用户名: 密码: 验证码:
两栖环境中仿生鳍的推进机理及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着机器人技术的发展,机器人不再是单一的适应陆地或者水下环境,特别需要适应复杂的水陆交界区域过渡环境。研制具备通过性好、越障性能强、推进效率高、机动性和隐蔽性好、具有脱困能力的两栖机器人具有非常现实的意义,因此为提高两栖机器人在过渡环境中的通过性和适应性,优化两栖机器人的推进机构的形态、结构及运动参数亟待进行研究。过渡环境大多数为松软介质例如不同含水量的沙滩和泥浆,两栖机器人在松软介质中经常会出现打滑以及下陷的现象,这是由于环境介质的本构特性、机器人行进机构的形态和结构特征、以及行进机构的运动学参数等因素所导致的机器人与环境的相互作用动力学所决定的。研究机器人与过渡环境相互作用的机理,可提高两栖机器人在过渡环境中的通过性,使得两栖机器人可以真正的进行水陆转换走向实用。
     本论文首先从仿生学的角度出发,围绕两栖机器人在过渡环境中的通过性和适应性问题,重点开展了两栖环境中推进机构的推进机理研究,并进行了两栖仿生推进机构的实验研究,为未来两栖机器人推进机构的研制提供了参考和借鉴。具体研究内容介绍如下:
     (1)以具有优秀水下机动能力的锦鲤和两栖运动能力的弹涂鱼为仿生学研究对象,分别对锦鲤和弹涂鱼胸鳍的形态学和运动学进行了详细的研究,并详细介绍了运动学观测实验的三维实时高速摄像系统、坐标变换和数字图像处理技术的方法。分析了锦鲤胸鳍在悬停状态下鳍条的形态特征,然后对弹涂鱼在水里、两栖环境、陆地环境中进行了运动学分析,并获得了弹涂鱼在不同环境下的的运动学参数,然后将水生类胸鳍和两栖类胸鳍的形态结构和运动特征进行了比较分析,为研制两栖仿生胸鳍的设计和控制提供了参考。最后分析了弹涂鱼在不同波幅波长比下的推进速度,发现弹涂鱼在水中和两栖环境下有最优的波幅波长比,为仿生多关节两栖机器人的机械结构设计和运动控制提供了参数化的指导。
     (2)根据弹涂鱼背主鳍在两栖环境中的形态特征,设计了五种不同形态参数的推进机构。基于RFT模型并采用微元分析法获得了推进机构与泥介质相互作用的受力情况,根据推进机构在两栖环境中的受力分析,结合过渡介质的应力、应变、强度和时间这四个变量之间的内在关系和仿生推进机构的具体形态参数,计算出了五种不同形态参数的推进机构在两栖环境中的力学特性,包括一个运动周期内水平推进力、竖直支撑力和转矩的变化规律。然后分别对比分析了不同形态参数、运动参数和含水率下推进机构的力学特性,得到了推进机构与两栖环境介质相互作用的规律,建立过渡环境介质的强度—变形理论,为两栖环境中推进机构的设计和优化提供有效的理论指导。
     (3)以弹涂鱼胸鳍的形态学研究为基础,结合3D打印技术和相似理论,设计并实现了与仿生对象的整体尺寸以及对应鳍条的尺寸及分布形式一致的五种不同刚度的两栖仿生胸鳍。设计并搭建了两栖环境土槽实验平台,并介绍了两栖环境土槽实验平台的机械设计、硬件的搭建设计以及系统软件设计。研究了不同含水量、不同刚度、不同运动参数对两栖仿生鳍推进性能的影响,具体分析了两栖仿生鳍在运动周期内的平均推进力、竖直位移、最大转矩和平均推进速度运动特性,并对两栖仿生鳍的推进实验结果和两栖环境中推进机构推进机理进行了对比分析,验证了推进机理的可行性,为两栖环境中推进机构的研究提供了理论依据,并为两栖环境中的推进机构的研制走向实用提供了一般性的结论和设计原则。
With the development of robot technology, the robot is no longer a single adapting to land or underwater environment, which can accommodate the special needs of complex transitional environment of riparian areas. It will have a very real sense to develop amphibious robot which possess the good performance of trafficability characteristic and the ability of passing obstacle, high-efficiency propulsion, maneuvering and good concealment, as well as the ability of relieving in the complex amphibious transitional environment. Therefore, it should be carried out urgently to improve the amphibious robot of the good performance of trafficability characteristic and adaptability in amphibious environment, as well as optimizating form amphibious robot the morphological parameters, structure parameters and motion parameters of propulsion mechanism. Transitional environment is mainly composed of soft media such as sand and mud moisture, amphibious robot would often appeare the phenomenon of slipping and subsidence in the transitional environment, which is attributable to the constitutive characteristics of environmental media, morphological and structural features of amphibious robot propulsion mechanism, and cupping with kinematic parameters of propulsion mechanism and other factors. Research on interaction of propulsion mechanism of amphibious robots and the transitional environment, which can improve the performance of trafficability characteristic of amphibious robots in the transitional environment, making the conversion of wanter and land of amphibious robot can really go practical.
