用户名: 密码: 验证码:
石英晶体谐振器的振动模态分析及环境电磁场影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石英晶体谐振器是现代电子通信信息系统中频率基准源的核心元器件,随着航空、航天、电子、通信和机械等领域中相关技术的发展,对石英晶体谐振器的精度要求越来越高。提高石英晶体谐振器频率的稳定度,已经成为一个重要的问题。
     降低寄生振动克服外界干扰本文从理论和实验两方面入手研究石英晶体谐振器的稳定问题,一方面,采用有限元方法研究石英晶体谐振器的振动模态,另一方面,采用实验方法研究石英晶体谐振器受磁场影响的机理。论文的主要工作如下:
     1.探索了有限元分析方法在高精度石英晶体谐振器设计中的应用。本文基于压电振动理论,运用有限元方法分析了圆盘式AT切石英晶体谐振器在自由边界条件下的三维振动模态,仿真结果与文献报道的采用X射线拍摄的实验结果基本吻合,验证了该方法的可靠性。该方法不但可以获取石英晶体表面的振动位移分布信息,而且还可以清楚地观察到边缘的振动模态,从而有助于了解寄生耦合模态的存在状况。借助该方法的这一特点,发现在AT切石英晶体谐振器中厚度剪切振动模式起主要作用,但同时伴随了较强的面剪切振动和弯曲振动等寄生振动,针对这些寄生振动对石英晶体谐振器性能的影响,本文利用模态分析法对SMD(贴片式)石英晶体谐振器中的方形石英晶片长/宽尺寸进行了优化设计,通过分析不同尺寸下石英晶体谐振器的振动位移分布状态,寻求晶片的最佳尺寸以抑制寄生振动的干扰,从而优化石英晶体谐振器的温-频和阻抗特性,该方法已在实际产品的设计研发中得到了验证,并取得较好的应用效果。
     2.采用有限元分析方法研究预应力条件下石英晶体谐振器的振动模态。通过有限元方法仿真计算AT切石英晶体谐振器在自由状态下前8阶的振动模态,并与文献报道的实验结果进行比对,验证了该方法的可靠性。在此基础上仿真计算了AT切石英晶体谐振器在不同方位角约束条件下的振动模态,发现谐振器的主要振动方向随着不同约束角度的改变而改变;进一步,本文研究了AT切石英晶体谐振器在不同方位角施加对径力条件下的振动模态,发现不仅谐振器的主振方向随着对径力角度的改变而改变,而且其主振中心也随着对径力角度的改变发生相应的偏移。仿真结果发现在0°和180°方位角施加对径力时厚度剪切振动会加强同时寄生振动也相应得加强,相反在60°和120°方位角施加对径力时所有方向的振动位移与自由振动模态相比变化不明显。该方法获取的频率变化量与文献报道的石英晶体谐振器的力-频效应实验结果基本一致。以上分析结果对于石英晶体谐振器的点胶位置的选取设计以及基于石英晶体的加速度等力学传感器的研发有一定的参考价值。
     3.探讨了石英晶体谐振器在静磁场中频率发生漂移的机理。通过将复杂结构的石英晶体谐振器分解为几种简单的谐振器结构,分别从实验上研究这几种简单结构的石英晶体谐振器在静磁场中的频率变化,从而阐明了石英晶体谐振器在静磁场中频率发生漂移的机理,并结合有限元方法建立一种基于磁-弹耦合原理的物理模型,对石英晶体谐振器在静磁场中的应力分布进行仿真分析,进一步明确了静磁场对石英晶体谐振器频率的影响作用机制。
     4.研究了工频交变电磁场对石英晶体谐振器的影响。通过对石英晶体谐振器施加不同强度和不同方向的工频交变电磁场,观测到石英晶体谐振器在不同强度和不同方向工频交变电磁场的影响下其频率的变化规律;利用阻抗分析仪,对石英晶体谐振器在工频交变电磁场中Butterworth-can-Dyke (BVD)等效电路参数(静态电容、动态电容、动态电阻等)的变化进行分析,从而阐明了石英晶体谐振器在工频交变电磁场中频率变化的机理。
Quartz crystal resonators are the key components for frequency standard in modern telecommunication system. With the development of the correlation technique about the aviation, spaceflight, electron, communication and machinery field, the accuracy requirement of quartz crystal resonator is higher and higher. Enhancing the frequency stability of quartz crystal resonator has also become an important problem.
