用户名: 密码: 验证码:
新型光纤光栅传感技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤布拉格光栅(Fiber Bragg Grating, FBG)作为目前最具发展前途的光纤无源器件之一,凭借其抗电磁干扰、耐腐蚀、熔接损耗小、灵敏度高、体积小、易于分布式测量等优越的特性,在光纤传感领域中得到了广泛应用。利用光纤光栅进行高温安全监测具有广阔的应用前景,目前基于光纤光栅的耐温传感系统的实用化研究一直是国内外学者关注的热点;光纤光栅声发射传感技术是结合光纤光栅传感技术与声发射检测技术的优势发展起来的一种新的检测技术,在结构健康监测领域呈现出良好的发展潜力,国外已有相关研究报道,而国内关于这方面的研究还较少。
     本文针对目前光纤光栅在高温测量和声发射传感领域中的一些热点问题进行了理论及应用研究。在研究耐温光纤光栅传感特性及多光纤光栅解调技术的基础上,设计并实现了基于InGaAs图像传感衍射解调的新型耐温光纤光栅传感系统;建立了改进的支持度矩阵数据融合模型对传感系统的温度测量值进行处理,实现了系统的高可靠性;理论并实验研究了低幅值声发射波下,决定光纤光栅声发射传感系统响应灵敏度的关键因素;另外,采用单端光纤粘贴结构和可移动式耦合方法设计了对外界应力干扰不敏感的高灵敏度光纤光栅声发射传感器。本文的具体研究内容如下:
     (1)介绍了光纤布拉格光栅的发展及研究应用现状;总结和分析了光纤布拉格光栅在中高温传感领域的国内外研究进展及水平;总结归纳了目前基于光纤布拉格光栅的声发射传感方面的研究现状及发展趋势。
     (2)针对以往耐温光纤光栅传感系统测量精度有限、响应速度慢、抗干扰能力差等问题,深入研究耐温光纤光栅温度传感特性,在此基础上建立了光纤光栅中心波长-温度传感模型,通过设计高线性度及灵敏度、小体积的新型管式耐温光纤光栅传感器,优化耐温光纤光栅传感阵列结构和设计基于InGaAs图像传感衍射解调技术的波长解调系统,搭建了基于波长解调的新型耐温光纤光栅传感系统,克服了基于光强解调的耐温传感系统易受光路噪声干扰的缺点,传感器标定实验分析了新型耐温光栅传感器中心波长随温度的变化特性。20℃至290℃温度特性实验表明,所设计的传感系统测温曲线线性拟合度达0.9991,灵敏度为0.0258nm/℃C,测量精度达±0.6℃,响应时间小于16s;长期稳定性实验温度最大波动为±0.7℃C。该系统精确度高、稳定性好、响应时间短、抗电磁干扰能力强,十分适合应用于高温环境中温度的实时在线测量。
     (3)在深入研究多传感器信息融合原理的基础上,比较分析了多传感器信息融合技术中常见的实现算法,并对各算法的优缺点进行分析比较。针对传统支持度矩阵法不能表现传感器测量数据在整个量测区间可靠性的局限,建立了一种改进的支持度矩阵数据融合模型。利用改进的数据融合模型对初始数据进行处理,构建了基于改进的支持度矩阵数据融合模型的耐温光纤光栅传感系统。温度测量实验表明基于改进的支持度矩阵数据融合模型的传感系统测温估计值总绝对误差明显小于其他三种融合方法(平均值法、分批估计法、传统的支持度矩阵法)处理后的误差值。由20℃-290℃测温实验结果可以看出,基于该数据融合模型的系统测温精度高;当传感器发生故障时,构建的支持度矩阵模型稳健性良好,传感系统测温可靠性高,具有一定的推广应用价值。
     (4)从声发射波的检测实际需求出发,在研究光纤光栅的传输矩阵理论和声发射波与光纤光栅的相互作用原理的基础上,揭示了声发射波作用下均匀光纤光栅的折射率分布情况,建立了光纤光栅声发射波传感模型。结合实际测量的光纤光栅主要参数及仿真实验中所用到的模拟声发射波参数,实现了声发射波作用下的光纤光栅反射谱的仿真。通过仿真重点分析了声发射波的幅值及波长对光纤光栅的反射谱特性的影响,分别仿真了不同波长及幅值的声发射波作用下,一个作用周期内初始时刻光纤光栅的反射谱及一个作用周期内不同时刻光纤光栅的反射谱,并确定了声发射波的幅值、声发射波的波长与光纤光栅的栅区长度的比值关系对光纤光栅反射谱特性定性或定量的影响。上述对声发射波作用下光纤光栅反射谱数值仿真的研究,为今后利用光纤布拉格光栅进行声发射波检测提供了有效的理论基础。
     (5)详细分析了光纤光栅高频解调法的解调原理和优缺点,搭建了基于可调谐窄带激光器的光纤光栅声发射传感系统,该传感系统具有结构简单、波长分辨率高、解调速度快及灵敏度高等特点。深入研究了光纤光栅的栅长对声发射传感系统响应灵敏度的影响,建立了低幅值声发射波作用下光纤光栅声发射传感系统响应灵敏度检测模型,研究了影响基于不同栅长光纤光栅的声发射传感系统灵敏度的主要因素,利用不同栅长的光纤光栅进行声发射检测实验,实验结果与数值仿真的结果相符,结果表明在声发射波的幅值小于15με时,光纤光栅反射谱边沿斜率是影响传感系统的响应灵敏度的主要因素。
     (6)采用单端光纤粘贴结构和可移动式耦合方法设计了新型的高灵敏度谐振式光纤光栅声发射传感器,对具有不同传感长度的新型谐振式光纤光栅声发射传感器进行响应特性实验,实验结果表明,随着传感长度的增加,传感器的一阶谐振频率逐渐减小,且一阶频率理论值与实验值相吻合,误差均小于±2kHz;随着传感长度的减小,传感器一阶谐振峰6dB带宽逐渐增加,并且检测到的谐振峰带宽均小于7.5kHz。拉伸实验证明新型传感器对施加到检测结构上的应变干扰不灵敏,并且能够对检测位置进行重新布局。与传统结构光纤光栅声发射传感器的对比实验表明,新型结构传感器的响应灵敏度提高了1.2倍,且具有良好的谐振频率响应特性。
Thanks to its advantages of immunity to strong electromagnetic interference, corrosion resistance, low welding dissipation, high sensitivity, small volume and multiplexed sensing capability, fiber Bragg grating (FBG) as one of the most promising optical passive components has been widely applied in various sensing fields in recent years. Using FBG for high temperature safety monitoring has a broad application prospect, therefore, the study of the heat resistance FBG sensing system has always been a hot research topic. FBG acoustic emission (AE) technology is a novel detection technology which combines the advantages of FBG sensing technology and AE detection technology and has shown a good development potential in the field of structural health monitoring. Some foreign research institutes have studied this technology; however, relatively few studies have been reported in china.
