [237]王登红,陈郑辉,陈毓川,等.我国重要矿产地成岩成矿年代学研究新数据[J].地质学报,2010,84(07):1030-1040.
    [238]王萌,张招崇,侯通,等.攀西地区大板山岩体的年代学、元素地球化学及其对铜镍硫化物矿床成因的约束.岩石学报,2011,27(9):2665-2678.
    [239]李宏博.峨眉山大火成岩省地幔柱动力学:基性岩墙群、地球化学及沉积地层学证据[D].中国地质大学(北京),2012.
    [240]王德滋,杜杨松.东南沿海地区中生代火山-侵入杂岩形成的构造背景[J].矿物岩石地球化学通讯,1990,03:186-188.
    [241]陈毓川,王登红,徐志刚,朱明玉.对中国成矿体系的初步探讨[J].矿床地质,2006,02:155-163.
    [242]王登红.地幔柱的概念、分类、演化与大规模成矿——对中国西南部的探讨[J].地学前缘,2001,8(3):67-72.
    [243]王登红,骆耀南,傅德明,等.四川杨柳坪Cu-Ni-PGE矿区基性超基性岩的地球化学特征及其含矿性[J].地球学报,2001,21(02):135-240.
    [244]段超,毛景文,李延河,等.宁芜盆地凹山铁矿床辉长闪长玢岩和花岗闪长斑岩的锆石U-Pb年龄及其地质意义[J].地质学报.2011,85(7):1159-1171.
    [245]胡劲平,蒋少涌.宁芜盆地浅成侵入岩的锆石U-Pb年代学和Hf同位素研究及其地质意义[J].高校地质学报.2010(3):294-308.
    [246]傅斌,任启江,邢凤鸣,等.安徽沙溪含铜斑岩40Ar-39Ar定年及其地质意义[J].地质论评,1997,43(3):310-317.
    [247]杨荣勇,任启江,徐兆文,孙冶东,郭国章,邱检生.安徽庐枞地区巴家滩火山-侵入体的岩浆来源[J].地球化学,1993,02:197-206.
    [248]任启江,王德滋,刘孝善,等.安徽庐枞地区巴家滩和矾山-石马滩岩体的时代和岩浆物质来源[J].科学通报.1991(10):771-773.
    [249]刘珺,袁峰,范裕,吴明安,周涛发.庐枞井边-盘珠洼地区中生代岩浆活动的构造背景明.合肥工业大学学报(自然科学版),2005,05:486-489.
    [250]刘珺.安徽庐枞火山岩盆地中巴家滩岩体的地质地球化学特征和成矿潜力评价[D].合肥工业大学,2005.
    [251]郑永飞,傅斌,龚冰.安徽黄梅尖岩体热历史及其与成矿关系:同位素证据[J].地质学报,1995,04:337-348
    [252]余金杰,毛景文.宁芜玢岩铁矿磷灰石的稀土元素特征[J].矿床地质.2002(1):65-73.
    [253]Cassata, W. S.; Renne, P. R.; Shuster, D. L.Ar-40/Ar-39 thermochronology using plagioclase.19th Annual VM Goldschmidt Conference.GEOCHIMICA ET COSMOCHIMICA ACTA,2009,73(13S):A198-A198
    [254]李锦伟,曾键年,许继峰,邱华宁,张燕霞,覃永军.安徽庐江龙桥铁矿床金云母-(40)Ar/-(39)Ar定年:矿床成因的年代学证据[J].地质科技情报,2013,04:171-176+180.
    [255]罗照华,莫宣学,卢欣祥,等.透岩浆流体成矿作用——理论分析与野外论证[J].地学前缘,2007. 14(3):145-181.
    [256]邸思维.宁芜盆地白象山铁矿床地质地球化学特征和矿床成因研究[D].合肥工业大学,2010.
    [257]谢桂青,毛景文,李瑞玲,蒋国豪,赵财胜,赵海杰,侯可军,潘怀军.鄂东南地区大型矽卡岩型铁矿床金云每(40)Ar--(39)Ar同位素年龄及其构造背景初探[J].岩石学报,2008,08:1917-1927.
    [258]贾大成,邢立新,潘军,M.J.van Bergen,H.van Roermund.伊通上地幔剪切带捕虏体中富铝尖晶石的地球化学特征[J].吉林大学学报(地球科学版),2006,04:497-502.
    [259]Ender SarlfaklogBlua,Hayrettin;zen, Aydlnμolakogβlub,et al.Petrology, mineral chemistry, and tectonomagmatic evolution of Late Cretaceous suprasubduction-zone ophiolitesin the(?) zmir-Ankara-Erzincan suture zone [J]. Turkey:International Geology Review,2010.52(2-3):187-222.
    [260]陈世忠,杨经绥,许志琴,等.2006.铬尖晶石和石榴石的相变:大陆科学钻探CCSD-PP3孔超镁铁岩超高压变质作用的证据[J].地球科学——中国地质大学学报,31(4):475-487.
    [261]陈俊兵,曾志刚.2007.马里亚纳南部前弧橄榄岩的岩石及矿物学:对弧下地幔楔交代作用的指示[J].海洋地质与第四纪地质,27(1):53-59.
    [262]彭文世,刘高魁.近代矿物学第七讲——矿物红外光谱研究[J].地质地球化学,1982,02:60-65.
    [263]刘朝基,曾绪伟,金久堂,等.康滇地区基性超基性岩[M].重庆:重庆出版社,1988.
    [264]张理刚.稳定同位素在地质科学中的应用[M].陕西:陕西科学技术出版社,1985.
    [265]张理刚,陈振胜,刘敬秀,等.焦家式金矿水-岩交换作用—成矿流体氢氧同位素组成研究[J].矿床地质,1994,13(3):193-200.
    [266]郑永飞,徐宝龙,周根陶.矿物稳定同位素地球化学研究[J].地学前缘,2000,7(02):299-320.
    [267]陈小华.梅山铁矿床菱铁矿的地质特征及成因探讨[A].中国有色金属学会.第四届有色金属地质勘查工作交流暨学术讨论会论文集[C].中国有色金属学会:,2003:4.
    [268]张成.宁芜盆地梅山铁矿床地质地球化学特征及矿床成因研究[D].中国地质大学(北京),2012
    [269]王关玉,陈成业.层控菱铁矿的氧、碳同位素组成及其成因意义[J].沉积学报,1986,02:27-38.
    [270]余金杰,毛景文,张长青.地幔流体参与宁芜玢岩铁矿成矿——碳、锶同位素证据[J].自然科学进展,2007,09:1216-1221.
    [271]刘建明,刘家军.滇黔桂金三角区微细浸染型金矿床的盆地流体成因模式[J].矿物学报,1997,04:448-456.
    [272]张荣华,胡书敏.矿石、矿床和成矿的分带性与自相似[A]..中国地质科学院地质研究所文集(29-30)[C].:,1997:11.
    [273]McDonough,W.F., Sun.S.S., The composition of the earth. Chemical Geology,1995.120(3-4):223-253.
    [274]陈锦石等.地质科研成果选集(第一集)[M].中国科学院地质研究所编:文物出版社,1982.279-286.
    [275]周涛发,岳书仓.月山地区铜成矿作用的同位素地球化学研究[J].矿床地质.1996(4):54-63.
    [276]Clayton R N. High temperature isotope effects in the early solar system[A]. Valleyet al. Review in Mineralogy [C],1986.16:129-139.
    [277]Clayton R.W. and Mayede T. K. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim. et Cosmochim. Acta,1963,27:43-52
    [278]杨建民,王登红,毛景文,等.硅质岩岩石化学研究方法及其在”镜铁山式”铁矿床中的应用[J].岩石矿物学杂志.1999,18(2):108-120.
