用户名: 密码: 验证码:
基于液晶技术的光无源器件的研究与开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文将介绍基于液晶技术的一系列光无源器件的研究和开发。我们利用液晶的电控可调性,通过理论模拟和光学设计,完成了单通道可调光衰减器、双向可调多通道光隔离器以及40通道/100GHz通道间隔的波长阻隔器的研究开发。
     1.我们讨论了液晶的电控双折射效应以及液晶对于透射光强进行调制的原理。应用了液晶双折射率电控可调的特性,提出了一种可调光衰减器的设计方案。分析了由于液晶分子的表面铆定作用而产生的剩余位相以及由于全内反射引起的相位跃变对于可调光衰减器性能的影响。通过增加相位调制片,消除了光路系统中的剩余位相,使得可调光衰减器在整个通信波段的波长范围内,实现了最高达50dB以上的光衰减。通过改变液晶驱动电压实现了光衰减器的动态可调。
     2.介绍了基于磁光效应的光隔离器的工作原理。在此基础上,利用液晶和相位调制片对于透射光位相的调制,提出了一种工作波长在通信波段的双向可调多通道光隔离器的设计方案。并在实验上进行了验证,实现了100GHz的通道间隔和30dB以上的消光比。另外,利用波片堆栈技术调制了透射光的光谱特性,有效得提高了双向可调光隔离器各个通道的带宽,使得该器件更加具有实用性。
     3.我们提出了一种基于液晶和色散补偿技术的波长阻隔器的设计方案。利用光栅的衍射效应将不同波长的入射光分配到特定的液晶单元,通过液晶阵列来控制各个通道信号光的光强。同时,采用一个色散控制单元来提高色散并补偿了衍射光栅的非线性色散,使得每个液晶单元所控制光信号的中心波长符合ITU的标准。利用这个设计,我们制作了一个40通道100GHz通道间隔的波长阻隔器。各个通道的插入损耗(IL)都在-5dB左右,消光比达到了40dB左右,信道中心频率的偏移被控制士2GHz。偏振相关损耗(PDL)、回波损耗(RL)、通带和阻带的带宽都达到了实用要求。
     4.利用液晶技术和光栅技术,我们测量了表面等离激元增强效应下的古斯汉欣位移。通过光学设计,我们把古斯汉欣位移转换成了光栅表面入射角度的变化。利用衍射光栅的Littrow条件,通过间接测量Littrow波长的方法获得古斯汉欣位移的变化。测得在表面等离激元激发情况下,古斯汉欣位移的最大值约为10μm,对应的Littrow波长的变化为404pm。同时,通过测量不同入射角度下反射光插入损耗的变化,验证了表面等离激元的激发对于古斯汉欣位移的增强效应。
This thesis introduces the research and development of several optical passive devices. Through theoretical simulation, we design and fabricate a single-channel variable optical attenuator, a bidirectional multi-channel tunable DWDM optical isolator and a40channel/100-GHz channel-spacing wavelength blocker based on liquid crystal technology.
     1. We discuss the electrically controlled birefringence effect of liquid crystal and the principle of LC based light intensity modulator. By utilizing the birefringence tunability of liquid crystal, a variable optical attenuator is proposed. We also analyze the LC cell's residual phase and total-internal-reflection induced birefringence, which affect the VOA's performance. A well-placed true zero-order QWP is applied to eliminate the residual phase. The LC based variable optical attenuator with an over50dB dynamic range is demonstrated. With the adjustment of the QWP's orientation angle, the LC cell's driving voltage can decrease dramatically.
     2. We introduce the principle of a magneto-optical effect based isolator. By utilizing LC cell and phase modulator, a bidirectional multi-channel tunable DWDM optical isolator for C-band is designed and demonstrated.100-GHz channel spacing and over30dB contrast ratio is achieved. The spectral response at ITU grids are further flattened by using a wave plate stacking technique.
     3. A dynamic dense-wavelength-division multiplexing (DWDM) channel blocker and equalizer is developed based on liquid crystal (LC) and dispersion control technology. A multi-pixel LC array is adopted to regulate the power level of each DWDM channel while a reflective grating diffracts the input signals spatially to corresponding LC pixels. A dispersion control unit is proposed and employed to enhance the dispersion and compensate the intrinsic nonlinear dispersion of the grating. Therefore all LC pixels could handle corresponding lights centered at the ITU Grids. A40-channel,100-GHz channel-spacing dynamic wavelength blocker/equalizer is thus demonstrated with-5dB insertion loss (IL) and over40dB extinction ratio. The maximum center frequency shift of all40channels is-±2GHz, which means our dispersion control technology works very well for grating based DWDM devices. The Polarization dependent loss(PDL), Return Loss(RL) and channel bandwidth are satisfied with the commercial requirement.
     4. We measured the surface plasmon polariton (SPP) enhanced Goos-Hanchen (GH) shift based on LC and grating technologies. An optical setup is used to convert the spatial displacement to incidence angle variation to a Littrow mounted diffraction grating. As a consequence, the GH shift information could be obtained from the back-reflected center wavelength that fulfills the Littrow condition. A LC cell is used to adjust the polarization state of the incident light without mechanical movement. About10μm GH shift difference between TE (Transverse Electric) and TM (Transverse Magnetic) mode lights were measured associated with the SPP excitation. The corresponding center wavelength shift of the returned beam is404pm. The relationship between energy conversion and GH shift is also investigated.
