用户名: 密码: 验证码:
柱面多层结构快速格林函数法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
圆柱面共形天线作为一种最简单的曲面共形结构,受到学术界越来越广泛的重视,在工程上也得到了越来越多的应用。然而,目前还缺少关于该类结构的高效精确分析方法,已有的各类商业电磁仿真软件计算效率还不够高。鉴于以上研究现状,本文在已有研究的基础上,对基于柱面分层媒质格林函数的矩量法进行了详细和系统的研究。
     首先,本文详细和完整地推导了ejω t体制下柱面分层结构场型并矢格林函数各分量(EDGFs)的显式表示式,从而克服已有研究存在的表达式不完整、定义不清晰、推导不简洁等缺点。为后续研究打下基础。
     为了克服柱面分层结构场型并矢格林函数在数值计算时出现溢出问题,本文将场型并矢格林函数改写成关于贝塞尔函数比值式的表示式,从而避免直接计算高阶大自变量贝塞尔函数,有效克服数值溢出问题。与已有研究相比,本文结果更加简明、通用、易于算法实现。
     为了进一步提高已有算法计算空域场型并矢格林函数远区场的精度和效率,本文提出了一种基于有理函数逼近(RFFM)的表面波提取方法。该方法能够快速精确计算场型并矢格林函数近区和远区场,将已有快速方法场源距离的适用值提高一个数量级,从而有效提高精确分析电大尺寸问题的能力。
     为了能够采用RWG基函数等性能良好的空域基函数对柱面共形天线进行矩量法分析,本文对柱面空域混合位并矢格林函数作了进一步的研究。首先,在已有研究的基础上进一步研究了柱面谱域混合位并矢格林函数(MPDGFs)的表达式,对已有文献中存在的两组不同表达形式进行了重新推导和进一步的验证。同时,本文将RFFM方法推广到空域混合位并矢格林函数远区场的快速精确计算中。
     针对已有方法在计算空域混合位型并矢格林函数时存在轴线发散问题。本文提出了一种解析二阶渐近项提取方法,将谱域格林函数中与轴线相关的奇异项完全提取出来,并应用Sommerfeld恒等式解析变换到空域中,从而使得剩余数值计算部分快速收敛。与已有方法相比,该方法对基函数没有限制,收敛性和稳定性也更好。
     最后,在以上研究的基础上,本文采用基于屋顶基的空域矩量法,对柱面振子天线、矩形贴片天线的输入阻抗、表面电流、辐射方向图以及阵元间的互耦特性进行了分析。通过与其它算法结果及商业仿真软件相对比,说明本算法的准确性、高效性和适用性。
     本文相关研究结果可为圆柱面共形天线结构的快速、准确分析提供一套有效解决方案。
As the simplest conformal strucuture, cylindrical surface has received more andmore attention. Now, cylindrically conformal antennas have been widely applied inpractice. However, until now, there has no efficient and accurate analysis method forthis type of structure, the efficiency of the commercial software for electromagneticsimulation is not very satisfying. Due to this situation, in this thesis, an efficient andaccurate method, which is based on the method of moments (MoM) combined with thelayered Green’s functions for cylindrically stratified structure, is studied exhaustivelyand systematically.
     First, to overcome the problem in the literature for deriving the formula of theelectric dyadic Green’s functions (EDGFs) for cylindrically stratified structure, such asthe incomplete equations, the unclear definitions, and the complicated derivation, theexplicit formula of EDGFs is thoroughly rederived, which provides a foundation for thefollowing study.
     In order to avoid possible overflow/underflow problems in the numericalcalculations of EDGFs for cylindrically stratified media, the explicit expressions of thecomponents of EDGFs are rewritten in the ratios of Bessel and Hankel functions, whichavoids directly calculating Bessel and Hankel functions with high order and largearguments. Compared with other method, the procedure in this thesis is simpler, andeasier for programming and application.
     In order to further improve the accuracy and efficiency of the numerical method inthe calculation of the components of EDGFs in spatial domain. A surface-waveextraction method based on the rational function fitting method (RFFM) is proposed.The method can calculate both the near and far field of the components of EDGFsefficiently and accurately. The accuracy range between the source and field points isincreased by about one order, which can enhance the ability for analyzing theelectrically large antennas mounted on cylindrical surface.