     This dissertation aims at addressing some hot theory and application issues in the field of high temperature measurement and AE sensing based on FBG. A new heat resistant FBG sensing system has been designed and implemented based on researches of high temperature FBG sensing properties and multi-FBG demodulation technique; by using the established improved matrix data fusion model to fuse the raw temperature data of the new system, a high reliability can be achieved; theoretically and experimentally studied the key factors affecting the FBG AE sensing system sensitivity under low amplitude AE waves; in addition, a novel strain-insensitive and relocatable resonant FBG AE sensor with enhanced sensitivity is demonstrated. The main research contents are as follows:
     (1) Detailed the development and research status of the application of FBG; summarized and analyzed the research progress and level of FBG temperature sensing; summarized the current status and development trends of FBG AE sensing.
     (2) To overcome the shortcomings suffered by the existing heat resistant FBG sensing system, such as limited accuracy, slow response and poor anti-interference capability, a FBG temperature sensing model is established after an in-depth analysis of high temperature FBG properties. The temperature sensing system constructed with a novel tubular heat-resistance FBG sensor and a wavelength demodulating system based on InGaAs detector and diffraction technology is also designed. The novel tubular FBG sensor has advantages of small volume, high sensitivity and linearity, the optimized FBG sensor array can improve the reliability of the system and the novel wavelength demodulating system can eliminate the noises disturbances from the optical path. Experimental analysis has verified the sensing characteristics of the novel FBG sensor. According to the20℃~290℃temperature measurement results, the average goodness-of-fit of sensing system's temperature curve is0.9991, the system has a sensitivity of0.0258nm/℃, accuracy of±0.6℃, response time of less than16s and the maximum temperature fluctuations±0.7℃. Moreover, the sensing network is steady enough for high temperature measurement.
     (3) In view of the problem of the traditional support degree matrix method can't show the temperature data reliability in the whole measurement range, an improved support degree matrix model is established on the basis of the in-depth study of the principles and implementations of multi-sensor and data fusion algorithms. The improved support degree matrix model is used to fuse the raw temperature data in the heat-resistant FBG sensing system. Temperature measurement experiments show that the total absolute temperature estimated error of the system based on the improved support degree matrix model is significantly smaller than the error values of the other three fusion methods (averaging method, batch estimation method and the traditional support degree matrix method). According to the experimental results, the system based on the data fusion model has high accuracy and good reliability when a sensor in the sensor array is failed. Therefore, the system can be used in the practical projects for temperature measurement.
     (4) Considering the practical needs of AE wave detection, the refractive index distribution of an uniform FBG under AE wave is revealed after analysis of the FBG transfer matrix theory and research of the interaction principle between AE wave and FBG. On the basis of this study, the FBG AE sensing model is established. Combining with the actual measured main parameters of FBG and the simulated parameters of AE wave, the simulated reflection spectrum of FBG under AE wave can be achieved. Through the simulation the impact of the amplitude and wavelength of AE wave on the characteristics of FBG reflection spectrum is mainly analyzed. The FBG reflection spectra at the initial time and the spectra at the different times in one AE wave period are simulated under AE waves with different wavelengths and amplitudes. The simulation results indicate the qualitative or quantitative impact of the amplitude of AE wave and the ratio between the wavelength of AE wave and the grating length of FBG on the characteristics of the FBG reflection spectra. The aforementioned research on the numerical simulation of the FBG reflection spectra under AE waves provides an effective theoretical basis for FBG AE wave detection.
     (5) Through detailed analysis of the principle, advantages and disadvantages of the high frequency FBG demodulation method, a FBG AE sensing system based on tunable narrow band laser demodulation technology is built, which exhibits the advantages of simple construction, high wavelength resolution, high demodulation speed and perfect sensitivity. The sensitivity model of FBG AE sensing system under a low-amplitude AE wave is established on the basis of a in-depth study of the impact of the grating length of FBG on the sensitivity of the AE sensing system. The sensitivity of the FBG AE sensing system based on FBGs of different lengths is theoretically simulated. Additionally, using the simulation model, the main influencing factor on the sensitivity of the ultrasonic sensing system with different lengths gratings is first investigated. In the following AE detection experiment, the AE wave responses of the sensing system with six FBGs of different lengths are obtained, respectively. The theoretical analysis and the experimental results both indicate that the sensitivity of the system is primarily determined by the slope of the FBG spectral linear range. The conclusion will be useful for sensitivity improvement of the FBG-based ultrasonic and acoustic emission sensing system.