     This article will start with theory and experiment to research the stability of quartz crystal resonator. On one hand, use the finite element method to research the vibration mode of quartz crystal resonator, on the other hand, research the mechanism of quartz crystal resonator under the magnetic field through experiment. The main work of this paper is as follows:
     To search the application of the finite element method in the high precision quartz crystal resonator. Use the finite element method to analysis disc type AT-cut quartz crystal resonator's three-dimensional vibration mode under free boundary conditions. The simulation result generally coincides with the experiment result of document report using X-ray, so that proved the reliability of this method. This method can not only acquire the surface vibration displacement distributed information but also observe the marginal vibration mode, thereby, contribute to comprehend the existence condition of spurious coupling modal. With this character of the method, it found that the thickness shear vibration mode playing an important role in the quartz crystal resonator. But at the same time, it accompanied with a strong parasitic vibrate including face shear vibratation, flexural vibration and so on. In allusion to the parasitic vibration effect on the properties of quartz crystal resonator, this article will optimal design the size of quartz crystal wafer through modal analytical method. Through analyzing the vibration displacement distribution of quartz crystal resonator in different size to find an optimum size to control obstruct of parasitic vibration, and then optimize its temperature frequency and impedance characteristic. This method has been tested in the research of actual product and achieved a good application effect.
     2. To research the mode of quartz crystal resonator under prestress conditions through finite element method. Use finite element method to simulate the eight steps vibration mode of AT-cut quartz crystal resonator in free state and proved the reliability by comparing with the experimental result of document report. On this basis, simulating calculated the vibration mode of AT-cut quartz crystal resonator in different azimuth angle constraint conditions and found the main vibration direction of quartz crystal resonator changing with different constraint angle. Furthermore, this article researched the vibration mode of AT cut quartz crystal resonator by inflicting diameter force on different azimuth angle, and found that not only the main vibration direct but also the main vibration center change with the inflicting diameter force. According to the simulation result, the thickness shear vibration and parasitic vibration will be stronger when inflicting the inflicting diameter force on00or1800azimuth angle, on the contrary, when inflicting the inflicting diameter force on600or1200, the vibration displacement of all the directions won't change obviously compared with free boundary condition. The frequency vibration variation acquired by this method is general the same with experiment result of quartz crystal resonator's force and frequency effect reported by the document. The analysis above has an important reference value to select the dispense position and research the mechanics sensor for example the acceleration of quartz crystal.
     3. To discuss the frequency drifting mechanism when quartz crystal resonator in the static magnetic field. To break up complex construction quartz crystal resonator into simple structure, separately research their frequency change in static magnetic field to clarify the frequency drifting mechanism when quartz crystal resonator in the static magnetic field, combine with finite element method to construct a physical model based on magneto elastic coupling theory, analyze the stress distribution which in the static magnetic field to definite the magnetic field's influence action mode to the frequency.
     4. To research the effects of the alternating electromagnetic field of quartz crystal resonator. Inflict alternating electromagnetic field in different intensity and direction to observe the change law of frequency under this condition, analyze the change of equivalent circuit parameter (including static capacity, dynamic capacity, dynamic resistance and so on) in the alternating electromagnetic field to clarify the frequency change mechanism in alternating electromagnetic field.
引文
[1]道客巴巴网,东晶电子在SMD石英晶体谐振器领域具有优势http://www.doc88.com/p-813647035918.html,2013-02-19.
    [2]中国市场报告网,2010年中国石英晶体元器件市场竞争格局研究报^.http://www.360baogao.com/2010-05/2010nianbanshiyingjingtiyuanqijiansh.html,2010-05-20.
    [3]Strauss, B., Morgan, M. G., and Stancil, D. D., Unsafe at any airspeed? Cell phones and other electronics are more of a risk than you think, IEEE Spectrum,2006,44(3):44-49.
