用户名: 密码: 验证码:
基于机器视觉指针表检测的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精密指针表读数直观、结构简单、使用方便且性价比高,在生产实践中得到了广泛的应用。为了确保生产质量及生产安全,仪表需定期进行检定,确保其使用精度。因精密指针表在读数时有特殊要求,所以人工检定过程耗时长,容易引入误差从而影响检定精度。若能够在误差范围内实现指针表读数的自动识别系统,将大大提高全国各计量单位指针表的检定效率和检定精度,因此实现指针表读数准确自动识别具有重要的理论意义和应用价值。
     指针表读数自动识别经过多年的研究,基础理论和应用都有了一定的发展,工业用低精度指针表读数自动识别己进入实用阶段;而目前尚未查到精密指针电工仪表(不低于0.5级)读数自动识别系统的实际应用。每年有数以万计的精密指针表需要计量单位进行检定,由于这类指针表的图像采集、图像预处理、图像分割、读数识别和误差修正等关键技术还没有得到很好的解决,因此该类指针表的检定工作目前只能全部由人工来完成。
     本文以0.5级毫安指针仪表为对象,从仪表成像开始分析,对光照成像系统、图像预处理、刻度线图像分割、刻度线特征提取、刻度线检测拟合、读数指针获取、读数识别方法和误差修正等问题进行了系统的研究,提高了精密指针表读数的识别速度和识别精度。本文主要的研究成果及创新点简述如下:1.根据精密指针表的物理特性和误差要求,构建了方形无影光源侧面投射的成像系统,解决了以往只能在黑箱里进行图像采集的难题。提出了一种快速获取仪表读数区域图像的方法,为快速识别读数提供了基础。
     2.针对读数区域图像刻度线特征的亮度分布,提出了改进的耦合冲击复扩散滤波算法和流形上改进的热导方程滤波算法,并分别对读数区域图像进行降噪仿真实验,取得较好的降噪效果。耦合冲击复扩散滤波算法在运算速度和去噪效果方面都优于流形上的热导方程滤波算法,能够明显增强图像中的刻度线图像特征,为准确提取刻度线特征图像提供了基础。3.根据刻度线图像的形状及其密集分布的特点,提出了改进的Snake模型和改进的变分水平集的两种图像分割算法对刻度线特征进行分割提取,两种算法各有优缺点,可根据需要选用。基于Snake模型的分割算法精度较高,但需要人工参与;基于变分水平集的分割方法无需人工参与,能快速提取多刻度线特征图像,更适用于细长类多目标的图像分割。
     4.分析精密指针表的结构特点,提出了精密指针表单目成像时引入的视点误差的修正方法,实验结果达到预期的精度要求;构建了双目精密指针表成像模型,推导了视点误差的修正公式,为实现精密指针表全自动读数识别提供了理论基础。
     5.提出了一种基于虚拟表盘的判读法,结合基于刻度圆心的刻度线拟合算法,消除了偏心误差,给出了减小刻度线分布非线性误差的方法,整体上提高了读数识别精度。
     本文结合研究成果,给出了精密指针表读数自动识别系统实现必须满足的要求,并进行了仿真实验,取得良好的实验结果,为研制精密指针表自动检定系统的设计提供理论依据,具有一定的实用价值。
Precise pointer meter is used largely because it is easy to use and reading intuitively with simple structure and cost effective. For safety and quality of the production the pointer meter must be regular verification, to ensure its practical precision. Because precise pointer meter reading needs special requirements, so its artificial verification is time-consuming and easy to produce error and affecting the calibration accuracy. If the readings automatic identification of pointer meter can be implemented within the allowed error, Pointer Meter Automatic Verification System (PMAVS) will greatly improve the verification efficiency and verification precision of pointer meter at metrology organizations. So Implementation of the pointer meter readings accurate automatic identification has important theoretical significance and application value.