     In the analysis of cylindrically stratified structure, in order to make use of theRWG basis function in the MoM procedure, the mixed potential dyadic Green’sfunctions (MPDGFs) for cylindrically stratified media are further studied in this thesis.Two different forms of MPDGFs reported in the literature are rederived anddemonstrated. Meanwhile, the RFFM is extended to calculate the far fields of thecomponents of MPDGFs.
     From the literature, it is found that the method proposed for the calculation ofspatial-domain MPDGFs can not be valid when the source and field points are locatedon the same axial line, which will make the MoM Procedure more complex. In order toovercome this problem, a two order analytical asymptotic term extraction method is proposed in this thesis. In this method, the singular parts related to the axial line arecompletely extracted, and then transformed into the spatial domain with the aid ofSommerfeld identities. After this extraction, the remaining parts in the spectral domainare fast convergent and can be easily transformed into the spatial domain using thenumerical method such as the generalized pencil of function method (GPOF). Unlikethe other method, this method need not choose special basis functions to cancel thesingularity in the spectral-domain MPDGFs. The performance of convergence andstability are significantly improved.
     At last, based on the above study, the MoM procedure combined with the roof-topbasis function is applied for analyzing dipole and rectangular antennas mounted on thecylindrical surface. The input impedance, surface current, radiation pattern and themutual coupling coefficients between antenna array elements are calculated. Incomparison to the results obtained by other algorithms and the simulation software, it isdemonstrated that the method in this thesis has a good performance of accuracy,efficiency and easy applicability.
     The procedure introduced in this thesis will provide a possibility for analyzingcylindrically conformal antennas more efficiently and accurately.
引文
[1] WONG K L. Design of nonplanar microstrip antennas and transmissionlines[M]. New York: John Wiley&Sons,1999.
    [2] Josefsson L, Persson P. Conformal array antenna theory and design[M]. NewYork: John Wiley&Sons,2006.
    [3]束咸荣,何炳发,高铁.相控阵雷达天线[M].北京:国防工业出版社,2007.
    [4]张光义.共形相控阵天线的应用与关键技术[J].中国电子科学研究院学报.2010,5(4):331-336.
    [5]朱松.共形天线的发展及其电子战应用[J].中国电子科学研究院学报.2007,2(6):562-567.
    [6] Katagi T, Chiba I. Review on recent phased array antenna technologies inJapan[C]. IEEE.2000,570-573.
    [7] Sipus Z, Skokic S, Kildal P S. Analysis of spherical arrays of microstripantennas using moment method in spectral domain[J]. IEE Proc.-Microw.AntennasPropag.2006,153(6):533-543.
    [8] Wincza K, Gruszczynski S. Influence of curvature radius on radiation patternsin multibeam conformal antennas[C]. Proceedings of the36th European MicrowaveConference.2006:1410-1413.
    [9] Knott P. Faceted vs. smoothly curved antenna front-end for a conformal arrayradar demonstrator[C].2005.
    [10] Deschamps G A. Microstrip microwave antennas[C]. the3rd USAF Symp. onantennas.1953.
    [11] Chew W C, and Jiang L J. Overview of large-scale computing the past thepresent and the future[J]. Proceedings of the IEEE.2013,101(2):227-241.
    [12]何芒.宽频带圆柱共形微带天线的频域和时域全波分析与设计[D].北京:北京理工大学,2003.
    [13]王元源.圆柱共形微带结构的快速算法研究[D].西安:西安电子科技大学,2009.
    [14] Sun J, Development of Green's functions and its application for cylindricallystratified media[D]. Singapore: National University of Singapore,2004.
    [15] Acar R C. Numerically efficient analysis and design of conformal printedstructures in cylindrically layered media[D]. Ankara: Middle East Technical University,2007.
    [16] Bhattacharyya A K, Garg R. Generalised transmission line model formicrostrip patches[J]. IEE Proceedings Pt. H.1985,132(2):93-98.
    [17] Wong K L, Liu Y H, Huang C Y. Generalised transmission-line model forcylindrical-rectangular microstrip antennas[J]. Microwave and optical technology letters.1994,7(16):729-732.
    [18] Wong K L, Huang C Y, Liu Y H. Generalized transmission line model forcylindrical-circular microstrip antennas[J]. Microwave and optical technology letters.1995,8(2):63-66.
    [19] Huang C Y, Liu Y H, Wong K L. Input impedance calculation of cylindricalrectangular microstrip antennas using GTLM theory[J]. IEEE.1995,1792-1795.