    [279]Murray R W, Jones D L, Buchholtz Ten Brink M R. Diagenetic formation of bedded chert:evidence from chemistry of chert-shale couplet. Geology,1992a,20:271-274.
    [280]Rona P A.1983. Hydrothermal processes at seafloors spreading centers[M]. New York:Plenum Press. 539-555.
    [281]Rona PA.1988. Hydrothermal mineralization of oceanic ridges [J].Canadian Mineralogy,26(3):447-465.
    [282]任明达.现代沉积环境概论[M].北京:科学出版社.1987.
    [283]陈洪德,曾允孚.广西丹池盆地上泥盆统榴江组硅质岩沉积特征及成因讨论.矿物岩石,1989,(4):22-29.
    [284]韩发,Hutchinson R w.大厂锡多金属矿床热液喷气沉积的证据——含矿建造及热液沉积岩.矿床地质,1989,(2):25-37.
    [285]王忠诚,范德廉,陈锦石.大巴山下寒武统黑色岩系中毒重石矿床的成因探讨.地质科学,1992(3):237-248.
    [286]Adachi M.,Yamamoto K.,Sugisaki R., Hydrothermal Chert and Associated Siliceous Rocks from the Northern Pacific:Their Geological Significance as Indication of Ocean Ridge Activity. Sedimentary Geology,1986.471-2125-148.
    [287]Bostrom K. The origin and fate of ferromanganoan active ridgesediments[J]. Acta-Univ. Stockholmiensis, Stock. Contrib. Geology,1973(2):149-243
    [288]张复新.秦岭泥盆系中与铅锌矿化有关喷流岩的识别与找矿.地质与勘探[J],1989,(5):11-18.
    [289]唐朝晖,曾允孚.西秦岭中志留统含铀岩系中硅质岩的岩石学、地球化学及其成因[J].岩石学报,1990,(2):62-71.
    [290]陈从云.辽北清河镇群硅质岩的成因与构造-沉积环境[J].辽宁地质,1988,(3):265-273.
    [291]Clayton R.N., O'Neil J.R and Mayeda T.K. Oxygen isotope exchange between quartz and water[J].,J. Geophys. Res.1972.B77:3057-306
    [292]Douthitt C B. The geochemistry of the stable isotopes of silicon[J]. Geochimca et Cosmochimca Acta, 1982,46(8):1449-1458.
    [293]丁悌平等.硅同位素地球化学[M].北京:地质出版社,1994.
    [294]丁悌平等.硅同位素测量方法及其地质应用.矿床地质,1988.(4)
    [295]祝朝辉,张乾,朱笑青,何玉良.中国SEDEX型矿床成矿流体硼、硅、氦-氩同位素组成研究评述[J].矿物岩石地球化学通报,2006,03:279-284
    [296]Savin S M and Epstein S. The oxygen isotopic compositions of coarse grained sedimentary rock sand minerals[J], Geochimca et Cosmochimca Acta,1970,34(3):323-329.
    [297]Brigo L,Camana QRodeghiero F, Polenza R. Carbonate-hosted silicecous crust Lype mineralizalion of Carnic Alps (Italy-Austria)[J]. Ore Geol Rev,2001,17(4):199-214.
    [298]Yeh H W, Savin S M. Mechanism of burial metamorphism of argillaceous sediments:3.0-isotope evidence [J].CSA Bull,1977,88(9):1321-1330.
    [299]何俊国,周水章,杨志军,张澄博,付伟.藏南硅质岩地质地球化学特征及其成矿效应[J].矿产与地质,2004,18(5):405-409.
    [300]Knauth L P, Epstein D S. Hydrogen and Oxygen Isotope Ratios in Nodular and Beded Cherts. Geochem et cosmochem Acta,1976 (40):1095-1100
    [301]Blatt H.Oxygen isotopes and the origin of quartz [J].Journal of Sedimentary Petrology,1987,57(2): 373-377.
    [302]姜立君,王世杰,刘秀明,田世洪.贵州碳酸盐岩风化壳中晶体石英形成条件分析:氧同位素证据[J].矿 物学报,2009,01:75-81.
    [303]姜立君,王世杰,刘秀明,田世洪.贵州碳酸盐岩风化壳中晶体石英的硅同位素组成及硅质来源探讨[J].地球与环境,2009,01:20-27.
    [304]李延河,丁悌平,万德芳.硅同位素动力学分馏的试验研究及地质应用[J].矿床地质,1994,13(3):282-288.
    [305]Ziegler K, Oliver A C, Mark A B,et al. Silicon Isotope Fractionation During Weathering and Soil Formation: Experimental Results[A]1 Journal of Conference Abstracts[C].Cambridge Publications,2000,5(2):1135.
    [306]彭军,夏文杰,伊海生.湘西晚前寒武纪层状硅质岩硅氧同位素组成及成因分析[J]1地质论评,1995,41(1):34-41.
    [307]刘英俊,曹励明.1987.元素地球化学导论.北京:地质出版社,113-137.
    [308]胡受奚,叶瑛,方长泉.2004.交代蚀变岩岩石学及其找矿意义.北京:地质出版社.
    [309]沈宝丰,陆松年,于恩泽,等.1977.某区磁铁矿床中钠质交代作用的特征及其找矿意义.地质科学,3:263-274.
    [310]李九玲,刘玉山,缪婉萍,等.闪长玢岩钠长石化的实验研究[J].地质学报.1979(1):60-73.
    [311]刘玉山,程莱仙,缪婉萍.闪长玢岩在高温、高压下与氯化物溶液作用析出铁的实验研究[J].地质学报,1981,04:276-289.
    [312]Holser,W.T., schineer.L.J.,1961, Hydrothermal magnetite. Bull. Geol. Soe.Am.Vol.72,369-386.
    [313]Chou,I.M., Eugster,H.P.,1977. Solubility of magnitie in supercritical chloride solutions. Amer. Jour. Sci., 277,1296-1314.
    [314]桑浩.安徽省泥河铁矿围岩蚀变特征及找矿意义[D].中国地质大学(武汉)本科毕业论文.2011.
    [315]李婉婷,张均,张传昱,刘文浩.宁芜盆地梅山铁矿床成矿物理化学条件研究[A].中国矿物岩石地球化学学会.中国矿物岩石地球化学学会第14届学术年会论文摘要专辑[C].中国矿物岩石地球化学学会:,2013:1.
    [316]Thompson, J.B., Jr.,1959. Local equilibrium in metasomatic processes. In:Research in geochemistry, P. H. Alelsons (ed.). New York:Wiley,427-457.
    [317]Reed, M.H.,1997. Hydrotermal alteration and its relationship to ore fluid composition. In:Geochemistry of hydrothermal ore deposits (third ed.). H. L. Barnes(ed.). New York:Wiley, pp.1-29.
    [318]曾贻善.1987.实验地球化学(第一版)[M].北京:北京大学出版社,1-417.
    [319]曾贻善.2003.实验地球化学(第二版)[M].北京:北京大学出版社,1-343.
    [320]梁祥济.中国矽卡岩和矽卡岩矿床形成机理的实验研究[M].北京:学苑出版社,2000.1-385.
    [321]张荣华,胡书敏,王军,等.长江中下游典型火山岩区水-岩相互作用[M].北京:中国大地出版社,2002.
    [322]Heiligmann,M., Williams-Jones.A.E., Clark,J.R.,2008. The role of sulfate-sulfide-oxide-silicate equilibria in the metamorphism of hydrothermal alteration at the Hemlo gold deposit, Ontario. Economic Geology. 103(2):335-351.
    [323]Pirajno, F.,2009. Hydrothermal Processes and Mineral Systems. Springer Netherlands.
    [324]Bucher,K., Grapes.R.,2011. Petrogenesis of Metamorphic Rocks. Springer Berlin Heidelberg.