     The research of pointer meter reading automatic recognition has some definite development for several years, low precision pointer meter readings automatic recognition has been realized; Precise Pointer Meter (not less than0.5) Automatic Recognition System isn't currently found. Every year tens of thousands of precise pointer meter need verification. Because the big scale area, the many scale lines, high accuracy of reading recognition and the computational complexity of the image processing, it is not implemented that the readings automatic identification of precise pointer meter, so all verification of them must be done by artificial work.
     This dissertation object of study is milliampere precise pointer meter of0.5accuracy grade. The main studied problems of this dissertation include:lighting imaging system of pointer meter, image preprocessing, scale pointer image segmentation, scale line feature extraction, scale line detection and fitting, reading recognition method and error correction. Those were studied systematically to solve the problem of reading recognition speed and accuracy. The main research results and innovation points of this dissertation can be expressed as follows:
     1. According to the physical characteristics and error requirements of precise pointer meter, it is builded the side projection imaging system with square shadowless light, to solve the problem of image acquisition in the black box only. This dissertation proposes a fast method to obtain the reading area image of meter, providing a basis for fast identification of reading.
     2. According to brightness distribution characteristics of the scale line image in the reading area, the denoising experiment of reading area image is filtered by both filtering algorithms. A filtering algorithm is the coupling of shock filtering and complex diffusion filter algorithm. Another filter algorithm is the manifolds filtering algorithm based on heat equation theory. The denoising experiment results of the former are superior to the latter in computing speed and denoising effect. The former can significantly enhance the image of scale line image characteristics, providing a basis for the accurate extraction of scale lines feature image.
     3. According to the characteristics of the scale lines image, it is proposed the image segmentation algorithm based on Snake model and variational level set for the scale lines image experiment simulation. Both methods have their advantages and disadvantages which can be chosen depending on your needs. The segmentation accuracy of former method is higher, but needs artificial participation. The latter without artificial participation, can rapidly and accurately extract image multiple scale lines characteristics. The latter method is suitable for long and thin kind of multi-objective extraction.
     4. Analyzed the structure characteristics of Precise Pointer Meter, the method of the monocular imaging model was proposed to correct the viewpoint error, and the simulation experimental results have obtain the desired accuracy requirements. Building the binocular imaging model of precise pointer meter, the viewpoint error correction formula is deduced, providing a theoretical basis foundation in order to realize precise pointer meter automatic reading recognition.
     5. A new reading recognition methods based on virtual dial was proposed, combining with the scale line fitting method based on the center of scale to eliminate the eccentricity error. The method is given to reduce the nonlinear error of scale line distribution, improving the reading recognition accuracy.
     Based on the research results, this dissertation gives the requirements of the precise pointer meter reading automatic identification system, and has carried on the simulation experiment, obtaining the good results and providing a theoretical basis foundation to develop precise pointer meter automatic verification system. This dissertation has a certain practical value.
引文
[1]Milan Sonka, Vaclav Hlavac, Roger Boyle. Image Processing, Analysis, and Machine Vision (3th edition)[M]. Cengage Learning(USA),2012.
    [2]王守佳.基于图像的人体检测跟踪和人脸识别的研究[D].吉林:吉林大学,2013.
    [3]McCarthy C L,Hancock N H, Raine S R. Applied machine vision of plants:A review with implications for field deployment in automated farming operations[J].Intelligent Service Robotics.2010,3(4):209-217.
    [4]F.Smach,M.Atr,J.Miteran,M.Abid. Design of a Neural Networks Classifier for Face Detection[J]. Journal of Computer Science,2006,2(3):257-260.
    [5]Zhang Xuewu,Liang Ruiyu,Ding Yanqiong, et al. The System of Copper Strips Surface Defects Inspection Based on Intelligent Fusion[C].Proceedings of the IEEE International Conference on Automation and Logistics. Qingdao. Inst. of Elec. and Elec,2008:476-480.