    [4]John R.Vig著,王冀,胡文科译.石英晶体谐振器[M].宁波大学压电器件技术实验室,2006.
    [5]Vig, J. R., Quartz crystal resonators and oscillators for frequency control and timing applications-a tutorial, NASA STI/Recon Technical Report N, January,2001.
    [6]M. Brunet, Doris precise orbit determination and location system performances of ultrastable oscillators, in Proc.6th Eur. Frequency and Time Forum, San Francisco, CA,1992:125-129.
    [7]R. Brendel, Influence of a Magnetic Field on Quartz Crystal resonators, IEEE Trans. Ultrason., Ferroelec., Freq. Contr.,1996,43(5):818-831.
    [8]Mindlin R D., Forced thickness-shear and flexural vibrations of piezoelectric crystal plates, Journal of Apply Physics,1952,23(1):83-88.
    [9]Mindlin R D., Mathematical theory of vibfutions elastic plates, IEEE 11th Annual Symposium on frequency control, Asbury Park, NJ,1956:1-40.
    [10]Mindlin R D., Some new result in the mathematical theory of vibrations of crystal plates, IEEE 13th Annual Symposium on frequency control,1952:53-53.
    [11]Mindlin R D., Coupled contour and thickness-shear vibrations of crystal plates, IEEE 14th Annual Symposium on frequency control,1960:67-67.
    [12]Mindlin R D., Studies in the mathematical theory of vibrations of crystal plates, IEEE 20th Annual Symposium on frequency control, Fort Monmouth. NJ,1966:252-265.
    [13]Mindlin R D., Thickness-twist vibrations of a quartz strip, Solids and Struct,1971,7(1):1-4.
    [14]Tiersten H F., Wave Propagation in an Infinite Piezoelectric Plate, Journal of the Acoustical Society of America,1963,35(2):234-239.
    [15]Tiersten H F., Thickness Vibrations of Piezoelectric Plates, Journal of the Acoustical Society of America,1963,34(5):53-58.
    [16]Tiersten H F., Resonant Frequencies of Finite Piezoelectric CeramicVibrators with High Electromechanical Coupling, IEEE transactions on Ultrasonics Engineering,1963,44(3):32-38.
    [17]Bleistein J L., Some simple modes of wave propagation in infinite piezoelectric plates, Journal of the Acoustical Society of America,1969,45(3):614-620.
    [18]Bleistein J L., A new surface wave in piezoelectric materials. Applied Physics Letters,1968,13(12): 412-413.
    [19]Lee, P. C. Y, Extensional, Flexural and Width-Shear Vibrations of Thin Rectangular Crystal Plates, Journal of Applied Physics,1971,42(11):4139-4144.
    [20]Lee, P.C.Y., Zee, C. and Brebbia, C.A., Thickness-Shear, Thickness-Twist, and Flexural Vibrations of Rectangular AT-Cut Quartz Plates with Patch Electrodes, The Journal of the Acoustical Society of America,1982,72(6):1855-1862..
    [21]Lee, P. C. Y., Nakazawa, M. and Hou, J. P., Extensional vibrations of rectangular crystal plates, Journal of Applied Physics,1982,53(6):4081-4078.
    [22]Tiersten H F., Analysis of nonlinear resonances in rotated Y-cut quartz thickness-shear resonaces, J. Acoust. Soc. Am.,1976,59(4):866-878.
    [23]Tiersten H F. and D.S. Stevens, An Analysis of SC-Cut Quartz Trapped Energy Resonators with Rectangular Electrodes, IEEE 15th Annual frequency control Symposium,1981:205-212.
    [24]Tiersten H F., Force thickness-extensional trapped trapped energy vibrations of piezoelectric plates, IEEE Symposium on ultrasonics,1981:452-457.
    [25]Tiersten H F., Couples Thickness-shear and Thickness-twist Resonances in Unelectroded Rectangular and Circular AT-cut Quartz Plates, IEEE 35th Annual Symposium on frequency control, 1981:230-236.