     This thesis takes the perspective of bionics, surrounding the amphibious robot of the performance of trafficability characteristic and adaptability in amphibious environment, focusing on the propulsion mechanism of propulsion mechanism in amphibious environment, and we carry out an experimental study on amphibious biomimetic propulsion mechanism, which could provide a reference and bio-inspiration for the development of propulsion mechanism of amphibious robot. The main research contents and contributions of this thesis are presented as follows:
     (1) Taking the Kop Carp possessing maneuvering characteristic and the mudskipper exhibiting excellent ability of amphibious sports ability as a bionics research object, morphology and kinematics of the Kop Carp and mudskipper pectoral fin are detailed investigated, as well as the three-dimensional real-time high-speed camera system for kinematics experimental observation, coordinate transformation and the method of digital image processing technology are presented. Firstly, we investigate the morphological characteristics of Koi Carp pectoral fin rays in the hovering state. The kinematic observations of mudskippers in the water, the amphibious environment, terrestrial environment respectively are conducted to obtaine some related kinematic parameters of mudskippers including speed of the mudskipper and movement angle of pectoral fin under different experimental environment, we compare with morphology and movement characteristics of aquatic and amphibian pectoral fin pectoral, the results provides a reference to design and development an amphibious biomimetic pectoral fin. Finally, we analyze the forward speed of mudskippers at different ratio between amplitude and wavelength. It is found out that there is an optimal ratio between amplitude and wavelength under water and amphibious environment, which provides parameterized guidance for design and motion control of bionic multi-joint amphibious robot.
     (2) According to the morphological characteristics of mudskippers in amphibious environment, five different morphological parameters of the propulsion mechanism are designed. Based on RFT model and the method of micro-element analysis method to get interaction force conditions between propulsion mechanism and the media of mud, by using of the interaction force conditions and the stress, strain, intensity and time of of the transition medium, combined with intrinsic relationship of these four variables and specific morphological parameters of biomimetic propulsion mechanism, we calculate the mechanical properties of five different morphological parameters propulsion mechanism in amphibious environments, including the level of propulsion, vertical support force and torque variation in a movement cycle. Then we do comparative analysis of the properties of propulsion mechanism under different morphological parameters, the motion parameters and moisture content, interaction laws between the propulsion mechanism and amphibious environmental media has been gained, and intension-deformation theory of strength transitional environmental for the amphibious environment are also set up, which can rovide effective theoretical guidance for design and optimization of propulsion mechanism.
     (3) Based on morphological study on pectoral fin of mudskipper, combined with3D printing technology and similarity theory. We have designed and implemented amphibious biomimetic pectoral fin with five different levels of stiffness and the corresponding size and uniformly distributed form of biomimetic pectoral fins consistent with bionic object. An amphibious environmental solid experiment platform has been built, and the mechanical design, system hardware design and system software design of the amphibious environmental solid experiment platform are detailly introduced. The propulsive performance of amphibious biomimetic fin in different water content, different stiffness, different sports kinematic parameters is conducted, some motion characteristics including average propulsion, vertical displacement, maximum torque and average propulsion speed of the amphibious biomimetic fin in the movement cycle are measured, and compare with the experiments results of amphibious biomimetic fin and the results of propulsion mechanisms in amphibious environments to verify the feasibility of propulsion mechanisms, which provides a theoretical basis for the research of propulsion mechanisms in amphibious environment, meanwhile the results can provide general conclusions and design principles for the development of propulsion mechanisms when that can really go practical.
引文
[1]黄真,安永民.机器人机构学[J].工程设计,1998,2:51-51.
    [2]宗光华,刘海波,程君实.机器人技术手册[-M].科学出版社,1996.
    [3]朱磊磊,陈军.轮式移动机器人研究综述[J].机床与液压,2009(8):242-247.
    [4]Bekker M G. Off-the-road locomotion:research and development in terramechanics [M]. Ann Arbor:University of Michigan Press,1960.
    [5]Lacagnina M, Muscato G, Sinatra R. Kinematics, dynamics and control of a hybrid robot Wheeleg [J]. Robotics and Autonomous Systems,2003,45(3):161-180.
    [6]Chapelle F, Bidaud P. Evaluation functions synthesis for optimal design of hyper-redundant robotic systems [J]. Mechanism and machine theory,2006,41(10):1196-1212.
    [7]Choi H R, Ryew S M. Robotic system with active steering capability for internal inspection of urban gas pipelines [J]. Mechatronics,2002,12(5):713-736.
    [8]杨清海,喻俊志,谭民,等.两栖仿生机器人研究综述[J].机器人,2007,29(6):601-608.
    [9]Bekker M.G.,地面——车辆系统导论[M],北京:机械工业出版社,1978
    [10]J.Y.Wong,地面车辆原理[M],北京:机械工业出版社,1985
    [11]庄继德,计算汽车地面力学[M],北京:机械工业出版社,2002
    [12]Wong J Y, Huang W. "Wheels vs. tracks"-A fundamental evaluation from the traction perspective [J]. Journal of Terramechanics,2006,43(1):27-42.
    [13]Falk A. Advanced mobility in difficult terrain [J]. Journal of terramechanics,2004,41(2): 101-111.
    [14]Armour R H, Vincent J F V. Rolling in nature and robotics:a review [J]. Journal of Bionic Engineering,2006,3(4):195-208.
    [15]Yavin Y. Point-to-point and collision avoidance control of the motion of an autonomous bicycle [J]. Computers & Mathematics with Applications,2005,50(10):1525-1542.