    [6]Li T. Applying wavelets transform, rough set theory and support vector machine for copper clad laminate defects classification[J]. Expert Systems with Applications, 2009,36(32):5822-5829.
    [7]胡海鹤,白廷柱,韩强,郑海晶.基于Blinn-Phong模型的红外辐照模型及其红外场景仿真[J].光学学报,2013,06:88-94.
    [8]陈海鹏,申铉京,吕颖达,金玉善.基于Lambert光照模型的图像真伪盲鉴别算法[J].计算机研究与发展,2011,07:1237-1245.
    [9]杜宏业,姚望舒.基于Lambert-Phong模型的图像盲取证方法[J].计算机应用,2012,11:3171-3173.
    [10]张威巍,游雄,宋国民.两种面向地貌晕渲的光照模型比较[J].测绘科学技术学报,2009,02:153-156.
    [11]朱元庆,曲兴华,张福民,陶会荣.实际加工表面红外激光散射特性的实验研究[J].物理学报,2013,24:159-164.
    [12]苏国营,曲兴华,张福民.金属表面特性对差动式视觉测量的影响实验[J].光学学 报,2013,01:153-158.
    [13]许欣.图像增强若干理论方法与应用研究[D].江苏:南京理工大学,2010.
    [14]Carsten Steger,Markus Ulrich,Christian Wiedemann. Machine Vision Algorithms and Applications[M]北京:清华大学出版社,2012.
    [15]朱立新,夏德深.基于伪线性相关扩散方程的指纹图像增强[J].模式识别与人工智能.2006,19(6):806-811.
    [16]余锦华,汪源源.基于各向异性扩散的图像降噪算法综述[J].电子测量与仪器学报,2011,02:105-116.
    [17]王常虹,陈韬亦,屈桢深.使用中值-各向异性扩散的超声图像去噪算法[J].哈尔滨工程大学学报,2011,03:314-321.
    [18]王超.基于变分问题和偏微分方程的图像处理技术研究[D].安徽:中国科学技术大学,2007.
    [19]Wang Chao,Ye Zhongfu.Brightness Preserving Histogram Equalization with Maximum Entropy:A ariational Perspective. [J]IEEE Transactions on Consumer Electronics,2005, 51(4):1326-1334.
    [20]Yan Y, Wang H, Li S.Biomedical Image Processing Using FCM Algorithm Based on the Wavelet Transform[J]. Journal of Wuhan University of Technology,2004,19(3):18-20.
    [21]赵继印,郝志成,李建坡等.小波自适应比例改进算法在图像去噪中的应用[J].光电工程,2006,33(1):81-84.
    [22]宇飞.基于小波变换的自适应多阈值图像去噪.[J]中国图像图形学报,2005,10(5):567-570.
    [23]Pierre Gravel, Gilles Beaudoin, Jacques ADG. Difference-Based Image Noise Modeling Using Skellam Distribution. [J] IEEE Trans. Pattern Analysis and Machine Intelligence, 2012,34(7):1329-1341.
    [24]Kennedy Lesa M, Basu Mitra.Application of projection pursuit learning to boundary detection and deblurring in images.[J]Pattern recognition,2000,33(12):2019-2031.
    [25]刘元元.WENO方法的研究及其在对流扩散方程中的应用[D].安徽:中国科学技术大学,2012.
    [26]Li D,Mersereau RM,Simske S.Blind image deconvolution through support vector[J]. IEEE Transactions on Neurl Network,2007,18(3):931-935.
    [27]D. A. Socolinsky. A variational approach to image fusion[D]. Maryland:The Johns Hopkins University,2000.
    [28]Rahman Z, Jobson D J. Retinex processing for automatic image enhancemen[J]. Journal of Electronic Imaging,2004,13(1):78-94.
    [29]Hanmandlu M, Jha D. An optimal fuzzy system for color image enhancement [J]. IEEE Transactions on Image Processing,2006,15(10):2956-2966.