    [26]Tiersten H F. and D. S. Stevens, An Analysis of Contoured SC-Cut Quartz Crystal Resonators, IEEE 36th Annual Symposium on frequency control,1982:37-45.
    [27]Tiersten H F. and Shick, D.V., An Analysis of Thickness-Extensional Trapped Energy Mode Transducers, IEEE Symposium on ultrasonics,1982:509-514.
    [28]Tiersten H F. and D. S. Stevens, An analysis of doubly-rotated contoured quartz crystal resonators, IEEE 39th Annual Symposium on frequency control,1985:436-447.
    [29]Lee, P. C.Y. and Hou, J. P., Vibrations of Doubly-Rotated Piezoelectric Crystal Strip with a Pair of Electrode-Plated, Traction-Free Edges, IEEE 39th Annual Symposium on frequency control,1985: 453-461.
    [30]Jiashi Yang, Lee, P. C.Y., Effects of middle plane curvature on vibrationsof a thickness-shear mode crystal resonator, Journal of Solids and Structures,2006,43(25):7840-7851.
    [31]Lee, P. C. Y and Tang, M. S. H., Initial stress field and resonance frequencies of incremental vibrations in crystalresonators by finite element method. IEEE Proceedings of the 40th Annual Frequency Control Symposium,1986:152-160.
    [32]Lee, P. C. Y, Syngellakis, S. and Hou, J. P. A, two dimensional theory for high frequency vibrations ofpiezoelectric crystal plates with or without electrodes, Journal of Applied Physics,1987,61(4): 1249-1262.
    [33]Lee, P. C. Y and Wang, J, Vibrations of AT-cut quartz strips of narrow width and finite length, Journal ofApplied Physics,1994,75(12):7681-7695.
    [34]D. F. Ostergaard and T. P. Pawlak, There-dimensional finite elements for analyzing piezoelectric structures, IEEE Symposium on ultrasonics,1988:643-654.
    [35]Yong, Y. K., Three-dimensional finite element solution of the Lagrangian equations for the frequency-tem-perature behavior of Y-cut and NT-cut bars, IEEE Trans. Ultrason., Ferroelec., Freq. Contr.,1987,34(5):491-499.
    [36]Yong, Y. K., Characteristics of a Lagrangian, high-frequency plate element for the static temperature behavior of low-frequency quartz resonator, IEEE Trans. Ultrason., Ferroelec, Freq. Contr.,1988,35(6):788-799.
    [37]Yong, Y. K., Stewart, J. T., Detaint, J., Zarka, A., Capelle, B. and Zheng, Y, Thickness-shear mode shapes and mass-frequency influence surface of a circular and electroded AT-cut quartz resonators, IEEE Trans. Ultrason., Ferroelec., Freq. Contr.,1993,39(5):609-617.
    [38]Yong, Y. K. and Zhang, Z. A, Perturbation Method for Finite Element Modeling of Piezoelectric Vibrations in Quartz Plate Resonators, IEEE Trans. Ultrason., Ferroelec., Freq. Contr.,1993, 40(5):551-562.
    [39]Yong, Y. K. and Zhang, Z. Numerical algorithms and results for SC-cut quartz plates vibrating at the third harmonic overtone of thickness shear, IEEE Trans. Ultrason., Ferroelec., Freq. Contr., 1994,41(5):685-693.
    [40]Zhang, Z. and Yong, Y. K., Numerical analysis of thickness shear thin_lm piezoelectric resonators using alaminated plate theory, IEEE Trans. Ultrason., Ferroelec., Freq. Contr.,1995,42(4): 734-746.
    [41]Lerch, R. and Bauerschmidt, P., Optical voltage sensor based on a quartz resonator, IEEE Symposium on ultrasonics, San Antonio, TX,1996:383-387.
    [42]Yong, Y. K., Third-order Mindlin plate theory predictions for the frequency-temperature behavior of straightened crested wave modes in AT- and SC-cut quartz plates, IEEE International Frequency Control Symposium, Honolulu, HI,1996:648-656.