    [325]Mirvakili,A., Rahimpour,M.R., Jahanmiri,A.,2012. Experimental study of iron-control agents selection for high temperature sour gas and oil wells acidizing process. Chemical Engineering Research & Design, 90(11):1823-1833.
    [326]Fischer,R.,1950. Neues Jahrb. Min, Abhand.81(3),315-314.
    [327]Martin,A.F., Prwinskv,A.J.,1969, Experimental data bearing on the Movement of iron in an aqueous vapor, Econ. Geol. V.64,798-803.
    [328]Crerar,D.A., et al.,1978. Solubility of the buffer assemblage pyrite-pyrrhotite-magnetite in NaCl solutions from 200 to 350℃, Geochim. Cosmochim. Acta.30,375-398.
    [329]Eugster,H.P., Chou,I.M.,1979. A model for the deposition of Cornwall type magnetite deposit. Econ.Geo for the deposition of Cornwall type magnetite deposit.Econ.Geol.,74,763-774.
    [330]卢家烂,樊文岭.闪长玢岩的钠长石化与铁质活化的高温高压实验研究[J].地球化学.1980(3):309-316.
    [331]王玉荣,樊文苓,郁云妹.碱交代与铁矿形成的地球化学机理探讨[J].地球化学,1981(1):95-103.
    [332]韩发,刘玉山,缪婉婷,李九玲.1979.斜长石蚀变实验——辉石硬石膏磁铁矿组合的生成条件.全国矿物中包裹体和成岩成矿实验学术会议论文选集之二.科学出版社,27-36.
    [333]Burt,D.M.,1972a. Mineralogy and geochemistry of Ca-Fe-Si skarn deposits. Unpub. Ph.D. thesis. Harvard Univ.,256p.
    [334]Gusafson.W.I.,1974. The Stability of Andradite, Hedenbergite, and Related Minerals in the System Ca-Fe-Si-O-H. J. Petrol.,15,455-496.
    [335]Drummond,S.E., Ohmoto,H.,1985. Chemical evolution and mineral deposition in boiling hydrothermal systems. Econ.Geol.,80:126-147.
    [336]张德会.1997.成矿流体中金属沉淀机制研究综述.地质科技情报,16(03):54-59.
    [337]李秉伦,谢奕汉,王英兰.1983.根据矿物中包裹体的研究对玢岩铁矿的新认识.矿床地质.2(02):25-32.
    [338]Skinner, B.J.,1997. Hydrothermal mineral deposits:What we do and don't know. In:Geochemistry of hydrothermal ore deposits (third ed.). H. L. Barnes (ed.).1-29. New York:Wiley.
    [339]Chung S. L, Jahn B. M. Plume-lithosphrer interaction in generation of the Emeishan flood basalts at the Permina-triassic boundary. Geology,1995,23:889-892.
    [340]牟保磊.1999.元素地球化学.北京:北京大学出版社,41-47.
    [341]Pan Yuanming, Dong Ping.1999. The lower Changjiang(Yangzi/Yangtze River) metallogenic belt, East Central China:Instrusin-and Wall rock-hosted Cu-Fe-Au, Mo, Zn, Pb, Ag deposits[J]. Ore Geology Reviews, 15(4):177-241.
    [342]Sugitani K. Geochemical Characteristic of Archean Cherts and Other Sedimentary Rocks in the Pilbara Block, Western Australia:Evidence for the Archean Sea-Water Enrichedin Hydrothermally-Derived Iron and Silica. Precambrian research,1992,57:21-47.
    [343]Yuan,F., Zhou.T.F., Liu,J., Fan.Y, David,R.C., Jowitt.S.M.,2011. Petrogenesis of volcanic and intrusive rocks of the Zhuanqiao stage, Luzong Basin, Yangtze metallogenic belt, east China:implications for ore deposition. International Geology Review,53(5),526-541.
    [344]Zhang Zc, Mahoney Jj, Mao Jw, et al. Geochemistry of picritic and associated basalt flows of the western Emeishan Flood Basalt Province.China. Journal of Petrology,2006,47:1997-2019.
    [345]Zindler A and Hart SR. Chemical Geodynamics[J]. Annu. Rev. Earth Planet,1986,14:493-571.
    [346]《长江中下游成矿带深部成矿与找矿暨祝贺常印佛院士80华诞专辑》简介[J].地质学报.201](5):599-600.
    [347]安徽沿江地区中生代原地和异地矽卡岩岩浆-热液成矿作用[C].中国广东广州:2011.
    [348]安徽省地质矿产开发局1:50000区调地质调查报告(义津桥、枞阳、庐江、矾山)[R].安徽省地质矿产开发,1981.
    [349]安徽地勘局327地质队.矾山镇幅、将军庙幅1:50000区域地质调查报告[R].1981
    [350]安徽地勘局327地质队.义津桥幅、枞阳县幅、汤沟镇幅1:50000区域地质调查报告[R].1984
    [351]安徽地勘局327地质队.盛桥幅、槐林咀幅、石涧埠幅、庐江县幅、开城桥幅1:50000区域地质调查报告[R].1988
    [352]安徽地勘局327地质队.牛埠幅、周潭幅1:50000区域地质调查报告[R].1994
    [353]从柏林,黄开年.攀西地区的大地构造演化——Ⅱ.海西晚期至印支期的裂谷作用[J].科学通报,1987(17):1321-1324.
    [354]曹毅.安徽庐枞盆地中生代A型花岗岩类及其岩石包体研究[D].硕士学位论文,北界:中国地质大学.2008
    [355]曾玫吾,王曼祉,曲维政.白云鄂博铁矿磁铁矿成因矿物学的研究[J].矿物岩石.1981(Z1):44-58.
    [356]柴超.新疆哈密库姆塔格铁矿成因矿物学及成矿条件研究[D].新疆大学,2011.
    [357]成都地质矿产研究所.西昌地区铁矿成矿条件分布富集规律及找矿方向[R].1984.
    [358]成都地质矿产研究所.西昌地区主要铁矿类型成矿地质特征及矿床实例[R].1984.
    [359]陈广蓉,汪成开.凉山州富铁矿资源的分布及开发[J].四川地质学报,1993,13(01):9-13.
    [360]陈大经,杨明寿.我国与中—酸性岩浆岩有关的铁矿成矿系列[J].矿产与地质,1982,(1):20-25.
    [361]陈大经.陆相火山岩型铁矿的成矿作用及成矿系列(摘要)[J].冶金工业部地质研究所所报,1982(1):15-19.
    [362]陈大经.陆相火山岩型铁矿床几个问题的讨论[J].见:第二届全国矿床会议论文摘要编(上)[M].北京:地质出版社,1980.
    [363]陈光远,孙岱生,王祖福.弓长岭磁铁矿双晶的进一步研究[J].矿物学报.1981(3):129-137.
    [364]陈洪江,徐光荣.弓长岭铁矿二矿区磁铁矿的成因矿物学特征及其意义[J].吉林地质.1984(1):22-30.
    [365]陈勇,周瑶琪.岩浆脱气动力学研究进展[J].石油大学学报(自然科学版).2002(2):115-119.
    [366]陈毓川.宁芜火山岩地区铁矿成矿规律、找矿标志、找矿方向及找矿方法(1976)[Z].198659.
    [367]陈国忠,王启航,李凤义,等.西秦岭大水式金矿含金硅质岩地质地球化学特征及成因[J].甘肃科技.2006(4):84-88.
    [368]陈继宇,姜齐节.长江中下游深部构造与铁铜矿产[J].地质与勘探.1983(12):14-17.
    [369]陈永权,蒋少涌,周新源,等.塔里木盆地寒武系层状硅质岩与硅化岩的元素、δ~(30)Si、δ-(18)O地球化学研究[J].地球化学.2010,39(2):159-170.