    [30]Subr K, Majumder A, Irani S. Greedy algorithm for local contrast enhancement of images [C]. Proceedings of International Conference on Image Analysis and Processing, Cagliari,2005,3617:171-179.
    [31]肖燕峰.基于Rctniex理论的图像增强恢复算法研究[D].上海:上海交通大学,2007.
    [32]Elad M, Kimmel R, Shaked D.et al. Reduced complexity Retinex algorithm via the variational approach[J].J Vis Commun Image R,2003,14:369-388..
    [33]Funt B, Ciurea F. Retinex in matlab[J].Journal of Electronic Imaging,2004,13(1): 48-57.
    [34]王超,叶中付.基于变分的图像增强算法和伪彩色映射[J].数据采集与处理理,2005,01:18-22.
    [35]C.Wang, Z.Ye. Brightness preserving histogram equalization with maximum entroPy:a variational perspective[J]. IEEE Transactions on Consumer Electronics,51(4): 1326-1334,2005.
    [36]林开颜,吴军辉.彩色图像分割方法综述[J].中国图象图形学报,2005,10(1):1-10.
    [37]程江华,高贵.SAR图像道路网提取方法综述[J].中国图象图形学报,2013,18(1):11-23.
    [38]赵凌君.SAR图像边缘检测方法综述[J].中国图象图形学报,2007,12(12):2042-2049.
    [39]皮志明.结合深度信息的图像分割算法研究[D].安徽:中国科学技术大学,2013.
    [40]王毅,冯前进,刘哲星.扩散张量磁共振图像分割研究进展[J].科学通报,2013,58(18):1719-1730.
    [41]熊太松.基于统计混合模型的图像分割方法研究[D].四川:电子科技大学,2013.
    [42]谢刚,盛彬,王芳.一种基于相容粒度空间的图像分割方法[J].控制与决策,2013,28(2):317-320.
    [43]纳跃跃,于剑.一种用于谱聚类图像分割的像素相似度计算方法[J].南京大学学报(自然科学版),2013,49(2):159-168.
    [44]高尚兵,周静波,严云洋.一种新的基于超像素的谱聚类图像分割算法[J].南京大学学报(自然科学版),2013,49(2):169-175.
    [45]徐少平,刘小平,李春泉,胡凌燕,杨晓辉.基于区域最大相似度的快速图像分割算法[J].光电子.激光,2013,24(5):990-998.
    [46]崔兆华,高立群,欧阳海滨,李文娜.融合全局最好和声搜索算法的模糊C均值聚类图像分割[J].中国图象图形学报,2013,18(9):1133-1141.
    [47]Robert Sablatnig, Kropatsch W.G. Application constraints in the design of air automatic reading device for analog display instruments[J]. Applications of Computer Vision,1994,12:205-212.
    [48]Kyong-Ho Kim,Sung-Li Chien,Yong-Bum Lee,Jong Min Lee.A Study on Analog and Digital Meter Recognition Based on Image Processing Technique.Joural of the Korean Institute of Telematics and Electronics,1995,9(32):79-94.
    [49]F.Correa Alegria, A.Cruzz Serra.Automatic Calibration of Analog and Digital Measuring Instruments Using Computer Vision[J].IEEE Transactions on Instrumentation and Measurement, February 2000,49(1):94-99.
    [50]F.Correa Alegria,A.Cruz Serra.Computer Vision Applied to The Automatic CMibration of Measuring Instruments[J].Measurement,2000,28.185-195.
    [51]王三武,戴亚文,景仁坤.复杂仪表的图像自动读数识别方法.武汉理工大学学报(信息与管理工程版),2003,6(25):76-78.
    [52]赵书涛.基于计算机视觉的直读仪表校验方法研究[D].河北:华北电力大学,2006.
    [53]宁志刚.仪表图像识别关键技术的研究[D].广东:广东工业大学,2007年.