    [43]Yong, Y. K. and Cho, Y., Numerical algorithms for solutions of large eigenvalue problems in piezoelectric resonators, Int. J. Numer. Methods Eng.,1996,39(6):909-922.
    [44]Yong, Y. K., Wang, J., Imai, T., Kanna, S. and Momosaki, E., A set of hierarchical finite elements for quartz plate resonators, IEEE Symposium on ultrasonics, San Antonio, TX,1996:981-985.
    [45]Yong, Y. K., Zhang, Z. and Hou, J. On the accuracy of plate theories for the prediction of unwanted modes near the fundamental thickness-shear mode, IEEE Trans. Ultrason., Ferroelec., Freq. Contr., 1996,43(5):888-892.
    [46]Stewart, J. T. and Stevens, D. S. Three dimensional finite element modeling of quartz crystal strip resonators, IEEE International Frequency Control Symposium, Orlando, FL,1997:643-649.
    [47]Elena E. Antonova and Peter P. Silvester, Finite Elements for Piezoelectric Vibrations with Open Electric Boundaries, IEEE Trans. Ultrason., Ferroelec., Freq. Contr.,1997,44(3):548-556.
    [48]J. T. Stewart and D.S. Stevens, Three-dimensional finite element modeling of quartz crystal strip resonators, IEEE International Frequency Control Symposium, Orlando, FL,1997:645-649.
    [49]Ji Wang, Yook-Kong Yong, and Tsutomu Imai, Finite Elements Analysis of the Piezoelectric Vibrations of Quartz Plate Resonators with Higher-order Plate Theory, IEEE International Frequency Control Symposium, Orlando, FL,1997:650-658.
    [50]Ji Wang, Yook-Kong Yong, and Tsutomu Imai, Finite Elements Analysis of the Piezoelectric Vibrations of Quartz Plate Resonators with Higher-order Plate Theory, IEEE International Joural of Solids and structures,1971,36(15):2303-2319.
    [51]Tsuzuki, Y., Hirose, Y., Iijima, K., Measurement of Vibration Modes of Piezoelectric Resonators by Means of Holography, IEEE International Frequency Control Symposium,1997:113-117.
    [52]B. Capella, J. Detaint, Y. Epelboin, A. Zarka, Y. Zheng and J. schwartZet, Mode shape analysis techniques using synchrotron X-ray topography, IEEE International Frequency Control Symposium, Baltimore, MD,1990:416-423.
    [53]A. Zarka, B. Capelle, Y. Zheng, J. Detaint, J. Schwartzel, C. Joly and D. Cochet-Muchy, Assessment of material perfection and observation and observation of vibration modes in lithium tantalite by X-ray topography, IEEE International Frequency Control Symposium, Los Angeles, CA, 1991:58-71.
    [54]B. Capella, J. Detaint, Y. Epelboin, Direct mapping of the vibration modes of piezoelectric devices using white beam stroboscopic topography at E. S. R.F., IEEE International Frequency Control Symposium, Kansas City, MO,2000:430-433.
    [55]I. Mateescua, B. Capelleb, J. Detaintb, G. Johnsonc, L. Dumitrachea, C.Brana, Vibration Modes Analysis by X-ray Topography in Quartz and Langasite Resonators, IEEE International Ultrasonics, Ferroelectrics, and Frequency Control 50th Anniversary Conference,2004:579-584.
    [56]Chien-Ching Ma and Chi-Hung Huang, The Investigation of Three-Dimensional Vibration for Piezoelectric Rectangular Parallelepipeds Using the AF-ESP1 Method, IEEE Trans. Ultrason., Ferroelec., Freq. Contr.,2001,48(1):142-153.
    [57]Chi-Hung Huang and Chien-Ching Ma, Vibration Characteristics of Composite Piezoceramic Plates at Resonant Frequencies:Experiments and Numerical Calculations, IEEE Trans. Ultrason., Ferroelec., Freq. Contr.,2001,48(4):1147-1156.
    [58]Chi-Hung Huang, Yu-Chih Lin, and Chien-Ching Ma, Theoretical Analysis and Experimental Measurement for Resonant Vibration of Piezoceramic Circular Plates, IEEE Trans. Ultrason., Ferroelec., Freq. Contr.,2004,51(1):12-24.