    [20] Huang C Y, Chang Y T. Curvature effects on the mutual coupling ofcylindrical-rectangular microstrip antennas[J]. Electronic letters.1997,33(13):1108-1109.
    [21] Lo Y T, Solomon D, Richards W F. Theory and experiment on microstripantennas[J]. IEEE Transactions on Antennas and Propagation.1979,27(2):137-145.
    [22] Luk K M, LEE K F, Dahele J S. Analysis of the cylindrical-rectangular patchantenna[J]. IEEE Transactions on Antennas and Propagation.1989,37(2):143-147.
    [23] Luk K M, LEE K F. Characteristics of the cylindrical-circular patchantenna[J]. IEEE Transactions on Antennas and Propagation.1990,38(7):1119-1123.
    [24] Lima A C C, Giarola A J. Cylindrical-rectangular microstrip antenna with thepatch along a helical direction[J]. IEEE.1991,346-349.
    [25] Wong K L, Ke S Y. Cylindrical-rectangular microstrip patch antenna forcircular polarization[J]. IEEE Transactions on Antennas and Propagation.1993,41(2):246-249.
    [26] Ke S Y, Wong K L. Cross-polarization characteristics of rectangularmicrostrip patch antennas on a cylindrical surface[J]. Microwave and optical technologyletters.1993,6(16):911-914.
    [27] Yang C, Ruan Y Z. Radiation characteristics of wraparound microstripantenna on cylindrical body[J]. Electronics letters.1993,29(6):512-514.
    [28] Wong K L, Chen J S. Cavity-model analysis of a slot-coupledcylindrical-rectangular microstrip antenna[J]. Microwave and optical technology letters.1995,9(3):124-127.
    [29] Chen J S, Wong K L. Mutual coupling computation of cylindrical-rectangularmicrostrip antennas using cavity-model theory[J]. Microwave and optical technologyletters.1995,9(6):323-326.
    [30] Chen J S, Wong K L. Theory and experiment of slot-coupled cylindricalrectangular and circular microstrip antennas[J]. IEEE.1996:688-691.
    [31] Heckler M V T, Bonadiman M, Schildberg R, Cividanes L, Lacava J C D S.CAD package to design rectangular probe-fed microstrip antennas conformed oncylindrical structures[C]. proceedings SBMO/IEEE MTT-S IMOC.2003:747-752.
    [32] Heckler M V T, Bonadiman M, Lacava J C, Cividanes L, Analysis ofcylindrical circumferential array with circular polarization for space applications[C].IEEE.2004:117-120.
    [33] Heckler M V T, Lacava J C D S, Cividanes L. Design of a circularly polarizedmicrostrip arrary mounted on a cylindrical surface[J]. IEEE.2005:266-269.
    [34] Taflove A. Computational electrodynamics: the finite-difference time-domainmethod[M]. Boston&London: Artech House,2000.
    [35] Jin J M. The finite element method in electromagnetics[M](2nd). New York:John Wiley&Sons,2002.
    [36] Zienkiewicz O C. The finite element method for solid and structuralmechanics[M]. Oxford&Boston London New York Paris: BH-Butterworth-Heinemann,2005.
    [37] Harrington R F. Field computation by moment methods[M]. New York: IEEEPress,1993.
    [38] Gibson W C. The method of moments in electromagnetics[M]. New York:Chapman&Hall/CRC,2008.
    [39] Park D H. Analysis of cylindrical rectangular microstrip patch antennas oncylindrical body by using the finite difference time domain method[C]. Proceedings.(ICCEA '99)1999International Conference.1999:207-209.
    [40] Yu W, Farahat N, Mittra R. Application of FDTD method to conformal patchantennas[J]. IEE Proc.-Microw. Antennas Propag.2001,148(3):218-220.
    [41] Craddock I J, Paul D J, Railton C J, Ball G, Watts J. Cylindrical-cartesianFDTD model of a17-element conformal antenna array[J]. Electronics letters.2001,37(24):1429-1431.
    [42] He M, Xu X W. Full-wave analysis and wide-band design of probe-fedmultilayered cylindrical-rectangular microstrip antennas[J]. IEEE Transactions onAntennas and Propagation.2004,52(7):1749-1757.
    [43] Lu Q, Xu X W, He M. Analysis of a probe-fed cylindrically conformalmicrostrip patch antenna using the conformal FDTD algorithm[C]. IEEE2007international symposium on microwave, antenna, propagation, and EMC Technologiesfor wireless communications.2007,876-879.