    [54]张艳玲.仪表表盘参数符号识别技术研究[D].广东:广东工业大学,2008年.
    [55]刘焕军.灌装自动化生产线上视觉检测机器人研究[D].湖南:湖南大学,2007年.
    [56]Kopparapu S K. Lighting design for machine vision application[J]. Image and Vision Computing.2006,24(7):720-726.
    [57]田志辉,王瑞光,陈宇,苗静.LED显示屏高光效高画面填充比光学设计与研究[J].发光学报,2014,02:251-256.
    [58]朱铮涛.基于计算机视觉图像精密测量的关键技术研究[D].广东:华南理工大学,2004.
    [59]吴从均,颜昌翔,刘伟,张军强.方形孔径棱镜式成像光谱仪光学设计[J].光学学报,2013,12:228-234.
    [60]Carlson,B-S. Comparison of modern CCD and CMOS image sensor technologies and systems for low resolution imaging[C].IN:IEEE Sensors.2002,171-176.
    [61]董鸿燕.边缘检测的若干技术研究[D].国防科学技术大学,2008.
    [62]梁琳,何卫平,雷蕾,张维,王红霄.光照不均图像增强方法综述[J].计算机应用研究,2010,(05):1625-1628.
    [63]Gonzalez R. C, Woods R. E. Digital Image Processing(3 rd Edition) [M]. Upper Saddle River,NJ:Prentice-Hall, Inc.,2006.
    [64]Oppenheim A. V. Speech analysis-synthesis system based on homomorphic filtering[J]. Journal of the Acoustical Society of America,1969,45(2):458-465.
    [65]Fries R, Modestino J. Image enhancement by stochastic homomorphic filtering[J]. Transactions on Acoustics, Speech, and Signal Processing,1979,27(6):625-637.
    [66]Polesel A, Ramponi G, Mathews V. J. Image enhancement via adaptive unsharp masking[J].IEEE Transactions on Image Processing,2000,9(3):505-510.
    [67]陈强,纪则轩.基于光能分配的遥感图像增强[J].中国图象图形学报,2009,14(11):2284-2291.
    [68]Guillon S, Baylou P, Najim M, Keskes N. Adaptive nonlinear filters for 2D and 3D image enhancement [J]. Signal Processing,1998,67(3):237-254.
    [69]Gilboa G, Sochen N, Zeevi Y Y. Forward-and-backward diffusion processes for adaptive image enhancement and denoising[J]. IEEE Transactions on Image Processing, 2002,11(7):689-703.
    [70]Gilboa G, Sochen N, Zeevi Y Y. Image enhancement and denoising by complex diffusion processes[J]. IEEEE Transactions on Pattern Analysis and Machine Intelligence,2004, 26(8):1020-1036.
    [71]Chen Guan-Nan,Yang Kun-Tao,Rong Chen,Xie hi-Ming. A new study on image enhancement and denoising coupled with shock filters and anisotropic diffusion[C]. Proceedings-1st International Congress on Image and Signal Processing, 2008,3:231-235.
    [72]Guy Gilboa, Nir A. Sochen, Zeevi Y Y. Regularized shock filters and complex diffusion [C]. In:Proceedings of the 7th European Conference on Computer Vision, LNCS 2350, Springer-Verlag,2002:399-413.
    [73]刘洪江.基于机器视觉的毛杆缺陷检测技术的研究[D].广东:广东工业大学,2011.
    [74]Ludusan C,Lavialle O,Terebes R,Borda M,Pop S. Image enhancement using hybrid shock filters[C].2010 IEEE International Conference on Automation, Quality and Testing, Robotics.2010,3; 111-116.
    [75]Black M J, Sapiro G, Marimont D H, Heeger D. Robust anisotropic diffusion[J]. IEEE Transactions on Image Processing,1998,7(3):421-432.