引文
[1]K. C. Kao and G. A. Hockham, "Dielectric-Fibre Surface Waveguides for Optical Frequencies," IEE Proc.,113,1151 (1966)
    [2]李履信、沈建华编著,光纤通信系统,机械工业出版社,(2007)
    [3]D. K. Mynbaev and L. L. Scheiner, Fiber-Optic Communications Technology (Prentice Hall, Inc.2001), Chap.8.
    [4]李跃辉、王缨、沈建华编著,光纤通信网,西安电子科技大学出版社,(2009)
    [5]邱劲、卜志军,“光纤通信技术的现状及发展趋势”,数字技术与应用,1007-9416,(2010)
    [6]D. K. Mynbaev and L. L. Scheiner, Fiber-Optic Communications Technology (Prentice Hall, Inc.2001), Chap.13.
    [7]W. Streifer, D. R. Scifres, and R. D. Burnham, "Coupled Wave Analysis of DFB and DBR Laser," IEEE J. Quantum Electron.,13,134 (1977)
    [8]G. Morthier, K. David, P. Vankwikelberge, and R. Baets, "A New DFB-Laser Diode with Reduced Spatial Hole Burning," IEEE Photon. Technol. Lett.,2,388 (1990)
    [9]G. Morthier and R. Baets, "Design of Index-Coupled DFB Lasers with Reduced Longitudinal Spatial Hole Burning,"/Lightw. Technol.,9,1305 (1991)
    [10]A. W. Fang, B. R. Koch, R. Jones, E. Lively, D. Liang, Y. H. Kuo, and J. E. Bowers, "A Distributed Bragg Reflector Silicon Evanescent Laser," IEEE Photon. Technol. Lett.,20,1667 (2008)
    [11]T. Baba, T. Hamano, F. Koyama, and K. Iga, "Spontaneous Emission Factor of a Microcavity DBR Surface-Emitting Laser," IEEE J. Quantum Electron.,27, 1347(1991)
    [12]H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, "Quasicontinuous Wavelength Tuning in Super-Structure-Grating (SSG) DBR Laser," IEEE J. Quantum Electron.,32,433 (1996)
    [13]B. Mason, G. A. Fish, S. P. Denbaars, and L. A. Coldren, "Widely Tunable Sampled Grating DBR Laser with Integrated Electroabsorption Modulator," IEEE Photon. Technol. Lett.,11,638 (1999)
    [14]A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitebread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, "Widely Tunalbe DS-DBR Laser With Monolithically Integrated SOA:Design and Performance," IEEE J. Sel. Topics Quantum Electron.,11,149 (2005)
    [15]J. W. Goodman, F. I. Leonberger, S. Y. Kung, and R. A. Athale, "Optical Interconnections for VLSI System," Proc. IEEE,72,850 (1984)
    [16]Y. Hayashi, T. Mukaihara, N. Hatori, N. Ohnoki, A. Matsutani, F. Koyama, and K. Iga, "Record Low-Threshold Index-Guided InGaAs/GaAlAs Vertical-Cavity Surface-Emitting Laser with a Native Oxide Confinement Structure," Electron. Lett.,31,560 (1995)
    [17]N. Hatori, A. Mizutani, N. Nishiyama, A. Matsutani, T. Sakaguchi, F. Motomura, F. Koyama, and K. Iga, "An over 10-Gb/s Transmission Experiment Using a p-Type Delta-Doped InGaAs-GaAs Quantum-Well Vertical-Cavity Surface-Emitting Laser," IEEE Photon. Technol. Lett.,10,197 (1998)
    [18]K. Iga, "Vertical-Cavity Surface-Emitting Laser:Its Conception and Evolution," Jpn. J. Appl. Phys.,47,1 (2008)
    [19]E. Hall, G. Almuneau, J. K. Kim, O. Sjolund, H. Kroemer, and L. A. Coldren, "Electrically-Pumped, Single-epitaxial VCSELs at 1.55um with Sb-Based Mirrors," Electron. Lett.,35,1337 (1999)
    [20]P. J. A. Thijs, L. F. Tiemeijer, P. I. Kuindersma, J. J. M. Binsma and T. V. Dongen, "High-Performance 1.5um Wavelength InGaAs-InGaAsP Strained Quantum Well Lasers and Amplifiers," IEEE J. Quantum Electron.,27,1426 (1991)
    [21]D. G. Deppe, D. L. Huffaker, J. Shin, and Q. Deng, "Very-Low-Threshold Index-Confined Planar Microcavity Lasers," IEEE Photon. Technol. Lett.,7,965 (1995)
    [22]A. W. Fang, E. Lively, Y. H. Kuo, D. Liang and J. E. Bowers, "A Distributed Feedback Silicon Evanescent Laser," Opt. Express,16,4413 (2008)
    [23]V. Mizrahi, D. J. DiGiovanni, R. M. Atkins, S. G. Grubb, Y.K. Park, and J. M. P. Delavaux, "Stable Single-Mode Erbium Fiber-Grating Laser For Digital Communication," J. Lightw. Technol,11,2021 (1993)
    [24]J. T. Kringlebotn, J. L. Archambault, L. Reekie, J. E. Townsend, G. G. Vienne, and D. N. Payne, "Highly-efficient, Low-noise Grating-Feedback Er3+:Yb3+ codoped fibre laser," Electron. Lett.,30,972 (1994)