     (6) A novel resonant FBG AE sensor is demonstrated for AE wave detecting. Taking advantage of the one end free configuration and the relocatable acoustic coupling method, the sensor is insensitive to mechanical strain applied to the monitored structure and can be easily redeployed. Response experiments of the novel sensors with different sensing lengths show that the first-order resonance frequency decreases as the sensing length increases. The theoretical and experimental values of the first-order frequency match well, the error is less than±2kHz; as the sensing length decreases, the6dB bandwidth of the first-order resonant peak increases, and the detected resonant peak bandwidth is less than7.5kHz. Tensile test has verified the strain-insensitive characteristic of this FBG-AE sensor. Comparison tests between the novel FBG-AE sensor and the traditional fully bonded FBG-AE sensor demonstrate that the sensitivity is enhanced by about1.2times. The new designed sensor possesses good resonant frequency response to the standard AE signals as well.
引文
[1]Kao, K. C., Hockham, G. A. Dielectric-fibre surface waveguides for optical frequencies[J]. Electrical Engineers, Proceedings of the Institution of,1966,113 (7):1151-1158.
    [2]冯素春.多波长,单纵模光纤激光器的研究[D].北京:北京交通大学,2010.
    [3]邱昆,王晟,邱琪.光纤通信系统[M].成都:电子科技大学出版社,2005.
    [4]Hill, K. O., Fujii, Y., Johnson, D. C., et al. Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication[J]. Applied Physics Letters,1978,32 (10):647-649.
    [5]Meltz, G., Morey, W. W., Glenn, W. H. Formation of Bragg gratings in optical fibers by a transverse holographic method[J]. Optics letters,1989,14 (15):823-825.
    [6]Hill, K. O., Malo, B., Bilodeau, F., et al. Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask[J]. Applied Physics Letters, 1993,62 (10):1035-1037.
    [7]张伟刚,涂勤昌,孙磊,等.光纤光栅传感器的理论,设计及应用的最新进展[J].物理学进展,2005,24(4):398-423.
    [8]饶云江,王义平,朱涛.光纤光栅原理及应用[M].北京:科学出版社,2006.
    [9]Rao, Y. J., Zhang, L., Bennion, I., et al. Combined spatial-and time-division-multiplexing scheme for fiber grating sensors with drift-compensated phase-sensitive detection[J]. Optics letters, 1995,20 (20):2149-2151.
    [10]Rao, Y., Webb, D. J., Jackson, D. A., et al. High-resolution, wavelength-division-multiplexed in-fibre Bragg grating sensor system[J]. Electronics letters,1996,32(10):924-926.
    [11]Chan, P. K., Jin, W., Lau, K. T., et al. Multi-point strain measurement of composite-bonded concrete materials with a RF-band FMCW multiplexed FBG sensor array [J]. Sensors and Actuators A:physical,2000,87 (1):19-25.
    [12]Gander, M. J., MacPherson, W. N., McBride, R., et al. Bend measurement using Bragg gratings in multicore fibre[J]. Electronics Letters,2000,36 (2):120-121.
    [13]Okabe, Y, Tsuji, R., Takeda, N. Application of chirped fiber Bragg grating sensors for identification of crack locations in composites[J]. Composites Part A:applied science and manufacturing,2004,35 (1):59-65.
    [14]陈建军,张伟刚,涂勤昌,等.基于光纤光栅的高灵敏度流速传感器[J].光学学报,2006,26(8):1136-1139.
    [15]冯德军,开桂云.光纤布喇格光栅电流传感器研究[J].红外与毫米波学报,2001,20 (4):241-243.
    [16]张智海.基于MOEMS技术的光栅平动式光调制器阵列若干关键技术研究[D].重庆:重庆大学,2008.
    [17]Tang, D., Yang, D., Jiang, Y., et al. Fiber loop ring-down optical fiber grating gas pressure sensor[J]. Optics and Lasers in Engineering,2010,48 (12):1262-1265.
    [18]Rehman, Z., Shah, W. H. Domestic processing effects on some insoluble dietary fibre components of various food legumes[J]. Food chemistry,2004,87 (4):613-617.
    [19]Zhao, Y., Zhao, H., Zhang, X.et al. A novel double-arched-beam-based fiber Bragg grating sensor for displacement measurement[J]. Photonics Technology Letters, IEEE,2008,20 (15) 1296-1298.
    [20]孟丽君,谭跃刚,周祖德,等.超声激励-光纤光栅检测技术的研究与发展[J].中国机械工程,2013,24(7):980-988.
    [21]江毅,陈伟民.光纤光栅用于应变/温度传感初探[J].传感技术学报,1997,10(3):4347.
    [22]吴永红,屈文俊,邵长江,等.光纤光栅应变传感器光-力转换的理论方程[J].光学学报,2009(8):2067-2070.
    [23]南秋明.光纤光栅应变传感器的研制及应用[D].武汉:武汉理工大学,2003.
    [24]乔学光,贾振安,傅海威,等.光纤光栅温度传感理论与实验[J].物理学报,2004,53(2):494-497.
    [25]孙安,乔学光,贾振安,等.大范围光纤布拉格光栅温度传感器增敏实验研究[J].光学学报,2005,24(11):1491-1493.