    [370]陈岳龙,杨忠芳,赵志丹,等.同位素地质年代学与地球化学[M].北京:地质出版社,2005,210-270;
    [371]陈艳,张招崇.矽卡岩型铁矿的铁质来源与迁移富集机理探讨[J].岩矿测试,2012,05:889-897.
    [372]邓晋福,莫宣学,罗照华,等.火成岩构造组合与壳幔成矿系统[J].地学前缘(中国地质大学,北京),1999,6(2):259-270.
    [373]邓晋福,吴宗絮.下扬子克拉通岩石圈减薄事件与长江中下游Cu-Fe成矿带[J].安徽地质,2001,11(2):86-72.
    [374]地质矿产研究所四室实验组.宁芜地区铁矿床测温报告[R].,1976.
    [375]丁毅.宁芜玢岩铁矿成因新论:同化作用、高侵位和铁质聚合[J].矿床地质.1992(3):195-202.
    [376]丁毅.宁芜地区辉石闪长玢岩形成新解[J].江苏地质.1991(4):215-217.
    [377]丁悌平,蒋少涌,李延河,等.硅同位素地球化学研究新进展[Z].中国北京:2006:238.
    [378]丁悌平,姚晓梅.广西大厂锡多金属矿床硅质岩和层状矿体氧硅同位素研究[J].地球学报.1994(Z1):124-130.
    [379]董树文,吴宣志,高瑞,等.大别造山带地壳速度结构与动力学[J].地球物理学报,1998.41(3):349-361.
    [380]杜建国,常丹燕.长江中下游成矿带深部铁矿找矿的思考[J].地质学报.2011(5):687-698.
    [381]杜杨松,曹毅,袁万明,等.安徽沿江地区中生代碰撞后到造山后岩浆活动和壳幔相互作用——来自火山-侵入杂岩和岩石包体的证据[J].岩石学报.2007(6):1294-1302.
    [382]杜杨松,曹毅,张智宇,等.安徽沿江地区中生代原地和异地矽卡岩岩浆-热液成矿作用[J].地质学报.2011,85(5):699-711.
    [383]傅敏军.攀西红格钒钛磁铁矿床地质特征及控矿因素分析[D].成都理工大学,2012
    [384]冯彩霞,刘家军.硅质岩的研究现状及其成矿意义[J].世界地质.2001(2):119-123.
    [385]冯彩霞,刘家军,刘燊,等.渔塘坝富硒硅质岩成因及沉积环境探讨:硅、氧、碳和硫同位素证据[J].岩石学报.2009,25(5):1253-1259.
    [386]葛肖虹.川西盐源推覆构造的探讨[J].长春地质学院学报.1984,(01):36-43.
    [387]高建飞,丁悌平.福建云霄晶洞花岗岩及含石榴子石伟晶岩的硅氧同位素研究[J].地质论评.2011(5):670-674.
    [388]顾连兴,阮惠础.宁芜地区两种主要类型铁矿床中铁的热液富集机制探讨[J].矿床地质.1990(2):112-118.
    [389]郭福生,林子瑜,杜杨松,等.一种特殊类型硅质岩的特征与成因研究[J].地学前缘.2003(4):573-581.
    [390]韩江伟,熊小林,朱照宇,等.岩浆过程对玄武岩铁氧化状态和氧逸度的影响:以雷琼地区晚新生代玄武岩为例[J].地球科学(中国地质大学学报).2009(1):127-136.
    [391]郝艳丽,张招崇,王福生,等.峨眉山大火成岩省“高钛玄武岩”和“低钛玄武岩”成因探讨[J].地质论评,2004,50(6):587-592.
    [392]侯贺晟,高锐,卢占武,等.庐枞铁多金属矿集区龙桥铁矿反射地震初至波层析成像与隐伏矿床预测[J].岩石学报.2010(9):2623-2629.
    [393]侯林,丁俊,邓军,彭惠娟.滇中武定迤纳厂铁铜矿床磁铁矿元素地球化学特征及其成矿意义[J].岩石矿物学杂志,2013,02:154-166.
    [394]侯通,张招崇,杜杨松.宁芜南段钟姑矿田的深部矿浆-热液系统[J].地学前缘.2010(1):186-194.
    [395]华北地质科学研究所第一研究队.四川盐源矿山梁子地区铁矿床形成条件的初步研究[R].1966.
    [396]胡书敏,张荣华,张雪彤,等.庐枞火山盆地玄武岩与流体相互作用[J].岩石学报.2010,26(9):2681-2693.
    [397]胡文瑄,任启江,徐兆文.从地质环境演化看宁芜—庐枞地区成矿系列与找矿方向[J].江苏地质.1993(2):65-72.
    [398]季莫费也娃.氧同位素和菱铁矿成矿作用、氧同位素地球化学论文集[M].北京:科学技术文献出版社,1978.
    [399]贾群子.从磁铁矿的标型特征论天湖铁矿的成因[J].西北地质,1991.12(1):19-25.
    [400]江建明,陈可睦,宁仁祖.宁芜北段某些次火山岩和蚀变岩中的稀土元素[J].岩石矿物及测试.1985(2):97-103.
    [401]江苏冶金地质勘探公司八。七队地质科.宁芜北段铁矿成矿规律及找矿标志[J].地质与勘探. 1976(5):12-24.
    [402]冷成彪,张兴春,王守旭,等.岩浆—热液体系成矿流体演化及其金属元素气相迁移研究进展[J].地质论评.2009(1):100-112.
    [403]冷盛强,李佩兰.海南岛石碌矿区富铁矿形成的物理化学条件实验研究[J].中南矿冶学院学报.1979(3):116-128.
    [404]刘家铎,张成江,等.攀西地区金属成矿系统[M].北京:地质出版社,2007.
    [405]刘金凯,匡朝阳,高锐,等.多金属成矿区深地震反射剖面数据处理技术实验研究——以庐枞矿集区为例[J].岩石学报.2010(9):2561-2576.
    [406]刘磊,乔冠军,柳长峰,周志广.沉积变质改造型铁矿的成矿作用分析[J].中国矿业,2011,S1:140-144.
    [407]刘明军.辽宁弓长岭沉积变质型铁矿热液改造作用及其成矿意义[D].中国地质大学(北京),2013.
    [408]刘军,靳淑韵.辽宁弓长岭铁矿磁铁富矿的成因研究[J].现代地质.2010(1):80-88.
    [409]刘慧卓,唐跃刚.河北近北庄磁铁矿的矿物学和地球化学组成及其药用意义[J].山西大学学报(自然科学版).2007(3):385-389.
    [410]刘一男,范裕,洪浩澜.安徽庐枞矿集区罗河铁矿床深部榍石的发现及意义[J].矿物学报,2013,S2:25.
    [411]卢冰,胡受奚,蔺雨时,等.宁芜型铁矿床成因和成矿模式的探讨[J].矿床地质.1990(1):13-25.
    [412]卢冰,胡受奚.宁芜型铁矿床交代蚀变过程中稀土元素地球化学和活化转移[J].地球化学.1991(4):366-375.
    [413]卢占武,高锐,匡朝阳,等.庐枞金属矿集区深地震反射剖面探测研究:一种经济的、变化的采集观测系统实验[J].岩石学报.2010,26(9):2553-2560.
    [414]卢作祥,范永香,刘辅臣,等.成矿规律和成矿预测学[M].武汉:中国地质大学武汉,1988.地质学报.1981(4):276-289.
    [415]路凤香,桑隆康,邬金华,等.岩石学[M].北京:地质出版社,2002.
    [416]陆志刚.庐枞火山沉陷火山杂岩化学特征[J].中国地质科学院南京地质矿产研究所所刊.1982(1):37-56.
    [417]骆耀南,何虹付,傅德明.西南暗色岩套及其成矿大系统[J].见:峨眉地幔柱与资源环境效应学术研讨会文集[M].成都,2003.