    [59]Yu-Chih Lin and Chien-Ching Ma, Experimental Measurement and Numerical Analysis on Resonant Characteristics of Piezoelectric Disks with Partial Electrode Designs, IEEE Trans. Ultrason., Ferroelec., Freq. Contr.,2005,51(8):937-947.
    [60]Chi-Hung Huang, Chien-Ching Ma, and Yu-Chih Lin, Theoretical, Numerical, and Experimental Investigation on Resonant Vibrations of Piezoceramic Annular Disks, IEEE Trans. Ultrason., Ferroelec., Freq. Contr.,2005,52(8):1204-1216.
    [61]Chi-Hung Huang, Free Vibration Analysis of the Piezoceramic Bimorph with Theoretical and Experimental Investigation, IEEE Trans. Ultrason., Ferroelec., Freq. Contr.,2005,52(8): 1393-1403.
    [62]Chien-Ching Ma, Yu-Chih Lin, Yu-Hsi Huang, and Hsien-Yang Lin, Experimental Measurement and Numerical Analysis on Resonant Characteristics of Cantilever Plates for Piezoceramic Bimorphs, IEEE Trans. Ultrason., Ferroelec., Freq. Contr.,2007,54(2):227-239.
    [63]R. Holland, Nonuniformly heated anisotropic plates:Imechanical distortion and relaxation, IEEE Tr. Son.Ultrason.,1974:171-178.
    [64]R. Holland, Nonuniformly heated anisotropic plates:Ⅱ. frequency transients in AT and BT quartz plates, IEEE Ultrason. Symp. Proc.,1974:592-598.
    [65]D. R. Koehler, T. J. Young, and R. A. Adams, Radiation induced transient thermal effects in 5 MHz AT-cut quartz resonators, IEEE Ultrason. Symp. Proc.,1977:877-881.
    [66]T. J. Young, D. R. Koehler, R. A. Adams, "Radiation induced frequency and resistance changes in electrolyzed high purity quartz resonators," Proc. 32nd Ann. Freq. Contr.Symp.,1978:34-42.
    [67]A. Ballato and J. R. Vig, Static and dynamic frequency-temperature behavior of singly and doubly rotated oven-controlled quartz resonators,32nd Annu. Freq. Contr. Symp.,1978:180-188.
    [68]B. K. Sinha and H. F. Tiersten, First Temperature Derivatives of the Fundamental Elastic Constants of Quartz, Journal of Applied Physics,1979,50(4):2732-2739.
    [69]D. Janiaud, R. Besson, J. J. Gagnepain and M. Valdois, Quartz resonator thermal transient due to crystal support, Proc.35th Ann. Freq. Contr. Symp.,1981:340-344.
    [70]P.C.Y. Lee and Y-K. Yong, Frequency-Temperature Behavior of Thickness Vibrations of Doubly Rotated Quartz Plates Affected by Plate Dimensions and Orientations, Journal of Applied Physics,1986,60(7):2327-2342.
    [71]马洛夫BB著,翁善臣等译,压电谐振式传感器,国防工业出版社,1984.
    [72]焦同顺,压电石英晶体及元器件,电子元器件专业技术培训教材编写组,1986.
    [73]Y. K. Yong., Three-dimensional finite-element solution ofthe Lagrangian equations for the frequency-temperature behavior of Y-cut and NT-cut Bars, IEEE Trans. Ultrason.,Ferroelec., Freq. Contr.,1987,34(5):491-499.
    [74]Y. K. Yong., Characteristics of a Lagrangian, high frequency plate element for the static temperature behavior of low-frequency quartz resonators, IEEE Trans. Ultrason., Ferroelec., Freq. Contr.,1988,35(6):788-799.
    [75]Y. K. Yong. Third-order Mindlin plate theory predictions for the frequency-temperature behavior of straighted crested wave modes in AT- and SC-cut quartz plates, IEEE Ann. Freq. Contr. Symp., 1996:648-656.