    [26]杨秀峰,张春雨,童峥嵘,等.一种新型光纤光栅温度传感特性的实验研究[J].中国激光,2011,38(4):141-144.
    [27]汪弋平,王鸣,黄晓琴.基于光纤光栅偏振特性的横向压力传感器[J].中国激光,2011,38(4):135-140.
    [28]吴飞,邝敏敏,赵静,等.蚁群算法在光纤布拉格光栅横向均匀受压反射谱分析中的应用[J].中国激光,2010 (2):477483.
    [29]冯艳,张华,李玉龙,等.埋入金属结构内部的光纤布拉格光栅横向应力传感性能研究 [J].光学学报,2010,30(s1):100304.
    [30]周祖德,谭跃刚,刘明尧,等.机械系统光纤光栅分布动态监测与诊断的现状与发展[J].机械工程学报,2013,49(19):55-60.
    [31]尚进.基于应变场和光纤光栅传感的机械结构裂纹扩展识别研究[D].武汉:武汉理工大学,2012.
    [32]胡婷婷.基于FBG分布传感的机械结构裂纹损伤识别方法研究[D].武汉:武汉理工大学,2012.
    [33]钟诚,张伟刚,颜爱东,等.一种测量范围可调的FBG流速传感装置[J].光电子.激光,2011,22(10):1463-1466.
    [34]姚文娟.基于光纤布拉格光栅的流量传感器研究[D].大连:大连理工大学,2012.
    [35]李康宁.光纤光栅流速传感器[D].长春:长春理I大学,2012.
    [36]兰玉文,刘波,罗建花.基于分布布拉格反射光纤激光器的压力传感器[J].光学学报,2009,29(3):629-631.
    [37]吴晓文,舒乃秋,李洪涛,等.基于光纤光栅的气体绝缘开关母线温度在线监测系统[J].电力自动化设备,2013,33 (4):155-160.
    [38]刘德明,孙琪真.分布式光纤传感技术及其应用[J].激光与光电子学进展,2009(11)29-33.
    [39]王玉宝,兰海军.基于光纤布拉格光栅波/时分复用传感网络研究[J].光学学报,2010(8):2196-2201.
    [40]曹彬,欧攀,贾明,等.一种新型光纤光栅温度补偿装置[J].中国激光,2009,35(12)1959-1961.
    [41]Seo, C., Kim, T. Temperature sensing with different coated metals on fiber Bragg grating sensors[J]. Microwave and Optical Technology Letters,1999,21 (3):162-165.
    [42]Canning, J., Sommer, K., Englund, M. Fibre gratings for high temperature sensor applications[J]. Measurement Science and Technology,2001,12 (7):824.
    [43]詹亚歌,蔡海文,向世清,等.高分辨率光纤光栅温度传感器的研究[J].中国激光,2005,32(1):83-86.
    [44]詹亚歌,向世清,何红,等.光纤光栅高温传感器的研究[J].中国激光,2006,32 (9)1235-1238.
    [45]禹大宽,乔学光,贾振安,等.一种新颖封装的耐高温光纤Bragg光栅温度传感器[J]. 光子学报,2006,35 (2):232-234.
    [46]禹大宽,乔学光,贾振安,等.贴片封装的光纤Bragg光栅温度传感器[J].仪表技术与传感器,2006,(9):4-5.
    [47]李阔,周振安,刘爱春,等.一种高温下高灵敏光纤光栅温度传感器的制作方法[J].光学学报,2009,29(1):249-251.
    [48]王宏亮,张晶,乔学光,等.一种耐高温光纤Bragg光栅温度传感器[J].传感技术学报,2008,21(6):964-966.
    [49]马晓川,周振安,刘爱春,等.高灵敏度稳定光纤光栅温度传感器的研究[J].光电子.激光,2013,24(7):1245-1250.
    [50]Peng, P., Tseng, H., Chi, S. A hybrid star-ring architecture for fiber Bragg grating sensor system[J]. Photonics Technology Letters, IEEE,2003,15 (9):1270-1272.
    [51]Peng, P., Lin, W., Chi, S. A self-healing architecture for fiber Bragg grating sensor network[C]. Sensors,2004. Proceedings of IEEE,2004,60-63.
    [52]Diaz, S., Cerrolaza, B., Lasheras, G., et al. Double Raman amplified bus networks for wavelength-division multiplexing of fiber-optic sensors[J]. Journal of lightwave technology,2007, 25 (3):733-739.
    [53]Izquierdo, E. L., Urquhart, P., Lopez-Amo, M. Protection architectures for WDM optical fibre bus sensor arrays[J]. J. Eng. Sci. J. Int,2007,1(2):1-18.
    [54]Yeh, C., Chow, C., Wu, P., et al. A simple fiber Bragg grating-based sensor network architecture with self-protecting and monitoring functions[J]. Sensors,2011,11 (2):1375-1382.
    [55]张晓丽,梁大开,芦吉云,等.高可靠光纤布拉格光栅传感器网络设计[J].中国激光,2010,38(1):105004.
    [56]王拥军,刘永超,张靖涛,等.高速高分辨率光纤布拉格光栅传感系统的解调技术[J].中国激光,2013 (2):146-151.
    [57]王喜昌,庞启,徐文军,等.基于线性滤波器的布拉格光纤光栅解调系统的稳定性[J].光学精密工程,2013,21(11):2785-2790.
    [58]余有龙,谭华耀.基于可调F—P滤波器的光纤光栅传感器阵列查询技术[J].中国激光,2000,27(12):1103-1106.