    [16]YAVIN Y. The derivation of a kinematic model from the dynamic model of the motion of a riderless bicycle [J]. Computers and Mathematics with Applications,2006,51:865-878.
    [17]Yavin Y. Modelling and control of the motion of a riderless bicycle rolling on a moving plane [J]. Computers & Mathematics with Applications,2007,54(11):1319-1328.
    [18]O'Halloran D, Wolf A, Choset H. Design of a high-impact survivable robot [J]. Mechanism and machine theory,2005,40(12):1345-1366.
    [19]Ren T J, Chen T C, Chen C J. Motion control for a two-wheeled vehicle using a self-tuning PHD controller [J]. Control Engineering Practice,2008,16(3):365-375.
    [20]Ollero A, Arrue B C, Ferruz J, et al. Control and perception components for autonomous vehicle guidance. Application to the ROMEO vehicles [J]. Control Engineering Practice, 1999,7(10):1291-1299.
    [21]Ratner D, McKerrow P. Navigating an outdoor robot along continuous landmarks with ultrasonic sensing [J]. Robotics and Autonomous Systems,2003,45(2):73-82.
    [22]Maalouf E, Saad M, Saliah H. A higher level path tracking controller for a four-wheel differentially steered mobile robot [J]. Robotics and Autonomous Systems,2006,54(1): 23-33.
    [23]汪新,杨栋,许旻,等.高机动越障机器人攀登机构的关键问题解析[J].中国科学技术大学学报,2006,35(4):506-511.
    [24]尚建忠.空间探测机器人移动机构及系统研究[D].武汉:华中科技大学,2006.
    [25]Kim S, Kim T I, Jang K S, et al. Control experiment of a wheeled drive mobile pendulum using neural network[C]//Industrial Electronics Society,2004. IECON 2004.30th Annual Conference of IEEE. IEEE,2004,3:2234-2239.
    [26]Akesson J, Blomdell A, Braun R. Design and control of YAIP-an inverted pendulum on two wheels robot[C]//Computer Aided Control System Design,2006 IEEE International Conference on Control Applications,2006 IEEE International Symposium on Intelligent Control,2006 IEEE. IEEE,2006:2178-2183.
    [27]日本本田公司的人形机器人[J].机器人技术与应用,2000,(1):21-23.
    [28]刘静,赵晓光,谭民等.腿式机器人的研究综述[J].机器人,2006,28(1):81-88.
    [29]http://world.honda.com/ASIMO/history/p1_p2_p3.html
    [30]Wang G, Huang Q, Geng J, et al. Cooperation of dynamic patterns and sensory reflex for humanoid walking[C]//Robotics and Automation,2003. Proceedings. ICRA'03. IEEE International Conference on. IEEE,2003,2:2472-2477.
    [31]http://www.bostondynamics.com/robot_bigdog.html
    [32]http://en.wikipedia.org/wiki/BigDog
    [33]Delcomyn F, Nelson M E. Architectures for a biomimetic hexapod robot [J]. Robotics and Autonomous Systems,2000,30(1):5-15.
    [34]陈淑艳,陈文家.履带式移动机器人研究综述[J].机电工程,2008,24(12):109-112.
    [35]Wong J Y, Chiang C F. A general theory for skid steering of tracked vehicles on firm ground [J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering,2001,215(3):343-355.
    [36]Lewis P J, Flann N, Torrie M R, et al. Chaos, an intelligent ultra-mobile SUGV: combining the mobility of wheels, tracks, and legs[C]//Defense and Security. International Society for Optics and Photonics,2005:427-438.
    [37]Michaud F, Letourneau D, Arsenault M, et al. Multi-modal locomotion robotic platform using leg-track-wheel articulations[J]. Autonomous Robots,2005,18(2):137-156.
    [38]Guarnieri M, Debenest P, Inoh T, et al. Development of helios vii:an arm-equipped tracked vehicle for search and rescue operations. IEEE/RSJ Int[C]//Conference on Intelligent Robots.2004.
    [39]王挺,王越超,赵忆文.多机构复合智能移动机器人的研制[J].机器人,2004,26(4):289-294.
    [40]段星光,黄强,李科杰.小型轮履腿复合式机器人设计及运动特性分析[J].机械工程学报,2006,41(8):108-114.
    [41]Arena P, Di Giamberardino P, Fortuna L, et al. Toward a mobile autonomous robotic system for Mars exploration [J]. Planetary and Space Science,2004,52(1):23-30.
    [42]Sato M, Kanda A, Ishii K. Performance evaluation of a neural network controller system for a wheel type mobile robot[C]//International Congress Series. Elsevier,2007,1301: 160-163.
    [43]Sato M, Kanda A, Ishii K. A switching controller system for a wheeled mobile robot [J]. Journal of Bionic Engineering,2007,4(4):281-289.
    [44]Lu D, Dong E, Liu C, et al. Mechanical system and stable gait transformation of a leg-wheel hybrid transformable robot[C]//Advanced Intelligent Mechatronics (AIM), 2013 IEEE/ASME International Conference on. IEEE,2013:530-535.
    [45]Lu D, Dong E, Liu C, et al. Design and development of a leg-wheel hybrid robot "HyTRo-I"[C]//Intelligent Robots and Systems (IROS),2013 IEEE/RSJ International Conference on. IEEE,2013:6031-6036.