    [418]罗照华,莫宣学,侯增谦,等.青藏高原新生代形成演化的整合模型——来自火成岩的约束[J].地学前缘,2006,13(4):196-211.
    [419]罗志立,刘顺,刘树根,等.“峨眉地幔柱”对扬子板块和塔里木板块离散的作用及其找矿意义[J].地球学报,2004,25(5):515-522.
    [420]李健,贾大成,白雪山,等.河北张百湾中生代盖层下隐伏磁铁石英岩型铁矿床的勘查条件[J].世界地质.2009(2):187-192.
    [421]李嘉林.矿液和矿浆的形成与迁移[J].兰州大学学报.1984(3):115-120.
    [422]李锦伟,陈津华,曾键年,等.宁芜盆地吉山铁矿床辉长闪长玢岩SHRIMP锆石U-Pb定年及其地质意义[J].矿床地质,2012,06:1227-1236.
    [423]李瑞玲,朱乔乔,侯可军,谢桂青.长江中下游金牛盆地花岗斑岩和流纹斑岩的锆石U-Pb年龄、Hf同位素组成及其地质意义[J].岩石学报,2012,10:3347-3360.
    [424]李顺庭.宁芜地区蒋庙和姑山岩体的特征和成因[D].中国地质大学(北京),2008.
    [425]李中坚.安徽庐枞地区构造体系与铁矿分布关系的研究[J].中国地质科学院地质力学研究所所刊.1982(3):74-91.
    [426]李延河,谢桂青,段超,韩丹,王成玉.膏盐层在矽卡岩型铁矿成矿中的作用[J].地质学报,2013,09:1324-1334.
    [427]林传仙,白正华,张哲儒.矿物及有关化合物热力学数据手册[M].北京:科学出版社,1985.
    [428]林传仙,张哲儒.梅山铁矿床蚀变矿物组合的相平衡研究[J].矿物学报.1984(1):12-20.
    [429]林刚,许德如.在宁芜玢岩铁矿深部寻找大冶式铁矿的探讨——以宁芜铁矿南段为例[J].矿床地质.2010(3):427-436.
    [430]林刚,朱纯六,许德如.宁芜南部成矿模式及对深部找矿的思考[J].大地构造与成矿学.2010(3):368-377.
    [431]马腾飞.庐枞矿集区三维地质地球物理建模技术研究[D].中国地质科学院,2013.
    [432]梅厚钧.西南暗色岩深渊分异两个系列的岩石化学特征与铁镍矿化的关系[J].地球化学,1973,4(5):219-253.
    [433]孟高原,杨西飞,袁峰,周涛发,范裕.安徽沿江火山-次火山气液型硫铁矿远景预测[J].合肥工业大学学报(自然科学版),2011,03:424-428.
    [434]牟保磊,强德美.矾山杂岩体含矿岩带磁铁矿辉石氧同位素及同位素平衡温度[J].北京大学学报(自然科学版).1981(2):85-93.
    [435]倪若水,吴其初,岳文浙,等.长江中下游中生代陆相盆地演化与成矿作用[M].上海:上海科学技术文献出版社,1998:1-118.
    [436]聂凤军(译).1976.磁铁矿中稀土元素及其它痕量元素的分布[J].in外国矿产地质[M].1993地质矿产研究所..译自《Chemical Gcalogy》.26(2):119-133.
    [437]潘国强,董恩耀.庐枞火山岩区火山构造及其控矿作用[J].中国区域地质.1983(5):31-37.
    [438]彭军,夏文杰,伊海生.湘西晚前寒武纪层状硅质岩硅氧同位素组成及成因分析[J].地质论评.1995(1):34-41.
    [439]蒲广平.攀西地区稀土成矿历史演化与喜马拉雅期成矿基本特征[J].见:陈毓川,王登红主编,喜马拉雅期内生成矿作用研究[M].北京:地震出版社,2001.
    [440]邱家骧,王人镜,王方正,等.长江下游中生代火山岩岩石化学特征及成因分析[J].地球科学,1981(01):170-181.
    [441]邱家骧,王人镜,王方正,等.长江下游中生代火山岩岩石化学特征及成因分析[J].地球科学.1981(1):170-182.
    [442]邱家骤.确定陆相火山岩名称、酸度、碱度系列和组合的简便化学方法[J].地质与勘探,1979.8期.
    [443]邱检生,任启江,徐兆文,等.安徽沙溪斑岩铜(金)矿床蚀变岩地质地球化学特征研究[J].南京大学学报(自然科学版).1991(2):344-359.
    [444]阮惠础,顾连兴.长江中下游中三迭统层控铁矿床的碳酸盐化蚀变和铁的活化转移机制[J].地质与勘探.1983(6):11-18.
    [445]任启江,王德滋,徐兆文,等.安徽庐枞火山-构造洼地的形成、演化及成矿[J].地质学报,1993(2):131-145.
    [446]任启江,徐兆文,刘孝善,等.安徽庐枞地区中生代火山岩系的时代及其意义[J].地层学杂志.1993(1):46-51.
    [447]芮宗瑶,张立生,王龙生,等.斑岩铜矿与陆相火山活动[J].地震地质.2003(S1):78-87.
    [448]宋传中,张华,任升莲,等.长江中下游转换构造结与区域成矿背景分析[J].地质学报.2011(5):778-788.
    [449]宋传中,周涛发,闫峻,等.长江中下游及其邻区中生代构造体制转换[J].岩石学报.2010(9):2835-2849.
    [450]宋谢炎,侯增谦,汪云亮,等.晚古生代—早中生代扬子板块西缘的构造-岩浆活动[J].地质论评,1999,45(增刊):868-871.
    [451]宋谢炎,王玉兰,曹志敏,等.峨眉山玄武岩、峨眉地裂运动与幔热柱[J].地质地球化学,1998(1):47-52.
    [452]宋谢炎,侯增谦,汪云亮,等.峨眉山玄武岩的地幔热柱成因[J].矿物岩石,2002,22(4): 27-32.
    [453]宋谢炎,张成江,胡瑞忠,等.峨眉火成岩省岩浆矿床成矿作用与地幔柱动力学过程的耦合关系[J].矿物岩石,2005,25(04):35-44.
    [454]苏欣栋.鄂东南岩体及矿床中磁铁矿地质地球化学[J].中南冶金地质,1994.2:56-60.
    [455]孙冶东,杨荣勇,任启江,等.安徽庐枞中生代火山岩系的特征及其形成的构造背景[J].岩石学报,1994,10(01):94-102.
    [456]上海梅山矿业有限公司.江苏省南京市梅山铁矿接替资源普查设计[R].,2008.
    [457]沈保丰,陆松年,翟安民,等.冀南等地接触交代型铁矿床中磁铁矿的化学成分特征及其地质意义[J].地质论评.1979(1):10-18.
    [458]邵蔚.形变—热—流体对成矿作用制约的数值模拟[D].合肥工业大学,2013.
    [459]申金超.宁芜地区硅质体的成因及与铁矿床的成矿关系[D].中国地质科学院,2013.
    [460]申金超,郭坤一,曾勇,等.宁芜北部地区层状铁矿床中硅质岩的地球化学特征及其成因[J].矿物岩石地球化学通报,2013,06:.
    [461]盛继福,艾永德,陈毓川.梅山铁矿床围岩蚀变和成矿地质特征(1975)[Z].198649-50.
    [462]石准立,刘凤山.国外岩浆热液成矿理论研究现状与进展[J].地质科技情报.1994(2):75-77.
    [463]史东方,鹿献章.遥感技术在庐枞盆地南部地区的地质找矿应用研究[J].国土资源遥感.1991(1):40-47.
    [464]汤诚,周涛发,袁峰,等.安徽省庐江县沙溪铜矿床地质特征及形成时代[J].矿物学报.2011(S1):91-92.