    [59]Ball, G. A., Meltz, G., Morey, W. W. Polarimetric heterodyning Bragg-grating fiber-laser sensor[J]. Optics letters,1993,18 (22):1976-1978.
    [60]Weis, R. S., Kersey, A. D., Berkoff, T. A. Four-element fiber grating sensor array with phase-sensitive detection[C].1994 North American Conference on Smart Structures and Materials, 1994,150-157.
    [61]Kersey, A. D., Berkoff, T. A., Morey, W. W. High-resolution fibre-grating based strain sensor with interferometric wavelength-shift detection[J]. Electronics Letters,1992,28 (3):236-238.
    [62]余有龙,谭华耀.高分辨率单信道输出的光纤光栅传感系统时域地址查询技术[J].光学学报,2001,21(7):874-877.
    [63]耿淑伟,余有龙.光纤光栅时分复用传感系统[J].哈尔滨工业大学学报,2002,34(2)204-206.
    [64]靳伟,廖延彪,张志鹏,等.导波光学传感器:原理与技术[M].北京:科学出版社,1998.
    [65]Minardo, A., Cusano, A., Bernini, R., et al. Fiber Bragg grating as ultrasonic wave sensors[C]. Second European Workshop on Optical Fibre Sensors,2004,84-87.
    [66]Takeda, N., Okabe, Y., Kuwahara, J., et al. Development of smart composite structures with small-diameter fiber Bragg grating sensors for damage detection:Quantitative evaluation of delamination length in CFRP laminates using Lamb wave sensing[J]. Composites Science and Technology,2005,65 (15):2575-2587.
    [67]Betz, D. C., Thursby, G., Culshaw, B., et al. Identification of structural damage using multifunctional Bragg grating sensors:Ⅰ. Theory and implementation[J]. Smart materials and structures,2006,15 (5):1305.
    [68]Lee, J., Tsuda, H., Toyama, N. Impact wave and damage detections using a strain-free fiber Bragg grating ultrasonic receiver[J]. NDT, E International,2007,40 (1):85-93.
    [69]Lee, J., Tsuda, H. Acousto-ultrasonic sensing using capsular fibre Bragg gratings for temperature compensation[J]. Measurement Science and Technology,2006,17 (11):2920.
    [70]Tsuda, H., Lee, J., Guan, Y., et al. Investigation of fatigue crack in stainless steel using a mobile fiber Bragg grating ultrasonic sensor[J]. Optical Fiber Technology,2007,13 (3):209-214.
    [71]Tsuda, H., Kumakura, K., Ogihara, S. Ultrasonic sensitivity of strain-insensitive fiber Bragg grating sensors and evaluation of ultrasound-induced strain[J]. Sensors,2010,10 (12) 11248-11258.
    [72]Perez, I. M., Cui, H., Udd, E. Acoustic emission detection using fiber Bragg gratings[C]. SPIE's 8th Annual International Symposium on Smart Structures and Materials,2001,209-215.
    [73]Calvert, S. G. High-speed dual-axis strain using a single fiber Bragg grating[C]. Smart Structures and Materials,2004,229-240.
    [74]Chung, S., Kim, J., Yu, B., et al. A fiber Bragg grating sensor demodulation technique using a polarization maintaining fiber loop mirror[J]. Photonics Technology Letters, IEEE,2001,13 (12) 1343-1345.
    [75]Wild, G., Hinckley, S. Optical Fibre Bragg Gratings for Acoustic Sensors[C]. International Congress on Acoustics,2010,23-27.
    [76]Ferreira, L. A., Santos, J. L., Farahi, F. Pseudoheterodyne demodulation technique for fiber Bragg grating sensors using two matched gratings[J]. Photonics Technology Letters, IEEE,1997, 9 (4):487-489.
    [77]黄建辉.光纤布拉格光栅传感器实现应力测量的最新进展[J].光电子.激光,2000,11(2):216-220.
    [78]Takahashi, N., Yoshimura, K., Takahashi, S. Fiber Bragg grating vibration sensor using incoherent light[J]. Japanese Journal of Applied Physics,2001,40 (5S):3632.
    [79]Tsuda, H., Toyama, N., Urabe, K., et al. Impact damage detection in CFRP using fiber Bragg gratings[J]. Smart materials and structures,2004,13 (4):719.
    [80]Betz, D. C., Thursby, G., Culshaw, B., et al. Acousto-ultrasonic sensing using fiber Bragg gratings[J]. Smart Materials and Structures,2003,12 (1):122.
    [81]Tsuda, H., Lee, J., Guan, Y. Fatigue crack propagation monitoring of stainless steel using fiber Bragg grating ultrasound sensors[J]. Smart materials and structures,2006,15 (5):1429.
    [82]Wild, G., Hinckley, S. A transmit reflect detection system for fibre Bragg grating acoustic emission and transmission sensors[M]. Berlin:Springer,2008.
    [83]Tsuda, H. Ultrasound and damage detection in CFRP using fiber Bragg grating sensors[J]. Composites science and technology,2006,66 (5):676-683.
    [84]Lam, P., Lau, K., Ling, H., et al. Acousto-ultrasonic sensing for delaminated GFRP composites using an embedded FBG sensor[J]. Optics and lasers in engineering,2009,47 (10) 1049-1055.
    [85]马晓川,周振安,刘爱春,等.增敏光纤光栅温度传感器的性能研究[J].地球物理学进展,2013,28(5):2767-2772.
    [86]庄君刚,闫思安,刘江,等.光纤Bragg光栅温度传感器在硅橡胶绝缘子温度特性研究中的应用[J].传感技术学报,2013,26 (5):627-631.