    [46]徐海军,谢海斌,张代兵.微小型水下机器人推进方式的比较研究[J].兵工自动化,2009,28(4):85-87.
    [47]李白齐.21世纪海洋高性能船[M].国防工业出版社,2001.
    [48]丁祖荣.流体力学:上册M].高等教育出版社,2003.
    [49]杨云春.一种仿水母式机器人的研究[D].哈尔滨工程大学,2007.
    [50]童秉纲.鱼类波状游动的推进机制[J].力学与实践,2000,22(3):69-74.
    [51]Breder C M. The locomotion of fishes [J].1926.
    [52]Lighthill M J. Note on the swimming of slender fish [J]. J. Fluid Mech,1960,9(2): 305-317.
    [53]Lighthill M J. Large-amplitude elongated-body theory offish locomotion [J]. Proceedings of the Royal Society of London. Series B. Biological Sciences,1971,179(1055): 125-138.
    [54]Wu T Y. Hydromechanics of swimming propulsion. Part 1. Swimming of a two-dimensional flexible plate at variable forward speeds in an inviscid fluid [J]. J. Fluid Mech,1971,46(2):337-355.
    [55]Cheng J Y, Zhuang L X, Tong B G. Analysis of swimming three-dimensional waving plates [J]. J. Fluid Mech,1991,232:341-355.
    [56]http://web.mit.edu/towtank/www/tuna.
    [57]http://web.mit.eduttowtanklwww/pike.
    [58]Anderson J M, Kerrebrock P A. The vorticity control unmanned undersea vehicle (VCUUV)-An autonomous vehicle employing fish swimming propulsion and maneuvering[C]//International Symposium on Unmanned Untethered Submersible Technology. UNIVERSITY OF NEW HAMPSHIRE-MARINE SYSTEMS,1997: 189-195.
    [59]Liu J, Hu H. Biological inspiration:from carangiform fish to multi-joint robotic fish [J]. Journal of Bionic Engineering,2010,7(1):35-48.
    [60]Liu J, Dukes I, Knight R, et al. Development of fish-like swimming behaviours for an autonomous robotic fish[J]. Proceedings of the Control,2004,4.
    [61]Liu J, Hu H. Mimicry of sharp turning behaviours in a robotic fish[C]//Robotics and Automation,2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on. IEEE,2005:3318-3323.
    [62]Liu J, Hu H. A methodology of modelling fish-like swim patterns for robotic fish[C]//Mechatronics and Automation,2007. ICMA 2007. International Conference on. IEEE,2007:1316-1321.
    [63]Hu H, Liu J, Dukes I, et al. Design of 3D swim patterns for autonomous robotic fish[C]//Intelligent Robots and Systems,2006 IEEE/RSJ International Conference on. IEEE,2006:2406-2411.
    [64]Liu J, Hu H, Gu D. A hybrid control architecture for autonomous robotic fish[C]//Intelligent Robots and Systems,2006 IEEE/RSJ International Conference on. IEEE,2006:312-317.
    [65]Hu H. Biologically inspired design of autonomous robotic fish at Essex[C]//Proceedings of the IEEE SMC UK-RI Chapter Conference.2006:1-8.
    [66]Low K H. Parametric study of modular and reconfigurable robotic fish with oscillating caudal fin mechanisms[C]//Mechatronics and Automation,2007. ICMA 2007. International Conference on. IEEE,2007:123-128.
    [67]Low K H, Chong C W. Parametric study of the swimming performance of a fish robot propelled by a flexible caudal fin[J]. Bioinspiration & biomimetics,2010,5(4):046002.
    [68]梁建宏,邹丹,王松,等.SPC-II机器鱼平台及其自主航行实验[J].北京航空航天大学学报,2005,31(7):709-713.
    [69]梁建宏,王田苗,魏宏兴.仿生机器鱼技术研究进展及关键问题探讨[J].机器人技术与应用,2003(3):14-19.
    [70]Yan Q, Han Z, Zhang S, et al. Parametric Research of Experiments on a Carangiform Robotic Fish[J]. Journal of Bionic Engineering,2008,5(2):95-101.
    [71]韩珍,颜钦,张世武,杨杰.基于序列图像处理法的机器鱼转向机动性能研究[J].2010.
    [72]韩珍,颜钦,张世武,杨杰.基于序列图像的机器鱼C形转向特性研究.2009中国自动化大会,2009.11,中国杭州.
    [73]Boileau R, Fan L, Moore T. Mechanization of rajiform swimming motion:The making of Robo-Ray [J]. University of British Columbia,2002.
    [74]Toda Y, Suzuki T, Uto S, et al. Fundamental study of a fishlike body with two undulating side-fins [M]//Bio-mechanisms of Swimming and Flying. Springer Japan,2004:93-110.
    [75]Toda Y, Hieda S, Takashi S. Laminar flow computation around a plate with two undulating side fins [J]. JOURNAL-KANSAI SOCIETY OF NAVAL ARCHITECTS JAPAN,2002:71-78.
    [76]Toda Y. Fundamental study on propulsion of a fish-like body with two undulating side fins[C]//ASIA PACIFIC WORKSHOP ON MARINE HYDRODYNAMICS (APHydro 2002).2002:227-232.