    [465]汤蔡联.符山铁矿磁铁矿的标型特征及其实际意义[J].河北地质情报,1990.(4):32-36.
    [466]汤井田,原源,周聪.有限元-无限元耦合法在复杂金属矿体电阻率/极化率正演模拟中的应用——以庐枞盆地泥河铁矿床为例[J].地球物理学进展,2013,03:1234-1242.
    [467]滕传耀,杜杨松,张智宇,龙旺生,董玉翠,李湘莲.安徽安庆铜铁矿床矽卡岩岩相学和矿物学特征及意义[J].矿物岩石,2012,03:40-50.
    [468]童潜明.热力学原理在成矿作用中的某些应用[J].湖南地质.1984(2):73-80.
    [469]童潜明.铁、铜、铅、锌硫化矿物微量元素分配系数地质温度计[J].地质与勘探.1983(5):25-32.
    [470]涂伟,杜杨松,李顺庭,等.宁芜盆地蒋庙橄榄辉长岩的岩相学和矿物学特征及其构造意义[J].矿物岩石.2010(1):47-52.
    [471]王登红,李建康,王成辉,等.与峨眉地幔柱有关年代学研究的新进展及其意义[J].矿床地质,2007,26(05):550-556.
    [472]王登红,陈毓川,徐志刚,陈郑辉,沈保丰,汤中立,裴荣富.成矿体系的研究进展及其在成矿预测中的应用[J].地球学报,2011,04:385-395.
    [473]王恩德,夏建明,赵纯福,付建飞,侯根群.弓长岭铁矿床磁铁富矿形成机制探讨[J].地质学报,2012,11:1761-1772.
    [474]王关玉,郑淑慧,强德美,魏菊英.氧同位素和铁矿的成因[J].地质研究论文集,1982.149-159.
    [475]王华田.与玢岩铁矿有关的两类蚀变再认识[J].中国地质科学院南京地质矿产研究所所刊.1989(2):75-88.
    [476]王静纯,冯建良,何双梅.海南石碌铁矿透辉石—钙铁辉石成因矿物学研究[J].矿物岩石.1981(Z1):59-70.
    [477]王建平,翟裕生,刘家军,等.矿床变化与保存研究的裂变径迹新途径[J].地球科学进展,2008,23(4):421-427.
    [478]王可南,姚培慧,中国铁矿综述[M].北京:冶金工业出版社.1992
    [479]王奎仁.地球与宇宙成因矿物学[M].合肥:安徽教育出版社,1989.108-129
    [480]王立华,贺菊瑞.宁芜火山岩地区层状铁矿的某些地质特征及其找矿意义(1975)[Z].1986:50-51.
    [481]王连忠.罗河铁矿床的控矿构造和庐枞地区控矿构造体系的初步分析[J].中国地质科学院地质力学研究所所刊,1983(04):123-137.
    [482]王顺金.宁芜玢岩铁矿中磁铁矿的成分特征与矿床成因[J].1979,全国铁矿科学讨论会;1981,全国第一届矿物学术会议.
    [483]王濮,潘兆橹,翁玲宝,等.系统矿物学[M].北京:地质出版社,1982.488-491.
    [484]王鹏程.长江中下游燕山期成矿带构造特征、演化及其控矿规律[D].中国海洋大学,2013.
    [485]王文斌,王润华,李绍新,邢文臣.从磁铁矿的某些特征看闽西南地区马坑式铁矿的成因[J].华东地质,1982.28(2):109-125.
    [486]王文财,范裕,周涛发,袁峰,谢杰PNIRS在安徽庐枞盆地玢岩型铁矿床浅色蚀变带研究中初步应用[J].矿物学报,2011,S1:859-860.
    [487]王玉往,沙建明,程春.新疆磁海铁(钻)矿床磁铁矿成分及其成因意义[J].矿床地质,2006.25(增刊):321-324.
    [488]王玉荣,胡受奚.钾交代蚀变过程中金活化转移实验研究——以华北地台金矿为例[J].中国科学D辑.2000,30(5):499-508.
    [489]王玉荣,樊文苓,郁云妹.1986.高温高压下络合物实验研究的结果及其地质意义[J].地质地球化学,(11):8-15.
    [490]王子正,范文玉,高建华,林明,周邦国.攀西铁矿成矿带地质矿产特征及找矿方向[J].沉积与特提斯地质,2012,01:97-105.
    [491]王志华,张作衡,蒋宗胜,洪为,田敬全.西天山智博铁矿床磁铁矿成分特征及其矿床成因意义[J].矿床地质,2012,05:983-998.
    [492]王治颖.四川省盐源县平川铁矿烂纸厂矿段地质特征及经济评价[D].成都理工大学,2011.
    [493]万德芳,李延河,丁悌平.硅同位素动力学分馏的实验研究及地质应用[J].矿床地质.1994(3):282-288.
    [494]万宏.宁芜地区马山铁硫矿床黄铁矿主要标型特征及其成因意义[J].矿物岩石.1988(2):99-107.
    [495]文满英,丁毅.梅山铁矿天青石的发现及其意义[J].矿物岩石地球化学通讯.1991(3):205-206.
    [496]温泉,温春齐,黄于鉴.四川攀枝花铁矿区辉石-(40)Ar/-(39)Ar快中子活化年龄及地质意义[J].矿物学报,2011,S1:647-648.
    [497]吴根耀.攀枝花-西昌古裂谷晚古生代的演化[J].成都理工学院学报,1997,24(02):48-53.
    [498]吴利仁.论中国基性岩、超基性岩的成矿专属性[J].地质科学,1963(1):29-41.
    [499]吴利仁,齐进英,王听渡,等.中国东部中生代火山岩[J].地质学报.1982(3):223-234.
    [500]吴良芳,魏新良,景山,等.宁芜盆地卧儿岗铁矿成矿地质特征及找矿方向探讨[J].地质与勘探,2012,04:760-767.
    [501]吴言昌,曹奋扬,常印佛.初论安徽岩浆地区成矿系统的深部构造-岩浆控制[J].地学前缘,1999,6(2):285-296
    [502]吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报,2004,49(16):1589-1604.
    [503]巫全淮,王华田,章纯荪,贺菊瑞.大鲍庄和罗河铁矿区硫同位素特征及其成因的探讨[J].矿床地质,1983.4(2):26-34.
    [504]魏家秀.庐枞盆地火山岩矿床流体包裹体研究及矿化蚀变机理[J].中国地质科学院矿床地质研究所所刊,1984.1:40-55.
    [505]魏家秀,张荣华.从矿物包裹体特征探讨庐枞火山岩盆地罗河等铁矿床的成矿条件[J].第二届全国矿床会议论文摘要汇编(上册),1980.131-132.
    [506]魏俊浩,丁振举,李建威.岩浆热液矿床的水/岩反应及微观找矿意义[J].地球科学.1999(5):487-488.
    [507]魏可.高磷铁矿熔融还原过程中组元活度对磷行为影响研究[D].昆明理工大学,2013.
    [508]夏建明,王恩德,赵纯福,等.弓长岭富铁矿氧化还原环境的形成机制[J].东北大学学报(自然科学版),2011,11:1643-1646.
    [509]夏林圻.超大陆构造、地幔动力学和岩浆-成矿响应[J].西北地质,2013,03:1-38.
    [510]肖龙,Pirajno Franco,何琦.试论大火成岩省与成矿作用[J].高校地质学报,2007,13(02):148-160.
    [511]肖龙,徐义刚,何斌.峨眉地幔柱-岩石圈的相互作用:来自低钛和高钛玄武岩的Sr-Nd和O同位素证据[J].高校地质学报,2003,9(02):207-217.
    [512]肖勇,许德如,吴传军,等.海南石碌铁矿床构造变形特征及其与铁多金属富集成矿的关系[J].矿产勘查,2012,02:153-164.