    [25]A. Asseh, H. Storoy, J. T. Kringlebotn, W. Margulis, B. Sahlgren, S. Sandgren, R. Stubbe, and G. Edwall, "10cm Yb3+ DFB fibre laser with permanent phase shifted grating," Electron. Lett.,31,969 (1995)
    [26]J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, "Spectrum-Sliced Fiber Amplifier Light Source for Multichannel WDM Applications," IEEE Photon. Technol. Lett., 5,1458 (1993)
    [27]M. Yamada, H. Ono, T. Kanamori, S. Sudo, and Y. Ohshi, "Broadband and gain-flattened amplifier composed of a 1.55um-band and 1.58um-band Er3+-doped fibre amplifier in a parallel configuration," Electron. Lett.,33,710 (1997)
    [28]P. F. Wysocki, J. B. Judkins, R. P. Espindola, M. Andrejco, and A. M. Vengsarkar, "Broad-Band Erbium-Doped Fiber Amplifier Flattened Beyond 40 nm Using Long-Period Grating Filter," IEEE Photon. Technol. Lett.,9,1343 (1997)
    [29]T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, "All-Optical Wavelength Conversion by Semiconductor Optical Amplifiers," J. Lightw. Technol.,14,942 (1996)
    [30]S. L. Danielsen, B. Mikkelsen, C. Joergensen, T. Durhuus, and K. E. Stubkjaer, "WDM Packet Switch Architectures and Analysis of the Influence of Tunable Wavelength Converters on the Performance," J. Lightw. Technol.,15,219 (1997)
    [31]J. Leuthold, C. H. Joyner, B. Mikkelsen, G. Raybon, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and C. A. Burrus, "100Gbit/s All-Optical Wavelength Conversion With Integrated SOA Delayed-Interference Configuration," Electron. Lett.,36,1129(2000)
    [32]S. Nakamura, Y. Ueno, and K. Tajima, "168-Gb/s All-Optical Wavelength Conversion With a Symmetric-Mach-Zehnder-Type Switch," IEEE Photon. Technol. Lett.,13,1091 (2001)
    [33]黄章勇编著,尤纤通信用新型光无源器件,北京邮电大学出版社,(2002)
    [34]A. T. T. D. Tran, Y. H. Lo, Z. H. Zhu, D. Haronian, and E. Mozdy, "Surface Micromachined Fabry-Perot Tunable Filter," IEEE Photon. Technol. Lett.,8,393 (1996)
    [35]F. Havermeyer, W. H. Liu, C. Moser, D. Psaltis, and G. J. Steckman, "Volume Holographic Grating-Based Continuously Tunable Optical Filter," Opt. Eng.,43, 2017(2004)
    [36]C. R. Giles, "Lightwave Applications of Fiber Bragg Grating,"J. Lightw. Technol,15,1391 (1997)
    [37]A. Iocco, H. G. Limberger, and R. P. Salathe, "Bragg Grating Fast Tunable Filter," Electron. Lett.,33,2147 (1997)
    [38]K. Inoue, T. Kominato, and H. Toba, "Tunable Gain Equalization Using a Mach-Zehnder Optical Filter in Multistage Fiber Amplifiers," IEEE Photon. Technol. Lett.,3,718 (1991)
    [39]D.I Yeom, H. S. Park, and B. Y. Kim, "Tubable Narrow-Bandwidth Optical Filter Based on Acoustically Modulated Fiber Bragg Grating," IEEE Photon. Technol. Lett.,16,1313(2004)
    [40]A. K. Roy, and C. S. Tsai, "Low-Sidelobe Weighted-Coupled Integrated Acoustooptic Tunable Filter Using Focused Surface Acoustic Waves," IEEE Photon. Technol. Lett.,4,1132 (1992)
    [41]T. Kawai, M. Koga, M. Okuno, and T. Kitoh, "PLC Type Compact Variable Optical Attenuator for Photonic Transport Network," Electron. Lett.,34,264 (1998)
    [42]Y. O. Noh, M. S. Yang, Y. H. Won, and W. Y. Hwang, "PLC-Type Variable Optical Attenuator Operated at Low Electrical Power," Electron. Lett.,36,2032 (2000)
    [43]B. Barber, C. R. Giles, V. Askyuk, R. Ruel, L. Stulz, and D. Bishop, "A Fiber Connectorized MEMS Variable Optical Attenuator," IEEE Photon. Technol. Lett., 10,1262 (1998)
    [44]C. Marxer, P. Griss, and N. F. de Rooij, "A Variable Optical Attenuator Based on Silicon Micromechanics," IEEE Photon. Technol. Lett.,11,233 (1999)
    [45]X. M. Zhang, A. Q. Liu, C. Lu, and D. Y. Tang, "MEMS Variable Optical Attenuator Using Low Driving Voltage for DWDM Systems," Electron. Lett.,38, 382(2001)
    [46]K. Hirabayashi, M. Wada, and C. Amano, "Optical-Fiber Variable-Attenuator Arrays Using Polymer-Network Liquid Crystal," IEEE Photon. Technol. Lett.,13, 487 (2001)
    [47]Y. Q. Lu, F. Du, Y. H. Lin, and S. T. Wu, "Variable Optical Attenuator Based on Polymer Stabilized Twisted Nematic Liquid Crystal," Opt. Express,12,1221 (2004)