    [76]KORNPROBST P, DERICHE R, AUBERT G. Image coupling, restoration and enhancement via PDE's [C]. Proc. Int. Conf. on Image Processing 1997:Santa-Barbara (USA),1997:458-461.
    [77]邓仕超,刘铁根,萧泽新.应用Canny算法和灰度等高线的金相组织封闭边缘提取[J].光学精密工程,2010,18(10):2314-2323.
    [78]唐苏湘,汪仁煌,韦玉科等.基于偏微分方程的舌图像去噪研究[J].计算机工程,2012,38(14):190-192.
    [79]Cheeger J, Yau S T. A lower bound for the heat kernel[J]. Communications on Pure and Applied Mathematics,1981,34(4):465-480.
    [80]Cheng S Y, Li P, Yau S T. On the upper estimate of the heat kernel of a complete Riemannian manifold[J]. American Journal of Mathematics,1981,103(5):1021-1063.
    [81]Cheng S Y,Yau S T. Differential equations on Riemannian manifolds and their geometric applications[J]. Communications on Pure and Applied Mathematics,1975,28(3): 333-354.
    [82]Grigor yan A. Heat kernel and analysis on manifolds[M]. AMS Bookstore(USA),2012.
    [83]Hein,M,Audibert,etc..From graphs to manifolds-weak and strong pointwise consis-tency of graph Laplacians[C]. In Proceeding of the 18th Conf. on Learning Theory (COLT),2005,486-500.
    [84]GRAHAM F C.Spectral graph theory[M].Fresno:American Mathematical Society,1997.
    [85]Ma Jianwei,Plonka G.The curve let transform[J]. IEEE Signal Processing Magazine, 2010,27(2):118-133.
    [86]V R S Mani,S Arivazhagan,J Jason Braino.Multimodal image fusion using multire-solution techniques[J].International Journal of Biomedical Engineering and Technology 2013,11(1):3160-3163.
    [87]Fanghan Chen,Wensheng Wang.Target recognition in clutter scene based on wavelet transform[J]. Optics Communication,2009,282(4):523-526.
    [88]吴德刚,张宇波,曹立波.一种改进的模糊边缘检测算法[J].激光与红外,2010,40(12):1374-1377.
    [89]沙秀艳,辛杰.基于最大熵的模糊核聚类图像分割方法[J].计算机工程,2011,37(10):187-188,191.
    [90]彭丰平,鲍苏苏,曾碧卿.基于自适应区域生长算法的肝脏分割[J].计算机工程与应用,2010,46(33):198-200.
    [91]朱煜,江林佳.基于遗传模糊C-均值与概率松弛法的图像分割研究[J].激光与红外,2008,38(4):392-395.
    [92]王凯,于海勋,王广平.一种改进的小波多尺度相乘目标边缘提取方法[J].计算机仿真,2009(10):244-247.
    [93]陈方涵,苗华,陈宇.基于小波多尺度积的目标识别[J].光学学报,2009(5):1223-1226.
    [94]Kass M, Witkin A, and Terzopoulos D. Snakes:Active Contour Models[J]. Int. J. Computer Vision,1988,1:321-331.
    [95]Hongbin Zhang,Guangli Li. Application in stomach epidermis tumors segmentation by GVF snake model[C].2008 International Seminar on Future BioMedical Information Engineering,2008,453-456.
    [96]xu C,Prince P L.Snakes,Shapes,and Gradient Vector Flow[J]. IEEE Trans on Image Processing,1998,7:359-369.
    [97]Marin-Jimenez Manuel,De La Blanca,Nicolas Perez. Matching deformable features based on oriented multi-scale filter banks[J].Lecture Notes in Computer Science, 2006,40(69):336.365.
    [98]Bhandarkar S M, Zhang Hui. Image Segmentation Using Evolutionary Computation[J]. IEEE Trans. On Evolutionary Computation.1999,3(1):1-21.