    [87]Prasad, A. G., Sharath, U., Nagarjun, V, et al. Measurement of temperature and pressure on the surface of a blunt cone using FBG sensor in hypersonic wind tunnel[J]. Measurement Science and Technology,2013,24 (9):95302.
    [88]何彦璋,隋广慧,常欢,等.基于FPGA的FBG光纤光栅解调系统[J].计测技术,2013,33(3):33-36.
    [89]李锦明,马游春,闫树斌,等.基于可调谐滤波器的高精度宽量程光栅传感解调系统[J].中国激光,2013 (9):109-113.
    [90]关柏鸥,刘志国,开桂云,等.光纤光栅温度传感器[J].传感技术学报,1999(02)89-93.
    [91]廖延彪.光纤光学[M].北京:清华大学出版社,2000.
    [92]Kisaka, P. A., Beres-Pawlik, E. M., Wojcik, J., et al. Fiber Bragg grating sensors for temperature measurement[C]. Lightguides and their Applications Ⅱ,2004,270-276.
    [93]殷燕子.耐温光纤布拉格光栅传感器涂层的研究[D].武汉:武汉理工大学,2012.
    [94]顾铮,邓传鲁.镀膜光纤光栅应用与发展[J].中国激光,2009 (6):1317-1326.
    [95]Li, Y., Hua, Z., Yan, F., et al. Metal coating of fiber Bragg grating and the temperature sensing character after metallization[J]. optical fiber technology,2009,15 (4):391-397.
    [96]李智忠,王鑫,杨华勇,等.光纤光栅二次涂敷封装温度特性的研究[J].光电子.激光,2006,17(10):1191-1195.
    [97]贾振安,乔学光,傅海威.光纤光栅温度灵敏度系数研究[J].光电子·激光,2003(5)453-456.
    [98]刘钦朋,乔学光,贾振安,等.光纤Bragg光栅高温传感技术研究[J].光电子.激光,2007(02):147-149.
    [99]郭明金.恶劣飞行环境中光纤光栅传感方法和技术研究[D].武汉:武汉理工大学,2007.
    [100]Nix, F. C., MacNair, D. The thermal expansion of pure metals:copper, gold, aluminum, nickel, and iron[J]. Physical Review,1941,60 (8):597.
    [101]赵勇.光纤传感原理与应用技术[M].北京:清华大学出版社,2007.
    [102]Mizunami, T., Tatehata, H., Kawashima, H. High-sensitivity cryogenic fibre-Bragg-grating temperature sensors using Teflon substrates[J]. Measurement Science and Technology,2001,12 (7):914-917.
    [103]Liu, S., Tam, H., Demokan, M. S. Highly sensitive temperature sensor using long-period fiber grating[C]. Symposium on Applied Photonics,2000,229-236.
    [104]Nishi, H., Nishii, J. Temperature sensor using a long-period fiber grating[C]. Optical Engineering for Sensing and Nanotechnology,2001,166-169.
    [105]信思金,柴伟.光纤Bragg光栅温度传感器封装方法研究[J].传感器技术,2004,23(4):10-12.
    [106]Kersey, A. D., Berkoff, T. A., Morey, W. W. High-resolution fibre-grating based strain sensor with interferometric wavelength-shift detection[J]. Electronics Letters,1992,28 (3) 236-238.
    [107]付振强.光栅匹配法光纤光栅传感解调器驱动与测量系统的研究[D].哈尔滨:哈尔滨理工大学,2007.
    [108]尹丽静.基于径向基函数网络的FBG传感器解调信号的分析与处理[D].哈尔滨:哈尔滨理工大学,2008.
    [109]颜琳.光纤光栅传感技术的研究[D].沈阳:沈阳工业大学,2007.
    [110]李营,张书练.基于可调谐FP滤波器的光纤光栅解调系统[J].激光技术,2005,29(3):237-240.
    [111]于效宇,赵洪.基于可调谐法布里-珀罗滤波器的光纤光栅解调技术研究[D].哈尔滨:哈尔滨理工大学,2008.
    [112]宋明,谢芳,冯其波.可调谐Fabry-Perot滤波器的研究与发展趋势[J].光子技术,2005,4(10):197-201.
    [113]王军,陈伟民,章鹏,等.基于可调谐珐珀滤波器的光纤珐珀传感解调系统研究[J].激光杂志,2006,27(4):3940.
    [114]肖悦娱,何赛灵.一种级联马赫—曾德尔滤波器设计的新方法[J].光学学报,2004,24(3):346-350.
    [115]黄勇林,李杰,童峥嵘,等.高消光比双通马赫-曾德尔干涉仪梳状滤波器[J].光学学报,2004,23(12):1429-1432.
    [116]许鸥,鲁韶华,董小伟,等.基于微环谐振器阵列与马赫-曾德尔干涉仪的反射型滤波器性能分析[J].光学学报,2007,27(8):1443-1448.
    [117]李国玉.成像光谱法光纤光栅传感解调技术的研究[D].天津:南开大学,2007.
    [118]陈伟民,江毅.利用成像光谱技术的光纤光栅多传感器复用[J].光学学报,1998,18(8):1119-1123.
    [119]杜平,穆磊.基于线阵CCD的光纤光栅传感解调技术[J].光电技术应用,2008,23(2):58-61.
    [120]李学胜.CCD光谱成像技术在光纤光栅解调技术中的应用[D].黑龙江:黑龙江大学,2007.
    [121]张键.闪耀光纤光栅传感特性及光纤光栅解调技术的实验研究[D].南京:南开大学,2007.