    [48]Y. Q. Lu, X. Liang, Y. H. Wu, F. Du, and S. T. Wu, "Dual-Frequency Addressed Hybrid-Aligned Nematic Liquid Crystal," Appl. Phys. Lett.,85,3354 (2004)
    [49]X. Liang, Y. Q. Lu, Y. S. Wu, F. Du, H. Y. Wang, and S. T. Wu, "Dual-Frequency Addressed Variable Optical Attenuator With Submillisecond Response Time," Jpn. J. Appl. Phys.,44,1292 (2005)
    [50]Q. Li, A. A. Au, C. H. Lin, E. R. Lyons, and H. P. Lee, "An Efficient All-Fiber Variable Optical Attenuator via Acoustooptic Mode Coupling," IEEE Photon. Technol. Lett.,14,1563 (2002)
    [51]S. Park and S. H. Song, "Polymeric Variable Optical Attenuator Based on Long Range Surface Plasmon Polaritons," Electron. Lett.,42,402 (2006)
    [52]W. Zaets and K. Ando, "Optical Waveguide Isolator Based on Nonreciprocal Loss/Gain of Amplifier Covered by Ferromagnetic Layer," IEEE Photon. Technol. Lett.,11,1012 (1999)
    [53]J. Fujita, M. Levy, R. M. Osgood, Jr., L. Wilkens, and H. Dotsch, "Waveguide Optical Isolator Based on Mach-Zehnder Interferometer," Appl. Phys. Lett.,76, 2158(2000)
    [54]T. Ohara, H. Takara, I. Shake, K. Mori, K. Sato, S. Kawannishi, S. Mino, T. Yamada, M. Ishii, I. Ogawa, T. Kitoh, K. Magari, M. Okamoto, R. V. Roussev, J. R. Kurz, K. R. Parameswaran, and M. M. Fejer, "160-Gb/s OTDM Transmission Using Integrated All-Optical MUX/DEMUX With All-Channel Modulation and Demultiplexing," IEEE Photon. Technol Lett.,16,650 (2004)
    [55]H. Toda, T. Yamashita, T. Kuri, and K. I. Kitayama, "Demultiplexing Using an Arrayed-Waveguide Grating for Frequency-Interleaved DWDM Millimeter-Wave Radio-on-Fiber Systems," J. Lightw. Technol,21,1735 (2003)
    [56]H. Uetsuka, "AWG Technologies for Dense WDM Applications," IEEE J. Sel. Topics Quantum Electron.,10,393 (2004)
    [57]K. M. Jia, W. H. Wang, Y. Z. Tang, Y. R. Yang, J. Y. Yang, X. Q. Jiang, Y. M. Wu, M. H. Wang, and Y. L. Wang, "Silicon-on-Insulator-Based Optical Demultiplexer Employing Turning-Mirror-Integrated Arrayed-Waveguide Grating," IEEE Photon. Technol. Lett.,17,378 (2005)
    [58]J. Kim, J. Jung, S. Kim, and B. Lee, "Reconfigurable Optical Cross-Connect Using WDM MUX/DEMUX Pair and Tunable Fibre Bragg Grating," Electron. Lett,36,67 (2000)
    [59]R. Slavik and S. LaRochelle, "Large-Band Periodic Filters for DWDM Using Multiple-Superimposed Fiber Bragg Gratings," IEEE Photon. Technol. Lett.,14, 1704(2002)
    [60]X. J. Gu, W. Mohammed, and P. W. Smith, "Demonstration of All-Fiber WDM for Multimode Fiber Local Area Networks," IEEE Photon. Technol. Lett.,18, 244 (2006)
    [61]H. Toshiyoshi and H. Fujita, "Electrostatic Micro Torsion Mirrors for An Optical Switch Matrix," J. Microelectromech. Syst.,5,231 (1996)
    [62]C. R. Giles, V. Aksyuk, B. Barber, R Ruel, L. Stulz, and D. Bishop, "A silicon MEMS Optical Switch Attenuator and Its Use in Lightwave Subsystems," IEEE J. Sel. Topics Quantum Electron.,5,18 (1999)
    [63]R. T. Chen, H. Nguyen, and M. C. Wu, "A High-Speed Low-Voltage Stress-Induced Micromachined 2×2 Optical Switch," IEEE Photon. Technol. Lett.,11,1396 (1999)
    [64]V. Kaman, X. Z. Zheng, R. J. Helkey, C. Pusarla, and J. E. Bowers, "A 32-Element 8-Bit Photonic True-Time-Delay System Base on a 288×288 3-D MEMS Optical Switch," IEEE Photon. Technol. Lett.,15,849 (2003)
    [65]M. Yano, F. Yamagishi, and T. Tsuda, "Optical MEMS for Photonic Switching-Compact and Stable Optical Crossconnect Switches for Simple, Fast, and Flexible Wavelength Applications in Recent Photonic Networks," IEEE J. Sel. Topics Quantum Electron.,11,383 (2005)
    [66]E. Gros and L. Dupont, "Ferroelectric Liquid Crystal Optical Waveguide Switches Using the Double-Refraction Effect," IEEE Photon. Technol. Lett.,13, 115(2001)
    [67]F. Du, Y. Q. Lu, and S. T. Wu, "Electrically Tunable Liquid-Crystal Photonic Crystal Fiber," Appl. Phys. Lett.,85,2181 (2004)
    [68]Y. J. Liu, X. W. Sun, J. H. Liu, H. T. Dai, and K. S. Xu, "A Polarization Insensitive 2×2 Optical Switch Fabricated by Liquid Crystal-Polymer Composite," Apple. Phys. Lett.,86,041115 (2005)