    [77]Epstein M, Colgate J E, MacIver M A. A biologically inspired robotic ribbon fin[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Workshop on Morphology, Control, and Passive Dynamics,2005.
    [78]Epstein M, Colgate J E, MacIver M A. Generating thrust with a biologically-inspired robotic ribbon fin[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems,2006:2412-2417.
    [79]Takagi K, Yamamura M, Luo Z W, et al. Development of a rajiform swimming robot using ionic polymer artificial muscles[C]//Intelligent Robots and Systems,2006 BEEE/RSJ International Conference on. IEEE,2006:1861-1866.
    [80]Yamamura M, Takagi K, Luo Z W, et al. An autonomous ray-like swimming robot with DPMC artificial muscle[C]//Proceedings of the Third Conference on Artificial Muscles-A Nanobiotechnology Research:The Perspective of artificial Muscles.2006.
    [81]K. H. Low, A. Willy. Biomimetic Motion Planning of an Undulating Robotic Fish Fin [J].Journal of Vibration and Control.12(12):1337-1359,2006.
    [82]K. H. Low and A. Willy. Controllable Swimming Modes of Robotic Fish with Modular and Flexible Fin Mechanisms [J]. Journal of Vibration and Control, USA,2006.
    [83]K. H. Low. Locomotion Consideration and Implementation of Robotic Fish with Modular Undulating Fins:Analysis and Experimental Study [C]. EEE/RSJ International Conference on Intelligent Robots and Systems, pp:2424-2429,2006.
    [84]K. H. Low. Locomotion and Depth Control of Robotic Fish with Modular Undulating Fins [J]. International Journal of Automation and Computing.4:2837,2006.
    [85]K. H. Low. Biomimetic Design and Workspace Study of a Compact and Modular Undulating Fin Body Segments [C]. Proceeding of the 2007 IEEE International Conference on Mechatronics and Automation. pp:129134,2007.
    [86]Tangorra J., Anquetil P., Fofonoff T., Chen A., Zio M. D. and Hunter I. The Application of Conducting Polymers to a Biorobotic Fin Propulsor [J]. Bioinsp.& Biomim.2:S6-S17, 2007.
    [87]Lauder G. V., Madden P. G. A., Hunter I., Tangorra J., Davidson S., Proctor L., Mittal R., Dong H., and Bozkurttas M. Design and Performance of a Fish-like Propulsor for AUVs [C]. Proc.14th Symp. on Unmanned Untethered Submersible Technology.2005.
    [88]Lauder G. V., Madden P. G. A., Mittal R., Dong H. and Boskurttas M. Locomotion with Flexible Propulsors Ⅰ: Experimental Analysis of Pectoral Fin Swimming in Sunfish [J]. Bioinsp.& Biomim. S25-34,2006.
    [89]Tangorra J., Davidson S., Madden P., Lauder G. and Hunter I. A Biorobotic Pectoral Fin for Autonomous Undersea Vehicles [C]. Proc. IEEE EMBS (New York),2006.
    [90]Tangorra J., Davidson S., Hunter I., Madden P., Lauder G. V., Dong H., Bozkurttas M. and Mittal R. The Development of a Biologically Inspired Propulsor for Unmanned Underwater Vehicles [J]. Journal of Oceanic Engineering.32(3):533-550,2007.
    [91]章永华.2008.柔性仿生波动鳍的理论与实验研究[D].博士论文.中国科学技术大学.
    [92]Zhang Y, He J, Yang J, et al. Design and investigation of shape memory alloy driven flexible pectoral fin[C]//Robotics and Biomimetics,2006. ROBIO'06. IEEE International Conference on. IEEE,2006:79-84.
    [93]Zhang Y, Jia L, Zhang S, et al. Computational research on modular undulating fin for biorobotic underwater propulsor[J]. Journal of Bionic Engineering,2007,4(1):25-32.
    [94]Zhang Y H, He J H, Yang J, et al. A computational fluid dynamics (CFD) analysis of an undulatory mechanical fin driven by shape memory alloy [J]. International Journal of Automation and Computing,2006,3(4):374-381.
    [95]颜钦.基于SMA的仿生柔性鱼鳍三维运动机理与实验研究[D].中国科学技术大学,2011.
    [96]Yan Q, Wang L, Liu B, et al. A novel implementation of a flexible robotic fin actuated by shape memory alloy [J]. Journal of Bionic Engineering,2012,9(2):156-165.
    [97]Yan Q, Zhang S, Yang J. Initial implementation of basic actuated unit of a flexible pectoral fin driven by SMA[C]. International Conference on Mechatronics and Automation (ICMA),2010:899-904.
    [98]Saranli U, Buehler M, Koditschek D E. Design, modeling and preliminary control of a compliant hexapod robot[C]//Robotics and Automation,2000. Proceedings. ICRA'00. IEEE International Conference on. IEEE,2000,3:2589-2596.
    [99]http://www.rhex.web.tr/#history
    [100]http://kodlab.seas.upenn.edu
    [101]Altendorfer R, Koditschek D E, Holmes P. Stability analysis of a clock-driven rigid-body SLIP model for RHex [J]. The International Journal of Robotics Research,2004, 23(10-11):1001-1012.
    [102]Theberge M, Dudek G. Gone swimming [seagoing robots] [J]. Spectrum, IEEE,2006, 43(6):38-43.