    [513]熊欣,徐文艺,贾丽琼,吕庆田,李骏.安徽庐江砖桥科学深钻内的铀钍赋存状态研究[J].矿床地质,2013,06:1211-1220.
    [514]向文帅,杜杨松,曹毅.庐枞地区A型花岗岩类与橄榄安粗岩系研究[J].矿物岩石.2009(3).
    [515]邢长明,陈伟,王焰,赵太平.华北克拉通北缘元古宙大庙Fe-Ti-P矿床的挥发份组成和C-H-O同位素研究[J].岩石学报,2011,05:1500-1510.
    [516]徐国凤,丰淑庄,左大华,等.论某矿床金属矿物的标形特征及矿床成因[J].矿物学报.1982.3:33-37.
    [517]徐九华.H2O-NaCl-CO2体系液相状态方程及其在热液矿床研究中的应用[J].地球化学.1991(1):47-55.
    [518]徐文忻,陈民扬,喻铁阶,等.矿物包裹体成分数据的热力学计算方法及应用[J].矿产与地质.1985(1):35-50.
    [519]徐祥,邢凤鸣.安徽沿江地区中生代岩浆岩的基本特点[J].岩石学报.1995(4):409-422.
    [520]徐晓春,楼金伟,谢巧勤,等.安徽铜陵狮子山矿田铜、金共生与分离的热力学研究[J].地质学报.2011(5):731-743.
    [521]徐义刚,梅厚钧,许继峰,等.峨眉山大火成岩省中两类岩浆分异趋势及其成因[J].科学通报,2003,48(04):383-387.
    [522]徐义刚.地幔柱构造、大火成岩省及其地质效应[J].地学前缘,2002,9(4):341-353.
    [523]徐义刚,钟孙霖.峨眉山大火成岩省:地幔柱活动的证据及其熔融条件[J].地球化学,2001,30(1): 1-9.
    [524]徐志刚,张长青,曹佑功.Harald G Dill的矿床“棋盘”分类介绍和概略评述:以主要金属矿床分类为例[J].地质科技情报,2013,05:195-212.
    [525]徐志刚.中国东部中生代陆相火山岩型铁矿成矿背景和火山岩浆性质[J].矿床地质.1986(1):13-26.
    [526]薛春纪,蒋少涌,李延河.秦岭泥盆纪硅质岩硅、氧同位素地球化学研究[J].西安工程学院学报.1998,20(1):10-13.
    [527]姚国涛.安徽安庆月山铜铁矿矿田构造研究[D].中国地质大学(北京),2011.
    [528]姚金炎,耿文辉.次火山岩型和斑岩型矿床地质对比[J].矿产与地质.1999(5):264-267.
    [529]姚书振.长江中下游铁、铜等成矿规律及隐伏矿床预测研究成果[J].地质科技情报,1990,19(4):100-101.
    [530]姚书振,周宗桂,宫勇军,丁振举.初论成矿系统的时空结构及其构造控制[J].地质通报,2011,04:469-477.
    [531]杨群慧,林振宏,张富元,等.南海东部表层沉积物中普通角闪石河磁铁矿的特征及其成因[J].海洋地质与第四纪地质,2004.24(2):29-35.
    [532]杨守业,李从先,朱金初,张文兰.长江与黄河沉积物中磁铁矿成分标型意义[J].地球化学,2000.29(5):478-484.
    [533]杨秀清,李厚民,薛春纪,李立兴,刘明军,陈靖.辽宁歪头山铁矿床两类矿石地球化学特征及其对成矿作用的制约[J].地质学报,2013,10:1580-1592.
    [534]杨秀清,李厚民,李立兴,刘明军,陈靖,白云.辽宁弓长岭铁矿床磁铁矿稀土元素特征及其地质意义[J].岩矿测试,2012,06:1058-1066.
    [535]杨振威.宁芜矿集区及邻区深部电性结构研究[D].中国地质科学院,2013.
    [536]杨志军,周永章,张澄博,等.硅质岩组构信息研究及其意义[J].矿物岩石地球化学通报.2003(3):255-258.
    [537]严炳铨,吴克隆,王文腾.福建漳州复式岩体磁铁矿的成因矿物学特征[J].福建地质,1993.12(1):1-16.
    [538]叶晓英,曾宪教.论攀西地区层状侵入体的时代及其接触变质作用[J].见:张云湘,中国攀西裂谷文集[M].北京:地质出版社,1985.
    [539]叶庆同.粤东一些铁矿床中磁铁矿的标型特征及其成因意义[J].岩矿测试,1982.1(1):44-50.
    [540]易建.海南石碌铁矿床碧玉岩地质特征及铁沉积成矿模式研究[D].中国地质大学,2012.
    [541]应立娟,王登红,新疆阿尔泰乔夏哈拉铁铜金矿床磁铁矿的化学成分标型特征和地质意义[J].矿物学报,2006.26(1):59-68.
    [542]袁家铮.梅山铁矿矿石类型及成因——高温实验结果探讨[J].现代地质.1990(4):77-84.
    [543]曾普胜,杨竹森,蒙义峰,等.安徽铜陵矿集区硅质岩成因及意义[J].地质论评.2004(2):153-161.
    [544]曾忻耕.康滇地轴西缘的矿产与成矿条件[J].四川地质学报,1991,11(04):269-275.
    [545]翟裕生,邓军,彭润民.矿床变化与保存的研究内容和研究方法[J].地球科学,2000,25(4):340-345.
    [546]翟裕生,姚书振,林新多.长江中下游地区铁铜矿床的类型、形成条件和成矿演化[J].地球科学.1983(4):95-106.
    [547]张成江,刘家铎,刘显凡,等.攀西地区金属成矿系统[J].成都理工大学学报(自然科学版),2009,36(04):387-394.
    [548]张成江,刘家铎,刘显凡,等.峨眉火成岩省成矿效应初探[J].矿物岩石.2004,24(01):5-9.
    [549]张德.江苏韦岗铁矿磁铁矿的矿物学特征及其意义[J].江苏地质,1994,18(01):25-29.
    [550]张德会,徐九华,余心起,等.成岩成矿深度:主要影响因素与压力估算方法[J].地质通报.2011(1): 112-125.
    [551]张德会,张文淮,许国建.岩浆热液出溶和演化对斑岩成矿系统金属成矿的制约[J].地学前缘.2001(3):193-202.
    [552]张德会,周圣华,万天丰,等.矿床形成深度与深部成矿预测[J].地质通报.2007(12):1509-1518.
    [553]张东阳,苏慧敏,田磊,等.河南窑场铁矿床成因矿物学研究及其地质意义[J].矿物岩石.2010(1).
    [554]张冠华,张矿,何德锋.安徽省庐枞盆地黄屯硫铁矿床地质特征及控矿因素分析[J].安徽地质,2012,04:251-255.
    [555]张乐骏,周涛发,范裕,等.安徽月山岩体的锆石SHRIMP U-Pb定年及其意义[J].岩石学报.2008(8):1725-1732.
    [556]张乐骏,周涛发,范裕,等.安徽庐枞盆地井边铜矿床的成矿时代及其找矿指示意义[J].岩石学报.2010,26(9):2729-2738.
    [557]张明明,周涛发,袁峰,等.长江中下游地区玢岩型铁矿床资源储量估算研究[J].地质学报.2011(7):1215-1222.
    [558]张荣华.长江中下游地区玢岩铁矿和块状黄铁矿床的物理化学条件[J].地质论评.1981(1):24-33.
    [559]张荣华,陈毓川.罗河铁矿的物质成分[Z].1986:57-58.
    [560]张荣华,刘隆隆,陆成庆.长江中下游某些火山岩铁矿微量元素的地球化学[J].中国地质科学院院报.1979:83-103.