    [69]A. L. Zhang, K. T. Chan, M. S. Demokan, V. W. C. Chan, P. C. H. Chan, H. S. Kwok, and A. H. P. Chan, "Integrated Liquid Crystal Optical Switch Based on Total Internal Reflection,",Apple. Phys. Lett.,86,211108 (2005)
    [70]Y. Shimazu, S. Nishi, and N. Yoshikai, "Wavelength-Division-Multiplexing Optical Switch Using Acoustooptic Deflector," J. Lightw. Technol.,5,1742 (1987)
    [71]T. Pohlmann, A. Neyer, and E. Voges, "Polarization Independent Ti:LiNbO3 Switches and Filters," IEEE J. Quantum Electron.,27,602 (1991)
    [72]I. Kiyat, A. Aydinli, and N. Dagli, "Low-Powr Thermooptical Tuning of SOI Resonator Switch," IEEE Photon. Technol. Lett.,18,364 (2006)
    [73]J. F. Song, Q. Fang, S. H. Tao, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, "Fast and Low Power Michelson Interferometer Thermo-Optical Swtich on SOI," Opt. Express,16,15304 (2008)
    [74]C. M. Tsai, H. Taga, C. H. Yang, Y. L. Lo, and T. C. Liang, "Demonstration of a ROADM Using Cyclic AWGs," J. Lightw. Technol.,29,2780 (2011)
    [75]L. Eldada, R. Blomquist, M. Maxfield, D. Pant, G. Boudoughian, C. Poga, and R. A. Norwood, "Thermooptic Planar Polyme Bragg Grating OADM's with Borad Tuning Range," IEEE Photon. Technol. Lett.,11,448 (1999)
    [76]Q. R. Huang, F. G. Luo, Z. Wang, M. Xia, J. Hu, J. Yuan, and G. Shen, "Parallel-Stage-Based Reconfigurable Optical Add-Drop Multiplexer for WDM Optical Transport Networks," IEEE Photon. Technol. Lett.,18,1864 (2006)
    [77]Q. R. Huang, F. G. Luo, J. Hu, Z. Wang, and M. Xia, "Fully Reconfigurable Optical Add-Drop Multiplexer Based on Parallel Configuration Using Mach-Zehnder Module," Opt. Commun.,269,113 (2007)
    [78]E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, "Reconfigurable Optical Add-Drop Multiplexer Using Microging Resonator," IEEE Photon. Technol. Lett.,17,2358 (2005)
    [79]P. M. Hagelin, U. Krishnamoorthy, J. P. Heritage, O. Solgaard, "Scalable Optical Cross-Connect Switch Using Micromachined Mirrors," IEEE Photon. Technol. Lett.,12,882 (2000)
    [80]D. M. Marom, D. T. Neilson, D. S. Greywall, C. S. Pai, N. R. Basavanhally, V. A. Aksyuk, D. O. Lopez, F. Pardo, M. E. Simon, Y. Low, P. Kolodner, and C. A. Bolle, "Wavelength-Selective 1×K Switches Using Free-Space Optics and MEMS Micromirrors:Theory, Design, and Implementation," J. Lightw. Technol., 23,1620(2005)
    [81]Y. K. Chen and C. C. Lee, "Fiber Bragg Grating-Based Large Nonblocking Multiwavelength Cross-Connects," J. Lightw. Technol.,16,1746 (1998)
    [82]S. K. Park, J. W. Park, S. R. Lee, H. Yoon, S. B.Lee, and S. S. Choi, "Multiwavelength Bidirectional Optical Crossconnect Using Fiber Bragg Gratings and Polarization Beam Splitter," IEEE Photon. Technol. Lett.,12,888 (2000)
    [83]S. Kim, "Bidirectional Opitcal Cross Connects for Multiwavelength Ring Networks Using Single Arrayed Waveguide Grating Router,"J. Lightw. Technol., 20,188 (2002)
    [84]H. Kosaka, M. Kajita, M. Yamada, and Y. Sugimoto, "A 16×16 Optical Full-Cross-Bar Connectiong Module with VCSEL-Array Push/Pull Module and Polymer-Waveguide Coupler Connector," IEEE Photon. Technol. Lett.,9,244 (1997)
    [85]W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dandliker, and N. de Rooij, "Application of SOI-Based Optical MEMS," IEEE J. Sel. Topics Quantum Electron.,8,148 (2002)
    [86]R. R. A. Syms, "Scaling Laws for MEMS Mirror-Rotatioin Optical Cross Connect Switches," J. Lightw. Technol.,20,1084 (2002)
    [87]V. A. Aksyu, F. Pardo, D. Carr, D. Greywall, H. B. Chan, M. E. Simon, A. Gasparyan, H. Shea, V. Lifton, C. Bolle, S. Arney, R. Frahm, M. Paczkowski, M. Haueis, R. Ryf, D. T. Neilson, J. Kim, C. R. Giles, and D. Bishop, "Beam-Steering Micromirrors for Large Optical Cross-Connects," J. Lightw. Technol.,21,634 (2003)
    [88]D. K. Yang, S. T. Wu, Fundamentals of Liquid Crystal Devices (John Wiley & Sons, Ltd., Chichester,2006), Chap.1.