    [103]Dudek G, Giguere P, Prahacs C, et al. Aqua:An amphibious autonomous robot [J]. Computer,2007,40(1):46-53.
    [104]AQUA2 amphibious robot is super cute and fast, less annoying than most pets because it has no head, http://www.engadget.com/2010/07/08/aqua2-amphibious-robot-is-super-cute-and-fast-less-annoying-tha/
    [105]Prahacs C, Saudners A, Smith M K, et al. Towards legged amphibious mobile robotics [J]. Proceedings of the Canadian Engineering Education Association,2011.
    [106]German A, Jenkin M. Gait synthesis for legged underwater vehicles [C]. Autonomic and Autonomous Systems,2009. ICAS'09. Fifth International Conference on. IEEE,2009: 189-194.
    [107]Boxerbaum A S, Werk P, Quinn R D, et al. Design of an autonomous amphibious robot for surf zone operation:Part I mechanical design for multi-mode mobility [C]. Advanced Intelligent Mechatronics. Proceedings,2005 IEEE/ASME International Conference on. IEEE,2005:1459-1464.
    [108]Harkins R, Ward J, Vaidyanathan R, et al. Design of an autonomous amphibious robot for surf zone operations:part II-hardware, control implementation and simulation [C]. Advanced Intelligent Mechatronics. Proceedings,2005 IEEE/ASME International Conference on. IEEE,2005:1465-1470.
    [109]Boxerbaum A S, Klein M A, Bachmann R, et al. Design of a semi-autonomous hybrid mobility surf-zone robot [C]. Advanced Intelligent Mechatronics,2009. AIM 2009. EEE/ASME International Conference on. IEEE,2009:974-979.
    [110]Boxerbaum A S, Klein M A, Kline J E et al. Design, Simulation, Fabrication and Testing of a Bio-Inspired Amphibious Robot with Multiple Modes of Mobility [J]. Journal of Robotics and Mechatronics.2012,24(4):629-641.
    [111]宋吉来,俞建成,公丕亮,李智刚.轮桨腿一体化两栖机器人控制系统设计,微计算机信息,2009,25(5):208-210.
    [112]张少伟,俞建成,张艾群等.轮桨腿一体两栖机器人推进系统控制分配研究[J].机械设计与制造,2010,(12):147-149.
    [113]马秀云,俞建成,张竺英.足板驱动两栖机器人陆地运动研究[J].机械设计与制造,2010,(3):151-153.
    [114]Tang Y, Zhang A, Yu J. Modeling and Optimization of Wheel-Propeller-Leg Integrated Driving Mechanism for an Amphibious Robot [C]. Information and Computing Science, 2009. ICIC'09. Second International Conference on. IEEE,2009,4:73-76.
    [115]Guo W, Yu Y, Yu J. Control system design of the Wheel-Paddle-Leg Integration Amphibious Robot [C]. Intelligent Control and Automation (WCICA),20108th World Congress on. IEEE,2010:6428-6432.
    [116]Yu J, Tang Y, Zhang X, et al. Design of a wheel-propeller-leg integrated amphibious robot [C]. Control Automation Robotics & Vision (ICARCV),201011th International Conference on. IEEE,2010:1815-1819.
    [117]Li-quan W, De-feng L, Dong-liang C, et al. The virtual prototype design and simulation of amphibious bio-crab robot with variable posture [C]. Robotics and Biomimetics (ROBIO),2009 IEEE International Conference on. IEEE,2009:2140-2145.
    [118]王沫楠,王立权,孟庆鑫等.基于ADAMS软件两栖仿生机器蟹的动力学建模与仿真[J].哈尔滨工程大学学报,2003,24(4):355-358.
    [119]王立权,孙磊,陈东良等.仿生机器蟹样机研究[J].哈尔滨工程大学学报,2005,26(5):591-595.
    [120]王沫楠,王立权,孟庆鑫等.两栖仿生机器蟹行走过程运动学研究[J].哈尔滨工程大学学报,2003,24(2):179-183.
    [121]袁鹏,孟庆鑫,王沫楠等.两栖仿生机器蟹的单足路径规划和生成[J].哈尔滨工程大学学报,2003,24(3):296-301.
    [122]吴明阳,孟庆鑫,王沫楠等.电机驱动型两栖仿生机器蟹步行腿研究[J].电机与控制学 报,2005,9(4):307-310,315.
    [123]陈东良,孟庆鑫,王立权等.仿生机器蟹变结构力觉传感器的设计及数据处理[J].哈尔滨工程大学学报,2006,27(1):118-122.
    [124]王沫楠,孙立宁,孟庆鑫等.两栖仿生机器蟹动力学建模及能量最优分配[J].哈尔滨工业大学学报,2006,38(2):173-176.
    [125]王沫楠,孙立宁.仿生机器蟹步行腿结构设计及运动学、动力学分析[J].机械设计与研究,2005,21(5):41-44.
    [126]王沫楠,杨玉春.仿生机器蟹的模型建立及优化[J].哈尔滨理工大学学报,2003,8(6):1-3.
    [127]罗红魏.两栖仿生机器蟹关键技术研究[D].哈尔滨工程大学,2007.