    [44]盛新庆.计算电磁学要论[M].北京:科学出版社,2004.
    [45] Jin J M, Volakis J L. A hybrid finite element method for scattering andradiation by microstrip patch antennas and arrays residing in a cavity[J]. IEEETransactions on Antennas and Propagation.1991,39(11):1598-1604.
    [46] Kempel L C, Volakis J L, Sliva R J. Radiation by cavity-backed antennas on acircular cylinder[J]. IEE Proc-microw. Antennas Propaga.1995,142(3):233-239.
    [47] Jin J M, Berrie J A, Kipp R, Lee S W. Calculation of radiation patterns ofmicrostrip antennas on cylindrical bodies of arbitrary cross section[J]. IEEETransactions on Antennas and Propagation.1997,45(1):126-132.
    [48] Macon C A, Kempel L C, Schneider S W. Radiation and scattering bycomplex conformal antennas on a circular cylinder[J]. Advances in computationalmathematics.2002,16:191-209.
    [49] Sarkar T K, Rao S M, Djordjevic A R. Electromagnetic scattering andradiation from finite microstrip structures[J]. IEEE Transactions on Microwave Theoryand Techniques.1990,38(11):1568-1575.
    [50] Rao S M, Cha C C, Cravey R L, Wilkes D L. Electromagnetic scattering fromarbitrary shaped conducting bodies coated with lossy materials of arbitrary thickness[J].IEEE Transactions on Antennas and Propagation.1991,39(5):627-631.
    [51]董健.边界积分方程及快速算法在分析复杂电磁问题中的研究与应用[D].长沙:国防科学技术大学,2005.
    [52] Sarkar T K, Arvas E. A integral equation approach to the analysis of finitemicrostrip antennas: Volume/surface formulation[J]. IEEE Transactions on Antennasand Propagation.1990,38(3):305-312.
    [53] Lu C C, Chew W C. A coupled surface-volume integral equation approach forthe calculation of electromagnetic scattering from composite metallic and materialtargets[J]. IEEE Transactions on Antennas and Propagation.2000,48(12):1866-1868.
    [54]肖科.体面结合积分方程及快速算法在复杂电磁问题中的分析与应用[D].长沙:国防科学技术大学,2011.
    [55] Greengard L, Rokhlin V. A fast algorithm for partical simulations[J].J.Comput.Phys.1987,73(2):325-348.
    [56] Lu C C, Chew W C. A multilevel algorithm for solving boundary integralequations[J]. Microwave Opt Technol Lett.1994,7(10):466-470.
    [57] Chew W C, Jin J M, Michielssen E, Song J. Fast and efficient algorithm incomputational electromagnetics[M]. Boston&London: Artech House,2001.
    [58] Sarkar T K, Arvas E, Rao S M. Application of FFT and the conjugate gradientmethod for the solution of electromagnetic radiation from electrically large and smallconducting bodies[J]. IEEE Transactions on Antennas and Propagat.1986,34(5):635-640.
    [59] Gan H, Chew W C. A discrete BCG-FFT algorithm for solving3Dinhomogeneous scatter problems[J]. Journal of electromagnetic waves and applications.1995,9:1339-1357.
    [60] Bleszynski E, Bleszynski M, Jaroszewicz T. A fast integral equation solver forelectromagnetic scattering problems[C]. IEEE Antennas and Propagat Symp.1994,1:416-419.
    [61] Bleszynski E, Bleszynski M, Jaroszewicz T. AIM: Adaptive integral methodfor solving large-scale electromagnetic scattering and radiation problems[J]. RadioScience.1996,31(5):1225-1251.
    [62] Nie X C, Li L W, Ning Y. Precorrected-FFT algorithm for solving combinedfield integral equations in electromagnetic scattering[J]. Journal of ElectromagneticWaves and Applications.2002,16(8):1171-1187.
    [63] Nie X C, Li L W, Ning Y. Fast analysis of scattering by arbitrarily shapedthree-dimensional objects using the precorrected-FFT method[J]. Microwave andOptical Technology Letters.2002,34(6):438-442.
    [64] Wait J. R. Electromagnetic propagation from cylindrical structures[M]. NewYork: Pergamon,1959.
    [65] Pearson L W. A construction of the fields radiated by z-directed point sourcesof current in the presence of a cylindrically layered obstacle[J]. Radio Science.1986,21(4):559-569.