    [89]范志新编著,液晶器件工艺基础,北京邮电大学出版社,(2000)
    [90]J. Borel, J. C. Deutsch, G. Labrunie, and J. Robert, "Liquid Crystal Diffaction Grating," US Patent 3,843,231 (1974)
    [91]W. Kulchke, K. Kosanke, E. Max, M. A. Haberger, T. J. Harris, and H. Fleisher, "Digital Light Deflector," Appl. Opt.,5,1657 (1966)
    [92]H. Meyer, D. Riekmann, K. P. Schmidt, U. J. Cschmidt, M. Rahlff, E. Schroder, and W. Thust, "Design and Performance of a 20-Stage Digital Light Beam Deflector,", Apple. Opt.,11,1732 (1972)
    [93]N. A. Riza and S. F. Yuan, "Reconfigurable Wavelength Add-Drop Filtering Based on a Banyan Network Topology and Ferroelectric Liquid Crystal Fiber-Optic Switches,"J. Lightw. Technol.,17,1575 (1999)
    [94]S. T. Wu and U. Efron, "Optical Properties of Thin Nematic Liquid Crystal Cells," Appl. Phys. Lett.,48,624 (1986)
    [95]M. Xu and D. K. Yang, "Dual Frequency Cholesteric Light Shutters," Appl. Phys. Lett,70,720 (1997)
    [96]S. T. Wu,"A Nematic Liquid Crystal Modulator With Response Time Less Than 100 us at Room Temperature," Appl. Phys. Lett.,57,986 (1990)
    [97]B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, "Liquid Crystal Lens With Spherical Electrode," Jpn. Appl. Phys.,41,1232 (2002)
    [98]M.Ye and S. Sato, "Optical Properties of Liquid Crystal Lens of Any Size," Jpn. J. Appl. Phys.,41,571 (2002)
    [99]H. Ren, Y. H. Fan, and S. T. Wu, "Tunable Fresnel Lens Using Nanoscale Polymer-Dispersed Liquid Crystal," Appl. Phys. Lett.,83,1515 (2003)
    [100]V. V. Presnyakov, K. E. Asatryan, and T. V. Galstian, "Polymer-Stabilized Liquid Crystal for Tunable Microlens Applications," Opt. Express,10,865 (2002)
    [101]J. De Merlier, K. Mizutani, S. Sudo, K. Naniwae, Y. Furushima, S. Sato, K. Sato, and K. Kudo, "Full C-Band External Cavity Wavelength Tunable Laser Using a Liquid-Crystal-Based Tunable Mirror," IEEE Photon. Technol Lett.,17, 681(2005)
    [102]P. Wang, L. K. Seah, V. M. Murukeshan, and Z. X. Chao, "Electronically Tunable External-Cavity Laser Diode Using a Liquid Crystal Deflector," IEEE Photon. Technol. Lett.,18,1612 (2006)
    [1]B. Barber, C. R. Giles, V. Askyuk, R. Ruel, L. Stulz, and D. Bishop, "A Fiber Connectorized MEMS Variable Optical Attenuator," IEEE Photon. Technol. Lett., 10,1262 (1998)
    [2]C. Marxer, P. Griss, and N. F. de Rooij, "A Variable Optical Attenuator Based on Silicon Micromechanics," IEEE Photon. Technol. Lett.,11,233 (1999)
    [3]X. M. Zhang, A. Q. Liu, C. Lu, and D. Y. Tang, "MEMS Variable Optical Attenuator Using Low Driving Voltage for DWDM Systems," Electron. Lett.,38, 382(2001)
    [4]C. C. Chen, C. K. Lee, and J. A. Yeh, "Retro-Reflection Type MOEMS VOA," IEEE Photon. Technol. Lett.,16,2290 (2004)
    [5]T. Kawai, M. Koga, M. Okuno, and T. Kitoh, "PLC Type Compact Variable Optical Attenuator for Photonic Transport Network," Electron. Lett.,34,264 (1998)
    [6]Y. O. Noh, M. S. Yang, Y. H. Won, and W. Y. Hwang, "PLC-Type Variable Optical Attenuator Operated at Low Electrical Power," Electron. Lett.,36,2032 (2000)
    [7]M. S Yang, Y. O. Noh, Y. H. Won, and W. Y. Hwang, "Very Low Crosstalk 12 Digital Optical Switch Integrated With Variable Optical Attenuator," Electron. Lett.,37,587 (2001)
    [8]L. Yang, Y. L. Liu, Y. Cheng, W. Wang, Q. M. Wang, "Multimode-Interference-Type Thermo-Optic Variable Optical Attenuator With a Response Frequency of 10 kHz," Opt. Eng.,42,606 (2003)
    [9]Y T. Li, Y. Y Chen, S. W. Chen and J. Z. Yu, "Silicon-On-Insulator Thermo-Optic Variable Attenuator Module With Fast Response," Opt. Eng.,44, 064062(2005)
    [10]I. Martincek, and D. Pudis, "Variable Liquid-Core Fiber Optical Attenuator Based on Thermo-Optical Effect," J. Lightw. Technol.,29,2647 (2011)
    [11]K. Hirabayashi, M. Wada, and C. Amano, "Optical-Fiber Variable-Attenuator Arrays Using Polymer-Network Liquid Crystal," IEEE Photon. Technol. Lett.,13, 487 (2001)
    [12]Y. Q. Lu, F. Du, Y. H. Lin, and S. T. Wu, "Variable Optical Attenuator Based on Polymer Stabilized Twisted Nematic Liquid Crystal," Opt. Express,12,1221 (2004)
    [13]Y. Q. Lu, X. Liang, Y. H. Wu, F. Du, and S. T. Wu, "Dual-Frequency Addressed Hybrid-Aligned Nematic Liquid Crystal," Apple. Phys. Lett.,85,3354 (2004)
    [14]Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren. Y. H. Fan, J. R. Wu, and S. T. Wu, "Submillisecond Response Variable Optical Attenuator Based on Sheared Polymer Network Liquid Crystal," Opt. Express,12,6377 (2004)
    [15]X. Liang, Y. Q. Lu, Y. S. Wu, F. Du, H. Y. Wang, and S. T. Wu, "Dual-Frequency Addressed Variable Optical Attenuator With Submillisecond Response Time," Jpn. J. Appl. Phys.,44,1292 (2005)
    [16]Q. Li, A. A. Au, C. H. Lin, E. R. Lyons, and H. P. Lee, "An Efficient All-Fiber Variable Optical Attenuator via Acoustooptic Mode Coupling," IEEE Photon. Technol. Lett.,14,1563 (2002)
    [17]D. K. Yang, S. T. Wu, Fundamentals of Liquid Crystal Devices (John Wiley & Sons, Ltd., Chichester,2006), Chap.1.