    [128]Zhang S, Liang X, Xu L, et al. Initial Development of a Novel Amphibious Robot with Transformable Fin-Leg Composite Propulsion Mechanisms [J]. Journal of Bionic Engineering,2013,10(4):434-445.
    [129]Liang X, Xu M, Xu L, et al. The AmphiHex:A novel amphibious robot with transformable leg-flipper composite propulsion mechanism[C]//Intelligent Robots and Systems (IROS),2012 EEEE/RSJ International Conference on. IEEE,2012:3667-3672.
    [130]Ren X, Liang X, Kong Z, et al. An experimental study on the locomotion performance of elliptic-curve leg in muddy terrain[C]//Advanced Intelligent Mechatronics (AIM),2013 DEEE/ASME International Conference on. IEEE,2013:518-523.
    [131]任小双,梁旭,孔子文,等.沙地环境下椭圆型腿运动特性实验研究[J].机械与电子,2013(11).
    [132]Xu L, Liang X, Xu M, et al. Interplay of theory and experiment in analysis of the advantage of the novel semi-elliptical leg moving on loose soil[C]//Advanced Intelligent Mechatronics (AIM),2013 IEEE/ASME International Conference on. IEEE,2013:26-31.
    [133]梁旭.松软介质中弧形足运动特性分析及足—蹼复合推进两栖机器人研究[D].中国科学技术大学,2013.
    [134]Hirose S, Yamada H. Snake-like robots [tutorial] [J]. Robotics & Automation Magazine, IEEE,2009,16(1):88-98.
    [135]Hopkins J K, Spranklin B W, Gupta S K. A survey of snake-inspired robot designs [J]. Bioinspiration & biomimetics,2009,4(2):021001.
    [136]Ijspeert A J, Crespi A, Ryc2ko D, et al. From swimming to walking with a salamander robot driven by a spinal cord model [J]. Science,2007,315(5817):1416-1420.
    [137]Ijspeert A J, Crespi A, Cabelguen J M. Simulation and robotics studies of salamander locomotion [J]. Neuroinformatics,2005,3(3):171-195.
    [138]Crespi A, Ijspeert A J. Online optimization of swimming and crawling in an amphibious snake robot [J]. Robotics, IEEE Transactions on,2008,24(1):75-87.
    [139]Ijspeert A J.2008 Special Issue:Central pattern generators for locomotion control in animals and robots:A review [J]. Neural Networks,2008,21(4):642-653.
    [140]Crespi A, Karakasiliotis K, Guignard A, et al. Salamandra robotica Ⅱ:an amphibious robot to study salamander-like swimming and walking gaits [J]. Robotics, IEEE Transactions on,2013,29(2):308-320.
    [141]陈丽;王越超;李斌.蛇形机器人研究现况与进展,机器人,2002,24(6):559-563.
    [142]汪洋;李斌;陈丽;林琛.蛇形机器人控制系统的设计与实现,机器人,2003,25(6):491-494.
    [143]李斌;马书根;王越超;陈丽;汪洋.一种具有三维运动能力的蛇形机器人的研究,机器人,2004,26(6):506-509.
    [144]Yang Q, Yu J, Tan M, et al. Preliminary development of a biomimetic amphibious robot capable of multi-mode motion [C]. Robotics and Biomimetics,2007. ROBIO 2007. IEEE International Conference on. IEEE,2007:769-774.
    [145]Yang Q, Yu J, Tan M, et al. A multi-mode biomimetic amphibious robot [C]. Intelligent Control and Automation,2008. WCICA 2008.7th World Congress on. IEEE,2008: 3236-3241.
    [146]Wang W, Yu J, Ding R, et al. Bio-inspired design and realization of a novel multimode amphibious robot [C]. Automation and Logistics,2009. ICAL'09. IEEE International Conference on. IEEE,2009:140-145.
    [147]Ding R, Yu J, Yang Q, et al. CPG-based dynamics modeling and simulation for a biomimetic amphibious robot [C]. Robotics and Biomimetics (ROBIO),2009 IEEE International Conference on. IEEE,2009:1657-1662.
    [148]王卫兵,喻俊志,成斌等.两栖仿生机器鱼I的建模及推进机构设计[J].石河子大学学报(自然科学版),2009,27(1):92-96.
    [149]王卫兵,马燕,裴晓锐等.两栖仿生机器鱼行为方式及其实现[J].机械,2009,36(3):53-55.
    [150]葛云,马燕,裴晓锐等.两栖仿生机器鱼机构设计及初步运动仿真[J].机械研究与应用,2009,(1):32-33.
    [151]Ding R, Yu J, Yang Q, et al. Robust gait control in biomimetic amphibious robot using central pattern generator [C]. Intelligent Robots and Systems (IROS),2010 IEEE/RSJ International Conference on. IEEE,2010:3067-3072.
    [152]Ding R, Yu J, Yang Q, et al. CPG-based behavior design and implementation for a biomimetic amphibious robot [C]. Robotics and Automation (ICRA),2011 IEEE International Conference on. IEEE,2011:209-214.
    [153]Yu J, Ding R, Yang Q, et al. On a bio-inspired amphibious robot capable of multimodal motion [J]. Mechatronics, IEEE/ASME Transactions on,2012,17(5):847-856.
    [154]Iagnemma K, Kang S, Shibly H, et al. Online terrain parameter estimation for wheeled mobile robots with application to planetary rovers [J]. Robotics, IEEE Transactions on, 2004,20(5):921-927.