    [99]冯筠,叶豪盛,郭竞等.基于多分辨统计模型和曲面恢复的腹部图像分割算法[J].中国图象图形学报A,2010,15(3):481-489.
    [100]曹宗杰,闵锐,庞伶俐等.基于统计模型的变分水平集SAR图像分割方法[J].电子与信息学报,2008,30(12):2862-2866.
    [101]尹奎英,刘宏伟,金林等.一种基于多模分布的SAR图像分割算法[J].宇航学报,2011,32(4):879-887.
    [102]吕雁,冯大政.有监督的水平集高分辨SAR图像分割方法[J].电子科技大学学报,2011,40(3):357-362.
    [103]张开华,周文罡.一种改进的C-V主动轮廓模型[J],光电工程,2008,35(12):112-116.
    [104]潘改,高立群.基于局部熵的主动轮廓模型[J].中国图象图形学报,2013,01:78-85.
    [105]郑强,董恩清.窄带主动轮廓模型及在医学和纹理图像局部分割中的应用[J].自动化学报,2013,01:21-30.
    [106]罗红根,朱利民,丁汉.基于主动轮廓模型和水平集方法的图像分割技术[J].中国图象图形学报,2006,11(3):301-309.
    [107]闵莉,李小毛,唐延东,基于形状保持主动轮廓的椭圆状目标检测[J].光电工程,2008,35(2):52-58.
    [108]Osher S,Sethian J A. Fronts propagating with curvature dependent speed:algorithms based on Hamilton-Jacobi formulation[J] Journal of Com putational Physics,1988,79(6):12-49.
    [109]Mumford D, Shah J. Optimal Approximations by Piecewise Smooth Functions and Associated Variational Problems[J]. Communication ot Pure Applied Mathematics,1989, 42(5):577-685.
    [110]Chan F, Vese L.Active Contours Without Edges[J]. IEEE Trans.on Image Processing, 2001,10(2):266-277.
    [111]Adalsteisson D,Sethian J.A fast level set method for propagating interfaces[J]. Journal of Computational Physics,1995,118(2):269-277.
    [112]Sethian J.A fast marching level set method for monotonically advancing fronts[J]. Proceedings of National Academic Science,1996,93 (4):1591-1595.
    [113]Shi Y G,Karl W C.A fast level set method without solving PDEs[C].IEEE International Conference on Acoustics Speech and Signal Processing,2005(3):97-100.
    [114]Shi Y QKarl W C.A real time algorithm for the approximation of level set-based curve evolution[J].IEEE Trans on Image Processing,2008,17(5):645-656.
    [115]汪云飞,毕笃彦.无需设置阈值的快速水平集分割算法[J].西安电子科技大学学报,2012,05:132-139+196.
    [116]龚永义,罗笑南,黄辉.基于单水平集的多目标轮廓提取[J].计算机学报,2007,30(1):120-128.
    [117]王晓飞,庞全.基于圆形约束快速水平集的原生质体细胞分割[J].中国图象图形学报,2013,01:55-61.
    [118]李宏友,汪同庆.一种新的水平集进化模型[J].仪器仪表学报,2008,29(7):1365-1369.
    [119]徐玲凌,肖进胜.改进的C-V水平集模型图像分割算法[J].计算机工程,2009,35(10):210-213.
    [120]李传龙,李颖,兰国新.一种新的窄带快速区域水平集C-V模型图像分割方法[J].计算机科学,2011,12:17-19+35.
    [121]徐东,彭真明.基于C-V模型的改进快速水平集图像分割法[J].强激光与粒子束,2012,12:2817-2821.
    [122]V. Caselles, R. Kimmel. Geodesic active contours[J]. International Journal of Computer Vision,1977,22(1):61-79.
    [123]N. Paragios, R. Deriche. Geodesic active contours and level sets for the detection and tracking of moving objects[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(3):266-280.