    [66] Lovell J R, Chew W C. Response of a point source in a multicylindricallylayered medium[J]. IEEE Transactions on Geoscience and Remote Sensing.1987,25(6):850-858.
    [67] Chew W C. Waves and fields in inhomogeneous media[M]. New York: IEEEPress,1995.
    [68] Xiang Z G, and Lu Y L. Electromagnetic dyadic Green's function incylindrically multilayered media[J]. IEEE Transaction on microwave theory andtechniques.1996,44(4):614-621.
    [69] Li L W, Leong M S, Yeo T S, Kooi P S. Electromagnetic dyadic Green'sfunctions in spectral domain for multilayered cylinders[J]. Journal of ElectromagneticWaves and Applications.2000,14:961-985.
    [70] Tokgoz C, Dural G. Closed-form Green's functions for cylindrically stratifiedmedia[J]. IEEE Transactions on Microwave Theory and Techniques.2000,48(1):40-49.
    [71] Sun J, Wang C F, Li LW, Leong M S. A complete set of spatial-domaindyadic Green's function components for cylindrically stratified media in fastcomputational form[J]. Journal of Electromagnetic Waves and Applications.2002,16(11):1491-1509.
    [72] Hall R C, Thng C H, Chang D C. Mixed potential Green's functions forcylindrical microstrip structures[C]. IEEE.1995:1776-1779.
    [73] Bertuch T, Vipiana F, Vecchi G. Efficient analysis of printed structures ofarbitrary shape on coated cylinders via spatial-domain mixed-potential Green'sfunction[J]. IEEE Transactions on Antennas and Propagation.2012,60(3):1425-1439.
    [74] Sun J, Wang C F, Li L W, Leong M S. Mixed potential spatial domain Green'sfunctions in fast computational form for cylindrically stratified media[J]. Progress InElectromagnetics Research.2004,45:181-199.
    [75]胡梦中,尹成友,宋铮.圆柱分层介质中格林函数的完整求解II:混合位格林函数[J].微波学报.2009,25(4):11-15.
    [76] Nakatani A, Alexopoulos N G, Uzunoglu N K, Uslenghi P L E. AccurateGreen's function computation for printed circuit antennas on cylindrical substrates[J].Electromagnetics.1986:243-254.
    [77] He M, Xu X W. Closed-form solutions for analysis of cylindrically conformalmicrostrip antennas with arbitrary radii[J]. IEEE Transactions on Antennas andPropagation.2005,53(1):518-525.
    [78] Karan S. Closed-form Green's functions in cylindrically stratified media formethod of moments applications[D]. Bilkent university,2006.
    [79] Karan S, Erturk V B, Altintas A. Closed-form Green's functionrepresentations in cylindrically stratified media for method of moments applications[J].IEEE Transactions on Antennas and Propagation.2009,57(4):1158-1168.
    [80] Wu J, Khamas S K, Cook G G. An efficient asymptotic extration approach forthe Green's functions of conformal antennas in multilayered cylindrical media[J]. IEEETransactions on Antennas and Propagation.2010,58(11):3737-3742.
    [81] Sun J, Wang C F, Li L W, Leong M S. Further improvement for fastcomputation of mixed potential Green's functions for cylindrically stratified media[J].IEEE Transactions on Antennas and Propagation.2004,52(11):3026-3036.
    [82] Karan S, Erturk V B, Altintas A. Closed-form Green's functionrepresentations in cylindrically stratified media for method of momentsapplications--EUcap[C]. Proc.'EuCAP2006', Nice.France.2006.
    [83] Karan S, Erturk V B. Closed-form Green's functions in cylindrically stratifiedmedia for method of moments applications[J]. IEEE.2009,473-476.
    [84] Acar R C, Dural G. Mutual coupling of printed elements on a cylindricallylayered structure using closed-form Green's functions[J]. Progress In ElectromagneticsResearch.2008,78:103-127.
    [85] Vecchi G, Bertuch T, Orefice M. Spectral-domain analysis of printed antennasgeneral shape on cylindrical substrates[C]. IEEE.1997:1496-1499.
    [86] Salzburg C G, Bertuch T, Veccchi G. Improved efficiency of spatialmixed-potential Green's function computation for coated cylinders[C]. IEEE.2010.
    [87] Erturk V B, Rojas R G. Efficient computation of surface fields excited on adielectric-coated circular cylinder[J]. IEEE Transactions on Antennas and Propagation.2000,48(10):1507-1516.