    [155]Brooks C A, Iagnemma K. Vibration-based terrain classification for planetary exploration rovers [J]. Robotics, IEEE Transactions on,2005,21(6):1185-1191.
    [156]Wong J Y. Theory of ground vehicles [M]. Wiley-Interscience,2001.
    [157]Ward C C, Iagnemma K. A dynamic-model-based wheel slip detector for mobile robots on outdoor terrain [J]. Robotics, IEEE Transactions on,2008,24(4):821-831.
    [158]Bekker M G. Theory of land locomotion:the mechanics of vehicle mobility [M]. University of Michigan Press,1956.
    [159]Cavagna G A, Heglund N C, Taylor C R. Mechanical work in terrestrial locomotion:two basic mechanisms for minimizing energy expenditure [J]. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology,1977,233(5): R243-R261.
    [160]Hu D L, Nirody J, Scott T, et al. The mechanics of slithering locomotion [J]. Proceedings of the National Academy of Sciences,2009,106(25):10081-10085.
    [161]吉图.鞭毛和纤毛拍击机制的理论研究[D].内蒙古大学,2009.
    [162]Tritton D J. Physical fluid dynamics [J]. Oxford, Clarendon Press,1988,536 p.,1988,1.
    [163]Jaeger H M, Nagel S R, Behringer R P. Granular solids, liquids, and gases [J]. Reviews of Modern Physics,1996,68(4):1259-1273.
    [164]Albert R, Pfeifer M A, Barabasi A L, et al. Slow drag in a granular medium [J]. Physical review letters,1999,82(1):205-208.
    [165]Albert I, Sample J G, Morss A J, et al. Granular drag on a discrete object:Shape effects on jamming [J]. Physical Review E,2001,64(6):061303.
    [166]Albert I, Tegzes P, Albert R, et al. Stick-slip fluctuations in granular drag [J]. Physical Review E,2001,64(3):031307.
    [167]Li C, Zhang T, Goldman D I. A terradynamics of legged locomotion on granular media [J]. Science,2013,339(6126):1408-1412.
    [168]Umbanhowar P, Goldman D I. Granular impact and the critical packing state [J]. Physical Review E,2010,82(1):010301.
    [169]Ding Y, Gravish N, Goldman D I. Drag induced lift in granular media [J]. Physical review letters,2011,106(2):028001.
    [170]Goldman D I, Komsuoglu H, Koditschek D E. March of the sandbots [J].2009.
    [171]Li C, Umbanhowar P B, Komsuoglu H, et al. Sensitive dependence of the motion of a legged robot on granular media[J]. Proceedings of the National Academy of Sciences, 2009,106(9):3029-3034.
    [172]Maladen R D, Ding Y, Umbanhowar P B, et al. Undulatory swimming in sand: experimental and simulation studies of a robotic sandfish[J]. The International Journal of Robotics Research,2011,30(7):793-805.
    [173]Maladen R D, Umbanhowar P B, Ding Y, et al. Granular lift forces predict vertical motion of a sand-swimming robot[C]//Robotics and Automation (ICRA),2011 IEEE International Conference on. IEEE,2011:1398-1403.
    [174]Gray J, Hancock G J. The propulsion of sea-urchin spermatozoa [J]. Journal of Experimental Biology,1955,32(4):802-814.
    [175]Maladen R D, Ding Y, Li C, et al. Undulatory swimming in sand:subsurface locomotion of the sandfish lizard [J]. science,2009,325(5938):314-318.
    [176]Gravish N, Umbanhowar P B, Goldman D I. Force and flow transition in plowed granular media [J]. Physical review letters,2010,105(12):128301.
    [177]HUNTER R D, Elder H Y. Burrowing dynamics and energy cost of transport in the soft-bodied marine invertebrates Polyphysia crassa and Priapulus caudatus [J]. Journal of Zoology,1989,218(2):209-222.
    [178]Gibson R N, Atkinson R J A, Gordon J D M. Macrofaunal burrowing:the medium is the message [J]. Oceanography and Marine Biology:an annual review,2006,44(8):5-121.
    [179]Dorgan K M, Arwade S R, Jumars P A. Burrowing in marine muds by crack propagation: kinematics and forces[J]. Journal of Experimental Biology,2007,210(23):4198-4212.
    [180]A. V. Oppenheim, A. S. Willsky, S. H. Nawab. Signals and Systems (second Edition) [M], Prentice Hall,1997.
    [181]Triantafyllou M S, Triantafyllou G S, Yue D K P. Hydrodynamics of fishlike swimming [J]. Annual review of fluid mechanics,2000,32(1):33-53.
    [182]Harris V A. On The Locomotion of The Mud-skipper Periophthalmus Koelreuteri (Pallas):(Gobiidae)[C]//Proceedings of the Zoological Society of London. Blackwell Publishing Ltd,1960,134(1):107-135.
    [183]Swanson B O, Gibb A C. Kinematics of aquatic and terrestrial escape responses in mudskippers [J]. Journal of experimental biology,2004,207(23):4037-4044.
    [184]Dorgan K M, Jumars P A, Johnson B, et al. Burrowing mechanics:Burrow extension by crack propagation [J]. Nature,2005,433(7025):475-475.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700