    [122]戴亚平,刘征,郁光辉.多传感器数据融合理论及应用[M].北京:北京理工大学出版社,2004.
    [123]王凤朝,黄树采,韩朝超.多传感器信息融合及其新技术研究[J].航空计算技术,2009,39(1):102-106.
    [124]杨万海.多传感器数据融合及其应用[M].西安:西安电子科技大学出版,2004.
    [125]何友.多传感器信息融合及应用[M].北京:电子工业出版社,2000.
    [126]苏志毅,赵伟,黄松岭.多传感器信息融合技术在现代测量领域的地位和重要作用[J].电测与仪表,2013(3):1-5.
    [127]孙颖,刘玉满,龚稳.基于SVM的多传感器信息融合[J].长春工业大学学报:自然科学版,2013,34(3):300-304.
    [128]董绪荣,陶大欣.一个快速Kalman滤波方法及其在GPS动态数据处理中的应用[J].测绘学报,1997,26(3):221-227.
    [129]尚久铨.卡尔曼滤波法在结构动态参数估计中的应用[J].地震工程与工程振动,1991,11(2):62-72.
    [130]赵龙,吴康.新型自适应Kalman滤波算法及其应用[J].压电与声光,2009,31 (6)908-911.
    [131]田继善,吴志勤.多传感器分布式Kalman滤波融合算法[J].河南大学学报:自然科学版,1999,29(2):1-4.
    [132]史道济,冯燕奇.多元极值分布参数的最大似然估计与分步估计[J].系统科学与数学,1997,17(3):244-251.
    [133]刘亚欢,田宇,李国通.基于最大似然估计的GPS多径估计[J].宇航学报,2009,30 (4):1466-1471.
    [134]徐泽水.模糊互补判断矩阵排序的最小方差法[J].系统工程理论与实践,2001,21(10):93-96.
    [135]孙书利,邓自立.多传感器线性最小方差最优信息融合估计准则[J].科学技术与工程,2004(5):334-336.
    [136]丁胜峰.基于模糊推理的多源图像融合研究[D].南京:南京理工大学,2004.
    [137]Kalman, R. E. A new approach to linear filtering and prediction problems[J]. Journal of basic Engineering,1960,82 (1):35-45.
    [138]陈家鼎.关于截尾样本情形下的最大似然估计[J].应用数学学报,1980,3(4):306-321.
    [139]陈家鼎.关于定时截止寿命试验中的最大似然估计[J].数学学报,1977,20 (2)145-147.
    [140]王壮,胡卫东,郁文贤,等.数据融合中的Dempster-Shafer证据理论[J].火力与指挥控制,2001,26(3):6-10.
    [141]徐从富,耿卫东Dempster-Shafer证据推理方法理论与应用的综述[J].模式识别与人工智能,1999,12 (4):424-430.
    [142]易正俊,黄瀚敏.基于Dempster-shafer理论的多个神经网络分类器融合算法[J].重庆大学学报:自然科学版,2002,25(7):33-36.
    [143]罗晓曙.人工神经网络理论·模型·算法与应用[M].桂林:广西师范大学出版社,2005.
    [144]左东广,周帅,张欣豫.小波神经网络[J].四川兵工学报,2012,33(5):84-86.
    [145]李银国,张帮礼.小波神经网络及其结构设计方法[J].模式识别与人工智能,1997,10(3):197-205.
    [146]谢东,张兴,曹仁贤.基于小波变换与神经网络的孤岛检测技术[J].中国电机工程学报,2014,34(4):537-544.
    [147]邱丹丹,马洪超,杨耘,等.基于多源卫星图像融合的水坝检测方法的研究[J].遥感学报,2006,10(4):449-455.
    [148]杨兴,朱大奇,桑庆兵.专家系统研究现状与展望[J].计算机应用研究,2007,24(5)4-9.
    [149]孙有发,陈世权,吴今培,等.基于集值统计的模糊神经网络专家系统及其应用[J].模糊系统与数学,2001,15(2):97-101.
    [150]倪志伟,蔡庆生,史东辉.神经网络专家系统及其数据挖掘技术的探讨[J].系统工程学报,2001,16(1):61-65.
    [151]章壮新.煤与瓦斯突出预测模糊专家系统[J].贵州工业大学学报:自然科学版,2001,30(3):21-24.
    [152]刘晓慧,佟伟光,林树宽.基于模糊推理的专家系统的研究与实现[J].沈阳工程学院学报:自然科学版,2007,3(2):162-165.
    [153]韩峰,朱镭,智小军.基于模糊理论的多传感器数据融合测量[J].应用光学,2009,30(6):988-991.
    [154]何青,王耀南,童调生.基于多传感器模糊处理的工况识别[J].信息与控制,2001,30(2):159-163.
    [155]刘源,谢维信.多传感器图像模糊融合算法在图像识别中的应用[J].西安电子科技大学学报,2000,29(01):10-13.
    [156]王婷杰,施惠昌.一种基于模糊理论的一致性数据融合方法[J].传感器技术,1999,18(6):50-53.
    [157]孙勇,景博.基于支持度的多传感器一致可靠性融合[J].传感技术学报,2006,18(3):537-539.
    [158]高方伟,刘贵喜,王蕾,等.基于支持度矩阵的一种多传感器融合方法[J].弹箭与制导学报,2007,27(4):284-287.
    [159]汪洪波.大面积金刚石膜衬底温度数据融合研究[J].中国机械工程,2011,7:20.
    [160]廖惜春,丘敏,麦汉荣.基于参数估计的多传感器数据融合算法研究[J].传感技术学报,2007,20(1):193-197.