    [18]A. Yariv, P. Yeh, Optical Waves in Crystals (John Wiley & Sons, New York,1984), Chap.5
    [1]K. Shiraishi, T. Yanagi, Y. Aizawa, and S. Kawakami, "Fiber-Embedded In-Line Isolator," J. Lightw. Technol.,9,430 (1991)
    [2]K. Shiraishi, T. Chuzenji and S. Kawakami, "Polarization-independent in-line optical isolator with lens-free configuration," J. Lightw. Technol.,10,1839 (1992)
    [3]X. H. Ye, J. P. Li, X. G. Huang, M. Zhang, and P. D. Ye, "A Bulk Optical Isolator With High Optical Performance," Opt. Commun.,275,65 (2007)
    [4]W. Zaets and K. Ando, "Optical Waveguide Isolator Based on Nonreciprocal Loss/Gain of Amplifier Covered by Ferromagnetic Layer," IEEE Photon. Technol. Lett.,11,1012 (1999)
    [5]J. M. Hammer, G. A. Evans, G. Ozgur, and J. K. Butler, "Isolators, Polarizations, and Other Optical Waveguide Devices Using a Resonant-Layer Effect," J. Lightw. Technol.,22,1754 (2004)
    [6]Y. Shoji, I. Hsieh, R. M. Osgood, T. Mizumoto, "Polarization-Independent Magneto-Optical Waveguide Isolator Using TM-Mode Nonreciprocal Phase Shift,"J. Lightw. Technol.,25,3108 (2007)
    [7]R. Y. Chen, H. F. Zhou, G. M. Jiang, Y. L. Sun, Y. L. Hao, J. Y. Yang, M. H. Wang, and X. Q. Jiang, "A Proposal of Zero Leakage-Loss Passive Optical Combiner Based on Nonreciprocal Waveguide," IEEE Photon. Technol. Lett.,21,1493 (2009)
    [8]K. Xie, H. M. Jiang, W. Y. Zeng, and M. Xie, "Waveguide Isolator With Phase Mismatch," IEEE Photon. Technol. Lett.,21,1550 (2009)
    [9]J. Fujita, M. Levy, R. M. Osgood, Jr., L. Wilkens, and H. Dotsch, "Waveguide Optical Isolator Based on Mach-Zehnder Interferometer," Appl. Phys. Lett.,76, 2158 (2000)
    [10]Y. Shoji and T. Mizumoto, "Ultra-Wideband Design of Waveguide Magneto-Optical Isolator Operation in 1.31 um and 1.55 um Band," Opt. Express, 15,639 (2007)
    [11]Y. Shoji and T. Mizumoto, "Wideband Design of Nonreciprocal Phase Shift Magneto-Optical Isolator Using Phase Adjustment in Mach-Zehnder Interferometers," Appl. Opt.,45,7144 (2006)
    [12]H. F. Zhou, X. Q. Jiang, J. Y. Yang, Q. Zhou. T. B. Yu, and M. H. Wang, "Wavelength-Selective Optical Waveguide Isolator Based on Nonreciprocal Ring-Coupled Mach-Zehnder Interferometer," J. Lightw. Technol.,26,3166 (2008)
    [13]Z. C. Luo, A. P. Luo, and W. C. Xu, "Polarization-Controlled Tunable All-Fiber Comb Filter Based on a Modified Dual-Pass Mach-Zehnder Interferometer," IEEE Photon. Technol. Lett.,21,1066 (2009)
    [14]D. K. Mynbaev and L. L. Scheiner, Fiber-Optic Communications Technology (Prentice Hall, Inc.2001), Chap.13.