    [561]张荣华.长江中下游玢岩铁矿围岩蚀变的地球化学分带形成机理[J].地质学报,1980,(1):70-84.
    [562]张少斌,范永香.玢岩型铁硫多金属矿床系列[J].地质找矿论丛.1993(3):63-70.
    [563]张文淮,张志坚,伍刚.成矿流体及成矿机制[J].地学前缘.1996(4):86-93.
    [564]张燕,郭坤一,曾键年.宁芜盆地凹山铁矿含矿玢岩LA-ICP-MS锆石U-Pb定年及其地质意义[J].资源调查与环境,2013,04:228-233.
    [565]张和应.梅山铁矿地压活动特征的调查与成因分析[J].江苏地质.1996(2):108-111.
    [566]张宇,邵拥军,周鑫,刘忠法,郑明泓.安徽铜陵新桥铜硫铁矿床胶状黄铁矿主、微量元素特征[J].中国有色金属学报,2013,12:3492-3502.
    [567]张宇.安徽铜陵新桥铜-硫-铁矿床地质地球化学特征及矿床成因分析[D].中南大学,2012.
    [568]张云湘.中国攀西裂谷文集(1)[M].北京:地质出版社,1985.
    [569]张招崇,王福生,郝艳丽,等.蛾眉山大火成岩省中苦橄岩与其共生岩石的地球化学特征及其对源区的约束[J].地质学报,2004,78(02):171-180.
    [570]张招崇,王福生,郝艳丽,等.峨眉山大火成岩省和西伯利亚大火成岩省地球化学物征的比较及其成因启示[J].岩石矿物学杂志,2005,24(01):12-19.
    [571]张招崇,王福生,范蔚茗,等.峨眉山玄武岩研究中的一些问题的讨论[J].岩石矿物学杂志,2001,20(3):239-246.
    [572]张招崇,王福生.峨眉山玄武岩区两类玄武岩的地球化学:地幔柱-岩石圈相互作用的证据(摘要)[J].地质学报(英文版),2002,76(02):287.
    [573]张招崇,王福生.峨眉山玄武岩Sr、Nd、Pb同位素特征及其物源探讨[J].地球科学,
    [574]张招崇,李莹,赵莉,等.攀西三个镁铁-超镁铁质岩体的地球化学及其对源区的约束[J].岩石学报,2007,23(10):2339-2352.
    [575]张招崇,李兆鼐,李树才.火山喷发过程中岩浆脱气率和脱气量的估算方法及其意义[J].岩石矿物学杂志.2000(4):307-315.
    [576]张哲儒,林传仙.梅山铁矿形成物理化学条件的热力学分析[J].地球化学.1984(2):138-144.
    [577]张志.西藏尕尔穷、嘎拉勒铜金矿床矽卡岩矿物学特征对比研究[D].成都理工大学,2012.
    [578]赵爱醒.湖北大冶铁山铁(铜)矿床磁铁矿矿物化学及其成因研究[J].地球科学(中国地质大学学报),1990.15(4):385-396.
    [579]赵斌.钙铁辉石变化特征的实验研究[J].地球化学.1974(3):196-203.
    [580]赵斌,曹荣龙.钙铁辉石、透辉石和钙铁榴石变化的实验研究[J].地球化学.1975(1):63-74.
    [581]赵斌,李统锦.鞍山弓长岭富磁铁矿床的形成机制和物理化学条件研究[J].地球化学.1980(4):333-344.
    [582]赵斌,李统锦,李昭平.夕卡岩形成的物理化学条件实验研究[J].地球化学.1983(3):256-267.
    [583]赵斌,Barton M.D.接触交代夕卡岩型矿床中石榴子石和辉石成分特点及其与矿化的关系[J].矿物学报.1987(1):1-8.
    [584]赵斌,邢凤鸣,朱成明,等.长江中下游中性-中酸性岩浆岩的母岩浆来源及铜的成矿作用-实验研究[J].地球化学,1996.25(4);387-400.
    [585]赵斌,赵劲松.长江中下游地区若干铁铜(金)矿床中块状及脉状钙质夕卡岩的氧、锶同位素地球化学研究[J].地球化学.1997(5):34-53.
    [586]赵海杰,谢桂青,魏克涛,柯于富.湖北大冶铜绿山铜铁矿床夕卡岩矿物学及碳氧硫同位素特征[J].地质论评,2012,02:379-395.
    [587]赵伟.四川省红格钒钛磁铁矿床地质地球化学特征[D].成都理工大学,2013.
    [588]赵一鸣,林文蔚,毕承思,等.1990.中国矽卡岩矿床.北京:地质出版社.
    [589]赵永鑫.长江中下游地区接触带铁矿床形成机理[M].武汉:中国地质大学出版社,1993.
    [590]赵玉社.新疆磁海铁矿床地质特征及矿床成因[J].西北地质,2000,33(01):31-38.
    [591]赵玉琛.宁芜玢岩铁硫矿床成矿规律和找矿预测研究[J].矿床地质.1990(1):1-12.
    [592]赵玉琛.宁芜火山岩区隐爆角砾岩体地质特征及其控矿性[J].中国区域地质.1990(3):249-254.
    [593]郑大中.宁芜地区铁磷矿床形成机理探索[J].安徽地质.2000(4):265-271.
    [594]郑大中,郑若锋.铬的迁移形式、成矿机理新探[J].地质找矿论丛,2012,01:1-8.
    [595]郑理珍.根据黄铁矿的Co/Ni比确定矿床的成因[J].桂林冶金地质学院学报.1981(1):86.
    [596]钟康惠,刘肇昌,施央申,等.盐源-丽江构造带是新生代陆内造山带[J].地质学报,2004,78(1):36-43.
    [597]周久龙,罗照华,潘颖,李旭东.岩浆型铁矿床中脉状铁矿体的成因:以承德黑山铁矿床为例[J].岩石学报,2013,10:3555-3566.
    [598]周久龙,罗照华,潘颖,李旭东.岩浆型铁矿床中脉状铁矿体的成因:以黑山铁矿床为例[A].中国地球物理学会.中国地球物理2013——第四分会场论文集[q.中国地球物理学会:,2013:2.
    [599]周涛发,岳书仓,袁峰,等.长江中下游两个系列铜、金矿床及其成矿流体系统的氢、氧、硫、铅同位素研究[J].中国科学(D辑:地球科学).2000(S1):122-128.
    [600]周涛发,袁峰,岳书仓,等.安徽月山矿田硅、氦、氖同位素地球化学研究[J].矿物岩石地球化学通报.2001(4):385-387.
    [601]周小栋.宁芜北部脉状铜矿床成因及成矿机制研究[D].合肥工业大学,2013.
    [602]周志毅,林焕林,等.西北地区地层、古地理和板块构造[M].南京:南京大学出版社,1995,1-7.
    [603]朱炳泉,等.地球科学中同位素体系理论与应用-兼论中国大陆壳幔演化[M].北京:科学出版社,1998.
    [604]朱增青.梅山铁矿富铁熔浆运移的探讨[J].地质科学,1987(03):276-281.
    [605]朱增青.梅山铁矿富铁熔浆运移的探讨[J].地质科学.1987(3):276-281.
    [606]朱志敏,曾令熙,周家云,罗丽萍,陈家彪,沈冰.四川拉拉铁氧化物铜金矿床(IOCG)形成的矿相学证据[J].高校地质学报,2009.15(4):485-495.
    [607]Bogaerts M, Schmidt MW. Experiments on silicate melt immiscibility in the system Fe2SiO4-KAlSi3O8-SiO2-CaO-MgO-TiO2-P2O5 and implications for natural magmas.Contributions to Mineralogy and Petrology,2006,152:257-274
    [608]Taylor S R.1964. Abundance of chemical elements in the continental crust:A new table[J]. Geochimca et Cosmochimca Acta,28:1273-1285.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700