    [161]丁国成,律方成,刘云鹏,等.数据融合用于MOA在线监测数据的处理[J].高电压技术,2006,32(10):43-45.
    [162]Zhao, J., He, X., Wang, R., et al. Overall evaluation light-weight composite pressure vessel with alloy liner by acoustic emission and Bragg grating[C]. SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring,2013,86941U.
    [163]Wild, G., Hinckley, S. Fiber Bragg grating sensors for acoustic emission and transmission detection applied to robotic NDE in structural health monitoring[C]. Sensors Applications Symposium,2007,1-6.
    [164]Bao, P., Yuan, M., Dong, S., et al. Fiber Bragg grating sensor fatigue crack real-time monitoring based on spectrum cross-correlation analysis[J]. Journal of Sound and Vibration,2013, 332 (1):43-57.
    [165]Azmi, A. I. Structural Health Monitoring of Advanced Composites using Acoustic Emission and Strain Gradients with Fibre Optic Sensors[J]. International Journal of Science Research,2013, 1 (4):531-537.
    [166]单亚锋,孙朋,付华,等.光纤Bragg光栅传感器在煤岩声发射预测中的应用[J].传感技术学报,2013,26(7):1034-1038.
    [167]高峰,俞力,张文安,等.基于作物水分胁迫声发射技术的无线传感器网络精量灌溉系统的初步研究[J].农业工程学报,2008,24(1):60-63.
    [168]http://www.mistrasgroup.com/products/solutions/acousticemission/sensors/.
    [169]Yariv, A. Coupled-mode theory for guided-wave optics[J]. Quantum Electronics, IEEE Journal of,1973,9 (9):919-933.
    [170]Kogelnik, H. Filter Response of Nonuniform Almost-Periodic Structures[J]. Bell system Technical journal,1976,55 (1):109-126.
    [171]恽斌峰,吕昌贵,王著元,等.非均匀应变场中光纤布拉格光栅的数值分析[J].光电子.激光,2006,17(2):151-154.
    [172]Winick, K. A. Effective-index method and coupled-mode theory for almost-periodic waveguide gratings:A comparison[J]. Applied optics,1992,31 (6):757-764.
    [173]Yamada, M., Sakuda, K. Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach[J]. Applied optics,1987,26 (16):3474-3478.
    [174]刘汉平,王健刚,赵圣之,等.光纤布拉格光栅的耦合模理论分析[J].山东大学学报:理学版,2006,41(4):89-92.
    [175]刘勇,叶志清.龙格-库塔法和传输矩阵法求解非均匀长光纤光栅问题的比较[J].江西师范大学学报:自然科学版,2001,25(1):57-61.
    [176]Coppola, G., Minardo, A., Cusano, A., et al. Analysis of feasibility on the use of fiber Bragg grating sensors as ultrasound detectors[C]. SPIE's 8th Annual International Symposium on Smart Structures and Materials,2001,224-232.
    [177]Taylor, H. F. Acoustooptic modulators for single-mode fibers[J]. J. Lightwave Technol., 1987,5 (7):990-992.
    [178]Beadle, B. M., Weis, R. S. Longitudinal vibrations of a silica fiber segment characterized using a fiber Bragg grating[J]. IEEE transactions on ultrasonics, ferroelectrics, and frequency control,1997,45 (4):1100-1104.
    [179]Minardo, A., Cusano, A., Bernini, R., et al. Response of fiber Bragg gratings to longitudinal ultrasonic waves[J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 2005,52 (2):304-312.
    [180]Liang, S., Zhang, C., Lin, W., et al. Fiber-optic intrinsic distributed acoustic emission sensor for large structure health monitoring[J]. Optics letters,2009,34 (12):1858-1860.
    [181]Lee, J., Tsuda, H. Investigation of a fibre wave piezoelectric transducer[J]. Measurement Science and Technology,2006,17 (9):2414.
    [182]Lee, J., Jeong, H. Design of resonant acoustic sensors using fiber Bragg gratings[J]. Measurement Science and Technology,2010,21 (5):57001.
    [183]Perez, I. M., Cui, H., Udd, E. Acoustic emission detection using fiber Bragg gratings[M]. International Society for Optics and Photonics,2001:209-215.
    [184]Lissak, B., Arie, A., Tur, M. Highly sensitive dynamic strain measurements by locking, lasers to fiber Bragg gratings[J]. Optics letters,1998,23 (24):1930-1932.
    [185]江文杰,曾学文,施建华.光电技术[M].北京:科学出版社,2009.
    [186]卢春生.光电探测技术及应用[M].北京:机械工业出版社,1992.
    [187]郭培源,付扬.光电检测技术与应用[M].北京:北京航空航天大学出版社,2006.
    [188]安毓英,曾晓东.光电探测原理[M].西安:西安电子科技大学出版社,2004.
    [189]刘洪兴,任建伟,万志,等.基于LED光谱可调谐光源的光电探测器相对光谱响应测量研究[J].光谱学与光谱分析,2013,33(1):250-254.
    [190]兰羽,张玉洁.光电探测中低噪声前置放大器的设计[J].国外电子测量技术,2012,31(6):84-86.
    [191]郭玉,赵顺平.低噪声前置放大器有源器件的选择[J].电测与仪表,2007,44(6):62-64.
    [192]Lee, J., Lee, S., Yoon, D. Simultaneous multipoint acoustic emission sensing using fibre acoustic wave grating sensors with identical spectrum[J]. Journal of Optics A:Pure and Applied Optics,2008,10 (8):85307.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700