    [76]J. T. Stewart and D. P. Chen, Finite element modelling of the effects of mounting stresses on the frequency temperature behaviour of surface acoustic wave devices, in Proc. IEEE Ultrason.Symp., Toronto, Ont.,1997:105-111.
    [77]S. Ballandras, A Perturbation Method for Predicting the Temperature and Stress Sensitivities of Quartz Vibrating Structures Simulated by Finite-Element Analysis, IEEE Trans. Ultrason., Ferroelec., Freq. Contr.,2006,53(11):2086-2094.
    [78]Gerber E. A., Reduction of the frequency-temperature Shift of Piezoelectric by Application of Temperature-dependent Pressure, Proc. IRE,1961,49(11):244-245.
    [79]Gerber E. A., Miles M. H., Reduction of the frequency-temperature Shift of Piezoelectric Resonators by Mechanical Stress, Proc. IRE,1961,49(11), pp.1650-1654.
    [80]V. Bottom, Note on the anomalous thermal effect in quartz oscillator plates, Ainer. Mineralogist,1947, vol.32, pp.590-591.
    [81]C. R. Mingins, L. C. Barcus, and R. W. Peny, Effects of external forces on the frequency of vibrating crystal plates,16th Annu. Symp.Freq. Contr.,1962:47-76.
    [82]C. R. Mingins, L. C. Barcus, and R. W. Perry, Reactions of a vibrating piezoelectric plate to externally applied forces,17th Annu. Symp. Freq. Contr.,1963:51-87.
    [83]J. M. Ratajski, The force sensitivity of AT-cut quartz crystals,20th Annu. Symp. Freq. Contr.,1966: 33-48.
    [84]J. M. Ratajski, Forced-frequency coefficient of singly-rotated vibrating quartz crystals, IBM J. Res. Dev.,1968,12(1):92-99.
    [85]P. C. Y. Lee, Y. S. Wang, and X. Markenscoff, Elastic waves and vibrations in deformed crystal plates,27th Annu. Symp. Freq.Contr.,1973:1-6.
    [86]P. C. Y. Lee and Y. S. Wang, Effects of initial bending on the resonance frequencies of crystal plates, 28th Annu. Symp. Freq.Contr.,1974:14-18.
    [87]A. D. Ballato, E. P. EerNisse, and T. Lukaszek, The force-frequency effect in doubly rotated quartz resonators, in Proc.31st Ann. Freq. Contr. Symp., New, York,1977:8-16.
    [88]E. P. EerNisse, T. Lukaszek, and A. Ballato, Variational calculations of force-frequency constants of doubly rotated quartz resonators, IEEE Trans. Sonics Ultrason.,1978,25(3):132-138.
    [89]P. C. Y. Lee, Wu, Kuang-Ming, Nonlinear Effect of Initial Stresses in Doubly-Rotated Crystal Resonator Plates, IEEE 34th Annual Symposium on Frequency Control,1980:403-411.
    [90]P. C. Y. Lee and C. S. Lam, Stresses in rectangular cantilever crystal plates under transverse loading, IEEE 35th Annu. Symp. Freq.Contr.,1981:193-204.
    [91]P. C. Y. Lee and C. S. Lam, Effect of Transverse Force on the Thickness-Shear Resonance Frequencies in Rectangular, Doubly-Rotated Crystal Plates, IEEE 36th Annu. Symp. Freq. Contr., 1982:29-36.
    [92]A. D. Ballato and M. Mizan, Simplified Expressions for the Stress-Frequency Coefficients of Quartz Plates, IEEE Trans. Sonics and Ultrason.,1984,31(1):11-18.
    [93]P. C. Y. Lee and M. S. H. Tang, Thickness vibrations of doubly rotated crystal plates under initial deformations, IEEE Trans. Ultrason., Ferroelec., Freq. Contr.,1987,34(6):227-239.
    [94]J. T. Stewart and D.S. Stevens, Analysis of the effects of mounting stresses on the resonant frequency of crystal resonators, IEEE International Frequency Control Symposium,1997:621-629.