    [124]X. Bresson, S. Esedoglu. Fast global minimization of the active contour/snake model[J]. Journal of Mathematical Imaging and Vision,2007,28(2):151-167.
    [125]Li C M,Xu C Y,Gui C F,et al. Level set evolution without re initialization:a new variational formulation[C].IEEE International Conference on Com puter Vision and Pattern ecognition.2005:1063-1069.
    [126]Richard Szeliski. Computer Vision:Algorithms and Applications[M].Springer(USA) Shop,2010.
    [127]Jiqiang Song, Michael R Lyu. A hough transform based line recognition method umizing both parameter space and image space.Pattern Recognition,38(4):539-552,2005.
    [128]Vladimir Shapiro.Accuracy of the straight line hough transform:The non-voting approach.Computer Vision and Image Understanding,103(1):1-21,2006.
    [129]李乔亮,李振宇,张会生,张小飞,陈听,陈思平,汪天富.归一化Radon变换和统计测度的超声图像肌束方向自动跟踪[J].中国图象图形学报,2013,09:1164-1169.
    [130]Rong-Chin Lo, Wen-Hsiang Tsai.Gray-scale hough transform for thick line detection in gray-scale images.Pattern Recognition,28(5):647-661,1995.
    [131]P.Tsitsipis,A.Kontogeorgos,A.Hillaris,X.Monssas. Fast estimation of slopes of linear and quasi-linear structures in nosy background,using fourier methods.Pattern Recognffion,40(2):563-577,2007.
    [132]Steven D B,Thomas S H.Error Analysis in Stereo Determination of 3D Point[J].IEEE Trans on Pattern Analysis and Machine Inteligence,1987,9(6):752-765.
    [133]Kamgar-Parsi B.Evaluation of Quantization Error in Computer Vision[J].IEEE Trans on Pattern Analysis and Machine Inteligence,1989, 11(9):929-940.
    [134]Yang C C,Marefat M M,Ciarallo F W.Error Analysis and Planning'Accuracy for Dimensional Measurement in Active Vision Inspection[J]. IEEE Trans on Robotics and Automation,1998,14(3):476-487.
    [135]刘阳成,朱枫.二值图像中直线拟合误差与直线方向的关系[J].模式识别与人工智能,2006,19(5):680-684.
    [136]吴一全,谢静.基于特征点最小距离拟合的文档图像倾斜检测[J].光学技术,2009(1),35(1):152-155.
    [137]张晓芸,朱庆生,曾令秋.基于直线拟合的文本倾斜检测算法[J].计算机应用研究,2005,06:251-253.
    [138]陈仁杰,刘利刚,董光昌.图像主特征直线的检测算法[J].中国图象图形学报,2010(3):403-408.
    [139]张文增,陈强,都东,孙振国.直线检测的灰度投影积分方法[J].清华大学学报(自然科学版),2005,11:6-9.
    [140]黄嘉辛,陆军,赵凌君.基于主导边界Radon变换的SAR目标方位角估计方法[J].计算机应用,2011,09:2473-2476.
    [141]陈国栋,孙立宁,杜志江,纪军红.一种利用形状片段的物体检测方法[J].自动化学报,2011,04:427-439.
    [142]陈军,徐友春,赵明,彭永胜.基于随机Hough变换的道路边界识别算法研究[J].中国图象图形学报,2009,05:905-911.
    [143]李学聪,汪仁煌,刘洪江等.指针表刻度中心直线拟合方法研究[J].计算机工程与设计,2012,33(7):2726-2729.
    [144]顾思妍.机器视觉的直线检测技术及应用研究[D].广东:广东工业大学,2011.
    [145]朱新岩,史忠科.基于残差特性分析的野值检测与剔除方法[J].飞行力学,2008,26(6):79-83.
    [146]宋克欧,黄凤岗,兰晓亭.二值图像目标质心快速搜索跟踪算法[J].模式识别与人工智能,1998(2):161-168.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700