    [88] Erturk V B, Rojas R G. Paraxial space-domain formulation for surface fieldson a large dielectric coated circular cylinder[J]. IEEE Transactions on Antennas andPropagation.2002,50(11):1577-1587.
    [89] Erturk V B, Rojas R G. Efficient analysis of input impedance and mutualcoupling of microstrip antennas mounted on large coated cylinders[J]. IEEETransactions on Antennas and Propagation.2003,51(4):2003.
    [90] Erturk V B, Rojas R G Lee K W. Analysis of finite arrays of axially directedprinted dipoles on electrically large circular[J]. IEEE Transactions on Antennas andPropagation.2004,52(10):2586-2595.
    [91] Alisan B. Efficient computation of surface fields excited on an electricallylarge circular cylinder with an impedance boundary condition[D]. Bilkent University,2006.
    [92] Erdol T. An asymptotic closed-form paraxial formulation for surface fields onelectrically large dielectric coated circular cylinders[D]. Bilkent unversity,2005.
    [93] Kaifas T N, Sahalos J N. Analysis of printed antennas mounted on a coatedcircular cylinder of arbitrary size[J]. IEEE Transactions on Antennas and Propagation.2006,54(10):2797-2807.
    [94] Bertuch T, Vecchi G. Efficient space-domain formulation for integral equationmodelling of printed metallizations on coated cylinders[C]. IEEE.2009:148-151.
    [95] Bertuch T, Cardenas G M G, Salzburg C G, Vecchi G. Improvement of theefficient integral equation modeling of printed antennas on coated cylinders[C]. IEEE.2011,163-166.
    [96] Svezhentsev A Y, Vandenbosch G A E. Mixed-potential Green's functions forsheet electric current over metal-dielectric cylindrical structure[J]. Journal ofElectromagnetic Waves and Applications.2002,16(6):813-835.
    [97] Boix R R, Fructos A L, Mesa F. Closed-form uniform asymptotic expansionsof Green's functions in layered media[J]. IEEE Transactions on Antennas andPropagation.2010,58(9):2934-2945.
    [98] Alparslan A, Aksun M I, Michalski K A. Closed-form Green's functions inplanar layered media for all ranges and materials[J]. IEEE Transactions on Antennasand Propagation.2010,58(3):602-613.
    [99] Chew W C. The singularities of a Fourier-type integral in a multicylindricallayer problem[J]. IEEE Transactions on Antennas and Propagation.1983,31(4):653-655.
    [100] Alexopoulos N G, Nakatani A. Cylindrical substrate microstrip linecharacterization[J]. IEEE Transactions on Microwave Theory and Techniques.1987,35(9):843-849.
    [101] Nakatani A, Alexopoulos N G. Microstrip circuit elemants on cylindricalsubstrates[C].1987IEEE MTT-S Digest.1987:739-742.
    [102] Nakatani A, Alexopoulos N G. Microstrip elements on cylindricalsubstrates-general algorithm and numerical results[J]. Electromagnetics.1989,9:405-426.
    [103] Chen H M, Wong K L. Characterization of cylindrical microstrip gapdiscontinuities[J]. Microwave and Optical Technology Letters.1995,9(5):260-263.
    [104] Tam W Y, Lai A K Y, Luk K M. Cylindrical rectangular microstrip antennasusing slot coupling[C]. SBMO/IEEE MTT-S IMOC'95Proceedings.1995:247-252.
    [105] Nakatani A, Alexopoulos N G. Coupled microstrip lines on a cylindricalsubstrate[J]. IEEE Transactions on Microwave Theory and Techniques.1987,35(12):1392-1398.
    [106] Wong K L, Cheng Y T, Row J S. Resonance in a superstrate-loadedcylindrical-rectangular microstrip structure[J]. IEEE Transactions on MicrowaveTheory and Techniques.1993,41(5):814-819.
    [107] Wong K L, Cheng Y T. Row J S. Analysis of a cylindrical-rectangularmicrostrip structure with an airgap[J]. IEEE Transactions on microwave theory andtechniques.1994,42(6):1032-1037.
    [108] Wong K L, Pan S C. Resonance in a cylindrical-triangular microstripstruture[J]. IEEE transactions on microwave theory and techniques.1997,45(8):1270-1272.
    [109] Ali S M, Habashy T M, Kiang J F, Kong J A. Resonance incylindrical-rectangular and wraparound microstrip structures[J]. IEEE Transactions onMicrowave Theory and Techniques.1989,37(11):1773-1783.