    [95]Zheyao Wang, Huizhong Zhu, Yonggui Dong, Jinsong Wang, and Guanping Feng, Force-Frequency Coefficient of Symmetrical Incomplete Circular Quartz Crystal Resonator, IEEE Trans. Ultrason., Ferroelec., Freq. Contr.,2001,48(5):1471-1479.
    [96]Jiashi Yang and J. A. Kosinski, Perturbation Analysis of Frequency Shifts in an Electro-elastic Body under Biasing Fields, IEEE Trans. Ultrason., Ferroelec., Freq. Contr.,2006,53(12): 2442-2449.
    [97]A. Ballato, Force-frequency Compensation Applied to Four-Point Mounting of AT-Cut Resonators, IEEE Trans. Ultrason., Ferroelec., Freq. Contr.,1978,25(4):223-226.
    [98]Oura, N.,Kuramochi, N.,Nakamura, J.,Miyazaki, Y. andYamashina, M., Frequency Changes in Fifth-Overtone 5-MHz Circular Plano-Convex AT- and IT-Cut Plates due to Radially Applied Three Forces, IEEE Trans. Son. And Ultrason.,1983,30(2):111-114.
    [99]Oura, N.,Kuramochi, N.,Nakamura, J.,Miyazaki, Y. andYamashina, M., Generalized Equation for the Force-Frequency Characteristics of Circular Quartz Plates, IEEE Trans. Sonic Ultrason.,1985, 32(6):845-848.
    [100]R. Brendel and C. El Hassani, Influence of Magnetic Field on Quartz Crystal Oscillators, in Proc. 43th Ann. Freq. Contr. Symp.,1989, pp.268-274.
    [101]R. Brendel and E. Robert, Weak magnetic field sensitivity of quartz crystal oscillators, in Proc.6th Eur. Frequency and Eme Forum,1992, pp.99-103.
    [102]王矜奉,压电振动,科学出版社,1989.
    [103]IEEE Standard on Piezoelectricity, H. F. Tiersten, IEEE Trans. Sonic and Ultrason.,1988, 176(3):18-19.
    [104]罗恩,姜风华,非线性弹性动力学Hamilton型变分原理,中山大学学报,2004,43(6),pp.52-56.
    [105]邓凡平,ANSYS10.0有限元分析自学手册,人民邮电出版社,2007.
    [106]O. A. Mohammed, T. Calvert, and R. McConnell, Coupled magnetoelastic finite element formulation including anisotropic reluctivity tensor and magnetostriction effects for machinery applications, IEEE Trans. Mag.,2001, vol.37, no.5, pp.3388-3392.
    [107]Z. Ren, M. Besbes and S. Boukhtache, Calculation of local magnetic forces in magnetized materials, Proceeding of International Workshop on Electrical and Magnetic from Numerical Models to Industrial Applications,1992, pp.64.1-64.6.
    [108]CARL K. H., Second-Order Phenomena in a-Quartz and the Polarizing Effect with Plates of Orientation (XZ1)T, IEEE Trans. Sonic and Ultrason.,1978, vol.25, no.4, pp.198-204.
    [109]CARL K. H., Zero Polarizing Effect with Doubly Rotated a-Quartz Plates Vibrating in Thickness, IEEE Trans. Sonic and Ultrason.,1980, vol.27, no.2, pp.87-89.
    [110]CARL K. H., On the Linear Polarizing Effect with a-Quartz AT Plates, IEEE Trans. Sonic and Ultrason.,1981, vol.28, no.2, pp.108-110.
    [111]CARL K. H. and MILOS K., Anharmonic Character of the Polarizing Effect with the Thickness Modes of a-Quartz Plates, IEEE Trans. Sonic and Ultrason.,1988, vol.35, no.6, pp.842-844.
    [112]Van Dyke, K.S., The Piezo-Electric Resonator and Its Equivalent Network. Proceedings of the Institute of Radio Engineers,1928. vol.16,no.6,pp.742-764.
    [113]JanshoffA., Galla H.J., Steinem C., Angew. Chem., Int. Ed.2000, vol.39, pp.4004-4032.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700