    [15]A. Yariv, P. Yeh, Optical Waves in Crystals (John Wiley & Sons, New York,1984), Chap.5
    [16]S. E. Harris, E. O. Ammann, I. C. Chang, "Optical Network Synthesis Using Birefringent Crystal.*I. Synthesis of Lossless Network of Equal-Length Crystal," J. Opt. Soc. Am.,54,1267 (1964)
    [1]C. M. Tsai, H. Taga, C. H. Yang, Y. L. Lo, and T. C. Liang, "Demonstration of a ROADM Using Cyclic AWGs," J. Lightw. Technol.,29,2780 (2011)
    [2]L, Eldada, R. Blomquist, M. Maxfield, D. Pant, G. Boudoughian, C. Poga, and R. A. Norwood, "Thermooptic Planar Polyme Bragg Grating OADM's with Borad Tuning Range," IEEE Photon. Technol. Lett.,11,448 (1999)
    [3]Q. R. Huang, F. G. Luo, J. Hu, Z. Wang, and M. Xia, "Fully Reconfigurable Optical Add-Drop Multiplexer Based on Parallel Configuration Using Mach-Zehnder Module," Opt. Commun.,269,113 (2007)
    [4]E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, "Reconfigurable Optical Add-Drop Multiplexer Using Microging Resonator," IEEE Photon. Technol. Lett.,17,2358 (2005)
    [5]H. Uetsuka, "AWG Technologies for Dense DWDM Applications," IEEE J. Sel. Topics Quantum Electron.,10,393 (2004)
    [6]K. Maru and Y. Abe, "Low-Loss, Flat-Passband and Aehermal Arrayed Waveguide Grating Multi/Demultiplexer," Opt. Express,15,18351 (2007)
    [7]H. Yuan, W. D. Zhong, and W. S. Hu, "FBG-Based Bidirectional Optical Cross Connects for Bidirectional WDM Ring Networks," J. Lightw. Technol,22,2710 (2004)
    [8]Q. R. Huang, F. G. Luo, Z. Wang, M. Xia, J. Hu, J. Yuan, and G. Shen, "Parallel-Stage-Based Reconfigurable Optical Add-Drop Multiplexer for WDM Optical Transport Networks," IEEE Photon. Technol. Lett.,18,1864(2006)
    [9]R. Srivastava, R. K. Singh, and Y. N. Singh, "Fiber-Optic Switch Based on Fiber Bragg Gratings," IEEE Photon. Technol. Lett.,20,1581 (2008)
    [10]D. M. Marom, D. T. Neilson, D. S. Greywall, C. S. Pai, N. R. Basavanhally, V. A. Aksyuk, D. O. Lopez, F. Pardo, M. E. Simon, Y. Low, P. Kolodner, and C. A. Bolle, "Wavelength-Selective 1 X K Switches Using Free-Space Optics and MEMS Micromirrors:Theory, Design, and Implementation," J. Lightw. Technol., 23,1620(2005)
    [11]M. C. Wu, O. Solgaard, and J. E. Ford, "Optical MEMS for Lightwave Communication," J. Lightw. Technol,24,4433 (2006)
    [12]C. Antoine, X. Li, J. S. Wang, and O. Solgaard, "Reconfigurable Optical Wavelength Multiplexer Using a MEMS Tunable Blazed Grating," J. Lightw. Technol,25,1 (2007)
    [13]N. A. Riza and N. Madamopoulos, "Compact Switched-Retroreflection-Based 2 ×2 Optical Switching Fabric for WDM Applications," J. Lightw. Technol,23, 247(2005)
    [14]J. Ertel, R. Helbing, C. Hoke, O. Landolt, K. Nishimura, P. Robrish, and R. Trutna, "Design and Performance of a Reconfigurable Liquid-Crystal-Based Optical Add/Drop Multiplexer," J. Lightw. Technol,24,1674 (2006)
    [15]X. Liang, Y. Q. Lu, Y. S. Wu, F. Du, H. Y. Wang, and S. T. Wu, "Dual-Frequency Addressed Variable Optical Attenuator With Submillisecond Response Time," Jpn. J. Appl. Phys.,44,1292 (2005)
    [16]F. Goos and H. Hanchen, "Ein neuer und fundamental Versuch zur Totalreflexion," Ann. Phys.,1,333 (1947)
    [17]F. Goos and H. Hanchen, "Neumessung des Strahlversetzungseffektes bei Totalreflexion," Ann. Phys.,5,251 (1949)
    [18]Helmut K. V. Lotsch, "Beam displacement at total reflection:the Goos-Hanchen effect, I*," Optik,32,116 (1970)
    [19]Helmut K. V. Lotsch, "Beam displacement at total reflection:the Goos-Hanchen effect,II*," Optik,32,189 (1970)
    [20]X. B. Yin, L. Hesselink, Z. W. Liu, N. Fang, and X. Zhang, "Large positive and negative lateral optical beam displacements due to surface plasmon resonance," Appl. Phys. Lett.,85,372 (2004)
    [21]X. B. Yin and L. Hesselink, "Goos-Hanchen shift surface plasmon resonance sensor," Appl. Phys. Lett.,89,261108 (2006)
    [22]Y. Wang, H. G. Li, Z. Q. Cao, T. Y. Yu, Q. S. Shen, and Y. He, "Oscillating wave sensor based on the Goos-Hanchen effect." Appl. Phys. Lett.,92,061117 (2008)
    [23]T. Y. Yu, H. G. Li, Z. Q. Cao, Y. Wang, Q. S. Shen, and Y. He, "Oscillating wave displacement sensor using the enhanced Goos-Hanchen effect in a symmetrical metal-cladding optical waveguide," Opt. Lett.,33,1001 (2008)
    [24]H. G. L. Schwefel, W. Kohler, Z. H. Lu, J. Fan, and L. J. Wang, "Direct experimental observation of the single reflection optical Goos-Hanchen shift," Opt. Lett.,33,794 (2008)
    [25]M. Merano, A. Aiello, G. W. Hooft, M. P. van Exter, E. R. Eliel, and J. P. Woerdman, "Observation of Goos-Hanchen shifts in metallic reflection," Opt. Express,15,15928 (2007)
    [26]H. Gilles, S. Girard, and J. Hamel, "Simple technique for measuring the Goos-Hanchen effect with polarization modulation and a position-sensitive detector," Opt. Lett.,27,1421 (2002)
    [27]曹庄琪编著,导波光学,科学出版社,(2007)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700