    [110] Habashy T M, Ali S M, Kong J A. Input impedance and radiation pattern ofcylindrical-rectangular and wraparound microstrip antennas[J]. IEEE Transactions onAntennas and Propagation.1990,38(5):722-731.
    [111] Silva F D C, Fonseca S B D A, Soares A J M, Giarola A J. Analysis ofmicrostrip antennas on circular-cylindrical substrates with a dielectric overlay[J]. IEEETransactions on Antennas and Propagation.1991,39(9):1398-1404.
    [112] Tam W Y, Lai A K Y, Luk K M. Cylindrical rectangular microstrip antennaswith coplanar parasitic patches[J]. IEE. Proc.-Microw. Antenna Propag.,1995142(4):300-306.
    [113] Kiang J F. Resonance properties of cylindrical rectangular patch withcomposite ground plane[J]. IEE Proc.-Microw.Antennas Propag.1995,142(4):307-313.
    [114] Lu J H, Wong K L. Analysis of slot-coupled double-sided cylindricalmicrostrip lines[J]. IEEE Transactions on Microwave Theory and Techniques.1996,44(7):1167-1170.
    [115] Raffaelli S, Sipus Z, Kildal P S. Analysis and measurements of conformalpatch array antennas on multilayer circular cylinder[J]. IEEE Transactions on Antennasand Propagation.2005,53(3):1105-1113.
    [116] Sun J, Wang C F, Li L W. Characterizing helical microstrip antennamounted on a dielectric-coated circular cylinder using MoM and closed-form Green'sfunction[J]. IEEE Antennas and Wireless Propagation Letters.2004,3:15-18.
    [117] Svezhentsev A, Vandenbosch G A E. Efficient spatial domain momentmethod solution of cylindrical rectangular microstrip antennas[J]. IEE Proc.-Microw.Antennas Propag.2006,153(4):376-384.
    [118] Tsai R B, Wong K L. Characterization of cylindrical microstriplinesmounted inside a ground cylindrical surface[J]. IEEE Transactions on MicrowaveTheory and Techniques.1995,43(7):1607-1610.
    [119] Bouttout F, Lethimonnier F, Bihan D L. Full-wave analysis of singlecylindrical striplines and microstriplines with multilayer dielectrics[J].Int.J.Numer.Meth.Engng.2006,68:809-835.
    [120] Werner D H, Allard R J, Martin R A, Mittra R. A reciprocity approach forcalculating radiation patterns of arbitrarily shaped microstrip antennas mounted oncircularly cylindrical platforms[J]. IEEE Transactions on Antennas and Propagation.2003,51(4):730-738.
    [121] Akyuz M S, Erturk V B, Kalfa M. Closed-form Green's functionrepresentations for mutual coupling calculations between apertures on a perfect electricconductor circular cylinder covered with dielectric layers[J]. IEEE Trans.Antennasand propagation.2011,59(8):3094-3098.
    [122] Wu J, Khamas S K, Cook G G. Analysis of a conformal archimedean spiralantenna printed within layered dielectric cylindrical media using the method ofmoments[J]. IEEE Transactions on Antennas and Propagation.2012,60(8):3967-3971.
    [123] Svezhentsev A Y, Kryzhanovskiy V V. Cylindrical antenna array withslotted strip-framed patches fed by a microstrip line[J]. IEEE.2010.
    [124] Bosiljevac M, Skokic S, Sipus Z. Analysis of conformal arrays using spectraldomain approach-comparison of different asymptotic extraction methods[C]. IEEE.2010.
    [125] Vegni L, and Toscano A. The method of lines for mutual coupling analysisof a finite array of patch antennas on a cylindrical stratified structure[J]. IEEEtransactions on antennas and propagation.2003,51(8):1907-1913.
    [126] Alu A, Bilotti F, Vegni L. Method of lines numerical analysis of conformalantennas[J]. IEEE Transactions on antennas and propagation.2004,52(6):1530-1540.
    [127] Heckler M V T, Dreher A. Analysis of conformal microstrip antennas withthe discrete mode matching method[J]. IEEE Transactions on antennas and propagation.2011,59(3):784-792.
    [128] Heckler M V T, Dreher A. Discrete mode matching analysis of cylindricalmicrostrip structures[C]. IEEE.2011:753-757.
    [129] Wang Y Y, Xie Y J, Feng H. Analysis of cylindrically conformal microstripstructures using an itrative method[J]. Progress In Electromagnetics Research.2008,87:215-231.
    [130] Lovell J R, Chew W C. Response of a point source in a multicylindricallylayered medium[J]. IEEE Transactions on Geoscience and Remote Sensing.1987,25(6):850-858.
    [131]胡梦中,尹成友,宋铮.改进的圆柱分层介质格林函数的快速计算方法[J].微波学报.2008,24,增刊:13-17.
    [132]胡梦中,尹成友,宋铮,熊俊卿.圆柱分层介质中格林函数的完整求解I:场型格林函数[J].微波学报.2009,25(3):1-6.
    [133] Akyuz M S. Development of closed-form Green's functions to investigateapertures on a pec circular cylinder covered with dielectric layers[D].2009.
    [134] Aksun M I, Dural G. Clarification of issues on the closed-form green'sfunctions in stratified media[J]. IEEE Transactions on Antennas and Propagation.2005,53(11):3644-3653.
    [135] Ling F, Jin J M. Discrete complex image method for Green's functions ofgeneral multilayer media[J]. IEEE Microwave and Guided Wave Letters.2000,10(10):400-402.
    [136] Wang D X, Yung E K N, Chen R S. A new method for locating the poles ofGreen's functions in a lossless or lossy multilayered medium[J]. IEEE Transactions onAntennas and Propagation.2010,58(7):2295-2300.
    [137] Kourkoulos V N, Cangellaris A C. Accurate approximation of Green'sfunctions in planar stratified media in terms of a finite sum of spherical and cylindricalwaves[J]. IEEE Transactions on Antennas and Propagation.2006,54(5):1568-1576.
    [138] Polimeridis A G, Yioultsis T V, Tsiboukis T D. A robust method for thecomputation of Green's functions in stratified media[J]. IEEE Transactions on Antennasand Propagation.2007,55(7):1963-1969.
    [139] Gustavsen B, Semlyen A. Rational approximation of frequency domainresponses by vector fitting[J]. IEEE Transactions on power delivery.1999,14(3):1052-1061.
    [140] Gustavsen B. Improving the pole relocating properties of vector fitting[J].IEEE Transactions on power delivery.2006,21(3):1587-1592.
    [141] Kipp R A, Chan C H. Complex image method for sources in boundedregions of multilayer structures[J]. IEEE Transactions on Microwave Theory andTechniques.1994,42(5):860-865.
    [142] Boix R R, Mesa F, Medina F. Application of total least squares to thederivation of closed-form green's funcions for planar layered media[J]. IEEETransactions on Microwave Theory and Techniques.2007,55(2):268-280.
    [143] Michalski K A, Zheng D. Electromagnetic scattering and radiation bysurfaces of arbitrary shape in layered media. Part I. Theory[J]. IEEE Transactions onAntennas and Propagation.1990,38(3):335-344.
    [144] Michalski K A, Zheng D. Electromagnetic scattering and radiation bysurfaces of arbitrary shape in layered media, Part II: implementation and results forcontiguous half-spaces[J]. IEEE Transactions on Antennas and Propagation.1990,38(3):345-352.
    [145] Abramowitz M, Stegun I A. Handbook of mathematical functions[M]. NewYork: Dover:1970.
    [146] Filon L N G. On a quadrature formula for trigonometric integrals[J].1928:38-47.
    [147] Mathews J H, Fink K D. Numerical methods using MATLAB (Fourthedition)[M].北京:电子工业出版社,2009.
    [148] Glisson A W, Wilton D R. Simple and efficient numerical methods forproblems of electromagnetic radiation and scattering from surfaces[J]. IEEETransactions on Antennas and Propagation.1980,28(5):593-603.
    [149] Martin R A, Werner D H. A reciprocity approach for calculating the far-fieldradiation patterns of a center-fed helical microstrip antenna mounted on adielectric-coated circular cylinder[J]. IEEE Transactions on Antennas and Propagation.2001,49(12):1754-1762.
    [150] Ashkenazy J, Shtrikman S, Treves D. Electric surface current model for theanalysis of microstrip antennas on cylindrical bodies[J]. IEEE Transactions on Antennasand Propagation.1985,33(3):295-300.
    [151] Hua Y B, Sarkar T K. Generalized pencil-of-function method for extractingpoles of an EM system from Its transient response[J]. IEEE Transactions on Antennasand Propagation.1989,37(2):229-234.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700